CA2372815A1 - Extracellular matrix and adhesion-associated proteins - Google Patents

Extracellular matrix and adhesion-associated proteins Download PDF

Info

Publication number
CA2372815A1
CA2372815A1 CA002372815A CA2372815A CA2372815A1 CA 2372815 A1 CA2372815 A1 CA 2372815A1 CA 002372815 A CA002372815 A CA 002372815A CA 2372815 A CA2372815 A CA 2372815A CA 2372815 A1 CA2372815 A1 CA 2372815A1
Authority
CA
Canada
Prior art keywords
polynucleotide
seq
polypeptide
amino acid
exmad
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002372815A
Other languages
French (fr)
Inventor
Olga Bandman
Jennifer L. Hillman
Y. Tom Tang
Preeti Lal
Henry Yue
Mariah R. Baughn
Dyung Aina M. Lu
Yalda Azimzai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Incyte Corp
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CA2372815A1 publication Critical patent/CA2372815A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/04Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/18Drugs for disorders of the alimentary tract or the digestive system for pancreatic disorders, e.g. pancreatic enzymes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • A61P11/06Antiasthmatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/02Drugs for disorders of the urinary system of urine or of the urinary tract, e.g. urine acidifiers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/08Drugs for disorders of the urinary system of the prostate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/12Drugs for disorders of the urinary system of the kidneys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P15/00Drugs for genital or sexual disorders; Contraceptives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P15/00Drugs for genital or sexual disorders; Contraceptives
    • A61P15/08Drugs for genital or sexual disorders; Contraceptives for gonadal disorders or for enhancing fertility, e.g. inducers of ovulation or of spermatogenesis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P15/00Drugs for genital or sexual disorders; Contraceptives
    • A61P15/10Drugs for genital or sexual disorders; Contraceptives for impotence
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P15/00Drugs for genital or sexual disorders; Contraceptives
    • A61P15/14Drugs for genital or sexual disorders; Contraceptives for lactation disorders, e.g. galactorrhoea
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/02Drugs for dermatological disorders for treating wounds, ulcers, burns, scars, keloids, or the like
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/16Emollients or protectives, e.g. against radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/04Drugs for skeletal disorders for non-specific disorders of the connective tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/06Antigout agents, e.g. antihyperuricemic or uricosuric agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/08Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
    • A61P19/10Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease for osteoporosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • A61P21/04Drugs for disorders of the muscular or neuromuscular system for myasthenia gravis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/02Drugs for disorders of the nervous system for peripheral neuropathies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/04Centrally acting analgesics, e.g. opioids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/08Antiepileptics; Anticonvulsants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/14Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/14Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
    • A61P25/16Anti-Parkinson drugs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/18Antipsychotics, i.e. neuroleptics; Drugs for mania or schizophrenia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/24Antidepressants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/10Antimycotics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • A61P31/18Antivirals for RNA viruses for HIV
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P33/00Antiparasitic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P33/00Antiparasitic agents
    • A61P33/02Antiprotozoals, e.g. for leishmaniasis, trichomoniasis, toxoplasmosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P33/00Antiparasitic agents
    • A61P33/10Anthelmintics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/08Antiallergic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P39/00General protective or antinoxious agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P5/00Drugs for disorders of the endocrine system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P5/00Drugs for disorders of the endocrine system
    • A61P5/14Drugs for disorders of the endocrine system of the thyroid hormones, e.g. T3, T4
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P5/00Drugs for disorders of the endocrine system
    • A61P5/14Drugs for disorders of the endocrine system of the thyroid hormones, e.g. T3, T4
    • A61P5/16Drugs for disorders of the endocrine system of the thyroid hormones, e.g. T3, T4 for decreasing, blocking or antagonising the activity of the thyroid hormones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P5/00Drugs for disorders of the endocrine system
    • A61P5/38Drugs for disorders of the endocrine system of the suprarenal hormones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/04Antihaemorrhagics; Procoagulants; Haemostatic agents; Antifibrinolytic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/06Antianaemics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/08Plasma substitutes; Perfusion solutions; Dialytics or haemodialytics; Drugs for electrolytic or acid-base disorders, e.g. hypovolemic shock
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/78Connective tissue peptides, e.g. collagen, elastin, laminin, fibronectin, vitronectin or cold insoluble globulin [CIG]
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/05Animals comprising random inserted nucleic acids (transgenic)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Public Health (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Neurology (AREA)
  • Biomedical Technology (AREA)
  • Neurosurgery (AREA)
  • Diabetes (AREA)
  • Endocrinology (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Hematology (AREA)
  • Reproductive Health (AREA)
  • Oncology (AREA)
  • Pain & Pain Management (AREA)
  • Rheumatology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Toxicology (AREA)
  • Pulmonology (AREA)
  • Urology & Nephrology (AREA)
  • Communicable Diseases (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Molecular Biology (AREA)
  • Dermatology (AREA)
  • Psychiatry (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Gynecology & Obstetrics (AREA)
  • Immunology (AREA)
  • Biophysics (AREA)

Abstract

The invention provides human extracellular matrix and adhesion-associated proteins (EXMAD) and polynucleotides which identify and encode EXMAD. The invention also provides expression vectors, host cells, antibodies, agonists , and antagonists. The invention also provides methods for diagnosing, treatin g, or preventing disorders associated with expression of EXMAD.

Description

EXTRACELLULAR MATRIX AND ADHESION-ASSOCIATED PROTEINS
TECHNICAL FIELD
This invention relates to nucleic acid and amino acid sequences of extracellular matrix and adhesion-associated proteins and to the use of these sequences in the diagnosis, treatment, and prevention of cell proliferative, immune, reproductive, neuronal, and genetic disorders.
BACKGROUND OF THE INVENTION
Extracellular Matrix Proteins The extracellular matrix (ECM) is a complex network of glycoproteins, polysaccharides, proteoglycans, and other macromolecules that are secreted from the cell into the extracellular space.
The ECM remains in close association with the cell surface and provides a supportive meshwork that profoundly influences cell shape, motility, strength, flexibility, and adhesion. In fact, adhesion of a cell to its surrounding matrix is required for cell survival except in the case of metastatic tumor cells, which have overcome the need for cell-ECM anchorage. This phenomenon suggests that the ECM plays a critical role in the molecular mechanisms of growth control and metastasis.
(Reviewed in Ruoslahti, E.
(1996) Sci. Am. 275:72-77.) Furthermore, the ECM determines the structure and physical properties of connective tissue and is particularly important for morphogenesis and other processes associated with embryonic development and pattern formation.
Collagens The collagens comprise a family of ECM proteins that provide structure to bone, teeth, skin, ligaments, tendons, cartilage, blood vessels, and basement membranes. Multiple collagen proteins have been identified. Three collagen molecules fold together in a triple helix stabilized by interchain disulfide bonds. Bundles of these triple helices then associate to form fibrils.
Collagen primary structure consists of hundreds of (Gly-X-Y) repeats where about a third of the X and Y
residues are Pro.
Glycines are crucial to helix formation as the bulkier amino acid side chains cannot fold into the triple helical conformation. Because of these strict sequence requirements, mutations in collagen genes have severe consequences. Osteogenesis imperfecta patients have brittle bones that fracture easily; in severe cases patients die in utero or at birth. Ehler-Danlos syndrome patients have hyperelastic skin, hypermobile joints, and susceptibility to aortic and intestinal rupture.
Chondrodysplasia patients have short stature and ocular disorders. Alport syndrome patients have hematuria, sensorineural deafness, and eye lens deformation. (See Isselbacher, K.J., et al. (1994) Harrison's Principles of Internal Medicine, McGraw-Hill, Inc., New York, NY, pp. 2105-2117: and Creighton, T.E.
(1984) Proteins, WO 00/68380 _ PCT/US00/12811 Structures and Molecular Principles, W.H. Freeman and Company, New York, NY, pp. 191-197.) Collectins are extracellular proteins with collagen tails and globular lectin domains that play an important role in the first line immune response to micoorganisms. The peripheral lectin domain permits binding to sugar residues on microorganisms, while the collagen tail interacts with phagocyte receptors or the complement system. Examples of collectins are the pulmonary surfactant proteins SP-A and SP-D ( Kuroki, S.D. et al. (1998) J. Biol. Chem. 273:4783-4789).
Elastin Elastin and related proteins confer elasticity to tissues such as skin, blood vessels, and lungs.
Elasdn is a highly hydrophobic protein of about 750 amino acids that is rich in proline and glycine residues. Elastin molecules are highly cross-linked, forming an extensive extracellular network of fibers and sheets. Elastin fibers are surrounded by a sheath of microfibrils which are composed of a number of glycoproteins, including fibrillin. Mutations in the gene encoding fibrillin are responsible for Marfan's syndrome, a genetic disorder characterized by defects in connective tissue. In severe cases, the aortas of afflicted individuals are prone to rupture. (Reviewed in Alberts, B., et al. (1994) Molecular Biolo~y of the Cell, Garland Publishing, New York, NY, pp. 984-986.) Fibronectin Fibronectin is a large ECM glycoprotein found in all vertebrates. Fibronectin exists as a dimer of two subunits, each containing about 2,500 amino acids. Each subunit folds into a rod-like structure containing multiple domains. The domains each contain multiple repeated modules, the most common of which is the type III fibronectin repeat. The type III fibronectin repeat is about 90 amino acids in length and is also found in other ECM proteins and in some plasma membrane and cytoplasmic proteins. Furthermore, some type III fibronectin repeats contain a characteristic tripeptide consisting of Arginine-Glycine-Aspartic acid (RGD). The RGD sequence is recognized by the integrin family of cell surface receptors and is also found in other ECM proteins. Disruption of both copies of the gene encoding fibronectin causes early embryonic lethality in mice. The mutant embryos display extensive morphological defects, including defects in the formation of the notochord, somites, heart, blood vessels, neural tube, and extraembryonic structures. (Reviewed in Alberts, supra, pp. 986-987.) Laminin Laminin is a major glycoprotein component of the basal lamina which underlies and supports epithelial cell sheets. Laminin is one of the first ECM proteins synthesized in the developing embryo.
Laminin is an 850 kilodalton protein composed of three polypeptide chains joined in the shape of a WO 00/68380 _ PCT/US00/12811 cross by disulfide bonds. Laminin is especially important for angiogenesis and, in particular, for guiding the formation of capillaries. (Reviewed in Alberts, supra, pp. 990-991.) Proteoglycans There are many other types of proteinaceous ECM components, most of which can be classified as proteoglycans. Proteoglycans are composed of unbranched polysaccharide chains (glycosaminoglycans) attached to protein cores. Common proteoglycans include aggrecan, betaglycan, decorin, perlecan, serglycin, and syndecan-1. Some of these molecules not only provide mechanical support, but also bind to extracellular signaling molecules, such as tibroblast growth factor and transforming growth factor (3, suggesting a role for proteoglycans in cell-cell communication.
(Reviewed in Alberts, supra, pp. 973-978.) Likewise, the glycoproteins tenascin-C and tenascin-R are expressed in developing and lesioned neural tissue and provide stimulatory and anti-adhesive (inhibitory) properties, respectively, for axonal growth (Faissner, A. (1997) Cell Tissue Res. 290:331-341 ).
Dentin phosphoryn (DPP) is a major component of the dentin ECM. DPP is a proteoglycan that is synthesized and expressed by odontoblasts (Gu, K., et al. (1998) Eur.
J. Oral Sci. 106:1043-1047). DPP is believed to nucleate or modulate the formation of hydroxyapatite crystals. The gene encoding DPP has been mapped to human chromosome 4. Chromosome 4 contains the gene loci for two dentin genetic diseases, dentinogenesis imperfecta type II and dentin dysplasia type II (Feng, J.Q., et al. (1998) J. Biol. Chem. 273:9457-9464).
Mucins Mucins are highly glycosylated glycoproteins that are the major structural component of the mucus gel. The physiological functions of mucins are cytoprotection, mechanical protection, maintenance of viscosity in secretions, and cellular recognition. MUC6 is a human gastric mucin that is also found in gall bladder, pancreas, seminal vesicles, and female reproductive tract (Toribara, N.W., et al. (1997) J. Biol. Chem. 272:16398-16403). The MUC6 gene has been mapped to human chromosome 11 (Toribara, N.W., et al. (1993) J. Biol. Chem. 268:5879-5885).
Hemomucin is a novel Drosophila surface mucin that may be involved in the induction of antibacterial effector molecules (Theopold, U., et al. (1996) J. Biol. Chem. 217:12708-12715).
Link Protein Link protein binds to both cartilage proteoglycan and hyaluronan in cartilage ECM. This binding stabilizes the aggregation of these cartilage ECM proteins and produces supramolecular assemblies. Link protein has been detected in other connective tissues, where it may bind proteoglycans and hyaluronan. Link protein contains a signal peptide, an immunoglobulin repeat, and link repeats (Ayad, S., et al. (1994) The Extracellular Matrix Facts Book, Academic Press, Inc., San Diego, CA, pp. 120-121 ).
Adhesion-Associated Proteins The surface of a cell is rich in transmembrane proteoglycans, glycoproteins, glycolipids, and receptors. These macromolecules mediate adhesion with other cells and with components of the ECM.
The interaction of the cell with its surroundings profoundly influences cell shape, strength, flexibility, motility, and adhesion. These dynamic properties are intimately associated with signal transduction pathways controlling cell proliferation and differentiation, tissue construction, and embryonic development.
C adherins Cadherins comprise a family of calcium-dependent glycoproteins that function in mediating cell-cell adhesion in virtually all solid tissues of multicellular organisms.
These proteins share multiple repeats of a cadherin-specific motif, and the repeats form the folding units of the cadherin ECM.
Cadherin molecules cooperate to form focal contacts, or adhesion plaques, between adjacent epithelial cells. The cadherin family includes the classical cadherins and protocadherins. Classical cadherins include the E-cadherin, N-cadherin, and P-cadherin subfamilies. E-cadherin is present on many types of epithelial cells and is especially important for embryonic development. P-cadherin is present on cells of the placenta and epidermis. Recent studies report that protocadherins are involved in a variety of cell-cell interactions (Suzuki, S. T. (1996) J. Cell Sci. 109:2609-2611). The intracellular anchorage of cadherins is regulated by their dynamic association with catenins, a family of cytoplasmic signal transduction proteins associated with the actin cytoskeleton. The anchorage of cadherins to the actin cytoskeleton appears to be regulated by protein tyrosine phosphorylation, and the cadherins are the target of phosphorylation-induced functional disassembly (Aberle, H., et al. ( 1996) J. Cell. Biochem.
61:514-523).
Integrins Integrins are ubiquitous transmembrane adhesion molecules that link the ECM to the internal cytoskeleton. Integrins are composed of two noncovalently associated transmembrane glycoprotein subunits called a and ~. Integrins function as receptors that play a role in signal transduction. For example, binding of integrin to its extracellular ligand may stimulate changes in intracellular calcium levels or protein kinase activity (Sjaastad, M.D. and Nelson, W.J. (1997) BioEssays 19:47-55). At least ten cell surface receptors of the integrin family recognize the ECM
component fibronectin, which is involved in many different biological processes including cell migration and embryogenesis (Johansson, S., et al. (1997) Front. Biosci. 2:D126-D146).
T artinc Lectins comprise a ubiquitous family of extracellular glycoproteins which bind cell surface carbohydrates specifically and reversibly, resulting in the agglutination of cells. (Reviewed in Drickamer, K. and Taylor, M.E. (1993) Annu. Rev. Cell Biol. 9:237-264.) This function is particularly important for activation of the immune response. Lectins mediate the agglutination and mitogenic stimulation of lymphocytes at sites of inflammation (Lasky, L.A.
(1991) J. Cell. Biochem.
45:139-146; Paietta, E., et al. (1989) J. Immunol. 143:2850-2857).
Lectins are further classified into subfamilies based on carbohydrate-binding specificity and other criteria. The galectin subfamily, in particular, includes lectins that bind ~-galactoside carbohydrate moieties in a thiol-dependent manner. (Reviewed in Hadari, Y.R., et al. (1998) J. Biol.
Chem. 270:3447-3453.) Galectins are widely expressed and developmentally regulated. Because all galectins lack an N-terminal signal peptide, it is suggested that galectins are externalized through an atypical secretory mechanism. Two classes of galectins have been defined based on molecular weight and oligomerization properties. Small galectins form homodimers and are about 14-16 kilodaltons in mass, while large galectins are monomeric and about 29-37 kilodaltons.
Galectins contain a characteristic carbohydrate recogntion domain (CRD). The CRD is about 140 amino acids and contains several stretches of about 1-10 amino acids which are highly conserved among all galectins. A particular 6-amino acid motif within the CRD contains conserved tryptophan and arginine residues which are critical for carbohydrate binding. The CRD of some galectins also contains cysteine residues which may be important for disulfide bond formation. Secondary structure predictions indicate that the CRD forms several (3-sheets.
Galectins play a number of roles in diseases and conditions associated with cell-cell and cell-matrix interactions. For example, certain galectins associate with sites of inflammation and bind to cell surface immunoglobulin E molecules. In addition, galectins may play an important role in cancer metastasis. Galectin overexpression is correlated with the metastatic potential of cancers in humans and mice. Moreover, anti-galectin antibodies inhibit processes associated with cell transformation, such as cell aggregation and anchorage-independent growth. (See, for example, Su, Z.-Z., et al. (1996) Proc.
Natl. Acad. Sci. USA 93:7252-7257.) Selectins Selectins, or LEC-CAMs, comprise a specialized lectin subfamily involved primarily in inflammation and leukocyte adhesion. (Reviewed in Lasky, su ra.) Selectins, which mediate the recruitment of leukocytes from the circulation to sites of acute inflammation, are expressed on the surface of vascular endothelial cells in response to cytokine signaling.
Selectins bind to specific ligands on the leukocyte cell membrane and enable the leukocyte to adhere to and migrate along the endothelial surface. Binding of selectin to its ligand leads to polarized rearrangement of the actin cytoskeleton and stimulates signal transduction within the leukocyte (Brenner, B., et al.
(1997) Biochem. Biophys. Res.
Commun. 231:802-807; Hidari, K.L, et al. (1997) J. Biol. Chem. 272:28750-28756). Members of the selectin family possess three characteristic motifs: a lectin or carbohydrate recognition domain; an epidermal growth factor (EGF)-like domain; and a variable number of short consensus repeats (scr or "sushi" repeats) which are also present in complement regulatory proteins. The selectins include lymphocyte adhesion molecule-1 (LAM-1 or L-selectin), endothelial leukocyte adhesion molecule-1 (SLAM-1 or E-selectin), and granule membrane protein-140 (GMP-140 or P-selectin) (Johnston, G.L, et al. (1989) Cell 56:1033-1044).
Attractin Attractin is a 134 kilodalton glycoprotein found in the serum. It is a member of the CUB
family of cell adhesion proteins and binds directly to leukocytes. Attractin has a CUB domain, an EGF
domain, and C-type lectin protein domains. This serum protein mediates the interaction between T
lymphocytes and monocytes and leads to the adherence and spreading of monocytes that become the foci for T cell clustering. (See, Duke-Cohan, J.S., et al. (1998) Proc. Natl.
Acad. Sci. USA 95:11336-11341.) Proteins Containine Leucine Rich Repeats (LRRs) LRRs are sequence motifs, approximately 22-28 amino acids in length, found in proteins with a large variety of functions and cellular locations. Proteins containing LRRs are all thought to be involved in protein-protein interactions. The crystal structure of LRRs has been studied and found to correspond to beta-alpha structural units. These structural units form a parallel beta sheet with one surface exposed to solvent. In this way an LRR-containing protein acquires a nonglobular shape (Kobe, B. and Deisenhofer, J. (1994) Trends Biochem. Sci. 19:415-421). There is evidence to suggest LRRs function in signal transduction and cellular adhesion as well as in protein-protein interactions (Gay, N.J., et al. (1991) FEBS Lett. 29:87-91). For example, LLR proteins such as connectin and chaoptin are important cell adhesion molecules in neuronal development in Droso~hilia melanogaster, and mammalian homologs are found in mouse (Taguchi, et al. (1996) Brain Res.Mol. Brain Res. 1-2:31-40).
Proteins Containing Armadillo/(3-Catenin-like Repeats Various proteins such as those encoded by the Drosophila armadillo gene and the human APC
gene contain amino acid repeats that interact with (3-catenins. The armadillo gene is required for pattern formation within the embryonic segments and imaginal discs and is highly conserved. It is 63%
identical to a human protein, plakoglobin, which is involved in adhesive junctions joining epithelial and other cells (Peifer, M. and Wieschaus, E. (1990) Cell 63:1167-1176). APC gene mutations appear to initiate inherited forms of human colorectal cancer and sporadic forms of colorectal and gastric cancer (Rubinfeld, B., et al. (1993) Science 262:1731-1734). The fact that the protein encoded by APC
interacts with catenin suggests a link between tumor initiation and cell adhesion (Su, L.K., et al. (1993) Science 262:1734-1737).
Proteins Containing C-type Lectin Domains C-type lectin domains are found in a variety of proteins, including selectins and lecticans.
Lecticans are a family of chondroitin sulfate proteoglycans that include aggrecan, versican, neurocan, and brevican. All C-type lectin proteins are involved in protein-protein interactions (Aspberg, A., et al.
(1997) Proc. Natl. Acad. Sci. USA 94:10116-10121). A~novel macrophage-restricted C-type lectin protein has been cloned from mouse tissue. It is a type II transmembrane protein with one extracellular C-type lectin domain (Batch, S.G., et al. (1998) J. Biol. Chem. 273:18656-18664).
Bystin Bystin is a cytoplasmic protein that binds directly to trophinin, a cell adhesion molecule, and tastin. The three molecules form a complex that is involved in cell adhesion.
Bystin, tastin, and trophinin are strongly expressed in cells involved in the implantation of embryos, specifically in cells at human implantation sites and in intermediate trophoblasts at the invasion front of the placenta in early pregnancy. Bystin also binds to cytokeratins. During early embryogenesis cytokeratins 8 and 18 are expressed in the trophectoderm of blastocytes. It is possible that the molecular complex formed by bystin, tastin, and trophinin interacts with the cytokeratins of trophectoderm cells at the time of implantation. A key component of embryo implantation is the unique cell adhesion to endometrial epithelium that occurs and the subsequent invasion of the maternal tissue by the trophoblast. Bystin may have an important role in the signal transduction that links cell adhesion to proliferation (Suzuki, N., et al. (1998) Proc. Natl. Acad. Sci. 95:5027-5032).

Src-homology 3 (SH3) Domain-Containing Proteins SH3 is a 60-70 amino acid motif found in a variety of signal transduction and cytoskeletal proteins. The SH3 domain is involved in mediating protein-protein interactions. Evidence suggests that the SH3 domains recognize a family of related domains or proteins in a variety of different tissues and species. One novel SH3 domain-containing protein is the 52 kilodalton focal adhesion protein (FAP52 or p52). FAP52 is localized to focal adhesions, specialized membrane domains in cultured cells that mediate the attachment of cells to the growth substratum and ECM. Focal adhesions consist of structural proteins, integrins, regulatory molecules, and signaling molecules and are involved in cell signaling. FAP52 may form part of this multimolecular complex that comprises focal adhesion sites (Merilainent, J., et al. (1997) J. Biol. Chem. 272:23278-23284).
The ECM plays an important role in cell invasive processes such as angiogenesis and tumor metastasis (Ruoslahti, su ra). In particular, the glycoproteins laminin and Iibronectin are implicated in the migration of tumor cells through the ECM (chemotaxis) in the course of metastasis of tumors to other tissues. The same process, chemotaxis, also promotes the migration of vascular endothelial cells to form new microvascular networks to support these tumors (tumor angiogenesis).
The discovery of new extracellular matrix and adhesion-associated proteins and the polynucleotides encoding them satisfies a need in the art by providing new compositions which are useful in the diagnosis, prevention, and treatment of cell proliferative, immune, reproductive, neuronal, and genetic disorders.
SUMMARY OF THE INVENTION
The invention features purified polypeptides, extracellular matrix and adhesion-associated proteins, referred to collectively as "EXMAD" and individually as "EXMAD-1,"
"EXMAD-2,'' "EXMAD-3," "EXMAD-4,'' "EXMAD-5," "EXMAD-6," "EXMAD-7,", ''EXMAD-8," "EXMAD-9," "EXMAD-10," "EXMAD-11," "EXMAD-12," "EXMAD-13," ''EXMAD-14," "EXMAD-15,"
"EXMAD-16," "EXMAD-17," "EXMAD-18," "EXMAD-19," "EXMAD-20," "EXMAD-21,"
"EXMAD-22," ''EXMAD-23," "EXMAD-24," and "EXMAD-25." In one aspect, the invention provides an isolated polypeptide comprising a) an amino acid sequence selected from the group consisting of SEQ ID NO:1-25, b) a naturally occurring amino acid sequence having at least 90%r sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO:1-25, c) a biologically active fragment of an amino acid sequence selected from the group consisting of SEQ ID
NO:1-25, or d) an immunogenic fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:1-25. In one alternative, the invention provides an isolated polypeptide comprising the amino acid sequence of SEQ ID NO:1-25.

The invention further provides an isolated polynucleotide encoding a polypeptide comprising a) an amino acid sequence selected from the group consisting of SEQ ID NO:l-25, b) a naturally occurring amino acid sequence having at least 90% sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO:1-25, c) a biologically active fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:1-25, or d) an immunogenic fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:1-25. In one alternative, the polynucleotide is selected from the group consisting of SEQ ID N0:26-50.
Additionally, the invention provides a recombinant polynucleotide comprising a promoter sequence operably linked to a polynucleotide encoding a polypeptide comprising a) an amino acid sequence selected from the group consisting of SEQ ID NO:1-25, b) a naturally occurring amino acid sequence having at least 90% sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO:1-25, c) a biologically active fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:1-25, or d) an immunogenic fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:1-25. In one alternative, the invention provides a cell transformed with the recombinant polynucleotide. In another alternative, the invention provides a transgenic organism comprising the recombinant polynucleotide.
The invention also provides a method for producing a polypeptide comprising a) an amino acid sequence selected from the group consisting of SEQ ID NO:1-25, b) a naturally occurring amino acid sequence having at least 90% sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO:l-25, c) a biologically active fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:1-25, or d) an immunogenic fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:l-25. The method comprises a) culturing a cell under conditions suitable for expression of the polypeptide, wherein said cell is transformed with a recombinant polynucleotide comprising a promoter sequence operably linked to a polynucleotide encoding the polypeptide, and b) recovering the polypeptide so expressed.
Additionally, the invention provides an isolated antibody which specifically binds to a polypeptide comprising a) an amino acid sequence selected from the group consisting of SEQ ID NO:1-25, b) a naturally occurring amino acid sequence having at least 90% sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO:1-25, c) a biologically active fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:1-25, or d) an immunogenic fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:1-25.
The invention further provides an isolated polynucleotide comprising a) a polynucleotide sequence selected from the group consisting of SEQ ID N0:26-50, b) a naturally occurring polynucleotide sequence having at least 90% sequence identity to a polynucleotide sequence selected from the group consisting of SEQ ID N0:26-50, c) a polynucleotide sequence complementary to a), or d) a polynucleotide sequence complementary to b). In one alternative, the polynucleotide comprises at least 60 contiguous nucleotides.
Additionally, the invention provides a method for detecting a target polynucleotide in a sample, said target polynucleotide having a sequence of a polynucleotide comprising a) a polynucleotide sequence selected from the group consisting of SEQ ID N0:26-50, b) a naturally occurring polynucleotide sequence having at least 90% sequence identity to a polynucleotide sequence selected from the group consisting of SEQ ID N0:26-50, c) a polynucleotide sequence complementary to a), or d) a polynucleotide sequence complementary to b). The method comprises a) hybridizing the sample with a probe comprising at least 16 contiguous nucleotides comprising a sequence complementary to said target polynucleotide in the sample, and which probe specifically hybridizes to said target polynucleotide, under conditions whereby a hybridization complex is formed between said probe and said target polynucleotide, and b) detecting the presence or absence of said hybridization complex, and optionally, if present, the amount thereof. In one alternative, the probe comprises at least 30 contiguous nucleotides. In another alternative, the probe comprises at least 60 contiguous nucleotides.
The invention further provides a pharmaceutical composition comprising an effective amount of a polypeptide comprising a) an amino acid sequence selected from the group consisting of SEQ ID
NO:l-25, b) a naturally occurring amino acid sequence having at least 90%
sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO:l-25, c) a biologically active fragment of an amino acid sequence selected from the group consisting of SEQ
ID NO:1-25, or d) an immunogenic fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:1-25, and a pharmaceutically acceptable excipient The invention additionally provides a method of treating a disease or condition associated with decreased expression of functional EXMAD, comprising administering to a patient in need of such treatment the pharmaceutical composition.
The invention also provides a method for screening a compound for effectiveness as an agonist of a polypeptide comprising a) an amino acid sequence selected from the group consisting of SEQ ID NO:l-25, b) a naturally occurring amino acid sequence having at least 90% sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO:1-25, c) a biologically active fragment of an amino acid sequence selected fiom the group consisting of SEQ ID NO:1-25, or d) an immunogenic fragment of an amino acid sequence selected from the group consisting of SEQ ID
NO:1-25. The method comprises a) exposing a sample comprising the polypeptide to a compound, and b) detecting agonist activity in the sample. In one alternative, the invention provides a pharmaceutical composition comprising an agonist compound identified by the method and a pharmaceutically acceptable excipient. In another alternative, the invention provides a method of treating a disease or condition associated with decreased expression of functional EXMAD, comprising administering to a patient in need of such treatment the pharmaceutical composition.
Additionally, the invention provides a method for screening a compound for effectiveness as an antagonist of a polypeptide comprising a) an amino acid sequence selected from the group consisting of SEQ ID NO:1-25, b) a naturally occurring amino acid sequence having at least 90% sequence identity to an amino acid sequence selected Iiom the group consisting of SEQ
ID NO:1-25, c) a biologically active fragment of an amino acid sequence selected from the group consisting of SEQ ID
NO:1-25, or d) an immunogenic fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:1-25. The method comprises a) exposing a sample comprising the polypeptide to a compound, and b) detecting antagonist activity in the sample. In one alternative, the invention provides a pharmaceutical composition comprising an antagonist compound identified by the method and a pharmaceutically acceptable excipient. In another alternative, the invention provides a method of treating a disease or condition associated with overexpression of functional EXMAD, comprising administering to a patient in need of such treatment the pharmaceutical composition.
The invention further provides a method for screening a compound for effectiveness in altering expression of a target polynucleotide, wherein said target polynucleotide comprises a sequence selected from the group consisting of SEQ ID N0:26-50, the method comprising a) exposing a sample comprising the target polynucleotide to a compound, and b) detecting altered expression of the target polynucleotide.
BRIEF DESCRIPTION OF THE TABLES
Table 1 shows polypeptide and nucleotide sequence identification numbers (SEQ
ID NOs), clone identification numbers (clone IDs), cDNA libraries, and cDNA fragments used to assemble full-length sequences encoding EXMAD.
Table 2 shows features of each polypeptide sequence, including potential motifs, homologous sequences, and methods, algorithms, and searchable databases used for analysis of EXMAD.
Table 3 shows selected fragments of each nucleic acid sequence; the tissue-specific expression patterns of each nucleic acid sequence as determined by northern analysis;
diseases, disorders, or conditions associated with these tissues; and the vector into which each cDNA
was cloned.
Table 4 describes the tissues used to construct the cDNA libraries from which cDNA clones encoding EXMAD were isolated.
Table 5 shows the tools, programs, and algorithms used to analyze EXMAD, along with applicable descriptions, references, and threshold parameters.

DESCRIPTION OF THE INVENTION
Before the present proteins, nucleotide sequences, and methods are described, it is understood that this invention is not limited to the particular machines, materials and methods described, as these may vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to limit the scope of the present invention which will be limited only by the appended claims.
It must be noted that as used herein and in the appended claims, the singular forms "a," ''an,'' and "the" include plural reference unless the context clearly dictates otherwise. Thus. for example, a reference to ''a host cell'' includes a plurality of such host cells, and a reference to ''an antibody" is a reference to one or more antibodies and equivalents thereof known to those skilled in the art, and so forth.
Unless defined otherwise, all technical and scientific terms used herein have the same meanings as commonly understood by one of ordinary skill in the art to which this invention belongs. Although any machines, materials, and methods similar or equivalent to those described herein can be used to practice or test the present invention, the preferred machines, materials and methods are now described.
All publications mentioned herein are cited for the purpose of describing and disclosing the cell lines, protocols, reagents and vectors which are reported in the publications and which might be used in connection with the invention. Nothing herein is to be construed as an admission that the invention is not entitled to antedate such disclosure by virtue of prior invention.
DEFINITIONS
"EXMAD" refers to the amino acid sequences of substantially purified EXMAD
obtained from any species, particularly a mammalian species, including bovine, ovine, porcine, murine, equine, and human, and from any source, whether natural, synthetic, semi-synthetic, or recombinant.
The term ''agonist" refers to a molecule which intensifies or mimics the biological activity of EXMAD. Agonists may include proteins, nucleic acids, carbohydrates, small molecules, or any other compound or composition which modulates the activity of EXMAD either by directly interacting with EXMAD or by acting on components of the biological pathway in which EXMAD
participates.
An "allelic variant" is an alternative form of the gene encoding EXMAD.
Allelic variants may result from at least one mutation in the nucleic acid sequence and may result in altered mRNAs or in polypeptides whose structure or function may or may not be altered. A gene may have none, one, or many allelic variants of its naturally occurring form. Common mutational changes which give rise to allelic variants are generally ascribed to natural deletions, additions, or substitutions of nucleotides.
Each of these types of changes may occur alone, or in combination with the others, one or more times in a given sequence.

"Altered" nucleic acid sequences encoding EXMAD include those sequences with deletions, insertions, or substitutions of different nucleotides, resulting in a polypeptide the same as EXMAD or a polypeptide with at least one functional characteristic of EXMAD. Included within this definition are polymorphisms which may or may not be readily detectable using a particular oligonucleotide probe of the polynucleotide encoding EXMAD, and improper or unexpected hybridization to allelic variants, with a locus other than the normal chromosomal locus for the polynucleotide sequence encoding EXMAD. The encoded protein may also be "altered," and may contain deletions, insertions, or substitutions of amino acid residues which produce a silent change and result in a functionally equivalent EXMAD. Deliberate amino acid substitutions may be made on the basis of similarity in polarity, charge, solubility, hydrophobicity, hydrophilicity, and/or the amphipathic nature of the residues, as long as the biological or immunological activity of EXMAD is retained. For example, negatively charged amino acids may include aspartic acid and glutamic acid, and positively charged amino acids may include lysine and arginine. Amino acids with uncharged polar side chains having similar hydrophilicity values may include: asparagine and glutamine; and serine and threonine.
Amino acids with uncharged side chains having similar hydrophilicity values may include: leucine, isoleucine, and valine; glycine and alanine; and phenylalanine and tyrosine.
The terms "amino acid" and "amino acid sequence'' refer to an oligopeptide, peptide, polypeptide, or protein sequence, or a fragment of any of these, and to naturally occurring or synthetic molecules. Where "amino acid sequence" is recited to refer to an amino acid sequence of a naturally occurring protein molecule, "amino acid sequence'' and like terms are not meant to limit the amino acid sequence to the complete native amino acid sequence associated with the recited protein molecule.
''Amplification" relates to the production of additional copies of a nucleic acid sequence.
Amplification is generally carried out using polymerase chain reaction (PCR) technologies well known in the art.
The term ''antagonist" refers to a molecule which inhibits or attenuates the biological activity of EXMAD. Antagonists may include proteins such as antibodies, nucleic acids, carbohydrates, small molecules, or any other compound or composition which modulates the activity of EXMAD either by directly interacting with EXMAD or by acting on components of the biological pathway in which EXMAD participates.
The term ''antibody'' refers to intact immunoglobulin molecules as well as to fragments thereof, such as Fab, F(ab')2, and Fv fragments, which are capable of binding an epitopic determinant.
Antibodies that bind EXMAD polypeptides can be prepared using intact polypeptides or using fragments containing small peptides of interest as the immunizing antigen. The polypeptide or oligopeptide used to immunize an animal (e.g., a mouse, a rat, or a rabbit) can be derived from the translation of RNA, or synthesized chemically, and can be conjugated to a carrier protein if desired.

Commonly used carriers that are chemically coupled to peptides include bovine serum albumin, thyroglobulin, and keyhole limpet hemocyanin (KLH). The coupled peptide is then used to immunize the animal.
The term "antigenic determinant'' refers to that region of a molecule (i.e., an epitope) that makes contact with a particular antibody. When a protein or a fragment of a protein is used to immunize a host animal, numerous regions of the protein may induce the production of antibodies which bind specifically to antigenic determinants (particular regions or three-dimensional structures on the protein). An antigenic determinant may compete with the intact antigen (i.e., the immunogen used to elicit the immune response) for binding to an antibody.
The term "antisense" refers to any composition capable of base-pairing with the "sense" strand of a specific nucleic acid sequence. Antisense compositions may include DNA;
RNA; peptide nucleic acid (PNA); oligonucleotides having modified backbone linkages such as phosphorothioates, methylphosphonates, or benzylphosphonates; oligonucleotides having modified sugar groups such as 2'-methoxyethyl sugars or 2'-methoxyethoxy sugars; or oligonucleotides having modified bases such as 5-methyl cytosine. 2'-deoxyuracil, or 7-deaza-2'-deoxyguanosine. Antisense molecules may be produced by any method including chemical synthesis or transcription. Once introduced into a cell, the complementary antisense molecule base-pairs with a naturally occurring nucleic acid sequence produced by the cell to form duplexes which block either transcription or translation. The designation ''negative" or "minus" can refer to the antisense strand, and the designation ''positive'' or "plus" can refer to the sense strand of a reference DNA molecule.
The term ''biologically active" refers to a protein having structural, regulatory, or biochemical functions of a naturally occurring molecule. Likewise, ''immunologically active" refers to the capability of the natural, recombinant, or synthetic EXMAD, or of any oligopeptide thereof, to induce a specific immune response in appropriate animals or cells and to bind with specific antibodies.
The terms "complementary" and "complementarity" refer to the natural binding of polynucleotides by base pairing. For example, the sequence "5' A-G-T 3''' bonds to the complementary sequence "3' T-C-A 5'." Complementarity between two single-stranded molecules may be "partial,"
such that only some of the nucleic acids bind, or it may be ''complete," such that total complementarity exists between the single stranded molecules. The degree of complementarity between nucleic acid strands has significant effects on the efficiency and strength of the hybridization between the nucleic acid strands. This is of particular importance in amplification reactions, which depend upon binding between nucleic acid strands, and in the design and use of peptide nucleic acid (PNA) molecules.
A "composition comprising a given polynucleotide sequence'' and a ''composition comprising a given amino acid sequence'' refer broadly to any composition containing the given polynucleotide or amino acid sequence. The composition may comprise a dry formulation or an aqueous solution.
Compositions comprising polynucleotide sequences encoding EXMAD or fragments of EXMAD may be employed as hybridization probes. The probes may be stored in freeze-dried form and may be associated with a stabilizing agent such as a carbohydrate. In hybridizations, the probe may be S deployed in an aqueous solution containing salts (e.g., NaCl), detergents (e.g., sodium dodecyl sulfate;
SDS), and other components (e.g., Denhardt's solution, dry milk, salmon sperm DNA, etc.).
"Consensus sequence" refers to a nucleic acid sequence which has been resequenced to resolve uncalled bases, extended using the XL-PCR kit (Perkin-Elmer, Norwalk CT) in the 5' and/or the 3' direction, and resequenced, or which has been assembled from the overlapping sequences of one or more Incyte Clones and, in some cases, one or more public domain ESTs, using a computer program for fragment assembly, such as the GELVIEW fragment assembly system (GCG, Madison WI). Some sequences have been both extended and assembled to produce the consensus sequence.
''Conservative amino acid substitutions" are those substitutions that, when made, least interfere with the properties of the original protein, i.e., the structure and especially the function of the protein is conserved and not significantly changed by such substitutions. The table below shows amino acids which may be substituted for an original amino acid in a protein and which are regarded as conservative amino acid substitutions.
Original Residue Conservative Substitution Ala Gly, Ser Arg His, Lys Asn Asp, Gln, His Asp Asn, Glu Cys Ala, Ser Gln Asn, Glu, His Glu Asp, Gln, His Gly Ala His Asn, Arg, Gln, Glu Ile Leu, Val Leu Ile, Val Lys Arg, Gln, Glu Met Leu, Ile Phe His, Met, Leu, Trp, Tyr Ser Cys, Thr Thr Ser, Val Trp Phe, Tyr Tyr His, Phe, Trp Val Ile, Leu. Thr Conservative amino acid substitutions generally maintain (a) the structure of the polypeptide backbone in the area of the substitution, for example, as a beta sheet or alpha helical conformation, (b) the charge or hydrophobicity of the molecule at the site of the substitution, and/or (c) the bulk of the side chain.
A "deletion" refers to a change in the amino acid or nucleotide sequence that results in the absence of one or more amino acid residues or nucleotides.
The term ''derivative" refers to the chemical modification of a polypepdde sequence, or a polynucleotide sequence. Chemical modifications of a polynucleotide sequence can include, for example, replacement of hydrogen by an alkyl, acyl, hydroxyl, or amino group.
A derivative polynucleotide encodes a polypeptide which retains at least one biological or immunological function of the natural molecule. A derivative polypeptide is one modified by glycosylation, pegylation, or any similar process that retains at least one biological or immunological function of the polypeptide from which it was derived.
A "fragment" is a unique portion of EXMAD or the polynucleotide encoding EXMAD
which is identical in sequence to but shorter in length than the parent sequence. A
fragment may comprise up to the entire length of the defined sequence, minus one nucleotide/amino acid residue. For example, a fragment may comprise from 5 to 1000 contiguous nucleotides or amino acid residues. A
fragment used as a probe, primer, antigen, therapeutic molecule, or for other purposes, may be at least 5, 10, 15, 16, 20, 25, 30, 40, 50, 60, 75, 100, 150, 250 or at least 500 contiguous nucleotides or amino acid residues in length. Fragments may be preferentially selected from certain regions of a molecule. For example, a polypeptide fragment may comprise a certain length of contiguous amino acids selected from the first 250 or 500 amino acids (or first 25% or 50% of a polypeptide) as shown in a certain defined sequence. Clearly these lengths are exemplary, and any length that is supported by the specification, including the Sequence Listing, tables, and figures, may be encompassed by the present embodiments.
A fragment of SEQ ID N0:26-50 comprises a region of unique polynucleotide sequence that specifically identifies SEQ ID N0:26-50, for example, as distinct from any other sequence in the same genome. A fragment of SEQ ID N0:26-50 is useful, for example, in hybridization and amplification technologies and in analogous methods that distinguish SEQ ID
N0:26-50 from related polynucleotide sequences. The precise length of a fragment of SEQ ID N0:26-50 and the region of SEQ ID N0:26-50 to which the fragment corresponds are routinely determinable by one of ordinary skill in the art based on the intended purpose for the fragment.
A fragment of SEQ ID NO:1-25 is encoded by a fragment of SEQ ID N0:26-50. A
fragment of SEQ ID NO:1-25 comprises a region of unique amino acid sequence that specifically identifies SEQ ID NO:1-25. For example, a fragment of SEQ ID NO:1-25 is useful as an immunogenic peptide for the development of antibodies that specifically recognize SEQ ID NO:1-25.
The precise length of a fragment of SEQ ID NO:1-25 and the region of SEQ ID NO:1-2~ to which the fragment corresponds are routinely determinable by one of ordinary skill in the art based on the intended purpose for the fragment.
The term "similarity" refers to a degree of complementarity. There may be partial similarity or complete similarity. The word "identity'' may substitute for the word "similarity." A partially complementary sequence that at least partially inhibits an identical sequence from hybridizing to a target nucleic acid is referred to as ''substantially similar." The inhibition of hybridization of the completely complementary sequence to the target sequence may be examined using a hybridization assay (Southern or northern blot, solution hybridization, and the like) under conditions of reduced stringency. A substantially similar sequence or hybridization probe will compete for and inhibit the binding of a completely similar (identical) sequence to the target sequence under conditions of reduced stringency. This is not to say that conditions of reduced stringency are such that non-specific binding is permitted, as reduced stringency conditions require that the binding of two sequences to one another be a specific (i.e., a selective) interaction. The absence of non-specific binding may be tested by the use of a second target sequence which lacks even a partial degree of complementarity (e.g., less than about 30% similarity or identity). In the absence of non-specific binding, the substantially similar sequence or probe will not hybridize to the second non-complementary target sequence.
The phrases "percent identity" and "% identity," as applied to polynucleotide sequences, refer to the percentage of residue matches between at least two polynucleotide sequences aligned using a standardized algorithm. Such an algorithm may insert, in a standardized and reproducible way, gaps in the sequences being compared in order to optimize alignment between two sequences, and therefore achieve a more meaningful comparison of the two sequences.
Percent identity between polynucleotide sequences may be determined using the default parameters of the CLUSTAL V algorithm as incorporated into the MEGALIGN
version 3.12e sequence alignment program. This program is part of the LASERGENE software package, a suite of molecular biological analysis programs (DNASTAR, Madison WI). CLUSTAL V is described in Higgins, D.G.
and P.M. Sharp (1989) CABIOS 5:151-153 and in Higgins, D.G. et al. (1992) CABIOS 8:189-191.
For pairwise alignments of polynucleotide sequences, the default parameters are set as follows:
Ktuple=2, gap penalty=5, window=4, and "diagonals saved"=4. The "weighted"
residue weight table is selected as the default. Percent identity is reported by CLUSTAL V as the "percent similarity" between aligned polynucleotide sequence pairs.
Alternatively, a suite of commonly used and freely available sequence comparison algorithms is provided by the National Center for Biotechnology Information (NCBI) Basic Local Alignment Search Tool (BLAST) (Altschul, S.F. et al. (1990) J. Mol. Biol. 215:403-410), which is available from several sources, including the NCBI, Bethesda, MD, and on the Internet at http://www.ncbi.nlm.nih.gov/BLAST/. The BLAST software suite includes various sequence analysis programs including "blastn," that is used to align a known polynucleotide sequence with other polynucleotide sequences from a variety of databases. Also available is a tool called "BLAST 2 Sequences" that is used for direct pairwise comparison of two nucleotide sequences. "BLAST 2 Sequences" can be accessed and used interactively at http://www.ncbi.nlm.nih.gov/gorf/bl2.html. The "BLAST 2 Sequences'' tool can be used for both blastn and blastp (discussed below). BLAST
programs are commonly used with gap and other parameters set to default settings. For example, to compare two nucleotide sequences, one may use blastn with the "BLAST 2 Sequences" tool Version 2Ø9 (May-07-1999) set at default parameters. Such default parameters may be, for example:
Matrix: BLOSUM62 Reward for match: 1 Penalty for mismatch: -2 Open Gap: 5 and Extension Gap: 2 penalties Gap x drop-off:' S0 Expect: 10 Word Size: II
Filter: on Percent identity may be measured over the length of an entire defined sequence, for example, as defined by a particular SEQ ID number, or may be measured over a shorter length, for example, over the length of a fragment taken from a larger, defined sequence, for instance, a fragment of at least 20, at least 30, at least 40, at least 50, at least 70, at least 100, or at least 200 contiguous nucleotides. Such lengths are exemplary only, and it is understood that any fragment length supported by the sequences shown herein, in the tables, figures, or Sequence Listing, may be used to describe a length over which percentage identity may be measured.
Nucleic acid sequences that do not show a high degree of identity may nevertheless encode similar amino acid sequences due to the degeneracy of the genetic code. It is understood that changes in a nucleic acid sequence can be made using this degeneracy to produce multiple nucleic acid sequences that all encode substantially the same protein.
The phrases ''percent identity" and ''% identity," as applied to polypeptide sequences, refer to the percentage of residue matches between at least two polypeptide sequences aligned using a standardized algorithm. Methods of polypeptide sequence alignment are well-known. Some alignment methods take into account conservative amino acid substitutions. Such conservative substitutions, explained in more detail above, generally preserve the hydrophobicity and acidity at the site of substitution, thus preserving the structure (and therefore function) of the polypeptide.
Percent identity between polypeptide sequences may be determined using the default parameters of the CLUSTAL V algorithm as incorporated into the MEGALIGN version 3.12e sequence alignment program (described and referenced above). For pairwise alignments of polypeptide sequences using CLUSTAL V, the default parameters are set as follows: Ktuple=l, gap penalty=3, window=5, and "diagonals saved"=5. The PAM250 matrix is selected as the default residue weight table. As with polynucleotide alignments, the percent identity is reported by CLUSTAL V as the "percent similarity"
between aligned polypeptide sequence pairs.
Alternatively the NCBI BLAST software suite may be used. For example, for a pairwise comparison of two polypeptide sequences, one may use the "BLAST 2 Sequences"
tool Version 2Ø9 (May-07-1999) with blastp set at default parameters. Such default parameters may be, for example:
Matrix: BLOSI7M62 Open Gap: 11 and Extension Gap: 1 penalties Gap x drop-off: 50 Expect: 10 Word Size: 3 Filter: on Percent identity may be measured over the length of an entire defined polypeptide sequence, for example, as defined by a particular SEQ ID number, or may be measured over a shorter length, for example, over the length of a fragment taken from a larger, defined polypeptide sequence, for instance, a fragment of at least 15, at least 20, at least 30, at least 40, at least 50, at least 70 or at least 150 contiguous residues. Such lengths are exemplary only, and it is understood that any fragment length supported by the sequences shown herein, in the tables, figures or Sequence Listing, may be used to describe a length over which percentage identity may be measured.
''Human artificial chromosomes" (HACs) are linear microchromosomes which may contain DNA sequences of about 6 kb to 10 Mb in size, and which contain all of the elements required for stable mitotic chromosome segregation and maintenance.
The term "humanized antibody ' refers to antibody molecules in which the amino acid sequence in the non-antigen binding regions has been altered so that the antibody more closely resembles a human antibody, and still retains its original binding ability.
"Hybridization" refers to the process by which a polynucleotide strand anneals with a complementary strand through base pairing under defined hybridization conditions. Specific hybridization is an indication that two nucleic acid sequences share a high degree of identity. Specific hybridization complexes form under permissive annealing conditions and remain hybridized after the "washing" step(s). The washing steps) is particularly important in determining the stringency of the hybridization process, with more stringent conditions allowing less non-specific binding, i.e., binding between pairs of nucleic acid strands that are not perfectly matched.
Permissive conditions for annealing of nucleic acid sequences are routinely determinable by one of ordinary skill in the art and may be consistent among hybridization experiments, whereas wash conditions may be varied among experiments to achieve the desired stringency, and therefore hybridization specificity. Permissive annealing conditions occur, for example, at 68°C in the presence of about 6 x SSC, about 1 % (w/v) SDS, and about 100 pg/ml denatured salmon sperm DNA.
Generally, stringency of hybridization is expressed, in part, with reference to the temperature under which the wash step is carried out. Generally, such wash temperatures are selected to be about 5°C to 20°C lower than the thermal melting point (T~ for the specific sequence at a defined ionic strength and pH. The Tm is the temperature (under defined ionic strength and pH) at which 50% of the target sequence hybridizes to a perfectly matched probe. An equation for calculating Tm and conditions for nucleic acid hybridization are well known and can be found in Sambrook et al., 1989. Molecular Cloning: A Laboratory Manual, 2"d ed., vol. 1-3, Cold Spring Harbor Press, Plainview NY; specillcally see volume 2, chapter 9.
High stringency conditions for hybridization between polynucleotides of the present invention include wash conditions of 68°C in the presence of about 0.2 x SSC and about 0.1 ~7o SDS, for 1 hour.
Alternatively, temperatures of about 65°C, 60°C, 55°C, or 42°C may be used. SSC concentration may be varied from about 0.1 to 2 x SSC, with SDS being present at about 0.1 %.
Typically, blocking reagents are used to block non-specific hybridization. Such blocking reagents include, for instance, denatured salmon sperm DNA at about 100-200 ~g/ml. Organic solvent, such as formamide at a concentration of about 35-50% v/v, may also be used under particular circumstances. such as for RNA:DNA hybridizations. Useful variations on these wash conditions will be readily apparent to those of ordinary skill in the art. Hybridization, particularly under high stringency conditions, may be suggestive of evolutionary similarity between the nucleotides. Such similarity is strongly indicative of a similar role for the nucleotides and their encoded polypeptides.
The term "hybridization complex" refers to a complex formed between two nucleic acid sequences by virtue of the formation of hydrogen bonds between complementary bases. A hybridization complex may be formed in solution (e.g., Cot or Rot analysis) or formed between one nucleic acid sequence present in solution and another nucleic acid sequence immobilized on a solid support (e.g., paper, membranes, filters, chips, pins or glass slides, or any other appropriate substrate to which cells or their nucleic acids have been fixed).
The words "insertion" and "addition'' refer to changes in an amino acid or nucleotide sequence resulting in the addition of one or more amino acid residues or nucleotides, respectively.
"Immune response" can refer to conditions associated with inflammation, trauma, immune disorders, or infectious or genetic disease, etc. These conditions can be characterized by expression of various factors, e.g., cytokines, chemokines, and other signaling molecules, which may affect cellular and systemic defense systems.
An "immunogenic fragment' is a polypeptide or oligopeptide fragment of EXMAD
which is capable of eliciting an immune response when introduced into a living organism, for example, a mammal. The term "immunogenic fragment" also includes any polypeptide or oligopeptide fragment of EXMAD which is useful in any of the antibody production methods disclosed herein or known in the art.
The term "microarray" refers to an arrangement of distinct polynucleotides on a substrate.
The terms ''element" and "array element" in a microarray context, refer to hybridizable polynucleotides arranged on the surface of a substrate.
The term ''modulate'' refers to a change in the activity of EXMAD. For example, modulation may cause an increase or a decrease in protein activity, binding characteristics, or any other biological.
functional, or immunological properties of EXMAD.
The phrases ''nucleic acid" and "nucleic acid sequence" refer to a nucleotide, oligonucleotide, polynucleotide, or any fragment thereof. These phrases also refer to DNA or RNA of genomic or synthetic origin which may be single-stranded or double-stranded and may represent the sense or the antisense strand, to peptide nucleic acid (PNA), or to any DNA-like or RNA-like material.
"Operably linked" refers to the situation in which a first nucleic acid sequence is placed in a functional relationship with the second nucleic acid sequence. For instance, a promoter is operably linked to a coding sequence if the promoter affects the transcription or expression of the coding sequence. Generally, operably linked DNA sequences may be in close proximity or contiguous and, where necessary to join two protein coding regions, in the same reading frame.
''Peptide nucleic acid" (PNA) refers to an antisense molecule or anti-gene agent which comprises an oligonucleotide of at least about 5 nucleotides in length linked to a peptide backbone of amino acid residues ending in lysine. The terminal lysine confers solubility to the composition. PNAs preferentially bind complementary single stranded DNA or RNA and stop transcript elongation, and may be pegylated to extend their lifespan in the cell.
"Probe" refers to nucleic acid sequences encoding EXMAD, their complements, or fragments thereof. which are used to detect identical, allelic or related nucleic acid sequences. Probes are isolated oligonucleotides or polynucleotides attached to a detectable label or reporter molecule. Typical labels include radioactive isotopes, ligands, chemiluminescent agents, and enzymes. "Primers" are short nucleic acids, usually DNA oligonucleotides, which may be annealed to a target polynucleotide by complementary base-pairing. The primer may then be extended along the target DNA strand by a DNA
polymerase enzyme. Primer pairs can be used for amplification (and identification) of a nucleic acid sequence, e.g., by the polymerase chain reaction (PCR).
Probes and primers as used in the present invention typically comprise at least 15 contiguous nucleotides of a known sequence. In order to enhance specificity, longer probes and primers may also be employed, such as probes and primers that comprise at least 20, 25, 30, 40, 50, 60, 70, 80, 90, 100, or at least 150 consecutive nucleotides of the disclosed nucleic acid sequences. Probes and primers may be considerably longer than these examples, and it is understood that any length supported by the specification, including the tables, figures, and Sequence Listing, may be used.
Methods for preparing and using probes and primers are described in the references, for example Sambrook et al., 1989, Molecular Cloning: A Laboratory Manual, 2"d ed., vol. 1-3, Cold Spring Harbor Press, Plainview NY; Ausubel et a1.,1987, Current Protocols in Molecular Biology, Greene Publ. Assoc. & Wiley-Intersciences, New York NY; Innis et al., 1990, PCR Protocols, A Guide to Methods and Applications, Academic Press, San Diego CA. PCR primer pairs can be derived from a known sequence, for example, by using computer programs intended for that purpose such as Primer (Version 0.5, 1991, Whitehead Institute for Biomedical Research, Cambridge MA).
Oligonucleotides for use as primers are selected using software known in the art for such purpose. For example, OLIGO 4.06 software is useful for the selection of PCR
primer pairs of up to 100 nucleotides each, and for the analysis of oligonucleotides and larger polynucleotides of up to 5,000 nucleotides from an input polynucleotide sequence of up to 32 kilobases.
Similar primer selection programs have incorporated additional features for expanded capabilities. For example, the PrimOU
primer selection program (available to the public from the Genome Center at University of Texas South West Medical Center, Dallas TX) is capable of choosing specific primers from megabase sequences and is thus useful for designing primers on a genome-wide scope. The Primer3 primer selection program (available to the public from the Whitehead InstitutelMIT Center for Genome Research, Cambridge MA) allows the user to input a "mispriming library," in which sequences to avoid as primer binding sites are user-specified. Primer3 is useful, in particular, for the selection of oligonucleotides for microarrays. (The source code for the latter two primer selection programs may also be obtained from their respective sources and modified to meet the user's specific needs.) The PrimeGen program (available to the public from the UK Human Genome Mapping Project Resource Centre, Cambridge UK) designs primers based on multiple sequence alignments, thereby allowing selection of primers that hybridize to either the most conserved or least conserved regions of aligned nucleic acid sequences.
Hence, this program is useful for identification of both unique and conserved oligonucleoddes and polynucleotide fragments. The oligonucleotides and polynucleotide fragments identified by any of the above selection methods are useful in hybridization technologies, for example, as PCR or sequencing primers, microarray elements, or specific probes to identify fully or partially complementary polynucleotides in a sample of nucleic acids. Methods of oligonucleotide selection are not limited to those described above.
A ''recombinant nucleic acid'' is a sequence that is not naturally occurring or has a sequence that is made by an artificial combination of two or more otherwise separated segments of sequence.
This artificial combination is often accomplished by chemical synthesis or, more commonly, by the artificial manipulation of isolated segments of nucleic acids, e.g., by genetic engineering techniques such as those described in Sambrook, supra. The term recombinant includes nucleic acids that have been altered solely by addition, substitution, or deletion of a portion of the nucleic acid. Frequently, a recombinant nucleic acid may include a nucleic acid sequence operably linked to a promoter sequence.
Such a recombinant nucleic acid may be part of a vector that is used, for example, to transform a cell.
Alternatively, such recombinant nucleic acids may be part of a viral vector, e.g., based on a vaccinia virus, that could be use to vaccinate a mammal wherein the recombinant nucleic acid is expressed, inducing a protective immunological response in the mammal.
An ''RNA equivalent," in reference to a DNA sequence, is composed of the same linear sequence of nucleotides as the reference DNA sequence with the exception that all occurrences of the nitrogenous base thymine are replaced with uracil, and the sugar backbone is composed of ribose instead of deoxyribose.
The term ''sample'' is used in its broadest sense. A sample suspected of containing nucleic acids encoding EXMAD, or fragments thereof, or EXMAD itself, may comprise a bodily fluid; an extract from a cell, chromosome, organelle, or membrane isolated from a cell;
a cell; genomic DNA, RNA, or cDNA, in solution or bound to a substrate; a tissue; a tissue print;
etc.
The terms ''specific binding" and "specifically binding'' refer to that interaction between a protein or peptide and an agonist, an antibody, an antagonist, a small molecule, or any natural or synthetic binding composition. The interaction is dependent upon the presence of a particular structure of the protein, e.g., the antigenic determinant or epitope, recognized by the binding molecule. For example, if an antibody is specific for epitope "A," the presence of a polypeptide containing the epitope A, or the presence of free unlabeled A, in a reaction containing free labeled A and the antibody will reduce the amount of labeled A that binds to the antibody.
The term "substantially purified" refers to nucleic acid or amino acid sequences that are removed from their natural environment and are isolated or separated, and are at least 60% free, preferably at least 75% free, and most preferably at least 90% free from other components with which they are naturally associated.
A ''substitution ' refers to the replacement of one or more amino acids or nucleotides by different amino acids or nucleotides, respectively.

"Substrate" refers to any suitable rigid or semi-rigid support including membranes, filters, chips, slides, wafers, fibers, magnetic or nonmagnetic beads, gels, tubing, plates, polymers, microparticles and capillaries. The substrate can have a variety of surface forms, such as wells, trenches, pins, channels and pores, to which polynucleotides or polypeptides are bound.
"Transformation" describes a process by which exogenous DNA enters and changes a recipient cell. Transformation may occur under natural or artificial conditions according to various methods well known in the art, and may rely on any known method for the insertion of foreign nucleic acid sequences into a prokaryotic or eukaryotic host cell. The method for transformation is selected based on the type of host cell being transformed and may include, but is not limited to, viral infection, electroporation, heat shock, lipofection, and particle bombardment. The term ''transformed'' cells includes stably transformed cells in which the inserted DNA is capable of replication either as an autonomously replicating plasmid or as part of the host chromosome, as well as transiently transformed cells which express the inserted DNA or RNA for limited periods of time.
A "transgenic organism," as used herein, is any organism, including but not limited to animals and plants, in which one or more of the cells of the organism contains heterologous nucleic acid introduced by way of human intervention, such as by transgenic techniques well known in the art. The nucleic acid is introduced into the cell, directly or indirectly by introduction into a precursor of the cell, by way of deliberate genetic manipulation, such as by microinjection or by infection with a recombinant virus. The term genetic manipulation does not include classical cross-breeding, or in vitro fertilization, but rather is directed to the introduction of a recombinant DNA molecule. The transgenic organisms contemplated in accordance with the present invention include bacteria, cyanobacteria, fungi, and plants and animals. The isolated DNA of the present invention can be introduced into the host by methods known in the art, for example infection, transfection, transformation or transconjugation. Techniques for transferring the DNA of the present invention into such organisms are widely known and provided in references such as Sambrook et al. ( 1989), supra.
A ''variant'' of a particular nucleic acid sequence is defined as a nucleic acid sequence having at least 40% sequence identity to the particular nucleic acid sequence over a certain length of one of the nucleic acid sequences using blastn with the ''BLAST 2 Sequences" tool Version 2Ø9 (May-07-1999) set at default parameters. Such a pair of nucleic acids may show, for example, at least 50%, at least 60%, at least 70%, at least 80%, at least 85%, at least 90%, at least 95% or at least 98% or greater sequence identity over a certain defined length. A variant may be described as, for example, an "allelic"
(as defined above), "splice," "species," or "polymorphic" variant. A splice variant may have significant identity to a reference molecule, but will generally have a greater or lesser number of polynucleotides due to alternate splicing of exons during mRNA processing. The corresponding polypeptide may possess additional functional domains or lack domains that are present in the reference molecule.
Species variants are polynucleotide sequences that vary from one species to another. The resulting polypeptides generally will have significant amino acid identity relative to each other. A polymorphic variant is a variation in the polynucleotide sequence of a particular gene between individuals of a given species. Polymorphic variants also may encompass "single nucleotide polymorphisms" (SNPs) in which the polynucleotide sequence varies by one nucleotide base. The presence of SNPs may be indicative of, for example, a certain population, a disease state, or a propensity for a disease state.
A "variant" of a particular polypepdde sequence is defined as a polypeptide sequence having at least 40% sequence identity to the particular polypeptide sequence over a certain length of one of the polypeptide sequences using blastp with the "BLAST 2 Sequences" tool Version 2Ø9 (May-07-1999) set at default parameters. Such a pair of polypeptides may show, for example, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, at least 95%, or at least 98%
or greater sequence identity over a certain defined length of one of the polypeptides.
THE INVENTION
The invention is based on the discovery of new human extracellular matrix and adhesion-associated proteins (EXMAD), the polynucleotides encoding EXMAD, and the use of these compositions for the diagnosis, treatment, or prevention of cell proliferative, immune, reproductive, neuronal, and genetic disorders.
Table 1 lists the Incyte clones used to assemble full length nucleotide sequences encoding EXMAD. Columns 1 and 2 show the sequence identification numbers (SEQ ID NOs) of the polypeptide and nucleotide sequences, respectively. Column 3 shows the clone IDs of the Incyte clones in which nucleic acids encoding each EXMAD were identified, and column 4 shows the cDNA libraries from which these clones were isolated. Column 5 shows Incyte clones and their corresponding eDNA
libraries. Clones for which cDNA libraries are not indicated were derived from pooled cDNA libraries.
In some cases, GenBank sequence identifiers are also shown in column 5. The Incyte clones and GenBank cDNA sequences, where indicated, in column 5 were used to assemble the consensus nucleotide sequence of each EXMAD and are useful as fragments in hybridization technologies.
The columns of Table 2 show various properties of each of the polypeptides of the invention:
column 1 references the SEQ ID NO; column 2 shows the number of amino acid residues in each polypeptide; column 3 shows potential phosphorylation sites; column 4 shows potential glycosyladon sites; column 5 shows the amino acid residues comprising signature sequences and motifs: column 6 shows homologous sequences as identified by BLAST analysis; and column 7 shows analytical methods and in some cases, searchable databases to which the analytical methods were applied. The methods of column 7 were used to characterize each polypeptide through sequence homology and protein motifs.
The columns of Table 3 show the tissue-specificity and diseases. disorders, or conditions associated with nucleotide sequences encoding EXMAD. The first column of Table 3 lists the nucleotide SEQ ID NOs. Column 2 lists fragments of the nucleotide sequences of column 1. These fragments are useful, for example, in hybridization or amplification technologies to identify SEQ ID
N0:26-50 and to distinguish between SEQ ID N0:26-50 and related polynucleotide sequences. The polypeptides encoded by these fragments are useful, for example, as immunogenic peptides. Column 3 lists tissue categories which express EXMAD as a fraction of total tissues expressing EXMAD.
Column 4 lists diseases, disorders, or conditions associated with those tissues expressing EXMAD as a fraction of total tissues expressing EXMAD. Column 5 lists the vectors used to subclone each cDNA
library.
The columns of Table 4 show descriptions of the tissues used to construct the cDNA libraries from which cDNA clones encoding EXMAD were isolated. Column 1 references the nucleotide SEQ
ID NOs, column 2 shows the cDNA libraries from which these clones were isolated, and column 3 shows the tissue origins and other descriptive information relevant to the cDNA libraries in column 2.
SEQ ID N0:42 maps to chromosome 8 within the interval from 64.60 to 90.20 centiMorgans.
SEQ ID N0:48 maps to chromosome 2 within the interval from 193.60 to 197.60 centiMorgans.
The invention also encompasses EXMAD variants. A preferred EXMAD variant is one which has at least about 80%, or alternatively at least about 90%, or even at least about 95% amino acid sequence identity to the EXMAD amino acid sequence, and which contains at least one functional or structural characteristic of EXMAD.
The invention also encompasses polynucleotides which encode EXMAD. In a particular embodiment, the invention encompasses a polynucleotide sequence comprising a sequence selected from the group consisting of SEQ ID N0:26-50, which encodes EXMAD. The polynucleotide sequences of SEQ ID N0:26-50, as presented in the Sequence Listing, embrace the equivalent RNA sequences, wherein occurrences of the nitrogenous base thymine are replaced with uracil, and the sugar backbone is composed of ribose instead of deoxyribose.
The invention also encompasses a variant of a polynucleotide sequence encoding EXMAD. In particular, such a variant polynucleotide sequence will have at least about 80%, or alternatively at least about 90%, or even at least about 95% polynucleotide sequence identity to the polynucleotide sequence encoding EXMAD. A particular aspect of the invention encompasses a variant of a polynucleotide sequence comprising a sequence selected from the group consisting of SEQ ID
N0:26-50 which has at least about 80%, or alternatively at least about 90%, or even at least about 95% polynucleotide sequence identity to a nucleic acid sequence selected from the group consisting of SEQ ID N0:26-50.
Any one of the polynucleotide variants described above can encode an amino acid sequence which contains at least one functional or structural characteristic of EXMAD.

It will be appreciated by those skilled in the art that as a result of the degeneracy of the genetic code, a multitude of polynucleotide sequences encoding EXMAD, some bearing minimal similarity to the polynucleotide sequences of any known and naturally occurring gene, may be produced. Thus, the invention contemplates each and every possible variation of polynucleotide sequence that could be made by selecting combinations based on possible codon choices. These combinations are made in accordance with the standard triplet genetic code as applied to the polynucleotide sequence of naturally occurring EXMAD, and all such variations are to be considered as being specifically disclosed.
Although nucleotide sequences which encode EXMAD and its variants are generally capable of hybridizing to the nucleotide sequence of the naturally occurring EXMAD under appropriately selected conditions of stringency, it may be advantageous to produce nucleotide sequences encoding EXMAD or its derivatives possessing a substantially different codon usage, e.g., inclusion of non-naturally occurring codons. Codons may be selected to increase the rate at which expression of the peptide occurs in a particular prokaryotic or eukaryotic host in accordance with the frequency with which particular codons are utilized by the host. Other reasons for substantially altering the nucleotide sequence encoding EXMAD and its derivatives without altering the encoded amino acid sequences include the production of RNA transcripts having more desirable properties, such as a greater half-life, than transcripts produced from the naturally occurring sequence.
The invention also encompasses production of DNA sequences which encode EXMAD
and EXMAD derivatives, or fragments thereof, entirely by synthetic chemistry.
After production, the synthetic sequence may be inserted into any of the many available expression vectors and cell systems using reagents well known in the art. Moreover, synthetic chemistry may be used to introduce mutations into a sequence encoding EXMAD or any fragment thereof.
Also encompassed by the invention are polynucleotide sequences that are capable of hybridizing to the claimed polynucleotide sequences, and, in particular, to those shown in SEQ ID
N0:26-50 and fragments thereof under various conditions of stringency. (See, e.g., Wahl, G.M. and S.L. Berger (1987) Methods Enzymol. 152:399-407; Kimmel, A.R. (1987) Methods Enzymol.
152:507-511.) Hybridization conditions, including annealing and wash conditions, are described in "Definitions."
Methods for DNA sequencing are well known in the art and may be used to practice any of the embodiments of the invention. The methods may employ such enzymes as the HIenow fragment of DNA polymerise I, SEQUENASE (US Biochemical, Cleveland OH), Taq polymerise (Perkin-Elmer), thermostable T7 polymerise (Amersham Pharmacia Biotech, Piscataway NJ), or combinations of polymerises and proofreading exonucleases such as those found in the ELONGASE
amplification system (Life Technologies, Gaithersburg MD). Preferably, sequence preparation is automated with machines such as the MICROLAB 2200 liquid transfer system (Hamilton, Reno NV), PTC200 thermal cycler (MJ Research, Watertown MA) and ABI CATALYST 800 thermal cycler (Perkin-Elmer).
Sequencing is then carried out using either the ABI 373 or 377 DNA sequencing system (Perkin-Elmer), the MEGABACE 1000 DNA sequencing system (Molecular Dynamics, Sunnyvale CA), or other systems known in the art. The resulting sequences are analyzed using a variety of algorithms which are well known in the art. (See, e.g., Ausubel, F.M. (1997) Short Protocols in Molecular Biolo~y, John Wiley & Sons, New York NY, unit 7.7; Meyers, R.A. (1995) Molecular Biology and Biotechnolo~y, Wiley VCH, New York NY, pp. 856-853.) The nucleic acid sequences encoding EXMAD may be extended utilizing a partial nucleotide sequence and employing various PCR-based methods known in the art to detect upstream sequences, such as promoters and regulatory elements. For example, one method which may be employed, restriction-site PCR, uses universal and nested primers to amplify unknown sequence from genomic DNA within a cloning vector. (See, e.g., Sarkar, G. (1993) PCR Methods Applic.
2:318-322.) Another method, inverse PCR, uses primers that extend in divergent directions to amplify unknown sequence from a circularized template. The template is derived from restriction fragments comprising a known genomic locus and surrounding sequences. (See, e.g., Triglia, T. et al.
(1988) Nucleic Acids Res. 16:8186.) A third method, capture PCR, involves PCR amplification of DNA
fragments adjacent to known sequences in human and yeast artificial chromosome DNA. (See, e.g., Lagerstrom, M. et al.
(1991) PCR Methods Applic. 1:111-119.) In this method, multiple restriction enzyme digestions and ligations may be used to insert an engineered double-stranded sequence into a region of unknown sequence before performing PCR. Other methods which may be used to retrieve unknown sequences are known in the art. (See, e.g., Parker, J.D. et al. (1991) Nucleic Acids Res. 19:3055-3060).
Additionally, one may use PCR, nested primers, and PROMOTERFINDER libraries (Clontech, Palo Alto CA) to walk genomic DNA. This procedure avoids the need to screen libraries and is useful in finding intron/exon junctions. For all PCR-based methods, primers may be designed using commercially available software, such as OLIGO 4.06 Primer Analysis software (National Biosciences, Plymouth MN) or another appropriate program, to be about 22 to 30 nucleotides in length, to have a GC content of about 50% or more, and to anneal to the template at temperatures of about 68°C to 72°C.
When screening for full-length cDNAs, it is preferable to use libraries that have been size-selected to include larger cDNAs. In addition, random-primed libraries, which often include sequences containing the 5' regions of genes, are preferable for situations in which an oligo d(T) library does not yield a full-length cDNA. Genomic libraries may be useful for extension of sequence into 5' non-transcribed regulatory regions.

Capillary electrophoresis systems which are commercially available may be used to analyze the size or confirm the nucleotide sequence of sequencing or PCR products. In particular, capillary sequencing may employ flowable polymers for electrophoretic separation, four different nucleotide-specific, laser-stimulated fluorescent dyes, and a charge coupled device camera for detection of the emitted wavelengths. Output/light intensity may be converted to electrical signal using appropriate software (e.g., GENOTYPER and SEQUENCE NAVIGATOR, Perkin-Elmer), and the entire process from loading of samples to computer analysis and electronic data display may be computer controlled.
Capillary electrophoresis is especially preferable for sequencing small DNA
fragments which may be present in limited amounts in a particular sample.
In another embodiment of the invention, polynucleotide sequences or fragments thereof which encode EXMAD may be cloned in recombinant DNA molecules that direct expression of EXMAD, or fragments or functional equivalents thereof, in appropriate host cells. Due to the inherent degeneracy of the genetic code, other DNA sequences which encode substantially the same or a functionally equivalent amino acid sequence may be produced and used to express EXMAD.
The nucleotide sequences of the present invention can be engineered using methods generally known in the art in order to alter EXMAD-encoding sequences for a variety of purposes including, but not limited to, modification of the cloning, processing, and/or expression of the gene product. DNA
shuffling by random fragmentation and PCR reassembly of gene fragments and synthetic oligonucleotides may be used to engineer the nucleotide sequences. For example, oligonucleotide-mediated site-directed mutagenesis may be used to introduce mutations that create new restriction sites, alter glycosylation patterns, change codon preference, produce splice variants, and so forth.
The nucleotides of the present invention may be subjected to DNA shuffling techniques such as MOLECULARBREEDING (Maxygen Inc., Santa Clara CA; described in U.S. Patent Number 5,837,458; Chang, C.-C. et al. (1999) Nat. Biotechnol. 17:793-797; Christians, F.C. et al. (1999) Nat.
Biotechnol. 17:259-264; and Crameri, A. et al. (1996) Nat. Biotechnol. 14:315-319) to alter or improve the biological properties of EXMAD, such as its biological or enzymatic activity or its ability to bind to other molecules or compounds. DNA shuffling is a process by which a library of gene variants is produced using PCR-mediated recombination of gene fragments.
The library is then subjected to selection or screening procedures that identify those gene variants with the desired properties. These preferred variants may then be pooled and further subjected to recursive rounds of DNA shuffling and selectionlscreening. Thus, genetic diversity is created through "artificial"
breeding and rapid molecular evolution. For example, fragments of a single gene containing random point mutations may be recombined, screened, and then reshuffled until the desired properties are optimized. Alternatively, fragments of a given gene may be recombined with fragments of homologous genes in the same gene family, either from the same or different species, thereby maximizing the genetic diversity of multiple naturally occurring genes in a directed and controllable manner.
In another embodiment, sequences encoding EXMAD may be synthesized, in whole or in part, using chemical methods well known in the art. (See, e.g., Caruthers, M.H. et al. (1980) Nucleic Acids Symp. Ser. 7:215-223; and Horn, T. et al. (1980) Nucleic Acids Symp. Ser.
7:225-232.) Alternatively, EXMAD itself or a fragment thereof may be synthesized using chemical methods.
For example, peptide synthesis can be performed using various solid-phase techniques. (See, e.g., Roberge, J.Y. et al.
(1995) Science 269:202-204.) Automated synthesis may be achieved using the ABI
431A peptide synthesizer (Perkin-Elmer). Additionally, the amino acid sequence of EXMAD, or any part thereof, may be altered during direct synthesis and/or combined with sequences from other proteins, or any part thereof, to produce a variant polypeptide.
The peptide may be substantially purified by preparative high performance liquid chromatography. (See, e.g., Chiez, R.M. andF.Z. Regnier (1990) Methods Enzymol. 182:392-421.) The composition of the synthetic peptides may be confirmed by amino acid analysis or by sequencing.
(See, e.g., Creighton, T. (1984) Proteins, Structures and Molecular Properties, WH Freeman, New York NY.) In order to express a biologically active EXMAD, the nucleotide sequences encoding EXIviAD
or derivatives thereof may be inserted into an appropriate expression vector, i.e., a vector which contains the necessary elements for transcriptional and translational control of the inserted coding sequence in a suitable host. These elements include regulatory sequences, such as enhancers, constitutive and inducible promoters, and 5' and 3' untranslated regions in the vector and in polynucleotide sequences encoding EXMAD. Such elements may vary in their strength and specificity.
Specific initiation signals may also be used to achieve more efficient translation of sequences encoding EXMAD. Such signals include the ATG initiation codon and adjacent sequences, e.g. the Kozak sequence. In cases where sequences encoding EXMAD and its initiation codon and upstream regulatory sequences are inserted into the appropriate expression vector, no additional transcriptional or translational control signals may be needed. However, in cases where only coding sequence, or a fragment thereof, is inserted, exogenous translational control signals including an in-frame ATG
initiation codon should be provided by the vector. Exogenous translational elements and initiation codons may be of various origins, both natural and synthetic. The efficiency of expression may be enhanced by the inclusion of enhancers appropriate for the particular host cell system used. (See, e.g., Scharf, D. et al. (1994) Results Probl. Cell Differ. 20:125-162.) Methods which are well known to those skilled in the art may be used to construct expression vectors containing sequences encoding EXMAD and appropriate transcriptional and translational control elements. These methods include in vitro recombinant DNA techniques, synthetic techniques, and in vivo genetic recombination. (See, e.g., Sambrook, J. et al. (1989) Molecular Cloning, A
Laboratory Manual, Cold Spring Harbor Press, Plainview NY, ch. 4, 8, and 16-17; Ausubel, F.M. et al. (1995) Current Protocols in Molecular Biolo~y> John Wiley & Sons, New York NY, ch. 9, 13, and 16.) A variety of expression vector/host systems may be utilized to contain and express sequences encoding EXMAD. These include, but are not limited to, microorganisms such as bacteria transformed with recombinant bacteriophage, plasmid, or cosmid DNA expression vectors;
yeast transformed with yeast expression vectors; insect cell systems infected with viral expression vectors (e.g., baculovirus);
plant cell systems transformed with viral expression vectors (e.g., cauliflower mosaic virus, CaMV, or tobacco mosaic virus, TMV) or with bacterial expression vectors (e. g., Ti or pBR322 plasmids); or animal cell systems. The invention is not limited by the host cell employed.
In bacterial systems, a number of cloning and expression vectors may be selected depending upon the use intended for polynucleotide sequences encoding EXMAD. For example, routine cloning, subcloning, and propagation of polynucleotide sequences encoding EXMAD can be achieved using a multifunctional E. coli vector such as PBLLTESCRIPT (Stratagene, La Jolla CA) or PSPORT1 plasmid (Life Technologies). Ligation of sequences encoding EXMAD into the vector's multiple clotting site disrupts the IacZ gene, allowing a colorimetric screening procedure for identification of transformed bacteria containing recombinant molecules. In addition, these vectors may be useful for in vitro transcription, dideoxy sequencing, single strand rescue with helper phage, and creation of nested deletions in the cloned sequence. (See, e.g., Van Heeke, G. and S.M. Schuster (1989) J. Biol. Chem.
264:5503-5509.) When large quantities of EXMAD are needed, e.g. for the production of antibodies, vectors which direct high level expression of EXMAD may be used. For example, vectors containing the strong, inducible TS or T7 bacteriophage promoter may be used.
Yeast expression systems may be used for production of EXMAD. A number of vectors containing constitutive or inducible promoters, such as alpha factor, alcohol oxidase, and PGH
promoters, may be used in the yeast Saccharomyces cerevisiae or Pichia pastoris. In addition, such vectors direct either the secretion or intracellular retention of expressed proteins and enable integration of foreign sequences into the host genome for stable propagation. (See, e.g., Ausubel, 1995, supra;
Bitter, G.A. et al. (1987) Methods Enzymol. 153:516-544; and Scorer, C.A. et al. (1994) Bio/Technology 12:181-184.) Plant systems may also be used for expression of EXMAD. Transcription of sequences encoding EXMAD may be driven viral promoters, e.g., the 35S and 19S promoters of CaMV used alone or in combination with the omega leader sequence from TMV (Takamatsu, N.
(1987) EMBO J.

6:307-311 ). Alternatively, plant promoters such as the small subunit of RUBISCO or heat shock promoters may be used. (See, e.g., Coruzzi, G. et al. (1984) EMBO J. 3:1671-1680; Brogue. R. et al.
(1984) Science 224:838-843; and Winter, J. et al. (1991) Results Probl. Cell Differ. 17:85-105.) These constructs can be introduced into plant cells by direct DNA transformation or pathogen-mediated transfection. (See, e.g., The McGraw Hill Yearbook of Science and Technolo~y (1992) McGraw Hill, New York NY, pp. 191-196.) In mammalian cells, a number of viral-based expression systems may be utilized. In cases where an adenovirus is used as an expression vector, sequences encoding EXMAD
may be ligated into an adenovirus transcription/translation complex consisting of the late promoter and tripartite leader sequence. Insertion in a non-essential E1 or E3 region of the viral genome may be used to obtain infective virus which expresses EXMAD in host cells. (See, e.g., Logan, J. and T. Shenk (1984) Proc.
Natl. Acad. Sci. USA 81:3655-3659.) In addition, transcription enhancers, such as the Rous sarcoma virus (RSV) enhancer, may be used to increase expression in mammalian host cells. SV40 or EBV-based vectors may also be used for high-level protein expression.
Human artificial chromosomes (HACs) may also be employed to deliver larger fragments of DNA than can be contained in and expressed from a plasmid. HACs of about 6 kb to 10 Mb are constructed and delivered via conventional delivery methods (liposomes, polycationic amino polymers, or vesicles) for therapeutic purposes. (See, e.g., Harrington, J.J. et al.
(1997) Nat. Genet. 15:345-355.) For long term production of recombinant proteins in mammalian systems, stable expression of EXMAD in cell lines is preferred. For example, sequences encoding EXMAD can be transformed into cell lines using expression vectors which may contain viral origins of replication and/or endogenous expression elements and a selectable marker gene on the same or on a separate vector. Following the introduction of the vector, cells may be allowed to grow for about 1 to 2 days in enriched media before being switched to selective media. The purpose of the selectable marker is to confer resistance to a selective agent, and its presence allows growth and recovery of cells which successfully express the introduced sequences. Resistant clones of stably transformed cells may be propagated using tissue culture techniques appropriate to the cell type.
Any number of selection systems may be used to recover transformed cell lines.
These include, but are not limited to, the herpes simplex virus thymidine kinase and adenine phosphoribosyltransferase genes, for use in tk- and apr cells, respectively. (See, e.g., Wigler, M. et al. (1977) Cell 11:223-232;
Lowy, I. et al. (1980) Cell 22:817-823.) Also, antimetabolite, antibiotic, or herbicide resistance can be used as the basis for selection. For example, dhfr confers resistance to methotrexate; neo confers resistance to the aminoglycosides neomycin and G-418: and als and pat confer resistance to chlorsulfuron and phosphinotricin acetyltransferase, respectively. (See, e.g., Wigler, M. et al. (1980) Proc. Natl. Acad. Sci. USA 77:3567-3570; Colbere-Garapin, F. et al. (1981) J.
Mol. Biol. 150:1-14.) Additional selectable genes have been described, e.g., trpB and hisD, which alter cellular requirements for metabolites. (See, e.g., Hartman, S.C. and R.C. Mulligan (1988) Proc.
Natl. Acad. Sci. USA
85:8047-8051.) Visible markers, e.g., anthocyanins, green fluorescent proteins (GFP; Clontech), li glucuronidase and its substrate 13-glucuronide, or luciferase and its substrate luciferin may be used.
These markers can be used not only to identify transformants, but also to quantify the amount of transient or stable protein expression attributable to a specific vector system. (See, e.g., Rhodes, C.A.
(1995) Methods Mol. Biol. 55:121-131.) Although the presence/absence of marker gene expression suggests that the gene of interest is also present, the presence and expression of the gene may need to be confirmed. For example, if the sequence encoding EXMAD is inserted within a marker gene sequence, transformed cells containing sequences encoding EXMAD can be identified by the absence of marker gene function. Alternatively, a marker gene can be placed in tandem with a sequence encoding EXMAD under the control of a single promoter. Expression of the marker gene in response to induction or selection usually indicates expression of the tandem gene as well.
In general, host cells that contain the nucleic acid sequence encoding EXMAD
and that express EXMAD may be identified by a variety of procedures known to those of skill in the art. These procedures include, but are not limited to, DNA-DNA or DNA-RNA hybridizations, PCR
amplification, and protein bioassay or immunoassay techniques which include membrane, solution, or chip based technologies for the detection and/or quantification of nucleic acid or protein sequences.
Immunological methods for detecting and measuring the expression of EXMAD
using either specific polyclonal or monoclonal antibodies are known in the art. Examples of such techniques include enzyme-linked immunosorbent assays (ELISAs), radioimmunoassays (RIAs), and fluorescence activated cell sorting (FACS). A two-site, monoclonal-based immunoassay utilizing monoclonal antibodies reactive to two non-interfering epitopes on EXMAD is preferred, but a competitive binding assay may be employed. These and other assays are well known in the art. (See, e.g., Hampton, R. et al. (1990) Serological Methods, a Laboratory Manual, APS Press, St. Paul MN, Sect. IV; Coligan, J.E.
et al. (1997) Current Protocols in Immunolo~y, Greene Pub. Associates and Wiley-Interscience, New York NY; and Pound, J.D. (1998) Immunochemical Protocols, Humana Press, Totowa NJ.) A wide variety of labels and conjugation techniques are known by those skilled in the art and may be used in various nucleic acid and amino acid assays. Means for producing labeled hybridization or PCR probes for detecting sequences related to polynucleotides encoding EXMAD include oligolabeling, nick translation, end=labeling, or PCR amplification using a labeled nucleotide.
Alternatively, the sequences encoding EXMAD, or any fragments thereof, may be cloned into a vector for the production of an mRNA probe. Such vectors are known in the art, are commercially available, and may be used to synthesize RNA probes in vitro by addition of an appropriate RNA polymerase such as T7, T3, or SP6 and labeled nucleotides. These procedures may be conducted using a variety of commercially available kits, such as those provided by Amersham Pharmacia Biotech, Promega (Madison WI), and US Biochemical. Suitable reporter molecules or labels which may be used for ease of detection include radionuclides, enzymes, fluorescent, chemiluminescent, or chromogenic agents, as well as substrates, cofactors, inhibitors, magnetic particles, and the like.
Host cells transformed with nucleotide sequences encoding EXMAD may be cultured under conditions suitable for the expression and recovery of the protein from cell culture. The protein produced by a transformed cell may be secreted or retained intracellularly depending on the sequence and/or the vector used. As will be understood by those of skill in the art, expression vectors containing polynucleotides which encode EXMAD may be designed to contain signal sequences which direct secretion of EXMAD through a prokaryotic or eukaryotic cell membrane.
In addition, a host cell strain may be chosen for its ability to modulate expression of the inserted sequences or to process the expressed protein in the desired fashion.
Such modifications of the polypeptide include, but are not limited to, acetylation, carboxylation, glycosylation, phosphorylation, lipidation, and acylation. Post-translational processing which cleaves a "prepro" or ''pro" form of the protein may also be used to specify protein targeting, folding, and/or activity. Different host cells which have specific cellular machinery and characteristic mechanisms for post-translational activities (e.g., CHO, HeLa, MDCK, HEK293, and WI38) are available from the American Type Culture Collection (ATCC, Manassas VA) and may be chosen to ensure the correct modification and processing of the foreign protein.
In another embodiment of the invention, natural, modified, or recombinant nucleic acid sequences encoding EXMAD may be ligated to a heterologous sequence resulting in translation of a fusion protein in any of the aforementioned host systems. For example, a chimeric EXMAD protein containing a heterologous moiety that can be recognized by a commercially available antibody may facilitate the screening of peptide libraries for inhibitors of EXMAD
activity. Heterologous protein and peptide moieties may also facilitate purification of fusion proteins using commercially available affinity matrices. Such moieties include, but are not limited to, glutathione S-transferase (GST), maltose binding protein (MBP), thioredoxin (Trx), calmodulin binding peptide (CBP), 6-His, FLAG, c-nayc, and hemagglutinin (HA). GST, MBP, Trx, CBP, and 6-His enable purification of their cognate fusion proteins on immobilized glutathione, maltose, phenylarsine oxide, calmodulin, and metal-chelate resins, respectively. FLAG, c-myc, and hemagglutinin (HA) enable immunoaffinity purification of fusion proteins using commercially available monoclonal and polyclonal antibodies that specifically recognize these epitope tags. A fusion protein may also be engineered to contain a proteolytic cleavage site located between the EXMAD encoding sequence and the heterologous protein sequence, so that EXMAD may be cleaved away from the heterologous moiety following purification.
Methods for fusion protein expression and purification are discussed in Ausubel (1995, su ra, ch. 10). A variety of commercially available kits may also be used to facilitate expression and purification of fusion proteins.
In a further embodiment of the invention, synthesis of radiolabeled EXMAD may be achieved in vitro using the TNT rabbit reticulocyte lysate or wheat germ extract system (Promega). These systems couple transcription and translation of protein-coding sequences operably associated with the T7, T3, or SP6 promoters. Translation takes place in the presence of a radiolabeled amino acid precursor, for example, 3'S-methionine.
Fragments of EXMAD may be produced not only by recombinant means, but also by direct peptide synthesis using solid-phase techniques. (See, e.g., Creighton, s-upra, pp. 55-60.) Protein synthesis may be performed by manual techniques or by automation. Automated synthesis may be achieved, for example, using the ABI 431A peptide synthesizer (Perkin-Elmer).
Various fragments of EXMAD may be synthesized separately and then combined to produce the full length molecule.
THERAPEUTICS
Chemical and structural similarity, e.g., in the context of sequences and motifs, exists between regions of EXMAD and extracellular matrix and adhesion-associated proteins. In addition, the expression of EXMAD is closely associated with cancerous, proliferating, inflamed, nervous, reproductive, urologic, hematopoietic/immune, cardiovascular, musculoskeletal, developmental, and gastrointestinal tissues, and with cell proliferative disorders, including cancer, inflammation and the immune response. Therefore, EXMAD appears to play a role in cell proliferative, immune, reproductive, neuronal, and genetic disorders. In the treatment of disorders associated with increased EXMAD expression or activity, it is desirable to decrease the expression or activity of EXMAD. In the treatment of disorders associated with decreased EXMAD expression or activity, it is desirable to increase the expression or activity of EXMAD.
Therefore, in one embodiment, EXMAD or a fragment or derivative thereof may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of EXMAD. Examples of such disorders include, but are not limited to, a cell proliferative disorder, such as actinic keratosis, arteriosclerosis, atherosclerosis, bursitis, cirrhosis, hepatitis, mixed connective tissue disease (MCTD), myelofibrosis, paroxysmal nocturnal hemoglobinuria, polycythemia vera, psoriasis, primary thrombocythemia, and cancers including adenocarcinoma, leukemia, lymphoma, melanoma, myeloma, sarcoma, teratocarcinoma, and, in particular, a cancer of the adrenal gland, bladder, bone, bone marrow, brain, breast, cervix, gall bladder, ganglia, gastrointestinal tract, heart, kidney, liver, lung, muscle, ovary, pancreas, parathyroid, penis, prostate, 3~

salivary glands, skin, spleen, testis, thymus, thyroid, and uterus; an immune disorder, such as inflammation, actinic keratosis, acquired immunodeficiency syndrome (AIDS), Addison's disease, adult respiratory distress syndrome, allergies, ankylosing spondylitis, amyloidosis, anemia, arteriosclerosis, asthma, atherosclerosis, autoimmune hemolytic anemia, autoimmune thyroiditis, autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED), bronchitis, bursitis, cholecystitis, cirrhosis, contact dermatitis, Crohn's disease, atopic dermatitis, dermatomyositis, diabetes mellitus, emphysema, erythroblastosis fetalis, erythema nodosum, atrophic gastritis, glomerulonephritis, Goodpasture's syndrome, gout, Graves' disease, Hashimoto's thyroiditis, paroxysmal nocturnal hemoglobinuria, hepatitis, hypereosinophilia, irritable bowel syndrome, episodic lymphopenia with lymphocytotoxins, mixed connective tissue disease (MCTD), multiple sclerosis, myasthenia gravis, myocardial or pericardial inflammation, myelofibrosis, osteoarthritis, osteoporosis, pancreatitis, polycythemia vera, polymyositis, psoriasis, Reiter's syndrome, rheumatoid arthritis, scleroderma, Sjogren's syndrome, systemic anaphylaxis, systemic lupus erythematosus, systemic sclerosis, primary thrombocythemia, thrombocytopenic purpura, ulcerative colitis, uveitis, Werner syndrome, complications of cancer, hemodialysis, and extracorporeal circulation, viral, bacterial, fungal, parasitic, protozoal, and helminthic infections, trauma, and hematopoietic cancer including lymphoma, leukemia, and myeloma; a reproductive disorder, such as a disorder of prolactin production, infertility, including tubal disease, ovulatory defects, and endometriosis, a disruption of the estrous cycle, a disruption of the menstrual cycle, polycystic ovary syndrome, ovarian hyperstimulation syndrome, an endometrial or ovarian tumor, a uterine fibroid, autoimmune disorders, an ectopic pregnancy, and teratogenesis; cancer of the breast, fibrocystic breast disease, and galactorrhea; a disruption of spermatogenesis, abnormal sperm physiology, cancer of the testis, cancer of the prostate, benign prostatic hyperplasia, prostatitis, Peyronie's disease, impotence, carcinoma of the male breast, and gynecomastia; a neuronal disorder, such as akathesia, Alzheimer's disease, amnesia, amyotrophic lateral sclerosis, bipolar disorder, catatonia, cerebral neoplasms, dementia, depression, diabetic neuropathy, Down's syndrome, tardive dyskinesia, dystonias, epilepsy, Huntington's disease, peripheral neuropathy, multiple sclerosis, neurofibromatosis, Parkinson's disease, paranoid psychoses, postherpetic neuralgia, schizophrenia, and Tourette's disorder; and a genetic disorder, such as adrenoleukodystrophy, Alport's syndrome, choroideremia, Duchenne and Becker muscular dystrophy, Down's syndrome, cystic fibrosis, chronic granulomatous disease, dentinogenesis imperfecta type II, dentin dysplasia type II, Gaucher's disease, Huntington's chorea, Marfan's syndrome, muscular dystrophy, myotonic dystrophy, pycnodysostosis, Refsum's syndrome, retinoblastoma, sickle cell anemia, thalassemia, Werner syndrome, von Willebrand's disease, Wilms' tumor, Zellweger syndrome, peroxisomal acyl-CoA oxidase deficiency, peroxisomal thiolase deficiency, peroxisomal bifunctional protein deficiency, mitochondrial carnitine palmitoyl transferase WO 00/68380 _ PCT/US00/12811 and carnitine deficiency, mitochondrial very-long-chain acyl-CoA dehydrogenase deficiency, mitochondrial medium-chain acyl-CoA dehydrogenase deficiency, mitochondrial short-chain acyl-CoA dehydrogenase deficiency, mitochondrial electron transport flavoprotein and electron transport flavoprotein:ubiquinone oxidoreductase deficiency, mitochondrial trifunctional protein deficiency, and mitochondrial short-chain 3-hydroxyacyl-CoA dehydrogenase deficiency.
In another embodiment, a vector capable of expressing EXMAD or a fragment or derivative thereof may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of EXMAD including, but not limited to, those described above.
In a further embodiment, a pharmaceutical composition comprising a substantially purified EXMAD in conjunction with a suitable pharmaceutical carrier may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of EXMAD including, but not limited to, those provided above.
In still another embodiment, an agonist which modulates the activity of EXMAD
may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of EXMAD including, but not limited to, those listed above.
In a further embodiment, an antagonist of EXMAD may be administered to a subject to treat or prevent a disorder associated with increaseu expression or activity of EXMAD.
Examples of such disorders include, but are not limited to, those cell proliferative, immune, reproductive, neuronal, and genetic disorders described above. In one aspect, an antibody which specifically binds EXMAD may be used directly as an antagonist or indirectly as a targeting or delivery mechanism for bringing a pharmaceutical agent to cells or tissues which express EXMAD.
In an additional embodiment, a vector expressing the complement of the polynucleodde encoding EXMAD may be administered to a subject to treat or prevent a disorder associated with increased expression or activity of EXMAD including, but not limited to, those described above.
In other embodiments, any of the proteins, antagonists, antibodies, agonists, complementary sequences, or vectors of the invention may be administered in combination with other appropriate therapeutic agents. Selection of the appropriate agents for use in combination therapy may be made by one of ordinary skill in the art, according to conventional pharmaceutical principles. The combination of therapeutic agents may act synergistically to effect the treatment or prevention of the various disorders described above. Using this approach, one may be able to achieve therapeutic efficacy with lower dosages of each agent, thus reducing the potential for adverse side effects.
An antagonist of EXMAD may be produced using methods which are generally known in the art. In particular, purified EXMAD may be used to produce antibodies or to screen libraries of pharmaceutical agents to identify those which specifically bind EXMAD.
Antibodies to EXMAD may also be generated using methods that are well known in the art. Such antibodies may include, but are WO 00/68380 _ PCT/US00/12811 not limited to, polyclonal, monoclonal, chimeric, and single chain antibodies, Fab fragments, and fragments produced by a Fab expression library. Neutralizing antibodies (i.e., those which inhibit dimer formation) are generally preferred for therapeutic use.
For the production of antibodies, various hosts including goats, rabbits, rats, mice, humans, and others may be immunized by injection with EXMAD or with any fragment or oligopeptide thereof which has immunogenic properties. Depending on the host species, various adjuvants may be used to increase immunological response. Such adjuvants include, but are not limited to, Freund's, mineral gels such as aluminum hydroxide, and surface active substances such as lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, KLH, and dinitrophenol. Among adjuvants used in humans, BCG
(bacilli Calmette-Guerin) and Corynebacterium parvum are especially preferable.
It is preferred that the oligopeptides, peptides, or fragments used to induce antibodies to EXMAD have an amino acid sequence consisting of at least about 5 amino acids, and generally will consist of at least about 10 amino acids. It is also preferable that these oligopeptides, peptides, or fragments are identical to a portion of the amino acid sequence of the natural protein and contain the entire amino acid sequence of a small, naturally occurring molecule. Short stretches of EXMAD amino acids may be fused with those of another protein, such as KLH, and antibodies to the chimeric molecule may be produced.
Monoclonal antibodies to EXMAD may be prepared using any technique which provides for the production of antibody molecules by continuous cell lines in culture.
These include, but are not limited to, the hybridoma technique, the human B-cell hybridoma technique, and the EBV-hybridoma technique. (See, e.g., Kohler, G. et al. (1975) Nature 256:495-497; Kozbor, D.
et al. (1985) J.
Immunol. Methods 81:31-42; Cote, R.J. et al. (1983) Proc. Natl. Acad. Sci. USA
80:2026-2030; and Cole, S.P. et al. (1984) Mol. Cell Biol. 62:109-120.) In addition, techniques developed for the production of "chimeric antibodies,"
such as the splicing of mouse antibody genes to human antibody genes to obtain a molecule with appropriate antigen specificity and biological activity, can be used. (See, e.g., Morrison, S.L. et al. (1984) Proc.
Natl. Acad. Sci. USA 81:6851-6855; Neuberger, M.S. et al. (1984) Nature 312:604-608; and Takeda, S. et al. (1985) Nature 314:452-454.) Alternatively, techniques described for the production of single chain antibodies may be adapted, using methods known in the art, to produce EXMAD-specific single chain antibodies. Antibodies with related specificity, but of distinct idiotypic composition, may be generated by chain shuffling Iiom random combinatorial immunoglobulin libraries. (See, e.g., Burton, D.R. (1991) Proc. Natl. Acad. Sci. USA 88:10134-10137.) Antibodies may also be produced by inducing in vivo production in the lymphocyte population or by screening immunoglobulin libraries or panels of highly specific binding reagents as disclosed in WO 00/68380 . PCT/US00/12811 the literature. (See, e.g., Orlandi, R. et al. (1989) Proc;. Natl. Acad. Sci.
USA 86:3833-3837; Winter.
G. et al. ( 1991 ) Nature 349:293-299. ) Antibody fragments which contain specific binding sites for EXMAD may also be generated.
For example, such fragments include, but are not limited to, F(ab~~ fragments produced by pepsin digestion of the antibody molecule and Fab fragments generated by reducing the disulfide bridges of the F(ab~2 fragments. Alternatively, Fab expression libraries may be constructed to allow rapid and easy identification of monoclonal Fab fragments with the desired specificity. (See, e.g., Huse, W.D. et al.
(1989) Science 246:1275-1281.) Various immunoassays may be used for screening to identify antibodies having the desired specificity. Numerous protocols for competitive binding or immunoradiometric assays using either polyclonal or monoclonal antibodies with established specilicities are well known in the art. Such immunoassays typically involve the measurement of complex formation between EXMAD and its specific antibody. A two-site, monoclonal-based immunoassay utilizing monoclonal antibodies reactive to two non-interfering EXMAD epitopes is generally used, but a competitive binding assay may also be employed (Pound, supra).
Various methods such as Scatchard analysis in conjunction with radioimmunoassay techniques may be used to assess the affinity of antibodies for EXMAD. Affinity is expressed as an association constant, Ka, which is defined as the molar concentration of EXMAD-antibody complex divided by the molar concentrations of free antigen and free antibody under equilibrium conditions. The Ka determined for a preparation of polyclonal antibodies, which are heterogeneous in their affinities for multiple EXMAD epitopes, represents the average affinity, or avidity, of the antibodies for EXMAD. The I~
determined for a preparation of monoclonal antibodies, which are monospecific for a particular EXMAD epitope, represents a true measure of affinity. High-affinity antibody preparations with Kh ranging from about I Ov to 10'2 Llmole are preferred for use in immunoassays in which the EXMAD-antibody complex must withstand rigorous manipulations. Low-affinity antibody preparations with Kd ranging from about 106 to 10' L/mole are preferred for use in immunopurification and similar procedures which ultimately require dissociation of EXMAD, preferably in active form, from the antibody (Catty, D. (1988) Antibodies Volume I: A Practical Approach, IRL
Press, Washington, DC;
Liddell, J.E. and Cryer, A. ( 1991 ) A Practical Guide to Monoclonal Antibodies, John Wiley & Sons, New York NY).
The titer and avidity of polyclonal antibody preparations may be further evaluated to determine the quality and suitability of such preparations for certain downstream applications. For example, a polyclonal antibody preparation containing at least 1-2 mg specific antibody/ml, preferably 5-10 mg specific antibody/ml, is generally employed in procedures requiring precipitation of EXMAD-antibody complexes. Procedures for evaluating antibody specificity, titer, and avidity, and guidelines for antibody quality and usage in various applications, are generally available.
(See, e.g., Catty, supra, and Coligan et al. supra.) In another embodiment of the invention, the polynucleotides encoding EXMAD, or any fragment or complement thereof, may be used for therapeutic purposes. In one aspect, the complement of the polynucleotide encoding EXMAD may be used in situations in which it would be desirable to block the transcription of the mRNA. In particular, cells may be transformed with sequences complementary to polynucleotides encoding EXMAD. Thus, complementary molecules or fragments may be used to modulate EXMAD activity, or to achieve regulation of gene function. Such technology is now well known in the art, and sense or antisense oligonucleotides or larger fragments can be designed from various locations along the coding or control regions of sequences encoding EXMAD.
Expression vectors derived from retroviruses, adenoviruses, or herpes or vaccinia viruses, or from various bacterial plasmids, may be used for delivery of nucleotide sequences to the targeted organ, tissue, or cell population. Methods which are well known to those skilled in the art can be used to construct vectors to express nucleic acid sequences complementary to the polynucleotides encoding EXMAD. (See, e.g., Sambrook, supra; Ausubel, 1995, su ra.) Genes encoding EXMAD can be turned off by transforming a cell or tissue with expression vectors which express high levels of a polynucleotide, or fragment thereof, encoding EXMAD. Such constructs may be used to introduce untranslatable sense or antisense sequences into a cell. Even in the absence of integration into the DNA, such vectors may continue to transcribe RNA molecules until they are disabled by endogenous nucleases. Transient expression may last for a month or more with a non-replicating vector, and may last even longer if appropriate replication elements are part of the vector system.
As mentioned above, modifications of gene expression can be obtained by designing complementary sequences or antisense molecules (DNA, RNA, or PNA) to the control, 5', or regulatory regions of the gene encoding EXMAD. Oligonucleotides derived from the transcription initiation site, e.g., between about positions -10 and +10 from the start site, may be employed. Similarly. inhibition can be achieved using triple helix base-pairing methodology. Triple helix pairing is useful because it causes inhibition of the ability of the double helix to open sufficiently for the binding of polymerises, transcription factors, or regulatory molecules. Recent therapeutic advances using triplex DNA have been described in the literature. (See, e.g., Gee, J.E. et al. (1994) in Huber, B.E. and B.I. Carr, Molecular and Immunolo~ic Approaches, Futura Publishing, Mt. Kisco NY, pp. 163-177.) A
complementary sequence or antisense molecule may also be designed to block translation of mRNA by preventing the transcript from binding to ribosomes.

Ribozymes, enzymatic RNA molecules, may also be used to catalyze the specific cleavage of RNA. The mechanism of ribozyme action involves sequence-specific hybridization of the ribozyme molecule to complementary target RNA, followed by endonucleolytic cleavage.
For example, engineered hammerhead motif ribozyme molecules may specifically and efficiently catalyze endonucleolytic cleavage of sequences encoding EXMAD.
Specific ribozyme cleavage sites within any potential RNA target are initially identified by scanning the target molecule for ribozyme cleavage sites, including the following sequences: GUA, GUU, and GUC. Once identified, short RNA sequences of between 15 and 20 ribonucleotides, corresponding to the region of the target gene containing the cleavage site, may be evaluated for secondary structural features which may render the oligonucleotide inoperable.
The suitability of candidate targets may also be evaluated by testing accessibility to hybridization with complementary oligonucleotides using ribonuclease protection assays.
Complementary ribonucleic acid molecules and ribozymes of the invention may be prepared by any method known in the art for the synthesis of nucleic acid molecules. These include techniques for chemically synthesizing oligonucleotides such as solid phase phosphoramidite chemical synthesis.
Alternatively, RNA molecules may be generated by in vitro and in vivo transcription of DNA sequences encoding EXMAD. Such DNA sequences may be incorporated into a wide variety of vectors with suitable RNA polymerise promoters such as T7 or SP6. Alternatively, these cDNA
constructs that synthesize complementary RNA, constitutively or inducibly, can be introduced into cell lines, cells, or tissues.
RNA molecules may be modified to increase intracellular stability and half-life. Possible modifications include, but are not limited to, the addition of flanking sequences at the 5' and/or 3' ends of the molecule, or the use of phosphorothioate or 2' O-methyl rather than phosphodiesterase linkages within the backbone of the molecule. This concept is inherent in the production of PNAs and can be extended in all of these molecules by the inclusion of nontraditional bases such as inosine, queosine, and wybutosine, as well as acetyl-, methyl-, thio-, and similarly modified forms of adenine, cytidine, guanine, thymine, and uridine which are not as easily recognized by endogenous endonucleases.
Many methods for introducing vectors into cells or tissues are available and equally suitable for use in vivo, in vitro, and ex vivo. For ex vivo therapy, vectors may be introduced into stem cells taken from the patient and clonally propagated for autologous transplant back into that same patient.
Delivery by transfection, by liposome injections, or by polycationic amino polymers may be achieved using methods which are well known in the art. (See, e.g., Goldman, C.K. et al. (1997) Nat.
Biotechnol. 15:462-466.) Any of the therapeutic methods described above may be applied to any subject in need of such therapy, including, for example, mammals such as humans, dogs, cats, cows, horses, rabbits, and monkeys.
An additional embodiment of the invention relates to the adnunistration of a pharmaceutical or sterile composition, in conjunction with a pharmaceutically acceptable carrier, for any of the therapeutic effects discussed above. Such pharmaceutical compositions may consist of EXMAD, antibodies to EXMAD, and mimetics, agonists, antagonists, or inhibitors of EXMAD. The compositions may be administered alone or in combination with at least one other agent, such as a stabilizing compound, which may be administered in any sterile, biocompatible pharmaceutical carrier including, but not limited to, saline, buffered saline, dextrose, and water. The compositions may be administered to a patient alone, or in combination with other agents, drugs, or hormones.
The pharmaceutical compositions utilized in this invention may be administered by any number of routes including, but not limited to, oral, intravenous, intramuscular, intra-arterial, intramedullary, intrathecal, intraventricular, transdermal, subcutaneous, intraperitoneal, intranasal, enterah topical, sublingual, or rectal means.
In addition to the active ingredients, these pharmaceutical compositions may contain suitable pharmaceutically-acceptable carriers comprising excipients and auxiliaries which facilitate processing of the active compounds into preparations which can be used pharmaceutically.
Further details on techniques for formulation and administration may be found in the latest edition of Remin~ton's Pharmaceutical Sciences (Maack Publishing, Easton PA).
Pharmaceutical compositions for oral administration can be formulated using pharmaceutically acceptable carriers well known in the art in dosages suitable for oral administration. Such carriers enable the pharmaceutical compositions to be formulated as tablets, pills, dragees, capsules, liquids, gels, syrups, slurries, suspensions, and the like, for ingestion by the patient.
Pharmaceutical preparations for oral use can be obtained through combining active compounds with solid excipient and processing the resultant mixture of granules (optionally, after grinding) to obtain tablets or dragee cores. Suitable auxiliaries can be added, if desired.
Suitable excipients include carbohydrate or protein fillers, such as sugars, including lactose, sucrose, mannitol, and sorbitol; starch from corn, wheat, rice, potato, or other plants; cellulose, such as methyl cellulose, hydroxypropylmethyl-cellulose, or sodium carboxymethylcellulose; gums, including arabic and tragacanth; and proteins, such as gelatin and collagen. If desired, disintegrating or solubilizing agents may be added, such as the cross-linked polyvinyl pyrrolidone, agar, and alginic acid or a salt thereof, such as sodium alginate.
Dragee cores may be used in conjunction with suitable coatings, such as concentrated sugar solutions, which may also contain gum arabic, talc, polyvinylpyrrolidone, carbopol gel, polyethylene glycol, and/or titanium dioxide, lacquer solutions, and suitable organic solvents or solvent mixtures.
Dyestuffs or pigments may be added to the tablets or dragee coatings for product identification or to characterize the quantity of active compound, i.e., dosage.
Pharmaceutical preparations which can be used orally include push-fit capsules made of gelatin, as well as soft, sealed capsules made of gelatin and a coating, such as glycerol or sorbitol.
Push-fit capsules can contain active ingredients mixed with fillers or binders, such as lactose or starches, lubricants, such as talc or magnesium stearate, and, optionally, stabilizers. In soft capsules, the active compounds may be dissolved or suspended in suitable liquids, such as fatty oils, liquid, or liquid polyethylene glycol with or without stabilizers.
Pharmaceutical formulations suitable for parenteral administration may be formulated in aqueous solutions, preferably in physiologically compatible buffers such as Hanks' solution, Ringer's solution, or physiologically buffered saline. Aqueous injection suspensions may contain substances which increase the viscosity of the suspension, such as sodium carboxymethyl cellulose, sorbitol, or dextran. Additionally, suspensions of the active compounds may be prepared as appropriate oily injection suspensions. Suitable lipophilic solvents or vehicles include fatty oils, such as sesame oil, or synthetic fatty acid esters, such as ethyl oleate, triglycerides, or liposomes. Non-lipid polycationic amino polymers may also be used for delivery. Optionally, the suspension may also contain suitable stabilizers or agents to increase the solubility of the compounds and allow for the preparation of highly concentrated solutions.
For topical or nasal administration, penetrants appropriate to the particular barrier to be permeated are used in the formulation. Such penetrants are generally known in the art.
The pharmaceutical compositions of the present invention may be manufactured in a manner that is known in the art, e.g., by means of conventional mixing, dissolving, granulating, dragee-making, levigating, emulsifying, encapsulating, entrapping, or lyophilizing processes.
2~ The pharmaceutical composition may be provided as a salt and can be formed with many acids, including but not limited to, hydrochloric, sulfuric, acetic, lactic, tartaric, malic, and succinic acids.
Salts tend to be more soluble in aqueous or other protonic solvents than are the corresponding free base forms. In other cases, the preparation may be a lyophilized powder which may contain any or all of the following: 1 mM to 50 mM histidine, 0.1 % to 2% sucrose, and 2% to 7%
mannitol, at a pH range of 4.5 to 5.5, that is combined with buffer prior to use.
After pharmaceutical compositions have been prepared, they can be placed in an appropriate container and labeled for treatment of an indicated condition. For administration of EXMAD, such labeling would include amount, frequency, and method of adnunistration.
Pharmaceutical compositions suitable for use in the invention include compositions wherein the active ingredients are contained in an effective amount to achieve the intended purpose. The determination of an effective dose is well within the capability of those skilled in the art.
For any compound, the therapeutically effective dose can be estimated initially either in cell culture assays, e.g., of neoplastic cells, or in animal models such as mice, rats, rabbits, dogs, or pigs.
An animal model may also be used to determine the appropriate concentration range and route of administration. Such information can then be used to determine useful doses and routes for administration in humans.
A therapeutically effective dose refers to that amount of active ingredient, for example EXMAD or fragments thereof, antibodies of EXMAD, and agonists, antagonists or inhibitors of EXMAD, which ameliorates the symptoms or condition. Therapeutic efficacy and toxicity may be determined by standard pharmaceutical procedures in cell cultures or with experimental animals, such as by calculating the ED;~ (the dose therapeutically effective in 5070 of the population) or LD;o (the dose lethal to 50% of the population) statistics. The dose ratio of toxic to therapeutic effects is the therapeutic index, which can be expressed as the LDS~,/EDs~ ratio.
Pharmaceutical compositions which exhibit large therapeutic indices are preferred. The data obtained from cell culture assays and animal studies are used to formulate a range of dosage for human use. The dosage contained in such compositions is preferably within a range of circulating concentrations that includes the ED;o with little or no toxicity. The dosage varies within this range depending upon the dosage form employed, the sensitivity of the patient, and the route of administration.
The exact dosage will be determined by the practitioner, in light of factors related to the subject requiring treatment. Dosage and administration are adjusted to provide sufficient levels of the active moiety or to maintain the desired effect. Factors which may be taken into account include the severity of the disease state, the general health of the subject, the age, weight, and gender of the subject, time and frequency of administration, drug combination(s), reaction sensitivities, and response to therapy.
Long-acting pharmaceutical compositions may be administered every 3 to 4 days, every week, or biweekly depending on the half-life and clearance rate of the particular formulation.
Normal dosage amounts may vary from about 0.1 ~cg to 100,000 fig, up to a total dose of about 1 gram, depending upon the route of administration. Guidance as to particular dosages and methods of delivery is provided in the literature and generally available to practitioners in the art.
Those skilled in the art will employ different formulations for nucleotides than for proteins or their inhibitors. Similarly, delivery of polynucleotides or polypeptides will be specific to particular cells, conditions, locations, etc.
DIAGNOSTICS
In another embodiment, antibodies which specifically bind EXMAD may be used for the diagnosis of disorders characterized by expression of EXMAD, or in assays to monitor patients being treated with EXMAD or agonists, antagonists, or inhibitors of EXMAD.
Antibodies useful for diagnostic purposes may be prepared in the same manner as described above for therapeutics.
Diagnostic assays for EXMAD include methods which utilize the antibody and a label to detect EXMAD in human body fluids or in extracts of cells or tissues. The antibodies may be used with or without modification, and may be labeled by covalent or non-covalent attachment of a reporter molecule. A wide variety of reporter molecules, several of which are described above, are known in the art and may be used.
A variety of protocols for measuring EXMAD, including ELISAs, RIAs, and FACS, are known in the art and provide a basis for diagnosing altered or abnormal levels of EXMAD expression.
Normal or standard values for EXMAD expression are established by combining body fluids or cell extracts taken from normal mammalian subjects, for example, human subjects, with antibody to EXMAD under conditions suitable for complex formation. The amount of standard complex formation may be quantitated by various methods. such as photometric means. Quantities of EXMAD expressed in subject, control, and disease samples from biopsied tissues are compared with the standard values.
Deviation between standard and subject values establishes the parameters for diagnosing disease.
In another embodiment of the invention, the polynucleotides encoding EXMAD may be used for diagnostic purposes. The polynucleotides which may be used include oligonucleotide sequences, complementary RNA and DNA molecules, and PNAs. The polynucleotides may be used to detect and quantify gene expression in biopsied tissues in which expression of EXMAD may be correlated with disease. The diagnostic assay may be used to determine absence, presence, and excess expression of EXMAD, and to monitor regulation of EXMAD levels during therapeutic intervention.
In one aspect, hybridization with PCR probes which are capable of detecting polynucleotide sequences, including genomic sequences, encoding EXMAD or closely related molecules may be used to identify nucleic acid sequences which encode EXMAD. The specificity of the probe, whether it is made from a highly specific region, e.g., the 5' regulatory region, or from a less specific region, e.g., a conserved motif, and the stringency of the hybridization or amplification will determine whether the probe identifies only naturally occurring sequences encoding EXMAD, allelic variants, or related sequences.
Probes may also be used for the detection of related sequences, and may have at least 50/0 sequence identity to any of the EXMAD encoding sequences. The hybridization probes of the subject invention may be DNA or RNA and may be derived from the sequence of SEQ ID
N0:26-50 or from genomic sequences including promoters, enhancers, and introns of the EXMAD
gene.
Means for producing specific hybridization probes for DNAs encoding EXMAD
include the 4~

cloning of polynucleotide sequences encoding EXMAD or EXMAD derivatives into vectors for the production of mRNA probes. Such vectors are known in the art, are commercially available, and may be used to synthesize RNA probes in vitro by means of the addition of the appropriate RNA
polymerases and the appropriate labeled nucleotides. Hybridization probes may be labeled by a variety of reporter groups, for example, by radionuclides such as 32P or 3'S, or by enzymatic labels, such as alkaline phosphatase coupled to the probe via avidin/biotin coupling systems, and the like.
Polynucleotide sequences encoding EXMAD may be used for the diagnosis of disorders associated with expression of EXMAD. Examples of such disorders include, but are not limited to, a cell proliferative disorder, such as actinic keratosis, arteriosclerosis, atherosclerosis, bursitis, cirrhosis, hepatitis, mixed connective tissue disease (MCTD), myelofibrosis, paroxysmal nocturnal hemoglobinuria, polycythemia vera, psoriasis, primary thrombocythemia, and cancers including adenocarcinoma, leukemia, lymphoma, melanoma, myeloma, sarcoma, teratocarcinoma, and, in particular, a cancer of the adrenal gland, bladder, bone, bone marrow, brain, breast, cervix, gall bladder, ganglia, gastrointestinal tract, heart, kidney, liver, lung, muscle, ovary, pancreas, parathyroid, penis, prostate, salivary glands, skin, spleen, testis, thymus, thyroid, and uterus; an immune disorder, such as inflammation, actinic keratosis, acquired immunodeficiency syndrome (AIDS), Addison's disease, adult respiratory distress syndrome, allergies, ankylosing spondylitis, amyloidosis, anemia, arteriosclerosis, asthma, atherosclerosis, autoimmune hemolytic anemia, autoimmune thyroiditis, autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED), bronchitis, bursitis, cholecystitis, cirrhosis, contact dermatitis, Crohn's disease, atopic dermatitis, dermatomyositis, diabetes mellitus, emphysema, erythroblastosis fetalis, erythema nodosum, atrophic gastritis, glomerulonephritis, Goodpasture's syndrome, gout, Graves' disease, Hashimoto's thyroiditis, paroxysmal nocturnal hemoglobinuria, hepatitis, hypereosinophilia, irritable bowel syndrome, episodic lymphopenia with lymphocytotoxins, mixed connective tissue disease (MCTD), multiple sclerosis, myasthenia gravis, myocardial or pericardial inflammation, myelofibrosis, osteoarthritis, osteoporosis, pancreatitis, polycythemia vera, polymyositis, psoriasis, Reiter's syndrome, rheumatoid arthritis, scleroderma, Sjogren's syndrome, systemic anaphylaxis, systemic lupus erythematosus, systemic sclerosis, primary thrombocythemia, thrombocytopenic purpura, ulcerative colitis. uveitis, Werner syndrome, complications of cancer, hemodialysis, and extracorporeal circulation, viral, bacterial, fungal, parasitic, protozoal, and helminthic infections, trauma, and hematopoietic cancer including lymphoma, leukemia, and myeloma; a reproductive disorder, such as a disorder of prolactin production, infertility, including tubal disease, ovulatory defects, and endometriosis, a disruption of the estrous cycle, a disruption of the menstrual cycle, polycystic ovary syndrome, ovarian hyperstimulation syndrome, an endometrial or ovarian tumor, a uterine fibroid, autoimmune disorders, an ectopic pregnancy, and teratogenesis; cancer of the breast, fibrocystic breast disease, and galactorrhea; a disruption of spermatogenesis, abnormal sperm physiology, cancer of the testis, cancer of the prostate, benign prostatic hyperplasia, prostatitis, Peyronie's disease, impotence, carcinoma of the male breast, and gynecomastia; a neuronal disorder, such as akathesia, Alzheimer's disease, amnesia, amyotrophic lateral sclerosis, bipolar disorder, catatonia, cerebral neoplasms, dementia, depression, diabetic neuropathy, Down's syndrome, tardive dyskinesia, dystonias, epilepsy, Huntington's disease, peripheral neuropathy, multiple sclerosis, neurofibromatosis, Parkinson's disease, paranoid psychoses, postherpetic neuralgia, schizophrenia, and Tourette's disorder; and a genetic disorder, such as adrenoleukodystrophy, Alport's syndrome, choroideremia, Duchenne and Becker muscular dystrophy, Down's syndrome, cystic fibrosis, chronic granulomatous disease, dentinogenesis imperfecta type II, dentin dysplasia type II, Gaucher's disease, Huntington's chorea, Marfan's syndrome, muscular dystrophy, myotonic dystrophy, pycnodysostosis, Refsum's syndrome, retinoblastoma, sickle cell anemia, thalassemia, Werner syndrome, von Willebrand's disease, Wilms' tumor, Zellweger syndrome, peroxisomal acyl-CoA oxidase deficiency, peroxisomal thiolase deficiency, peroxisomal bifunctional protein deficiency, mitochondria) carnitine palmitoyl transferase and carnitine deficiency, mitochondria) very-long-chain acyl-CoA dehydrogenase deficiency, mitochondria) medium-chain acyl-CoA dehydrogenase deficiency, mitochondria) short-chain acyl-CoA dehydrogenase deficiency, rnitochondrial electron transport flavoprotein and electron transport flavoprotein:ubiquinone oxidoreductase deficiency, mitochondria) trifunctional protein deficiency, and mitochondria) short-chain 3-hydroxyacyl-CoA dehydrogenase deficiency. The polynucleotide sequences encoding EXMAD may be used in Southern or northern analysis, dot blot, or other membrane-based technologies; in PCR technologies; in dipstick, pin, and multiformat ELISA-like assays; and in microarrays utilizing fluids or tissues from patients to detect altered EXMAD
expression. Such qualitative or quantitative methods are well known in the art.
In a particular aspect, the nucleotide sequences encoding EXMAD may be useful in assays that detect the presence of associated disorders, particularly those mentioned above. The nucleotide sequences encoding EXMAD may be labeled by standard methods and added to a fluid or tissue sample from a patient under conditions suitable for the formation of hybridization complexes. After a suitable incubation period, the sample is washed and the signal is quantified and compared with a standard value. If the amount of signal in the patient sample is significantly altered in comparison to a control sample then the presence of altered levels of nucleotide sequences encoding EXMAD in the sample indicates the presence of the associated disorder. Such assays may also be used to evaluate the efficacy of a particular therapeutic treatment regimen in animal studies, in clinical trials, or to monitor the treatment of an individual patient.
In order to provide a basis for the diagnosis of a disorder associated with expression of EXMAD, a normal or standard profile for expression is established. This may be accomplished by combining body fluids or cell extracts taken from normal subjects, either animal or human, with a sequence, or a fragment thereof, encoding EXMAD, under conditions suitable for hybridization or amplification. Standard hybridization may be quantified by comparing the values obtained from normal subjects with values from an experiment in which a known amount of a substantially purified polynucleotide is used. Standard values obtained in this manner may be compared with values obtained from samples from patients who are symptomatic for a disorder. Deviation from standard values is used to establish the presence of a disorder.
Once the presence of a disorder is established and a treatment protocol is initiated, hybridization assays may be repeated on a regular basis to determine if the level of expression in the patient begins to approximate that which is observed in the normal subject.
The results obtained from successive assays may be used to show the efficacy of treatment over a period ranging from several days to months.
With respect to cancer, the presence of an abnormal amount of transcript (either under- or overexpressed) in biopsied tissue from an individual may indicate a predisposition for the development of the disease, or may provide a means for detecting the disease prior to the appearance of actual clinical symptoms. A more definitive diagnosis of this type may allow health professionals to employ preventative measures or aggressive treatment earlier thereby preventing the development or further progression of the cancer.
Additional diagnostic uses for oligonucleotides designed from the sequences encoding EXMAD
may involve the use of PCR. These oligomers may be chemically synthesized, generated enzymatically, or produced in vitro. Oligomers will preferably contain a fragment of a polynucleotide encoding EXMAD, or a fragment of a polynucleotide complementary to the polynucleotide encoding EXMAD, and will be employed under optimized conditions for identification of a specific gene or condition.
Oligomers may also be employed under less stringent conditions for detection or quantification of closely related DNA or RNA sequences.
Methods which may also be used to quantify the expression of EXMAD include radiolabeling or biotinylating nucleotides, coamplification of a control nucleic acid, and interpolating results from standard curves. (See, e.g., Melby, P.C. et al. (1993) J. Immunol. Methods 159:235-244; Duplaa, C. et al. (1993) Anal. Biochem. 212:229-236.) The speed of quantitation of multiple samples may be accelerated by running the assay in a high-throughput format where the oligomer of interest is presented in various dilutions and a spectrophotometric or colorimetric response gives rapid quantitation.
In further embodiments, oligonucleotides or longer fragments derived from any of the polynucleotide sequences described herein may be used as targets in a microarray. The microarray can be used to monitor the expression level of large numbers of genes simultaneously and to identify genetic variants, mutations, and polymorphisms. This information may be used to determine gene function, to understand the genetic basis of a disorder, to diagnose a disorder, and to develop and monitor the activities of therapeutic agents.
Microarrays may be prepared, used, and analyzed using methods known in the art. (See, e.g., Brennan, T.M. et al. (1995) U.S. Patent No. 5,474,796; Schena, M. et al.
(1996) Proc. Natl. Acad. Sci.
USA 93:10614-10619; Baldeschweiler et al. (1995) PCT application W095/251116;
Shalom D. et al.
(1995) PCT application W095/35505; Heller, R.A. et al. (1997) Proc. Natl.
Acad. Sci. USA 94:2150-2155; and Heller, M.J. et al. (1997) U.S. Patent No. 5,605,662.) In another embodiment of the invention, nucleic acid sequences encoding EXMAD
may be used to generate hybridization probes useful in mapping the naturally occurring genomic sequence. The sequences may be mapped to a particular chromosome, to a specific region of a chromosome. or to artificial chromosome constructions, e.g., human artificial chromosomes (HACs), yeast artificial chromosomes (PACs), bacterial artificial chromosomes (BACs), bacterial Pl constructions, or single chromosome cDNA libraries. (See, e.g., Harrington, J.J. et al. (1997) Nat.
Genet. 15:345-355: Price, C.M. (1993) Blood Rev. 7:127-134; and Trask, B.J. (1991) Trends Genet. 7:149-154.) Fluorescent in situ hybridization (FISH) may be correlated with other physical chromosome mapping techniques and genetic map data. (See, e.g., Heinz-Ulrich, et al.
(1995) in Meyers, su ra, pp.
965-968.) Examples of genetic map data can be found in various scientific journals or at the Online Mendelian Inheritance in Man (OMIM) World Wide Web site. Correlation between the location of the gene encoding EXMAD on a physical chromosomal map and a specific.disorder, or a predisposition to a specific disorder, may help define the region of DNA associated with that disorder. The nucleotide sequences of the invention may be used to detect differences in gene sequences among normal, carrier, and affected individuals.
In situ hybridization of chromosomal preparations and physical mapping techniques, such as linkage analysis using established chromosomal markers, may be used for extending genetic maps.
Often the placement of a gene on the chromosome of another mammalian species, such as mouse, may reveal associated markers even if the number or arm of a particular human chromosome is not known.
New sequences can be assigned to chromosomal arms by physical mapping. This provides valuable information to investigators searching for disease genes using positional cloning or other gene discovery techniques. Once the disease or syndrome has been crudely localized by genetic linkage to a particular genomic region, e.g., ataxia-telangiectasia to l 1q22-23, any sequences mapping to that area may represent associated or regulatory genes for further investigation. (See, e.g., Gatti, R.A. et al. (1988) Nature 336:577-580.) The nucleotide sequence of the subject invention may also be used to detect differences in the chromosomal location due to translocation, inversion, etc., among normal, carrier, or affected individuals.
In another embodiment of the invention, EXMAD, its catalytic or immunogenic fragments, or oligopeptides thereof can be used for screening libraries of compounds in any of a variety of drug screening techniques. The fragment employed in such screening may be free in solution, affixed to a solid support, borne on a cell surface, or located intracellularly. The formation of binding complexes between EXMAD and the agent being tested may be measured.
Another technique for drug screening provides for high throughput screening of compounds having suitable binding affinity to the protein of interest. (See, e.g., Geysen, et al. (1984) PCT
application W084/03564.) In this method, large numbers of different small test compounds are synthesized on a solid substrate. The test compounds are reacted with EXMAD, or fragments thereof, and washed. Bound EXMAD is then detected by methods well known in the art.
Purified EXMAD can also be coated directly onto plates for use in the aforementioned drug screening techniques.
Alternatively, non-neutralizing antibodies can be used to capture the peptide and immobilize it on a solid support.
In another embodiment, one may use competitive drug screening assays in which neutralizing antibodies capable of binding EXMAD specifically compete with a test compound for binding EXMAD. In this manner, antibodies can be used to detect the presence of any peptide which shares one or more antigenic determinants with EXMAD.
In additional embodiments, the nucleotide sequences which encode EXMAD may be used in any molecular biology techniques that have yet to be developed, provided the new techniques rely on properties of nucleotide sequences that are currently known, including, but not limited to, such properties as the triplet genetic code and specific base pair interactions.
Without further elaboration, it is believed that one skilled in the art can, using the preceding description, utilize the present invention to its fullest extent. The following preferred specific embodiments are, therefore, to be construed as merely illustrative, and not limitative of the remainder of the disclosure in any way whatsoever.
The disclosures of all patents, applications, and publications mentioned above and below, in particular U.S. Ser. No.60/133,643 and U.S. Ser. No.60/150,409 are hereby expressly incorporated by reference.
EXAMPLES
I. Construction of cDNA Libraries RNA was purchased from Clontech or isolated from tissues described in Table 4.
Some tissues were homogenized and lysed in guanidinium isothiocyanate, while others were homogenized and lysed in phenol or in a suitable mixture of denaturants, such as TRIZOL (Life Technologies), a monophasic WO 00/68380 _ PCT/US00/12811 solution of phenol and guanidine isothiocyanate. The resulting lysates were centrifuged over CsCl cushions or extracted with chloroform. RNA was precipitated from the lysates with either isopropanol or sodium acetate and ethanol, or by other routine methods.
Phenol extraction and precipitation of RNA were repeated as necessary to increase RNA
purity. In some cases, RNA was treated with DNase. For most libraries, poly(A+) RNA was isolated using oligo d(T)-coupled paramagnetic particles (Promega), OLIGOTEX latex particles (QIAGEN, Chatsworth CA), or an OLIGOTEX mRNA purification kit (QIAGEN). Alternatively, RNA was isolated directly from tissue lysates using other RNA isolation kits, e.g., the POLY(A)PURE mRNA
purification kit (Ambion, Austin TX).
In some cases, Stratagene was provided with RNA and constructed the corresponding cDNA
libraries. Otherwise, cDNA was synthesized and cDNA libraries were constructed with the UNIZAP
vector system (Stratagene) or SUPERSCRIPT plasmid system (Life Technologies), using the recommended procedures or similar methods known in the art. (See, e.g., Ausubel, 1997, supra, units 5.1-6.6.) Reverse transcription was initiated using oligo d(T) or random primers. Synthetic oligonucleotide adapters were ligated to double stranded cDNA, and the cDNA
was digested with the appropriate restriction enzyme or enzymes. For most libraries, the cDNA was size-selected (300-1000 bp) using SEPHACRYL S 1000, SEPHAROSE CL2B, or SEPHAROSE CL4B column chromatography (Amersham Pharmacia Biotech) or preparative agarose gel electrophoresis. cDNAs were ligated into compatible restriction enzyme sites of the polylinker of a suitable plasmid, e.g., PBLUESCRIPT plasmid (Stratagene), PSPORT1 plasmid (Life Technologies), pcDNA2.1 plasmid (Invitrogen, Carlsbad CA), or pINCY plasmid (Incyte Pharmaceuticals, Palo Alto CA). Recombinant plasmids were transformed into competent E. coli cells including XL1-Blue, XL1-BlueMRF, or SOLR
from Stratagene or DHSa, DH10B, or ElectroMAX DH10B from Life Technologies.
II. Isolation of cDNA Clones Plasmids were recovered from host cells by in vivo excision using the UNIZAP
vector system (Stratagene) or by cell lysis. Plasmids were purified using at least one of the following: a Magic or WIZARD Minipreps DNA purification system (Promega); an AGTC Miniprep purification kit (Edge Biosystems, Gaithersburg MD); and QIAWELL 8 Plasmid, QIAWELL 8 Plus Plasmid, Ultra Plasmid purification systems or the R.E.A.L. PREP 96 plasmid purification kit from QIAGEN.
Following precipitation, plasmids were resuspended in 0.1 ml of distilled water and stored, with or without lyophilization, at 4°C.
Alternatively, plasmid DNA was amplified from host cell lysates using direct link PCR in a high-throughput format (Rao, V.B. (1994) Anal. Biochem. 216:1-14). Host cell lysis and thermal cycling steps were carried out in a single reaction mixture. Samples were processed and stored in 384-WO 00/68380 . PCT/US00/12811 well plates, and the concentration of amplified plasmid DNA was quantified fluorometrically using PICOGREEN dye (Molecular Probes, Eugene OR) and a FLUOROSKAN II fluorescence scanner (Labsystems Oy, Helsinki, Finland).
III. Sequencing and Analysis cDNA sequencing reactions were processed using standard methods or high-throughput instrumentation such as the ABI CATALYST 800 (Perkin-Elmer) thermal cycler or the PTC-200 thermal cycler (MJ Research) in conjunction with the HYDRA microdispenser (Robbins Scientific) or the MICROLAB 2200 (Hamilton) liquid transfer system. eDNA sequencing reactions were prepared using reagents provided by Amersham Pharmacia Biotech or supplied in ABI
sequencing kits such as the ABI PRISM BIGDYE Terminator cycle sequencing ready reaction kit (Perkin-Elmer).
Electrophoretic separation of cDNA sequencing reactions and detection of labeled polynucleotides were carried out using the MEGABACE 1000 DNA sequencing system (Molecular Dynamics); the ABI
PRISM 373 or377 sequencing system (Perkin-Elmer) in conjunction with standard ABI protocols and base calling software; or other sequence analysis systems known in the art.
Reading frames within the cDNA sequences were identified using standard methods (reviewed in Ausubel, 1997, supra, unit 7.7).
Some of the cDNA sequences were selected for extension using the techniques disclosed in Example VI.
The polynucleotide sequences derived from cDNA sequencing were assembled and analyzed using a combination of software programs which utilize algorithms well known to those skilled in the art. Table 5 summarizes the tools, programs, and algorithms used and provides applicable descriptions, references, and threshold parameters. The first column of Table 5 shows the tools, programs, and algorithms used, the second column provides brief descriptions thereof, the third column presents appropriate references, all of which are incorporated by reference herein in their entirety, and the fourth column presents, where applicable, the scores, probability values, and other parameters used to evaluate the strength of a match between two sequences (the higher the score, the greater the homology between two sequences). Sequences were analyzed using MACDNASIS PRO software (Hitachi Software Engineering, South San Francisco CA) and LASERGENE software (DNASTAR).
Polynucleotide and polypeptide sequence alignments were generated using the default parameters specified by the clustal algorithm as incorporated into the MEGALIGN multisequence alignment program (DNASTAR), which also calculates the percent identity between aligned sequences.
The polynucleotide sequences were validated by removing vector, linker, and polyA sequences and by masking ambiguous bases, using algorithms and programs based on BLAST, dynamic programing, and dinucleotide nearest neighbor analysis. The sequences were then queried against a selection of public databases such as the GenBank primate, rodent, mammalian, vertebrate, and eukaryote databases, and BLOCKS, PRINTS, DOMO, PRODOM, and PFAM to acquire annotation using programs based on BLAST, FASTA, and BLIMPS. The sequences were assembled into full length polynucleotide sequences using programs based on Phred, Phrap, and Consed, and were screened for open reading frames using programs based on GeneMark, BLAST, and FASTA.
The full length polynucleotide sequences were translated to derive the corresponding full length amino acid sequences, and these full length sequences were subsequently analyzed by querying against databases such as the GenBank databases (described above), SwissProt, BLOCKS, PRINTS, DOMO, PRODOM, Prosite, and Hidden Markov Model (HMM)-based protein family databases such as PFAM. HMM
is a probabilistic approach which analyzes consensus primary structures of gene families. (See, e.g., Eddy, S.R. (1996) Curr. Opin. Struct. Biol. 6:361-365.) The programs described above for the assembly and analysis of full length polynucleotide and amino acid sequences were also used to identify polynucleotide sequence fragments from SEQ ID
N0:26-50. Fragments from about 20 to about 4000 nucleotides which are useful in hybridization and amplification technologies were described in The Invention section above.
IV. Northern Analysis Northern analysis is a laboratory technique used to detect the presence of a transcript of a gene and involves the hybridization of a labeled nucleotide sequence to a membrane on which RNAs from a particular cell type or tissue have been bound. (See, e.g., Sambrook, su ra, ch. 7; Ausubel, 1995, su ra, ch. 4 and 16.) Analogous computer techniques applying BLAST were used to search for identical or related molecules in nucleotide databases such as GenBank or LIFESEQ (Incyte Pharmaceuticals). This analysis is much faster than multiple membrane-based hybridizations. In addition, the sensitivity of the computer search can be modified to determine whether any particular match is categorized as exact or similar. The basis of the search is the product score, which is defined as:
sequence identity x % maximum BLAST score The product score takes into account both the degree of similarity between two sequences and the length of the sequence match. For example, with a product score of 40, the match will be exact within a 1 % to 2% error, and, with a product score of 70, the match will be exact. Similar molecules are usually identified by selecting those which show product scores between 15 and 40, although lower scores may identify related molecules.
The results of northern analyses are reported as a percentage distribution of libraries in which the transcript encoding EXMAD occurred. Analysis involved the categorization of cDNA libraries by organ/tissue and disease. The organ/tissue categories included cardiovascular, dermatologic, developmental, endocrine, gastrointestinal, hematopoietic/immune, musculoskeletal, nervous, reproductive, and urologic. The disease/condition categories included cancer, inflammation, trauma, cell proliferation, neurological, and pooled. For each category, the number of libraries expressing the sequence of interest was counted and divided by the total number of libraries across all categories.
Percentage values of tissue-specific and disease- or condition-specific expression are reported in Table 3.
V. Chromosomal Mapping of EXMAD Encoding Polynucleotides The cDNA sequences which were used to assemble SEQ ID N0:40-50 were compared with sequences from the Incyte LIFESEQ database and public domain databases using BLAST and other implementations of the Smith-Waterman algorithm. Sequences from these databases that matched SEQ ID N0:40-50 were assembled into clusters of contiguous and overlapping sequences using assembly algorithms such as Phrap (Table 5). Radiation hybrid and genetic mapping data available from public resources such as the Stanford Human Genome Center (SHGC), Whitehead Institute for Genome Research (WIGR), and Genethon were used to determine if any of the clustered sequences had been previously mapped. Inclusion of a mapped sequence in a cluster resulted in the assignment of all sequences of that cluster, including its particular SEQ ID NO:, to that map location.
The genetic map locations of SEQ ID N0:42 and SEQ ID N0:48 are described in The Invention as ranges, or intervals, of human chromosomes. The map position of an interval, in centiMorgans, is measured relative to the terminus of the chromosome's p-arm.
(The centiMorgan (cM) is a unit of measurement based on recombination frequencies between chromosomal markers.
On average, 1 cM is roughly equivalent to 1 megabase (Mb) of DNA in humans, although this can vary widely due to hot and cold spots of recombination.) The cM distances are based on genetic markers mapped by Genethon which provide boundaries for radiation hybrid markers whose sequences were included in each of the clusters.
VI. Extension of EXMAD Encoding Polynucleotides The full length nucleic acid sequences of SEQ ID N0:26-50 were produced by extension of an appropriate fragment of the full length molecule using oligonucleotide primers designed from this fragment. One primer was synthesized to initiate 5' extension of the known fragment, and the other primer, to initiate 3' extension of the known fragment. The initial primers were designed using OLIGO
4.06 software (National Biosciences), or another appropriate program, to be about 22 to 30 nucleotides in length, to have a GC content of about 50% or more, and to anneal to the target sequence at temperatures of about 68°C to about 72°C. Any stretch of nucleotides which would result in hairpin structures and primer-primer dimerizations was avoided.
Selected human cDNA libraries were used to extend the sequence. If more than one extension was necessary or desired, additional or nested sets of primers were designed.
High fidelity amplification was obtained by PCR using methods well known in the art. PCR

WO 00/68380 . PCT/US00/12811 was performed in 96-well plates using the PTC-200 thermal cycler (MJ Research, Inc.). The reaction mix contained DNA template, 200 nmol of each primer, reaction buffer containing Mg2+, (NH4)~S04, and (3-mercaptoethanol, Taq DNA polymerise (Amersham Pharmacia Biotech), ELONGASE enzyme (Life Technologies), and Pfu DNA polymerise (Stratagene), with the following parameters for primer pair PCI A and PCI B: Step l: 94°C, 3 min; Step 2: 94°C, 15 sec;
Step 3: 60°C, 1 min; Step 4: 68°C, 2 min; Step 5: Steps 2, 3, and 4 repeated 20 times; Step 6: 68°C, 5 min; Step 7: storage at 4°C. In the alternative, the parameters for primer pair T7 and SK+ were as follows: Step 1: 94°C, 3 min; Step 2:
94°C, 15 sec; Step 3: 57°C, 1 min; Step 4: 68°C, 2 min;
Step 5: Steps 2, 3, and 4 repeated 20 times;
Step 6: 68 °C, 5 min; Step 7: storage at 4°C.
The concentration of DNA in each well was determined by dispensing 100 ql PICOGREEN
quantitation reagent (0.25% (v/v) PICOGREEN; Molecular Probes, Eugene OR) dissolved in 1X TE
and 0.5 pl of undiluted PCR product into each well of an opaque fluorimeter plate (Corning Costar, Acton MA), allowing the DNA to bind to the reagent. The plate was scanned in a Fluoroskan II
(Labsystems Oy, Helsinki, Finland) to measure the fluorescence of the sample and to quantify the concentration of DNA. A 5 ~cl to 10 ~cl aliquot of the reaction mixture was analyzed by electrophoresis on a 1 % agarose mini-gel to determine which reactions were successful in extending the sequence.
The extended nucleotides were desalted and concentrated, transferred to 384-well plates, digested with CviJI cholera virus endonuclease (Molecular Biology Research, Madison WI), and sonicated or sheared prior to religation into pUC 18 vector (Amersham Pharmacia Biotech). For shotgun sequencing, the digested nucleotides were separated on low concentration (0.6 to 0.8%) agarose gels, fragments were excised, and agar digested with Agar ACE (Promega).
Extended clones were religated using T4 ligase (New England Biolabs, Beverly MA) into pUC 18 vector (Amersham Pharmacia Biotech), treated with Pfu DNA polymerise (Stratagene) to fill-in restriction site overhangs, and transfected into competent E. coli cells. Transformed cells were selected on antibiotic-containing media, individual colonies were picked and cultured overnight at 37 °C
in 384-well plates in LB/2x carb liquid media.
The cells were lysed, and DNA was amplified by PCR using Taq DNA polymerise (Amersham Pharmacia Biotech) and Pfu DNA polymerise (Stratagene) with the following parameters:
Step l: 94°C, 3 min; Step 2: 94°C, 15 sec; Step 3: 60°C, 1 min; Step 4: 72°C, 2 min; Step ~: steps 2, 3, and 4 repeated 29 times; Step 6: 72°C, 5 min; Step 7: storage at 4°C. DNA was quantified by PICOGREEN reagent (Molecular Probes) as described above. Samples with low DNA
recoveries were reamplified using the same conditions as described above. Samples were diluted with 20%
dimethysulfoxide (1:2, v/v), and sequenced using DYENAMIC energy transfer sequencing primers and the DYENAMIC DIRECT kit (Amersham Pharmacia Biotech) or the ABI PRISM BIGDYE

Terminator cycle sequencing ready reaction kit (Perkin-Elmer).
In like manner, the nucleotide sequences of SEQ ID N0:26-50 are used to obtain 5' regulatory sequences using the procedure above, oligonucleotides designed for such extension, and an appropriate genomic library.
VII. Labeling and Use of Individual Hybridization Probes Hybridization probes derived from SEQ ID N0:26-50 are employed to screen cDNAs, genomic DNAs, or mRNAs. Although the labeling of oligonucleotides, consisting of about 20 base pairs, is specifically described, essentially the same procedure is used with larger nucleotide fragments.
Oligonucleotides are designed using state-of-the-art software such as OLIGO
4.06 software (National Biosciences) and labeled by combining 50 pmol of each oligomer. 250 ~Ci of [y-32P] adenosine triphosphate (Amersham Pharmacia Biotech), and T4 polynucleotide kinase (DuPont NEN, Boston MA). The labeled oligonucleotides are substantially purified using a SEPHADEX
G-25 superfine size exclusion dextran bead column (Amersham Pharmacia Biotech). An aliquot containing 10' counts per minute of the labeled probe is used in a typical membrane-based hybridization analysis of human genomic DNA digested with one of the following endonucleases: Ase I, Bgl II, Eco RI, Pst I, Xba I, or Pvu II (DuPont NEN).
The DNA from each digest is fractionated on a 0.7% agarose gel and transferred to nylon membranes (Nytran Plus, Schleicher & Schuell, Durham NH). Hybridization is carried out for 16 hours at 40°C. To remove nonspecific signals, blots are sequentially washed at room temperature under conditions of up to, for example, 0.1 x saline sodium citrate and 0.5~7o sodium dodecyl sulfate.
Hybridization patterns are visualized using autoradiography or an alternative imaging means and compared.
VIII. Microarrays A chemical coupling procedure and an ink jet device can be used to synthesize array elements on the surface of a substrate. (See, e.g., Baldeschweiler, supra.) An array analogous to a dot or slot blot may also be used to arrange and link elements to the surface of a substrate using thermal, UV, chemical, or mechanical bonding procedures. A typical array may be produced by hand or using available methods and machines and contain any appropriate number of elements.
After hybridization, nonhybridized probes are removed and a scanner used to determine the levels and patterns of fluorescence. The degree of complementarity and the relative abundance of each probe which hybridizes to an element on the microarray may be assessed through analysis of the scanned images.
Full-length cDNAs, Expressed Sequence Tags (ESTs), or fragments thereof may comprise the elements of the microarray. Fragments suitable for hybridization can be selected using software well known in the art such as LASERGENE software (DNASTAR). Full-length cDNAs, ESTs, or fragments thereof corresponding to one of the nucleotide sequences of the present invention, or selected at random from a cDNA library relevant to the present invention, are arranged on an appropriate substrate, e.g., a glass slide. The cDNA is fixed to the slide using, e.g., UV
cross-linking followed by thermal and chemical treatments and subsequent drying. (See, e.g., Schena, M.
et al. (1995) Science 270:467-470; Shalom D. et al. (1996) Genome Res. 6:639-645.) Fluorescent probes are prepared and used for hybridization to the elements on the substrate. The substrate is analyzed by procedures described above.
IX. Complementary Polynucleotides Sequences complementary to the EXMAD-encoding sequences, or any parts thereof, are used to detect, decrease, or inhibit expression of naturally occurring EXMAD.
Although use of oligonucleotides comprising from about 15 to 30 base pairs is described, essentially the same procedure is used with smaller or with larger sequence fragments. Appropriate oligonucleotides are designed using OLIGO 4.06 software (National Biosciences) and the coding sequence of EXMAD. To inhibit transcription, a complementary oligonucleotide is designed fiom the most unique 5' sequence and used to prevent promoter binding to the coding sequence. To inhibit translation, a complementary oligonucleotide is designed to prevent ribosomal binding to the EXMAD-encoding transcript.
X. Expression of EXMAD
Expression and purification of EXMAD is achieved using bacterial or virus-based expression systems. For expression of EXMAD in bacteria, cDNA is subcloned into an appropriate vector containing an antibiotic resistance gene and an inducible promoter that directs high levels of cDNA
transcription. Examples of such promoters include, but are not limited to, the trp-lac (tac) hybrid promoter and the TS or T7 bacteriophage promoter in conjunction with the lac operator regulatory element. Recombinant vectors are transformed into suitable bacterial hosts, e.g., BL21(DE3).
Antibiotic resistant bacteria express EXMAD upon induction with isopropyl beta-D-thiogalactopyranoside (IPTG). Expression of EXMAD in eukaryotic cells is achieved by infecting insect or mammalian cell lines with recombinant Auto~raphica californica nuclear polyhedrosis virus (AcMNPV), commonly known as baculovirus. The nonessential polyhedrin gene of baculovirus is replaced with cDNA encoding EXMAD by either homologous recombination or bacterial-mediated transposition involving transfer plasmid intermediates. Viral infectivity is maintained and the strong polyhedrin promoter drives high levels of cDNA transcription. Recombinant baculovirus is used to infect Spodoptera fru~iperda (Sf9) insect cells in most cases, or human hepatocytes, in some cases.
Infection of the latter requires additional genetic modifications to baculovirus. (See Engelhard, E.K. et al. (1994) Proc. Natl. Acad. Sci. USA 91:3224-3227; Sandig, V. et al. (1996) Hum. Gene Ther.
7:1937-1945.) In most expression systems, EXMAD is synthesized as a fusion protein with, e.g., glutathione S-transferase (GST) or a peptide epitope tag, such as FLAG or 6-His, permitting rapid, single-step, affinity-based purification of recombinant fusion protein from crude cell lysates. GST, a 26-kilodalton enzyme from Schistosoma iaponicum, enables the purification of fusion proteins on immobilized glutathione under conditions that maintain protein activity and antigenicity (Amersham Pharmacia Biotech). Following purification, the GST moiety can be proteolytically cleaved from EXMAD at specifically engineered sites. FLAG, an 8-amino acid peptide, enables immunoaffinity purification using commercially available monoclonal and polyclonal anti-FLAG antibodies (Eastman Kodak). 6-His, a stretch of six consecutive histidine residues, enables purification on metal-chelate resins (QIAGEN). Methods for protein expression and purification are discussed in Ausubel (1995, supra, ch. 10 and I 6). Purified EXMAD obtained by these methods can be used directly in the following activity assay.
XI. Demonstration of EXMAD Activity An assay for EXMAD activity measures the disruption of cytoskeletal filament networks upon overexpression of EXMAD in cultured cell lines. (Rezniczek, G. A. et al.
(1998) J. Cell Biol. 141:209-225.) cDNA encoding EXMAD is subcloned into a mammalian expression vector that drives high levels of cDNA expression. This construct is transfected into cultured cells, such as rat kangaroo PtK2 or rat bladder carcinoma 8046 cells. Actin filaments and intermediate filaments such as keratin and vimentin are visualized by immunofluorescence microscopy using antibodies and techniques well known in the art. The configuration and abundance of cyoskeletal filaments can be assessed and quantified using confocal imaging techniques. In particular, the bundling and collapse of cytoskeletal filament networks are indicative of EXMAD activity.
Alternatively, an assay for EXMAD activity measures the amount of cell aggregation induced by overexpression of EXMAD. In this assay, cultured cells such as NIH3T3 are transfected with cDNA encoding EXMAD contained within a suitable mammalian expression vector under control of a strong promoter. Cotransfection with cDNA encoding a fluorescent marker protein, such as Green Fluorescent Protein (Clontech), is useful for identifying stable transfectants. The amount of cell agglutination, or clumping, associated with transfected cells is compared with that associated with untransfected cells. The amount of cell agglutination is a direct measure of EXMAD activity.
Alternatively, cell adhesion activity in EXMAD is measured in a 96-well plate assay in which wells are first coated with EXMAD by adding solutions of EXMAD of varying concentrations to the wells. Excess EXMAD is washed off with saline, and the wells incubated with a solution of 1 ~/o bovine serum albumin to block non-specific cell binding. Aliquots of a cell suspension of a suitable cell type are then added to the wells and incubated for a period of time at 37 °C. Non-adhered cells are washed off with saline and the cells stained with a suitable cell stain such as Coomassie blue. The intensity of staining is measured using a variable wavelength 96-well plate reader and compared to a standard curve to determine the number of cells adhering to the EXMAD coated plates. The degree of cell staining is proportional to the cell adhesion activity of EXMAD in the sample.
Alternatively, EXMAD activity is also measured by the interaction of EXMAD
with other molecules. EXMAD, or biologically active fragments thereof, are labeled with'ZSI Bolton-Hunter reagent. (See, e.g., Bolton et al. (1973) Biochem. J. 133:529.) Candidate molecules previously arrayed in the wells of a multi-well plate are incubated with the labeled EXMAD, washed, and any wells with labeled EXMAD complex are assayed. Data obtained using different concentrations of EXMAD are used to calculate values for the number, affinity, and association of EXMAD
with the candidate molecules.
XII. Functional Assays EXMAD function is assessed by expressing the sequences encoding EXMAD at physiologically elevated levels in mammalian cell culture systems. cDNA is subcloned into a mammalian expression vector containing a strong promoter that drives high levels of cDNA expression.
Vectors of choice include pCMV SPORT plasmid (Life Technologies) and pCR3.l plasmid (Invitrogen), both of which contain the cytomegalovirus promoter. 5-10 ~g of recombinant vector are transiently transfected into a human cell line, for example, an endothelial or hematopoietic cell line, using either liposome formulations or electroporation. 1-2 ~g of an additional plasmid containing sequences encoding a marker protein are co-transfected. Expression of a marker protein provides a means to distinguish transfected cells from nontransfected cells and is a reliable predictor of cDNA
expression from the recombinant vector. Marker proteins of choice include, e.g., Green Fluorescent Protein (GFP; Clontech), CD64, or a CD64-GFP fusion protein. Flow cytometry (FCM), an automated, laser optics-based technique, is used to identify transfected cells expressing GFP or CD64-GFP and to evaluate the apoptotic state of the cells and other cellular properties. FCM detects and quantifies the uptake of fluorescent molecules that diagnose events preceding or coincident with cell death. These events include changes in nuclear DNA content as measured by staining of DNA with propidium iodide; changes in cell size and granularity as measured by forward light scatter and 90 degree side light scatter; down-regulation of DNA synthesis as measured by decrease in bromodeoxyuridine uptake; alterations in expression of cell surface and intracellular proteins as measured by reactivity with specific antibodies; and alterations in plasma membrane composition as measured by the binding of fluorescein-conjugated Annexin V protein to the cell surface. Methods in flow cytometry are discussed in Ormerod, M.G. (1994) Flow Cytometry, Oxford, New York NY.
The influence of EXMAD on gene expression can be assessed using highly purified WO 00/68380 . PCT/LJS00/12811 populations of cells transfected with sequences encoding EXMAD and either CD64 or CD64-GFP.
CD64 and CD64-GFP are expressed on the surface of transfected cells and bind to conserved regions of human immunoglobulin G (IgG). Transfected cells are efficiently separated from nontransfected cells using magnetic beads coated with either human IgG or antibody against CD64 (DYNAL, Lake Success NY). mRNA can be purified from the cells using methods well known by those of skill in the art.
Expression of mRNA encoding EXMAD and other genes of interest can be analyzed by northern analysis or microarray techniques.
XIII. Production of EXMAD Specific Antibodies EXMAD substantially purified using polyacrylamide gel electrophoresis (PAGE;
see, e.g., Harrington, M.G. (1990) Methods Enzymol. 182:488-495), or other purification techniques, is used to immunize rabbits and to produce antibodies using standard protocols.
Alternatively, the EXMAD amino acid sequence is analyzed using LASERGENE
software (DNASTAR) to determine regions of high immunogenicity, and a corresponding oligopeptide is synthesized and used to raise antibodies by means known to those of skill in the art. Methods for selection of appropriate epitopes, such as those near the C-terminus or in hydrophilic regions are well described in the art. (See, e.g., Ausubel, 1995, supra, ch. 11.) Typically, oligopeptides of about 15 residues in length are synthesized using an ABI 431A
peptide synthesizer (Perkin-Elmer) using fmoc-chemistry and coupled to KLH
(Sigma-Aldrich, St.
Louis MO) by reaction with N-maleimidobenzoyl-N-hydroxysuccinimide ester (MBS) to increase immunogenicity. (See, e.g., Ausubel, 1995, supra.) Rabbits are immunized with the oligopeptide-KLH
complex in complete Freund's adjuvant. Resulting antisera are tested for antipeptide and anti-EXMAD
activity by, for example, binding the peptide or EXMAD to a substrate, blocking with 1 % BSA, reacting with rabbit antisera, washing, and reacting with radio-iodinated goat anti-rabbit IgG.
XIV. Purification of Naturally Occurring EXMAD Using Specific Antibodies Naturally occurring or recombinant EXMAD is substantially purified by immunoaffinity chromatography using antibodies specific for EXMAD. An immunoaffinity column is constructed by covalently coupling anti-EXMAD antibody to an activated chromatographic resin, such as CNBr-activated SEPHAROSE (Amersham Pharmacia Biotech). After the coupling, the resin is blocked and washed according to the manufacturer's instructions.
Media containing EXMAD are passed over the immunoaffinity column, and the column is washed under conditions that allow the preferential absorbance of EXMAD (e.g., high ionic strength buffers in the presence of detergent). The column is eluted under conditions that disrupt antibody/EXMAD binding (e.g., a buffer of pH 2 to pH 3, or a high concentration of a chaotrope, such as urea or thiocyanate ion), and EXMAD is collected.

XV. Identification of Molecules Which Interact with EXMAD
EXMAD, or biologically active fragments thereof, are labeled with 1'SI Bolton-Hunter reagent.
(See, e.g., Bolton A.E. and W.M. Hunter (1973) Biochem. J. 133:529-539.) Candidate molecules previously arrayed in the wells of a mufti-well plate are incubated with the labeled EXMAD, washed, and any wells with labeled EXMAD complex are assayed. Data obtained using different concentrations of EXMAD are used to calculate values for the number, affinity, and association of EXMAD with the candidate molecules.
Alternatively, molecules interacting with EXMAD are analyzed using the yeast two-hybrid system as described in Fields, S. and O. Song (1989, Nature 340:245-246), or using commercially available kits based on the two-hybrid system, such as the MATCHMAKER system (Clontech).
Various modifications and variations of the described methods and systems of the invention will be apparent to those skilled in the art without departing from the scope and spirit of the invention.
Although the invention has been described in connection with certain embodiments, it should be understood that the invention as claimed should not be unduly limited to such specific embodiments.
Indeed, various modifications of the described modes for carrying out the invention which are obvious to those skilled in molecular biology or related fields are intended to be within the scope of the following claims.

U

~, ~ ~ ~ x ~ ,..

O N rl ~-i M ~-1 C~ C~ O
~-I

rl l0 x O rl O r-I O ~I O
O M rl ~

H x o H x H x ~ w H x ,-~o ~ ~ H

o ~ ~n m o 0 0 0, In .~ o x z o w 0, M o o Nwz Mw ~ ~,z ~z~ N ~rz~z ~ N
Nz O 01 I~ N ~ 4Y., L~ lD R: Lf1a C~ z ~ M l0 W r-I
[~ h E"~

v-I O V~ O U M FC -I d~ ~. O U7 ~ Ca rl w-I W ~ Ul O H
M Ul O CO
: 'W I
' f~
' ' 01 N Ln , N M a a , ~ ~-, N ~ H Cn, p ~ co .
a ~ Cr., ~r d ~ ~ o ~o ~ ~o ~ m x o, ~o ~n ~, oa H l0 N In 01 N v ~'.,-1 "-' CO
'-' " " M c-W N "
Cia Lf7 M
v W N O ~ N !~ (~ rl l0 N
ri N ',7 rl l0 . -- .~-I ~ .-I 01 . ~p Cl.,d~
00 l0 O \O ~ . ri I~ ~
~-I

(~ N ~ v-1 Ci-n .x ri ~ Cz.n ~ O rl [~ O -~ ~ N -~ x .-.
O x ~p . N O ~ M ~ C~ x V~ M l0 111 ~ ~ 01 F(,' rl N ~ M to O
Q', d~

(Y., O E-~ ~ 01 ~ M rl O Lt1 N ~ O
~ d~ l0 O O N N l0 c-I
O [7 d~

01 N z ,~ ~-I M 01 O E-~ O O O
M FC, 111 O~ E-~ O [-1 (.'G E-~ l0 d~

~o~,a oo~n Hcn oo o~ow ~~ o~oo ~ ~oo~
~ ~ z~z~ o Mz oa ~

N~~w ~~. rx H~ ~~w ~ ~l CO z N U1 M O 01 a' ao O ~f1 N U' ~--I P.' M U1 . . O d' p.,' Oa W
'-i 01 .-I H ,'W z N z rl f~ ~ rl Ca N -I -'7-~ ~J U7 M O x rl d~

M ~ ~ Ow a O ~ H ~ a ~ ~ ~
ri W 61 ~ ~ Cl7 ~ W a '-J-~
Pa pa ~ N H
~ ~ a O

'-O y' r-i a ~ P', ~ ~ (~ N 01 W ~ ~ ~ ~ v rl v C:. M v v v ',~, N l0 pW Pa ~ O~ '-'O O
61 M O~ -I N N M E-~
c-I rl ([j rl (1,' v O ~ .-I rl ri O ',7'Z.,[-i v O cW O rl l0 O l0 O l0 [-a x N [~ [-a O W [-~ ~O O O
O E-~ O x C~, [~ C~.~ [~ C~ z c-i O ~ [ -I f~ [~ CI z l0 d~ FC . O O r-I ~J Ul 10 O N O l0 r-I M O
FC tl1 O
.W

x rx 0o ~r rx W z ~ ~ ~ ~ ~ o W
z o z ~ a ~ ~ o ~
U ~ C
H

W 01 M u-I rl M U -I v-i E1 01 4 R:
CJ Uj Lf'7 L~ CO O 61 P; 01 Ca d, !~ V7 EW l0 O r-I V7 IP H FC
~O L~ M M ~ O O~ ~I p,' G-i01 a tx f~ ~ x a~ ~ x ~ ~ U7 z ' W ~- ~
~ ~

N d t N O U ~1 z N f o -- ....
fA E-~ N t ~ y~ M pW oo N a M ~ O ~ a U o U
~ ~ ~n o . ~
o U

61 N ~-I .H N " M ~-' Ul ~-i '-' C~ N w-I
'-' '-' rl M N v N '~ ~O
c-I v M OJ Ci.i ~ ~' l0 w-Il0 u-1 f~ [-i ,' C~

10 ~ ~. rl c-1 u--Iw-I . O CY,x M 00 ~ . rl ~ Ln 01 L~ r-I

. ~, ~ 0 ~ x . CS-~,~ ~ x -, - o, ~
~ ~,, 00 -- -- x x -, d~ -- M
o, 0, x ~ W M rl ~ l.fl.--. Q'. tl1 N ~ L~ to -I l~ rl .-I N O M N IP N 01 t11 rl O O .-I

rl u-~IO E-~ rl r-I C~ O N O .-IlD O
~ O N O In ~D O~ rl O O O M
Lfl O O rl M

O O E-~ O O M O d~ O E-~ V~ O O O
N E-~ OJ O L1' E-n N E-~ w-IH O
O O u-I C~ E-~

E-~ ~ z E-~ E-~ rl O W ~ z d' ~o E-~ t FC err' O M O ~ O FC
~ di ~C U O ~ ~
O

C7Caulf~E-~o~UC7 ONz~ O~oE~ o~lmMCuo~z O~ O~ oi ' H FC z tf7 M U7 Lf7 O f~ z N N
-i l0 z U7 'z O~ E-~ r Pa E1 W N M O E1 ~

F( 'Z., ,~ rl , M 'z, c-I (Y,ff U1 , v N C!I .-i (1', N z M ZS ~~
M Ul U7 Q', <--I ,.'~~
N P-'m-I M O
M

H a W a U ~ ~ rx ~ H W ~ ~a ~
o, s~ W

. N ~ ~- ~ . W _ ~ rn . . ~ p, .
. . .

N x ~ ,.. ~ x -- x ._ ~ ~ ~ ---- ,~ ~ ~ ~ ~. v v v v v v v 01 N rl M " w-I (a N
Ci-i c-i '-' O d~ O
Ci-n C~

O .-W --I ,'S',O l0 O r-i .-I '-i O l0 u-1l0 O O O M l0 rl l0 d~
N u-I rl ,~ ~o x ,~ ~o ~o ~ x H w ,~ x w ~ x z ~ N ~ H N x w H ~
o o W x z H

x rx o0 ~ H o rx w M o 0 x ~. ~-1 o N 0 z o~ u~ o 0 ~ ~ ~1 ~
~ ~ o ~
o ~zo ~zN ~~o Mz~z ~~Mz ~z .~z~z~ ~~ ~~ ~-,M

N O 00 In O [~ 01 O M f>a 01 ~D O
H .-I p'..,(x LC1 C~ U7 O1 (Y., 111rl O
O O U' M l0 01 N 00 ~ Lf'7 N O~ ri rl fy. lD O O
l0 O ~ Ul ~ O OJ Q,' O c-IQ,' ~ FC FC N Y O~ -1 d~ l0 ' ' -I ' ~ l O

LC7 111 M ~ (1..O~ 01 O , c N , l0 U x C L ( ~ M r O 01 O7 U .-I O CO O a , 0 C~ l0 L
l0 w-I N E-~ O ~O IP N U N ~
C1a Ul ~ a a L4 O C~
Lf1 Pa N L(1 r-i v O ~- M " M v-I " to N N
v M '~ U1 M rl '--'N v ri N Cl]
U7 v '-' M

N M O u-i M ~ O~ N N Ol O O rl O O rl O rl O O

N z a z z ~ ~ z z H C7 U Ca ~n E-~ ~n O W

~

'~ H W ~ U -l P: fx fx C~
~-w z a ~ m w m w x O rl tn C~ rl N N 01 rl N 01 00 01 II1 M O O~ In l~ lf1 ~'.,l0 OJ 00 M 01 N d' O l0 O
q O N 00 Lf1 d~ M Lf1 O O O O
H

r-I~ Lf1 f~ N 01 N M rl ~' lO

U o~ N M u1 In ~ ~ ~ o o~

M ri '-i rl .-I c--Ir-I rl N N

Zi O

wi z O ~O I~ O~ 01 O ~ N M d~ Lf1 Ca N N N N N M M M M M M
H

r1 ~a ~w z~

a~
i '~
o -~' z a o ~ '--I N M d' tf7 l0 C~ N 01 rl W

O

W

~o .r~ -- ~s ~ .-. ~ . ~ ~ ~
,-~

~i 01 O N C~ -~ I~ LW -i C~ rl c~ rl O ~O [~ N In 10 rl ~--1 r-i O v-W O L(1 -i M Ci-n E--~ O lO ~ M O rx N x H
CLn E'~ N x lD Lf7 ~-i ~ CLn O O E-~ 41 O OJ
r-1lO O V' ~ (~ ~-I O Ll'1 "z, w f~ za V' l0 N M
ri 00 z ~-I ~O z ~ ~ H
O

NO M U7E-~M Ca0l~ O O ttlHN fxUlOf7 C4' rl N 01 U7 H d~ N O O L~ O O L~
~ O O~ W ~ U1 ~-I ~ H
l0 Y C~ z M p~
01 Q' -i Q1 (Y l0 a H V~ W

M , , , ., ., f~ 00 W , v Q', M ,Sn O~ C4 W Lf1 v 00 01 Pa ~ E'~
CL tn Ul r-Irl v-i OJ W OO Ul a1 '-' Ul v d~ ~ ~-1 N v v Lf1 r-ICs-n d~ ~-1 U ~ N v 01 pa N

M l0 u-1 CW O d' w-I 01 l0 U7 l0 -I c-1 .

.-. C~ ~ ~r ~ E-~ ,~ .... ~, ..., o x x ~ x ~

r-I~-I i-I ~ ~ -I O R', c-I . tf1 ~
N l~ OW I~ l0 ~-i M M
O

~ O N ~ L~ N r-I x ,~C,~ ~ O -~ N ~
O rl O f~ O O O u-I
l0 N

ri [~ N Ol N O l0 (~ N N E-~ Ol 00 O
(~ O E'~ ~ [~ M E1 H O
Cr-i [-i O O ~ O ~ M E'~ O Q,' O OJ O l0 ~.,N O N "~ ,~ d~ ',~
~ l0 "

~ z ~ ~ ~ ~ o ~ a N M ~ H ~ ~ o H c7 z ~ H as ,~ N H z c7 w mo w z ~o ~ o ' h ~ c~

~ ~ z N ~ q ~ ~ n N w "' H '~ , ~ v M -~
a o ~ --~ o ~ H x w ~ ca o, z , z ~C
HN w . m .~ ,~z a go ~ U w a x oa a ~

~, ~ o ~ o w -- ~ x -- o -- m v ~ -- -- -- --v v x ~ Pa W M H v -~ N M U l0 M v-I E- ~ c-i V

O l0 ri v O O r-I rl d~ .--I ~ O r-I
O l0 .-1O l0 O O N
U7 l0 w x v H w z ~ o ~ o w H H x H .~
~ x N w x ~ rl N rl ',~ p,' E-~ri ~-I H N O r-I E-~
N tD w ~ ~".,M O z N
O d' x 01 x N FC CWC7N L~,' fx -~/r O
l0 rl d' ~ E'~ O M t1~
rl '-~-i z Ol H Lf1 00 01 N U w M M L~ M z C~ ~ ~ tf'1lO
~O Cia O (Y., IP a U ~ ~ N
w w O~ l0 C~ I~ x N tY,-I c-1 N N 0.', Ol M M FC lW ~ C~ ~ N ,'>n 01 O~ N
' 01 OJ O~ l0 r-1 a t17 [~ rl [~ O
61 N O a , O '~ O z N a r-I
l0 l0 M ~ ~ a OJ l0 N G~ In ~ 61 ~~., O~ .~-L~ O 61 w tf~
(~ I~ E-~
l0 CO M M N '-' v-1 E~ ~'.,OJ x O v N M
M N N d~ N -' rl '-' v d~
'~ V~

d~ O O M Q', (C$ M '-' 61 r-I
N

~-I r-I r-i l0 l0 .
~-1 l0 . ~ x ~ ~ ,~ ~ . H ~
.; x w ~ w ~

M rl -~ C~ ',X,' x Gx.,.~ x ~ N N
Pa N ri -~ O 61 H ~ M c-I
W l~ M

r-IO Ul rl d' N ri ~-1N .-I L~ rl L~ c-I
~-IU7 N O 00 r--I~-I O ~ O ~O
O O

oH ~ o~~.H ~,o~ o~ ~~ o~-,z~N o~zo~ o N o w M ~ H ~ ~ H ~ o H ~ o ~
x o x ~ o ~r ~ U ~ N

W C~ L~ E'~ l0 -I '-I O M z O M -~j-nU7 E-~C.2~ d~ ~ U~ z OJ C~ ,~ N CTa Ff,' N ~ .~.,~, OW O N z 01 l0 O
C~ .~., O F(,'U7 O~ H r-i N E-~
lC~ z fy.a O O c-I M [~ d~ f~ l~ d~ H W M U
~ O a a d~ p'.,d~ N a M
o w ~ ~ o ~ H

a as z ~ . M o, a v ~ ~ ~ ~ ~o o, ~a c~ -z v U x z U x N
a o ~
~

U ~, ~- ~n ~ ~ a ~ ....~ z ~ --- a -- ~, -- ~ -- z ~.. v ,-a ~, --~ ' Ct-i '-' (a (a M '~ r1 " ri CTa 01 '-' M O v CTa Lh (Y, W rl O l0 O r-I l0 o-I O r-I O v-I
-I M ri O O ri N c--I
lf7 lIl .~ x o ,~ ~ ~ ~ ~ x ~ H x ~ H x ~
x N w x H H H H x N x ~ ~

x~ ~rM~~,r~.,o~~W rxxo~M No xo~z~ c~ z~o~ x r.l LfWW -W O N l0 .-Id~ M z N C~ E'i V~
--I-W ~ N E'~ N z E-~ l0 M
-I rl f~

(~ v-I ~ 01 O O~ 01 q 01 '-~, O
M O to tf1 N rl [~ N E-~ r1 O
O M C/) .-I
O O

L~ tI1 M Ca L~ N rl to Q', O~ Ga OJ
L~ CO ~O M U2 M V1 rl I~ ~
00 p'.., W M lfl l N ~
l l M w-I O H 0 rl N ., M Ol H d rl l0 M 0 E-~ O t~ rl a ~ H h 61 CO 0 N O E-~ M l0 rl a7 o~ ,.'~.,O L~ l0 O W o~ ~ ,-'~.
Pa C~ ,"J Pa N O ,Y, tf7 N d' M N U1 O ~- M O~ d~ rl O v rl N 'w' O~
M Ul r-i '-' N '-' V M N v U) V~ U7 M

M rl rl M ~ l0 c-i N L~
' ,?~ O O O O O

E-~z E-~ z a a'' P, rx a H a ~, ~ ~ x w x o w a OJ N d' C~ ~ N rl N d~

N c-i01 O~ OJ O d~ N l0 01 Gi, M 01 M c-I ~ CO N r-I (~
q O l~ l0 ~ l0 u--IM r--I tIl H

r-I c-ICO l0 00 ~ N M d' l0 U u-Id~ L(1 LI7 ~ (~ N O M

M M ~ d' ~ ~ N N

O

~O

'ri z l~

O l0 f~ 00 01 O r-I N M d~~
q N M M M M V~ ~ ~ V~
H

r~ i a o~

~w z~

a~

'~
o w z ~.7 H N M V~ W l0 f~ CO 01 H ~-1.-I ri rl .-Irl ~-1 .-I w-I

R

~a r' w o ~

w w _ . _.

., N ~ ., .-I

Lf1 ~ d~ O OJ l0 O rl ~-I
M O

l0 ~ c-I E-~ O l0 O O l0 O
d~ r-i . rl ri [~ c-1 O

[r, M rl [-~ ~ w H x H rx E-i N O x H H x E-~

O rl O fx O l0 ',~M 'U W l0 In O L~ O ~l f~

N l0 l0 [-~ tn ~ 1D E-~ CT-W,O CT
~~., 01 N ~ N
~ ~ [~ I~
~

f~ , ~ M Ul ~ (~ 01 - M
N L ~ d f-n ~ M
~ P ~ ~ o a ~, ~o H ~ O a r~
W ~ as N . lD (-~ N a d~ a H Lf1 W R: n-Y, Ln W C~ 01 M f~

N ~ M U! l0 W M Pa .~. I~ N
U7 C~ v 01 O~ U7 v rl w-I

N '-I O (Y, M rl v '-' N w' '-' v M N '-' Lf1 ,' O M pa r-I N ~-I
N

.H~ ~-- ~x . ~ ..~ ~~~ ~x ., -- - w ~o -- x -- w ~ ~ x o -- w ~ ~
x N
~

r-1 m-I ~ f~ Lf'7M N LC'7ri M d~
O N l0 ri M O N
Ln O ~ ~ pC, N O1 O ~ O 00 O 61 l0 l0 N ~i O O N O
O

E-~ H N O M t11H lO N E-~
a N E-~ E-~ l0 d' tn l~ w C-a E-~

O f~ O v-I E'~ 10 '~7 01 M O O1 O l0 N O ,-,'7 O H
O l0 F(,' Lf7 ('] H l0 O N O E-~ 01 ~f1 '~., In l0 '-~, H M M ~ Ca 'X,' lO

~ C~ 00 '-~' 00 '~, CO 01 .--I
~- I~ N CIA p.,' V~ ~f1 N M U1 rl W

M FI,' 01 N a ~ ~ N C.1~
U rl LY.. M d~ M Cl) W ,~ N oo r~ O ~ ~ ~ x O
W Z3 E-~ N

N n x E-~ a ~ zi U ~ O '~ E-~
p ~ G ~ ~ .~ -- z u7 ~

,.. z . ~, ,-. ~ ~ .-. ~ ~
N ~ -- .-, ~ ~, -- .-.
~ V ~, v --fl x ~ '-' fa .-i (a O~
M N Lf'1 d~ N M N
~1 y l0 v rl O l0 .--I [~ l0 O
d' rl M r-I rl O l0 O O
rl L(1 W ~o o ,~ ~ rx ~ w ~ w ~ w ~n N x N W ~ ~ o x ~n x ~o H f.~ M O M . o~ N
o ~ O owo O W O w o~
O z x M ~

y .~ x o ~ z ~ M z ~ ,~ ~ ~
~, ~ ,~ z w o c~ ~ ~
~

w N N d~ rl W 61 OJ U1 OJ O rl 01 N M CJ I7 d~ U w-I l0 ~Il -I ~ ~ Q', CL N W
OW N OJ 01 O ~ L~ W
l0 O~ tl~
Q,' C~

N '~ y l0 ~ M G~ ,'~"
W 01 N O N M fx a C~
l0 O1 N 'k, O~ H

N ~u70oC7oU~Ma o MP~~a~n ~n--~~rE-~~~

N (a 01 z M v CO r-1 '-' 01 N '~
'-' N M v rl N " N V~
~' d~ " rl N N
Ca rl t57 ~o . ~ ,~ o . ~o x . ,~

~w .,~ .w~~x .~,~~.-.x_ .~,~ .-.~~x x~

O~ ~ fy. ~ ~ L~ M -~ G~ l0 N L~ d~ r-I IP 61 N ri M r1 ~ c-I 01 N
d' O t17 ~-i M rl N O ~O Lfl O O
M L~ O O M O O N O OJ
O (~ O O

~1 [-~ O O~ O rl O E-n d~ O E-~
d~ [~ [-~ O E-~ h M E-~
rl d' O [~ En M
[-~

~ ~ E-~ ~n E-~ E-~O t~ E-wn ~ ~
O ~ ~ O M O M H O M
O
' E-~ O O O m ~ ~ o~ O E-~
~ E-~ ~ [~ ~ m uo ~r '.-~., II7 (Y1Z ~ ~1 z ,~
l0 V~ p'-, [~ M M Ca L~
N O p'., Q'., U7 ~ ~ ~ M

V7 U ~ ~i ,'W E1 U2 r-I ~ ~C N
N 1' U7 ~ N z M a rx fx H W rn rx x f~ a O
W ~ W ~
H

U as a - w . x w . ~ H w .
~ a x ~ . , m ~ H
. a ~n _ a ~ ~- W ~ U ~ pa -- ~ ~,' --~ ~-I~ ~- ~
v v v ~-rl .--I v c---I N w-I
.-I ~' M v N Ca M

!~ l0 O O rl u-i d~ ri ri l0 lO O
O O l0 v-I l0 rl O rl O

W N ,~ H .~ ~ w ~ w ,~ ~ ~n ~ z x x ~ r-,H x w x H
w w ~ o w o x o rx ~ o M x .~ N
o ~ ~ H o z ~ ~ ~r ~ o ~c rl l0 Z, d~ Lf1N '~-r N M FC
z -~-n lfl G~ ~ E~ rl M E-~
L~ Lfl W l0 LC1 Ln M H OJ CY, d~ 61 U7 Lf> ~ c--I
FL', 00 O~ ,~, O O Ei N d~
w-I l0 61 W

O a ~ ~ d~ O d~ O O ~ tf1 61 C4 ~ ~ M H ~ UW -1 L~ M H
O

M W M N U ~ M O (1', O~ w-I
~ d~ ',~; ri Q', to x r-I
M d~ N P-i f~ N Pa M U7 d~ M W (~ Ll1 Lf1 U7 In O U1 L~ Pa M Lfl E1 CJ G~ M W
In r-I N " 01 v l0 W -I Ol rl '~
'-' N M " CJ " N M M v v v M ~
M

c-I N OJ M rl N

7y O O O r-I M O

N ~ ~ ~ H

cd O O ~ ~ O H

W ~ U

-ri a FC U~ u~

~ ~ z x a N O~ LW W -I M

~', V~ N tI~01 N l0 ~ M N l0 O f LCl p H rl N O Lf1 Lf1 C
rl U ~o ~O o~ om uo N N N N M V~

~O

-ri z O LO l0 C~ O~ 01 O
p U d~ d' d' d' d~ L( H

U
Oi W

z~

'~
o w z [a O rl N M d~ Lf'1 H N N N N N N

~
W

p U
,-a '~
O

~ ~

~zo~aH ~~ ~~a z z a w a rx a W o w a o w a w z ~

w ~n oa w w w z uz oa z rn w w x x w in s~ in Pa II~

~ U td 1.~ ~ N U ~ O U

U7 -rl I U7 ~I !~ U1 N
O

~-I -rl ~ ~ I~ U U c0 -ri ~ ~D
1-~
~ to ~ rl -~I ~ d~ -.~ U~
U -~I o M

O ~-I -~I ~-I o ~ N N M
u7 rt N
o x -~I +~ ~ cn ~ ~ m 1~-, X m o~
w .u oo .F, ~ ,~ ~ M Ul ~ rl Ul ~ V~
~-I
O O~

-ri ~ -ri ~.,' d~ fa Vl ~ ~,' M
~ ~-I O~
M

Ul Ul W a ~1 bl ~ [S7 .~., a bl UI ~2, ~

N

U

N

~ ..

N N -~I N N

-r-t ~ O -rl -rl ..

N .L) O N I~ ~ -ri -U 4-I O M
Ill 1-1 C>a '~CS N L~ rl ~ -ri M w-I
tf~ CJ7 l0 (]a N M rl N N Q M N J--1 M L(l N

Q, ,-~ a~ ,-I U U U p., N o x C7 ,~ ~1 ~ ,-I

fa M ,S,'' U I I N -~-, I I
I ''[~ I N

r-I FC, -r-i I ~ 00 r-I CJ ~H 01 M f~ M r-I
U

Z31 ((j I r-I 00 M h N la I ,L', ~ ls) l0 (I$ I

-.-I ~"., 1 01 ~-I r-I .(-'., U N d~
rl N r-I M ~'-, r-i r-I

b1 '-S~'fs-i U U U U b7 ~.,' r-I H U
r-I R'. b7 ~,"

C~ N -rl -rl N

U7 W U U1 V7 ~.G

I
~

to m n o~
N ~
~
-I

~

- o d of r -+' z z ~z ~~

o z Q
-' U O~ ~ N w--I d~ N
S
-, ,7y O 01 tf1 If1 O d~ c-I
O

~'~.~z z zz zzz N C~ N CO l0 M ~-I 41 d' O~
d' l0 O

M Lf1 In 01 di ~ d~ OJ IP r-1 O~
01 M l0 OJ 01 N
' Q L! l~ d~ N M r-i N N d' l0 Lf1 1 N Lf7 N d~ M l0 d~

_ ,-I v~ N u1 c~ u~ H M H ~n H u~ u~ N
-I ,-I H ~ H ~n ~n u~
'~ H H H v7 r-I M

(a M ~ H N r-I H In Ol M ~ O l0 ~ d' M O
O

-~I o M ~ ~ ai ,-mo ~o ~o ~ ~ mo m ~ .--I .--I
'~ H ~o ~

JJ ~ N O~ l0 d~ d~ N M OW -I N M l0 r--I
N ~' M l0 d~

-I v~ N H M v1 u~ o H U1 v~ H U~ ~
H v H ~n u~ W
v~

rn ~ .-mo H
Q u~
'~

1J OJ O Lf7 O O~ H ~ ~ M C~ In O
d' C/~ In l0 01 10 lO 01 In 00 d~ Lf7 IW -I f~
01 O O d~ d~ In r-I

p.i N w-1 d' d~ N v-'I f~ rl rl M L(l ~ N M N d~ ~' M Lf7 Ol d~

Q ~ E-~ H ~ ~ H ~ ~ H ~ H ~ ~ ~
~ ~ ~ t~ H

M N In 01 <--I Il1 M ~ M l0 ~ N OJ
Ill 01 d~ rl ~ L~

IP lD L~ 00 Ln rl C~ M lf1 O O O 01 00 l0 N O M N M N M M

c-I ~-I I-f'7 M tf~ 00 rl lfl M LC7 N N rl N Lfl N M N l0 M V~
d~ tIl H cn ~n ~n U1 u~ ~n >n ~n >n H v7 H H v1 H ~n ~n u~ H
u~ H

N

(-'..,01 V~ N Lfl ~
,~

-rl O 11'7 ~ M
U
-~

M Ln G~ l~

~

-~
H

N

~ rl N M ~r O

~ I
o W
z I

U

'~
O

+~

'~ x ~ W x N N

E-~ f- E-~ E-~ E-~
H u E-~ v1 E-~

v1 Z ~ Z U H U1 H Z Z U U
U ~
~ ~

a aowo~ ao w~
~ ~~ ~
a a a pa w co u. ~n m ~ w w a~ w w w m ~ x x cn u~
x o n m ~

v o ~ w ~
a v ~ _s~

o ~ v ~ mo ~ ~ ~ ~I ~ u~
tr ~ -~

a~ ~~ ~ a~~~~

'~ ~ O O ~ ~ b~ ~ ~-I t3~
1 ~ U o O r-i ~-I U N ca O u1 ~ c6 O
W N r-I ~O O ~O
C~

x (~ 1-1 CL --I r-i ~ lfl U rl ~, rl UI ~-I ~.1 t~
.-I

U O ~I ~I N ~ ~ O o U .H N
c~ U o~
N

o ~I E-~ U ?-I O H x N (a o a ~ N ~-i ~a ~o r~ s~ x ~ ~ ~ U >c a b1 m U a ~
~ ~ ~

~, ..

a~ s~ o U N

U c~

N +~

to w O

L3' ~ C2, '~

N O -rl '-O N

''(3 ca ~ ~ G N
~

-rl ~ U O ca -.-i .-I
~

47 .. N J-1 O N -rl ~ ?-I -U 111 -rl N ~ f~ l0 N

~-1 ~', C~ 'LS U7 O .~ C~ ~' L~
N 01 ~-I -~. d' N O
01 ~I

.h ~ -r-I N w-I I N ~O N O N -r-I
~ w-I O .~ I~ .-I N
M

1~ t~ ~ py ~ U .~ f~ ~I a ~ ~ a~
N U ~ N ~ ~ H a ~. I N .~ I '~ I r-i ri ~-, ~'., I a N E1 W

O ~ o ~o r-I a ~ c~ io -~ ~ ~n o d' ~ .-I r~ I ~ o, M t~
I

U b~ W o ~ m--I o ~ ~ m ~ I 't~
t~ N o~ o ~r o N

-rl M ~ .--I ri l0 N ~ rl ~-I
I r-I M ~ I~ N N
-U ~--I

M ~ ~1 ~ w ~ rx ~ a ~ ~ ~r H ~n U a ~a H c~ ~ x W U ~

u7 U ~ ~ ~ U

N

a' ~

u7 U Z

~

S M
-, 0 0, o~

z z l0 tn O~ l0 ~ ~ 61 M O

U 00 .-i d~ O M l0 '-i L
tn 'cH

E-~ 01 E-~ d' H U7 N
U1 d' ~ U7 r-I 01 U~ N Ea ~

t~ ~O C~ V7 01 CJs rl 01 ~ h 00 M

-r-I C~ d~ Ll1 01 tf7 N Lf1 '~ O Lf1 ~ ~

1-1 N M M M to to d~ c-1 tf1 v-I ~ ' U7 H
N M l U
U
U
U

~ 1 L d N
1 H r l N E-~ E-~ ~ U7 _ O 01 N Ul N r-i iJ d' L~
~ f~ ~
'W O~ ~
~

LIW M N O~ r-1 d M
-i M d v-I
tn N M l0 N M d~ dW --I M
M N Lf1 l0 M

O U1 U1 H U7 ri 01 U~ H .-I
U7 ~ Ul H H

01 r-I M rl Ol L~ M O~
d~
M lO

O v-I 01 O M v-I 01 O Ol N
llWf~ O N
O

N M N c-i lO d~ N ~I ~O N
l'~W V~ ~
-I
M

H H

N

O In lD

rl N N O1 O
U
.~

U1 ~ ~ l~ M

N

fl.' H

N

~ ~

o ' z U
,-~

'~
O

z~

~ ~ ~ ~

~ w ~ w ~ w ~ ~ w a a a a a r~ w w m oa w r~ w ~n m a~ w ~n x x oa u~ x x ~

y..l N 1 -r ~ .~ (n 1 U7 a~

c~ N .--I O ~ U 1, r-I
>, N

~

--rl U7 r C~ ~ ~I ~-I U
-I ~-1 C~

O '~" (6 rl ~ U 01 I (2i U7 N
C3~ f0 N -r,77 L N U7 G ffl -rl N ~ l!
~-I O 7 O O ~ U X M -~I ~ b~ ~ +~ ~ o t~

O ~ u1 ~ o, c -~1 b~ ~ N m -~I c~ o~
U1 0 ~o x d~ O td Lt1 ?a ?i -r-I 1-1 U N U7 N
~., ,~ Lt1 OJ

R; S-I r-I 1J .!-1 ,~ (a ~-I ~ Cla ~ N
.--I O L~ M

0., G7 N SC (a ~. L~. O N N z rI
d~ ."~ M
M

a~~~ a~~u~ a~ua~

.. ..

a~ m o ~ ~n U 1~ J-1 -rI 1~ .~-1 ~6 U rtf rt N

Ql N to ~ N

4--I O ~, O

~ . . ~ .. p U O ?a N 'LS ~ O ~I
.

'-O 'TS ~ 'LS O '~ N
S~

-ri ,~ -rl c~ -rl :~
-rl W ..I U W o +~ S-a t~ o~ yo ~ U ai t~ t~ Lt~
M N ~ ct3 ~o ~-i ~, .-i d~ C~ ~ ~ d~ M ~ .r-I M M OJ M
01 cH ~ ~ ~I C~ O~ ~-I lfl N ~-I ri p N O N !_,' d~ N ~-I ~ N N M M
~-I N ~-I N ,~ N ~ l0 ~I J--1~ N I E-~ ~ O ri ~ 61 -rl 5.2~ I c-i L~ a H ~ '~ U r-I FC W z E CLn ~ FC

N N I I N rl N c[j Cs.i Ln N U7 I I I
O r I I I N I I N 1 ' ' ' ~

-. r-I Ul ~ rl C~ ri P-n -~. !~ I N O OJ ~ ~., t51 C .ri I M ~. 01 . N ~-I C p M d rl N ~., (O I -r-i (LS I f~ I O r-I (a U7 -ri -ri lD
-r-I O In ,~ (~ f~ Ul tf1 01 d~ ~ M Ul M

-ri -~'. ~I U ~', r-I ~.,' w-I -S-'. I LJ fO 01 (a rl c-I ',~-y-I ''C~ OJ v-i N N M S.,' v-I rl ~". l0 N

rn ~ ~ ~ ~ ~ r~ ~ tn z a, >s ,-I ~ ~ z z v z ~ +~ c7 rt ~ ~ rx ~ ca ~
U

a~ o -~I o -,~ ~ ~I -~1 z a~ o I

U1 a 'L~ v1 ,7 Ul H E-1 U1 a 'L3 E-~
U

I
tn ~ N 01 M N l~ CW -I
f0 N

_~ M CO rl N rl .-I w-I
r-I
1.J

~t M rl In rl l0 rl lf1 l0 -r-I N M

z ~ ~ z z ~ z z z z z z ~-r U t' o ~o m o W N
~

O c-I V~ uo 0 o~ o o~ o~
5, 0~ ,--I
O

r-i (v] Lf7 t~ rl l0 w-I M LC'7 -ri rl N
~' ~~ z zzzzz zzzz ~~,I~~r-,~

p N 01 E1 Lf~ f~ d~ Lf~
h _ O d~ M C~ E1 E-i U7 E-i E-i r-I O~ rl dW O rl L~
~

(~ rl U1 L~ U1 U1 E1 CO rl N M O d~
~
~

-ri r-I t~ [~ L~ 01 I~ l0 l0 L1 Ei Lf7 N O lf~ N ~ ~O d~ In lD
~
~

lD E-i l0 M O ~f' E'-~ U2 U7 E-~ U7 1 l0 E1 E~ Lll f1 d~ d~
p l M
~ E1 1 r t N

U] M V1 O N rl N N dW -I

N N Lf1 M ~ N 61 M l0 M L(l l0 p M Ul U7 L~ U2 c-1 C~ d~ Ei U7 U7 Ul ~., Vl U7 [~ [~

Cl~ l0 ri N O~ Lf7 O l0 M Lfl .-I i d' IP N 01 01 N 01 r-i V' 61 LW -I
O N

II1 N r-I ~ cH N OW-1 N N t11 .-i 11l lO I-fl ~ C~ ~ ~ ~ ~ C~ ~ ~ ~ C~ ~ C~ C~

(n i N

O
i l0 -1 -r- M r1 N c U M M f -~

~

P,' '~
H

p O .-I N
o ' -I --I
a z w , , ~
~

a~

x U fY1 ~ a 7 j~ C I

Ei E~ x Ei W Ei Ci-~ fs, f.~
Cs, ~

FC O H tx FC H H
FC E-~ E-~

a a w a a a x o w o o m oa w m oa a~
m z z z w I
a~ N
~

w O ~ -'~ ,-I O Ll U O -rl -~I ~I ~ a, >
x ~ rl cn ..
a ~

r-I N !~
tJi O U N S-I -r-I
CT -~ r, f N

.-~ x ~ U ~ m +~
~ o ~r o '_ ~ 0 ~ -N

~ ~ ~ ~ 0 o ~

x q ~ o ,-i N ~I
rJ .~I x M ~

O P'... J, ~-I '-' O S~ l0 N

O W 111 U1 .!-1 1.~
~-I M
fO l0 tn ~ b) U U1 ~C
CZ U1 a tJl bl N

U -ri 11 >~ ~ t~

N ~ N

O C2, b' 'zJ N

N C~

U~

~2, O

N 'r ~1 U 01 L~ -rl ~

~-I 1-1 M -rl G~ U7 M
tf7 I Lf1 P-,' Lf7 d' N N rl U U a o~
.~ Ll f~ I I '~ Q H
O ~., I I
~', M Cue.
OJ ((~ C'-..
lD I l0 (, C5l .ri (' -ri OJ U1 -rl rl N

i n v a N
~ ~

a~ a~ a~ o a U a a N

I
Cn (O N L~ W -I

-I C

-~ ~ N ~ L
r 1 N rl ~'~~ zz ~zzz o o z z o~ ~r ~r co ,~ z N

rl N M LC1 lf) N

V~

r-I v-I V~ ~O rl O~ N O~
-r-I rl rl '~ N

o~ zzz zzzzz z z O 01 l0 OJ d~ N d~ O

O 01 M OJ M OJ M h N
M N In tf1 Q O N N M M tI7 Ill d~ d~ l0 N ~ M lf) In ,~ E-~ v~ um umn In E-~ ~ ~r v~ ,--m H ~ E-~

um ~n v~

(a U1 O L~ 111 l0 l0 w-I N rl ~ w-I LfW -I c-I M

rl l0 ~ M ~ O OW -I [~ L(~ [-V
H N N O d~ O 01 ~

1J l0 .-I N M M lf1 d~ N .-1 ' 111 l0 lO N L(1 d' O~ U7 U7 U7 E-~ C~ E-~ N CI) U1 V7 UW-I U2 E'~ U7 ~

J.J L~ lf7 01 M ~ O E'i t~ (~ O
Q N l~ 01 OJ OJ
'~

Lf1 ~ N O d~ V~ LI~ ~ L~
N O O u-1 N O

V~ rl N M M d~ Lh w-I M CO f~ r-i l0 O N ~ lO d~

Q U7 H U7 Ul U7 C~ M E1 M ~ E~
V) U1 rl U7 H Ei H

u~ vm n u~

L~ '-i LW-i ~-I M l0 Lfl O In f~ 61 L~ M ~

d' N O O V' O d~ O r-I tf1 O l0 01 N 01 V~ l0 L~ N

v--I v-I N M M ~ lO N ~ r-I
Lfl t11 ~ rl M V~ d~ u-I

H ~ Cn ~ N ~ (~ H ~ ~ ~ ~ N
~

i I
~ I

o V~ o o~

-rl o u-~ ~-I
U
-y y G
O

H

' M d~ Lf1 l0 -i 1 H

W r r ~I
Cn W

x x r-, '~

m -~' ~ w ~ ~ o o w w c ~ a u~ ? a ~n ~

'~ E-~ f~ W Lx H C~ H N
N f~ ~ CI
~

~, Ul H ~ U W Ci-n H V1 U~
H W H

W ~ 0.~ ~ W z CO Oa ~

(n (n N

ri N N

O
N - U ~, f~ C1 r-I ~ U7 .-i ~ ca ca ~ o .

O ~ o ~ ,~ ~ d~

~-I N w-1 ~ S-'-, O N O O

.U U7 Ln -4-1 -.-I
Ul ~-, N F~
N

O ~ o ~ O O U O
M ~

..

U 7-~

S~

p, O

b' WJ La O

N ~ O U1 ~I

U) .~J 'L~ N ~ O

N -ri ['., rI f: M

U ,~ +-~ r0 ~ -~I
x d~
M O a~

\ C~ ~I O U O Ul r-W W ~,' i lO

O a~ .-~ ,-~ ~ x r-, ,~ a~ a~ ~
,-.I

1.~ r-i W u1 ~ t~ O I
I .~ ri S-i U
r.~ d~

r-I d' U U' ~ '~ N
~ ~ t17 I
I

tn ~ rti ~ ~ ~ f~ o s~ ~-I ~ ~ ~ -~
o 00 ~I ca ~ ,-i ~ d~ -r-I
N o~ ~ ~ ~ ri rl .~-W
r U7 ~ C7 C7 U
FC b~ 5 ~
b~ ~

~ ~ - ~
- ~
~

~ m H a ~n z U
U

N

~ l0 M O
lO
N

~ l0 N 01 01 rl 01 1.J

-~

-~-, Q1 z rl N z U1 -~-r ~, z z z ~ ~~ o ~

O~ M l0 w-i l0 M
O O~

r-i l0 N tf7 M l0 -ri r-I
'~

c~~ zzz zz zz tf7 l0 M ~D 01 M
to tI1 L~ M ~
' O O~ N N d~ tf O M
7 d' rl N tf7 d UW -1 U7 U7 I w t' M
r--I Ul O E-i U1 O E-~
~ Ul En U7 rl (~ 01 M IP h U2 N 01 rl ri 01 OJ O r-1 U1 rl rl ~ 117 d~ l0 00 l0 O 01 ~

1~ N .-i N d~ l11 L~ rl M
,~ N r-1 N M -I d~
Q l U7 U7 E-~ N d~
01 H Ul LJ) E-~
U1 N E-~
E-i r r U1 U1 U7 0o E-~

1J -I O M ~ d' U7 N N
~ CO O1 N
y I~ [~ C~ M N l0 O O
N M O~ CO O ~
~
~

(.1~ f--1 rl rl M G~ tn CO
~ In M r-I r-I Q1 d N d O U7 rl U7 U1 N E-a U1 U7 U7 U2 U7 ~I
U1 Ei ~

(~ O L

Lf1 OJ 'C~ M M O 07 00 l~ l0 N lO rl N d~

r-1 01 ~-I N C~ OJ d' O7 d~ tIl rl rl M M ~
N

N

N
- N O -i ,y ( ' .

-ri t~ d H t U
~

IIl M r-I LC7 N

0..' I

'~
H

O t~ CO 01 O
UI -I r1 r-1 N
Z

O ' x x rl ~ ro o O C N ~; O
7 C7 0. ~
Ca C ~ I ~
~ I cn ~

W H (l) U1 Cl~ U1 U7 W W W H
W H

w~oa aaaw~o a~~~o ~n x ~ as as m oa ~n x ~a c~ x x ~
~

M

' J-1 -F. ~ C: ~ O
C.

0 ~ ~ R: In N ~ U7 N
N x b~

~ ' d' >~ U1 ?-I ~ (' (~ 1-) U7 -ri 6~
~ ' N -~. 'rl C~-n -F. ~ (~ (a ~ C77 N
~1 01 N C~

r-i Ul N m 00 rl 1-1 v O~
O~ tJ1 N

b~ ~ +~ ~ x u~ ~I rl ~ ~ ~ o, t~ .,~ -,~

~', ~ O ~-I I: ~ N r-I ~7 (~ ~-I O
61 1~ ~

-ri ~-I ~-I -r-I ~, d' N N ~, O d' O l0 .(-'.
f~

U1 1-W., ~", r-I ~ b7 U ?-~ '-' ~., bl bl t~ U7 N W-i U to v O b~ -~-I

U b~ W ~-I ca N ?~ ~ cIi ~ U1 r-I -r-I rl bl G', .~'. O

b' bl N -rl H N w-I

N N O O l~ 1~ S~ U

U7 ''LS '-O O O ~-I ~ r-I .JJ O
--I

-rl -rl ~ ~ c6 -rl r6 O :~
r-I

N J--1 1~ O ~ U l~ ~ ri ~-I N (I$ O~ N
M N OJ

~I ~1, S~ ~I O U a~ ~ ~ w-I W o M vo o~
,s2 ~ ~ m N v C~ U ?-1 N '~ N ~ .~ r-I Lf1 d' O Lf1 CO M M cr .-Q Lf1 w u-, w ~ >, o ,-~ m ~ ~ w ~ ~ w ~ ~
,-~ rl ,-- ~ r.~ x cd N rl ~ r-I U7 H O N ~ I N ~ I H I
O ~ b7 U1 I I f~ I
J J
~ ' 4 I C
l ~ ' ~
I U -C ri C~ I 1 ., (~ I 1 ' I O --I J
r , I O I r1 lf7 M r-1 ~ ~
HIS I ~ ~ fO d M ~'., N U Ul (a O Ul ~ N ~
d~ f~ LI1 f'., M

-ri y-I S~ ~-i tJ N U O S~-, C', d' >~-, ~ ~O ~ Lt') 01 tI) ~f) M M d~
-.-i W

U7 ~1 ~ b7 ~ O S-I N J-1 (a t37 G~ ~ E-~
LZr C7 Ci i ,~ H H H
W

~ ~I ~ -~I ~I ra ~I o ~ v U7 ~ .1-~ U1 E-~ F-l U1 W U ~ ~I
H

I
tn ~
~
O

O
U o ~
U
~

~'~ o M
~r O

p' O
~

r-I N l0 L~

_ d~ O O 01 rl ~ U1 ~ E1 l r-i r (/~ M
L~1 -ri N M

1J f~ ri ~-I V~ N
~
~

rl O rl 01 Ul U7 w-I c-I N
~
~

11 [-~ O U7 [~ Ln f"

O ~ ~

C4 OW --I M l0 V
~ d 0 ,-mn ym n M H

~ E1 H E

W L~ ~' M l~

01 d~ O 01 d~ lJ O O~

l0 LI7 rl N ri rl d' d~

U~ [-~ [-~ CI7 ~ U1 U7 U7 I
i N

N
-N N w l o t~ i t~

-r N ~-I tn U
_y R.' '~
H

.-I N M
OI N N N

,Z
O
W

S-I
Cn W

WO 00/68380 . PCT/US00/12811 x x r' ~ rt o ~

O

q W C~9 w U~ V1 W H U7 U1 H

a ~ ~ o a a o m as x ~ r~ w ~

O M UI N
U

I ~ N rl rl V' U1 01 ~

O S~ '~ S~ -F.
Ul .~ ~a ., x L1 Z71 (~ 1-1 M

U N U1 U1 ~
L

N ~', O ,'~, ~,' N

r-i ~ Sa .R a b~

N ~i U H cd G N

N U7 ri N U

b' u~ +~

N t0 f~

U1 ~ N N

S~

N 1~ ~., N ~ rW-I
In a--mn U oo N M

N N O I d~ 1-1 fa ' rl t , ~-I Lt~ O
y U V2 1-> W
N ~1 cd ~ Cir I 1~ ~ ~', S;".,U I I
r--I J--> ~ -ri I ~'., 01 L~
(a .S~., M

C~ fd (O M -ri N L11 N N CO

-ri .~'., ~'., c-i ~ 1-1 M rl 1J
~ ~-I w-I

b7 b7 C7 U C4 O
U rl C5' W
fx i w ~
-m ~ v ~

n 4~

N

OU oo N
~

'r M O~
O
i r-I ri N
r .~, OO rl ri v0 O O O ~ ~-i ~O
N

L~ N U1 N ~
E-~ ,~
U1 E-~

ri N
~ Zn to ~

-ri l0 L11 O Lh '~ 01 l0 ~ ~D 111 M

1J M r-i dW --I [~ [

H

~1 V] O M a-I
O L~
'~ O

10 ~ N l0 O

Lf1 M 00 N N di M
rl M

o ~ Ei ~ H E~
u~
~.

' O N O l0 d ~ r-1 M tP 00 N

M

~ OJ N d' 01 N
w-) M

U7 Cl~ U1 U1 E-~
U1 E-~

W

N
~

~ to M

_ d' d' -ri N

L~

L~.

H

O d~ tn Qt N N

r ~.
W

~1 r~

a~

H
C~

H H W H H H H ~' H

a a s~ a >~ a ~ a a w w N O l0 ~ L~ IP d' N

d~ Lf7 d~ N O d~ L!1 N

N N rl M r-I w-I w-I c--I

O O O O O O O O

~ ~ ~ ~
v v 0 l0 ~ tn Lf'1 (~ Lf1 C~ M M M
~ M

-rli: >=i 01 ~.,' O ~ l0 ~ L~ d~
r-if~ O~ ~.,'M ~', S: ~i ~'-. d~

U O O ~-I O w-I rl ~-~I .-I N ~-i l~ rl -I O N O O O O r-I

.,--I. .,-I . . . .
-,~ -,-~ -,1 -~ -,1 O O J--1O 1~ 1-J -U 1J O

E-~~ ~ ~ ~ ~ ~ ~ .-. ~ ~
(~ HIS ~ ~ ~ -- '-' .--, ~ .-, ~- '-' (a " (a (l5 ~ ~ V

O N ~ O~ O O N N ~D ~' lD
1-i ~-i ~-I ~-i ~I ~-I S-1 M ~I

U o M o~ o o m ~o co o m m N N ~ N ~ ~ >~ ~r ~ ~
~ >~ N ~ ~ N N W ~ rl W d~ V~ tll tn d' d~ N M N
O 4-1 O 4-i O O O rl O O
O 4-I O W 4-1 4-1 O 4-I (IS

O o o o o O o o o o o S~-,,r-I r-I J--1r-i 11 t~ J-~ o 1~ 1~
1-J J-1 ,-I 1J i-i ri r-i JJ r-i -r-i O v -- -- ~- -- v ~- v -~ ~-O O ra O 2S c>J c~ v t6 ca to to O r~ O O O ~ O b~

tn ~ ~I S~ ~-I ~I ~ ?a c~ S~ ~I
+-tS~ f.~ C~ f.~ G~ Cz C~ s~ ~ ~

ai N N N N ~ N N ~ N N
U to ca to ~ rt t~ to N t~ c~
c>3 O

N U U U U U U U ~ U U
t~ .~ ~ rl r~ .-I rl .-I U r-I r-i r-I r-I ~-I ri r-I rl .--I rl r-I ?-I

(n ~ ~ ~ ~ ~ ~ ~ l~ ~ ~
~-Ir-I rl 4-1 r-I 4.a W 4a ~ 4-I 4-I
4.1 W ri 4-1 rl r-I r-i 4-I ri -ric>3 t~ rt3 t~ td t~ t~ ~-I to t(S
W ~ N !~ N ~ ~ ~ c~ ~ ~
~ ~ N ~ N N N :~ N N

~1 U U U U U U U Ea U U
-- U U H U H H H U H H
H H U H U U U H U z C~

o d mo ~

V~ .-. Ll1 N l0 lD
M ~ ~

~ N M O W N M
d~ -I M rl ~

~ .. N ~ ~ ~ .~ . N
~ d~ O . . 01 ~
r-1 ~ ~ M

O~ O~ O Lf~ ri M M r-i O l0 OJ c-I ~'., rl r-I O O O d~
v-I rl r-I01 OW '-' l0 N ~ M L~ O
-I I~ ~ v '-' v OW
O r1 -I

~,'ri r1 rl N M N M to O N
to O O O
v O O r-I . . . . . ,~ O
J--1 ~ v ,--1 ,.~ v p ~

ri ~ -~ t~ O O -~ O O fa r-i O O O ~ ~ r-I O (tj tt~ .~ O
~-' O -r1 v v (n d~ ~ i; v ~- Lf1 v '--' -C-',t~
Ei '~ v LI~ l0 ~-I v Li S~-. N ~-' v ~ (C$ ~-I ~1 ~-I

U7 lD M -rl o c($ o -r-I -.i -ri -a ri 01 U 1W cr,$ ri c~ o~ ?a ca 4-1N ~ 1-1 N O N N N 1W ~
N N r1 N rl ~ .JJ .U -W N
QS N ri N r-I t(S r-I -i ~-I~ ~ Ul ,~ ,7 ~ ~ ,7 U1 rl O 1J ' ~ ~ U7 Ul ~
~ 1-1 ~-I .1.J ~ ~ r-I

~, O o N -~I -~ o -~I w N N
-~ -.~ o o U -~1 N N o -~I
~ -~ N N U ~ U U ~

SC "' ~- .IJ J--W-J.~ V 1-1 1~ 1~ , f~ ~ 1~ v -rl U) 1J J--1 J.~ -- '~
~ 1-1 ..~ U7 N U7 U7 .t~
U

W U U ~ U U U U U ~ U1 O ~ U O rt3 to ~ ~ ca U
U1 ~ t0 U7 -rlU7 U7 -rl ~ ~ U1 ~ ~ -rl O
~ ~ U1 U7 ~ ~ -~-~I-rl U7 ~
f.2~ ~ C~ O ~ p, ~ ~ cI3 N ~ ~ O '~ 'L3 ~ 'C '~ O
~ '~ '~ ~ ~ O '~ O O ~
O '~ O .-I O O O O

U O O ?-I O O O O O ~-I ~
O O O O -rl O ~-1 ~-I O O
r-i O 1~ ~ -~-1 ~ -rl -.-1 ~-~I

U7 ,7 ,7 J..>~-1 ?-1 ,7 ~1 ~-I 1.J U
f~ ~-I ?-a '~ ,' '~ ~I JJ 1.J ,7 ?~-1 N ~.I (~ U '~ N ''L~ '~ '~

u~ f~ ~-I m ~ C~ ~.I ~ f.~ m u~
~I P~ ~ ~ ~1 ~I C~ tn m ~I Ca ~ CZ ~ tn ~I ~ ~I ~I ~I

~ N N ca ~ ~ N N N ~ ~
fs-~N N ~ N ~ N c~ 4S N N
N N N ~ ca N ~ chi ca E~ z z C7 ~ fx z fx fx C7 ~
" G: P: z z U fk C7 C7 z fx Ca t~ x ~ U ~1 U U U

~. N

~ lD l0 N N l0 r-I N tf1 Lf1 w-I

00 rl l0 M OJ l0 l0 Lf1 u-1 ri -,1N M N tI7 tf1 N O N u-I M
~ I

~ I I 1 I I I (b I I i N ~

~ N N N OO N C~ I O~ rl ~-I
N

W d~ LW -1 N dW -i ~O ri rl f~
O

N N N d' II1 N M N .-I N
~-I

O

'~
z O l0 L~ ~ 01 O u-i N M Gi' q H N N N N M M M M M M

r~

as ~w z~

r~

w N

" z z z z ~ z o o z z U H H H H W H C~ P.~ H H

~L ~ f.~ R~ G~ R, f~

a ~ ~

W

W

00 M 01 ~ O L~ t~ N

tf'1 M O rl ~ 01 l0 l0 r-i r-i M rl ~--I rl ~-I O

O O O O O O O O

~ ~ ~
~ ~ V v O ~ O O ~ f~ rl dW -I LI~ N
~

-ri L~ O f-, O l0 v-I 61 O~ c-I r1 -~'.
r-I C". C: O >vi ~.,' ~'.,S:

r, ~r N O N ~o d~ M N M M O
to O O N O O O O

. .
.~ .,-I

1J 11 O 1.1 JJ J-~ .!-l ~'. ~ ~ ~ ~ _ ~ ~ ~ ~ '.
E-~ " .. fd v v '..' '..' '..''r (tS
(d (a v (a ~S ~S (~

O M O l0 In M r-i N ~ ri O 1-1 ~-I S-1 ~-1 d~ ~-I ~I ~-I ~-I

U l0 O M rl ~: L~ h O O~ O f"-.
4--IC~ C: N S'_: M f=i ~'. ~,' 7=i N
N N C'-, O N N N N

O M to ~ M O d~ d~ Lt~ d~ I-n O O w O M O O O O O ~u 4- w O N 4-I 4-I 4-I 4-I

. . .,~ . . .
.,...I.,~ . .,..~.~ .~
.,...I .~ .,~ .,..I

O O O O O 1-1 O O O O O J-~
~, ~1 11 r-I 1-1 O 1J .LI 1J !J r-I
rl rl 1J O r-i r-i r-I r-I

O '-' '-' -- v f~ '-' -' " " v ca ~ ~ O ~ ~- q$ ca (~ c(i O
O O cd v O O O O

U7 ~-I ~-I S-I ~-I ~i ~-I ~-I ~-I ~-I S-1 1J ~ Qr ~ f~ G4 W W Pa W

ra N N N N cd N N v N N to U c0 ca rtf cd N ~tS t~ c cti ~

~ U U U U ~-I U U U U U r-I
ca rl r-i rl rl U r-I .-I .-i .--I r-I
r-I r-I r-i ~ rl .--I r-I .-I

U1 >~ ~ ~ ~ W ~ ~ ~ ~ ~ 4-I
~1 4.-I 4-I rl 4--I ~ W 4-I 4-I W r-i rl r-I W to r-i r-I rl .-i ~I -.-irt3 c6 c6 to ~ ra to ct3 t~ to ~
f~, >~ >~ N ~ ca ~ ~ >~ ~ N
N N S~ ~I N N N N

f~ U U U U H U U U U U H
v H H U H U H H H H U
U U H [~ U U U U

U

M

N

N c-i M

11~ ~ r-i M ~

O ~ O O O OJ N

M 10 ~- c-1 -~ l0 v v d~

M .-i 01 M 01 r1 l~ tf~
rl ~ ~ ~ M ~ l~ ~ .-. ~
rl In N l0 N ~

t~ O l0 M LO M M r-I O N
O N ~.,-' rl O rl 5~..,M O

rl ~ lO O 01 ~ f~ rl r-I d' ....
Ln O ~ M ~ . H
~ '.

~.,'rl N N N O rl N N N M
(~ '-' O ~ O O
~ M

O r-I . . . . ,-i 1.) ,~ ~
,-i -r-IH -~ O O H -~ O -~ O (a O
O O O c~ H O O -~ O la ~ N
--. ri ---~ l0 (a Ul \ I~ " v ~I M '-.' O~ v S~ ~.' E-~ " v C.' ~I \ v H v S-I N l0 In fa LI~ \ v C~ ~I ~' -~, u~ U ~o -~I c0 c0 m-I of N ~ -.-W
o a..~d' U U rti -~i -~i o 0 N r-I N N N r-i M N N N 1-1 4-I N ~ J--1 r-I -r-I N v-i N r-I N O
rl N rl -r-I N rl 1-1 1.1 ~-I .4.1 . ~ ~ ~ ' ~ ' ~ U1 ',~
O ~ ~ Ul ~ 1) r'~ ~ ~ O
H 1-1 ~ O ~ U7 Ul p, N o ~i -~I U o -~I o -~I N a -~i -.~ N U N -~I o -~I U o --o N o -~I -~I -- U N ~

x -~I -- a +~ m -- .u -- +~
~ ~ ,, ~ m -~I ~ -- " r~
-- ,x -- N +~ u~ ~ a W O U U U to U U U U ~ U
O U U1 f~ ca O U c6 G ~ U
O U ~

-~I C~ u1 ~ ~ ~ m ~ m ~ -~I
~ ~ -rl ~ Q, ~ m ~ ~ ~ cn u7 O u~ f~ ~ -rl ~ -r-I-.~ -rl N O ~ Z3 ''C O ~ '~ ~ '~ O '~
a '~ 'C O O O '~ ~ 'C O ~ b~
~ ri ~ O '~ b~ O O O

~ 1-I O O O -r-I O O O O ~-I
U O O ~-I -rl +~ O O O -ri O O
O ~ O i~ O O -~-i S-I ~.I O

U7 ~ ,7 ~-I ~-I TS ,' ?-a ,7 ~I 1~ S-I
c0 ~-I ~-I 1.1 ''~ (~ ?-I ,7 ~-I TS ,7 ,5 U 'J r~ S-I r-I '~ t-1 J.~ r-1 U7 ~ S-I C~ ~ ~-I ~-I f~ S-I C~ U1 ~2, ~I C~ Oa UI S-I ~ C~ ~-I ~ ~-I ?-I
~I U7 ~-I ~ ~ O S-I U1 U7 O

-.-IN N N N r0 N N N N c~ N
fs. N N ~ ca N N N N ca N S-I
N ~ ~ N N ~-I c0 ~ rt E-~ x z ~ fx U z fx z ~ C7 fx -- Ix fx C7 U x fx z fx U z z ~ z x fx ~ U C7 C7 ~ l0 Ln d~ O1 ~ N ~ N M 61 O rl rl O

OJ Lf1 N L~ r-I O ~ O N l0 f-i O O c-I

.,.~tf7 ~ W ' l0 ~ Ch ~-i N rl ~ 01 -W rl I

~. I I I I I I I I I I
~ I i I 01 .~. N rl O d~ Ln M 01 C~ d~ O
~-I l0 d~ IP N

W Cr w-I ~ M tn d' N l0 l0 ~-I
l0 L~ (~ O

In OJ M ~ Lf1 C~ dW 01 o-i i-I
~ 01 01 --I

O

-~
z O 1D L~ O~ 01 O r-I N M V~ LC1 [~

N M M M M ~ ~ ~ ~ ~ d~
H

ri U
OI

W

z~

7~

U U U U

z z z z U p, H H H H

LL

d' M OJ V' V~

N M ~O V~ N

r-i rl v-I ~ M

O O O O O
-~

~
v v v v O d~ Wit'av d' t -ril0 M N ~," ~', r-I~"., !~.,~,' ~' O1 .IJM M M O O
(~ O O O N

.,.I

O O O .U .4.J
1-1 1J 1.1 ~ O

Sue.~ ~ ~ ~ ~
C-~'.' " " ~
~ ~ ~ "

O O M l0 ?-1 O
~-I ~-I ~-1 I~ ~-I

U M M f~ N l0 4--I.S-',Cu ~i ~i N
N N N l0 S~-r O lfl ~ 4-I IP

4-I 4-I c-I O

.,...I.
.,...I.~
.,..I

O O O O r-i O
~i J-1 1J J-1 1~ r-I
r-I r1 ri O 17 O -' ~' '-' O v ~ to trj ([S O
O O O v fLS

U7 ~-I ~-I W-I L4 ~-I
>, W 0. W ~i 0.~

c~ C N N (f3 N
U ~ rt c~ N N

N U U U r U
cd ri rl W-1 ~ rl ~ r-I rl r-I
U

UI ~ >~ ~ r-I ~
S-a~+-I W 4-a W r-I
ri r-I r-I ~ 4a -rlca to cIS N N
Cz,~ ~ ~ ~ N
N N ~ c~

~1 U U U U U
~- H H H H U
U U U U H

U

M

N ' . ~

o .D

,.- r-, N

~ ~ ~
~
U

O O~ N O
w-i LC1 O l0 N v ~ C51 M

N N ri -~ r-I
l0 N
O

~ . . (' N
M N ~
r-i M O d~ f~ C-,' r-i O O O ~O
v--I O O

ri N O 01 N ~
v ~ v ~I
S-I

~.,'N N N '~7 ~
([SO O N

O '-' r-I r-I O r-I
.tJ v r-I

-ri~ (~ O v H
O O -~ (($ (~ O
O ~ (a Ul L~ ~', v C'. \
E-~~-' O ~,' L~ ~--~-I v S-I ~,' U7 ~ -.-I-rl ~-I U
(a o cd -rl -ri to N M 1J N (~ -r-I

ri N rl r1 J--1 ~-I~ U7 ~ 1-1 1-1 O ~ U7 U7 ~
r' ~ U7 p, o N -rl ~ ~J
-ri o ~ N -ri U -.-~U o N

W U ~ U ~ O
O ~ U ~ ~ U
cd C

-rlU1 -rl ~ (2, S2i ~ U1 -ri -ri ~
,'~ ~ ~ U7 -ri N ~ O '~ O O
~ '~ ~ O O 'C
O '~ O ~ O

~ O ~-I O rl +~
U O O S-I ~.I O
-.-I O -~-1 O S-I

U7cti~~-I'~i~~~I?-It~~Nt~~ ~~-Its Ul ~-I U7 ~ r' ~
S-IQr ~I U1 W ~
~I ~ ~-I ~-I U7 -riN c0 N ~ N
fs.N N t~ ca N
c(S ~ to N ca E-~z C7 c~ f~ x v R: z C~ t7 cx U ~ U z C7 O
~'' N f~ O L(W
OJ I

M f~ O N N
rl O

-~ M N d~ M N
~ O~ l0 ~ I I I I I

.-~M 07 r-I l0 LO
~I 01 N

N N M N ~-I
L~ tf1 '~ I
O

.~
z I

(~ OJ 01 O

N d~ ~' G~ ~ I_n H

r~

z ~n ~n a~ G
ro v a~G G oo ~ a~ v ~

-a ~o as ~a ~-~ ,~ o ,~ -~
o ~ ,~ zs c~ o-~ -~ N wm c~ ~ C~
+~ ~ +~
~

~a -~ G v ~ as ~ ~

O NN rt ri 'OU O ~ ~ C1 ~ a G G
U

r~r, U ~ a~x -~, ~, o ~ ,~ o -rl W G N ~N ~ N W N
?, r-I td U

Nr-I ~ U O-rl W -1 ~
O G G G
~

u1 Gcti U U ~~ m tn~ E-~
U1 . N >, -.~

2S W 1N ~-I O''CS U1G
f.- N G U1 Cr '~ ~

3 u~~ ca ra ~o ca -.~o o ~ N ~ 0 v G -.-iG N G ~-I W.J-.-Wi C5~ ~ ~-I
~

o ~-~ w ~ N~ C b~ d~
G N ~ O O
G G

'd G O U G~ +~ N N + N
~ 3 G ,~ ~
~ U1 o f~N ~ U7C~ N 1~~1 M U) U N ~ U ~ UI
-rl N ~~ N G U7~ c~S tt3US -~

G t->

N OG G O -rl-~-I ~ ~ N N
r-I --i rl N W ,~
r0 G

t~ -r-Ir-I U7 G 1W-i U1 U7G ''~ U7 -.i r-I .~ N
U7 ~

E-~ b~cW m O c~ 1 O cCSa -rl ~ -~ v ~ N w ~
~., ~r t ~

N G~i -.-I ~ ~'b ~ ?-ic~ ~ 'L~
G U '~ G
~ ri S-i 4-~ -rl.t7 r-~ NG G S~5r O~
O W ~ -~-IN
O N

GN ~ 'LSto -~ ~ -rl yr p, N O r-I U7 a-~ '~

23 N?-i b~ O '-CSU '~O G
O ,~ r0 +~
rA N

U ~N G ~ ca', M N -a O N
G .-i E-~ ~ G ~ ca -. ~ ~
i N U ~ w rl~ U7 U7U U7 +-~
r0 r-I O -r-f O, W
,-s~

GN w-i O ,S~O N ctSN ma tt3 ?- G

G -r-icrs 'z3 N '~ N ~ N t6 N ~ U7 r-I o ?, Pa ~., b~

O toN N N OU ~ U1rtS~-I
r-i ~ ~ f~ CZ --~ -rl to ?~W ~ W -GN !-i -rii~ C7 ~, S~ 0 O O ', FC
-rl N G

U ~O t~ to a-i-~ '~U1 v ~ N G b~ .~ U1 ~ ,~ N a~ N

G U rl U1 G O C4 t(S
(d '~ U7 ,~

t~ ~G ~ O ~?, 'L3 ~ ~ ~ G
C~~ -~ -~ u1 v -,--~O OO O U~ OU O O i2,~ O
~ .N ~ a .~ G '~
~

?~ S-a-~-I ?-i -rt ~+~ G S-aO O ?-i ,~ -~-I G
O N

4-~ WU1 w '~ wr-i 4-..~,~ G O
w bl ?-~ CCS ~ ~
ttS '~
~r O -~-I FC r~ U cti-. U
-r-I G G ~ t(fi ~ w b~
G

'~U '~ z '~U -rl 'dU U
?-~ -rf b1 ~ -.-I
U1 -ri r-I

U N NX N f~,' N-ri N -~-I?-~ U
ri -~-i '~ '~ O 1.~
-.-f U
~

G tN ~ N a'~ W-i U1~ 'Z7rt5 -rl O ~N N t~ ~ G
'~ G

-~-I td,~ rrjG b~ cIS~ -~ -rltoto U ~
O -ri ri ~ f.~ .~ rti G --i q (d rlbl r-~O G .-i~-I U7rl~-IO O
C~ +~ -r-I ~ -rl O

a OG O-.-I-~-1 OO OO w G ?-i ~ w U
rti ~r c~ U7-~--I U71~U1 Tf1t~ ~ ~-IU7b~ ~
G O '~ O .-I
?i .1-~ G ?-O -~S-i -~c0G -~-iU1 N O-riG '~ r-I
-rl ~ O G w ~ O

1-1 !.-~''C~ b) fl1 r-I -~--I(d U
O '~ !U -r-I
-rl 1.~

O FC'~ FCU~TS FCG -~-I U~C~-tU U~
~ O ~ -t~ '~ U7 O

z z~ za~a~ z-~ .~ ~z ~ G o ~ ~ o r-, ~ a~
~ ~a -~

G; (xN P;b71~ fx~ U Ofx'O ~ --i w ~ r--I rl C~
t(j ~

~ U G ~ ~ ~ u~
~ .~ G ~
,-G 3 b~ b~to b~- G Lr'ZS Ob~N 'L~ N
'Z3 p, O -ri N ~r -rl G G~ Grn?a G~ ~ ,~G ~ N
N o ~ ~ N
~ FC ~

.ri -riN -r-I,'~1~ -ri~ ~ J.-1-r1~ 1~ ?-~
,~ N ~-I ~ .~ to t~
N z -rl U~ U7w U7N U1 U7r-I tISU7~ t6 ca O G O 1J U t~
~ Ix ~ -~ ~

G GG GN G Gcd O G -~-IU
~ U w ~
c~

N G ~ 3 O ~ '~ ~ G -~ 'Z5 G N +~ '~ U7 ~ f~

'ZS '~~ N 'ZS U 'LSN N G'O~ 'O G
~ b7 ~ U1 G O
U S-i ~

N N-ri U ~M ca Ow +~ t0N -~ G tti -.-i O -~ -~ ~
G cti 1-1 1JUl ~',1-1N (!~ l~tt5 1-1Ul -r-I
U7 S~ U ~,' C~
-r-I 4-I -r-I (a U Uto caU ca UG -rl ~U tt~-~-I
''C O -.-i ~ 7, N

G ~U U ~-U3 ~c(f U1~ U ~ N
,~ r-I U JJ b~ '~
'r ,~ J--~ ~i c~ ~G ~ctf..~ S-i-rl -rl~ G G U1 ~ O G O N
to G

1~ 1~cd J.-t.i.J ~, J-1U7 U1 J--~1~cifU1 t(S
.-~ ([S ,~ N rl 1~
O tn .i.J

tn u1U m in~ ~ mnN tn -~tnU cn N
b~ -a ~ -~ O ~S
z3 rt G G'O tdGN c0 GU crj ?-iG ,~ wi U7 U! G 1~ ~
a G ~

O O''C N O-rl?a OG ctj .~O 'W ~ -rl ~ N H ca -~ N
-rl N

U UrI ?-iU'~,~ Uto !v i~U .-Ir-i 'O
~ +~ N !s, cG .~
,~

O .R -~ U ,G ~ O ?a c~ ~ ~ P~ N
,~

U1 U7~ U1O .-1 U1J-1 c~SU7~ O
1-1 U 1~ tn ''~
.U .LJ

~S-a '~cti,~-.-1 ca'~ rti Or~~ ~ tIS
-~ -~-i ,~
G G

3 3rt G 33 ~ 3~ ~ a~3 ~a ~ ~
~ '~ ~ ~ ~ G ~
a~ 3 ~a ~ ~ 0 0 0 ~ v u-~
G-~, 0 0 0 o 7, ~,>, ?~~ E-~ ~,i w m?~?, 3 U
-~ -~ ~ G ~ -~ ~
-a m R~ ~i G S~m m ~~ -~ o?ai ~ tn ~ ~u N u~ tn ?, rt v~tou, o ~a~ a asra ~ aso a~ to ~, ~a U r, .~,v w ~

N r-IS-IM -rl~a U ~N b7 ~W o ~
b~ '~ ~ U U N
'O U

.~ o ~o ~ .~v ~ ,~>, o v.ctx ~s o v ca ~
cn -rl -rictS U -rlw U ri~ r-I ~-I-~(a -rl 1-1 1-1 r-I G U O ~ G
N jr r-iU7r-IO S.~ri ~ r-iO O Gri U .O
G -ri ~ N
~-I N

?-i ~ ~ N t6 0~ ,~ .-1 ~ O N
,~ r-I N U1 -rl N G

N caNO w Nr-IN N1~ r-i -~-IN O Ui Sa O 1~ +~ .s~ '~ N
~ ?-~ '~

?-iN .~~ G ~c0~ ~G ~ W.G~ U1 N
~ ~ N + d O S-a ~ O -~

E-~?iE~w -~E-~~ E-~ E-~to C4 WEiW ca U
~ W O U t0 G p, ,-O W .~

N M O .-i M G~

O O r-i O O r-I

~1 O ~ O m O O

~ Z

.s2-- H C U fa U1 ,~ 7 w ~ a ~

a H x w ~ a ~ w oa ~
o -.~
z o o ~ o~ a, O ,-i W

N N N N N M M
H

r~

U
o~

~w z ~n ~I M W N 7, O C>aO
-r1 O ~

W U7 ~I '-OU7 U71.i~ ~ i37 ''CS

.~ N ~ O N cB N N v7 ~ N
~-I ?-I ~C U1 ~p ~ ~ td a ~ 3 ~ ~ ~ r-,~ ~ ~
o ai u~ ..~

N -~-I-ri,~' O Pa O U1 'p O ~ ~
~ U1 ,.~ U7 U

3 ~ U -~ ~ ca .Htn a~,-~s~ o >, ~ o -- v a~

O 1~ -ri,L', N -r-I U -~-i.ri ~ (a ~.,r-I
r-I 1J 1-1 rW.-) ,~, 'r~ U1N (a ~I't -U U U7~ 1-IN cCS
~ U1 ~ (a -~--I
~ N

N .~.,N O ,~ 1-~ t5~ 1->O Cl~ U7O ~ ~-I.N
N ~I t~ -rl ~., N .R

o c~ C>a-~ s~ a~o ~ u~ ~ -~.~I3 ~
~ ~ v ~ -~ U ~
m ~ ~s a ~, ~ v ~ .H a~~ ~ ~ ~ o a~a~
~ -~I s~ +~ ~ o w ~ v -~ -~I

p U ~ ~ ttS UIO '~C1 t~ N ri ~ ~
-~-i ?-I ~ ca m ''C
~ ~ ~
-I~

~ W ~I?-I U7.~ ~ ~ U ''I~S-I U1b1 .t~ N ~ U7 U N G' u7~ .H N N N -~Ii.~ N ca C ~ ai ?-mn o O U c~i N FC c~
~.1 H

m tnas 3 W w ~ rt f~U o ca~ o -~Icn -~ ~ ~
~a H

-rlc~J-1 -ri W O O --I rl~, -r-I1~O
dP 1-1 ~ .-i N
''~ U
-rl 1~~ U m .-I ~-I-~-i 'pG1,t~ t7~~ LI ca o c~ '~pr, ,~ ~
N ''o N

Ln ~ O ~, O U7 ~ C1~~ O N b~-rl ~ ''C W p to +~

~-IN '-CS-ri~-I ~ ~, -rl-rlN rl+~ ~ !~Cr ~ ~ ~ N z U
~ H -~-1 O r-IG t~CL O ~ ~ ~ -~-ic~U U1 ~ f~
N ~-I O ~-I ~ ~-I
H U

, ~ +-~1-~ 1~O ~ ,~ H ~ N O r-I-~-I
td ,~ +~ U O cd U N

~ t0~U7'LSU~I~N l~cdC2,M N nSO N ~-IWQ, ?aU

-rl~ O N N N U ~-1~ ~ ~-IN m ~
+~ -rl ~ rl ~-I O

u~o ~ 3 ~ +~N ~ ~ z3+~ N ~ ~p ~ o rt as ?~ ~
ro ~ ~ O N caa H -rio r~N ~ O N
~-I +~ S-I -- b~
7r p 1~

tn~ -~I ~ ~ ~ c~ ~ ~ ?~ ~ ~IN
N G ~I ,~ ~ o r0 .u ttiU U ~ U~ U7 U71-~ ~ O ~ ~ O H
t~ N O .ri to ~ taj ''r~ c>3 N

p '~5?-IH 'r ~ O U1 O ~I N W O >~ ~ to ca ~ ~ W ~I rl O U7 .IJ

~I~ di N ~ ?aO ~IW ~ N ~
N N U1 O U ~ , c~ U1 N U ~ U f.7,~I W ca E-~ r-I,~ 1 ~
?-I -rf >~ r, ~ N
O

t~O U1U1 r-I CZ z5 m CL u1 s~
C7 aS o S- ~ r~ U1 ,~ ~-I
~

x ~ a~m to ~ zs zsv a~ ~ a~ m ~ to ~ a~ c~ ~ w m W
-~

-,~o a~a~ s.~-~I o ,-, a~~ o ,~ to o -~
~ a ~ ~ -~I o >, ~
m " ~ ~ ~ .~ ~~ ~I~a ~ ~a ~
a~ a~ ~p .~I~
~, ~a W rll~ 11.~., W U U r-I-rl W C51r1 W (L~
Ul ~-I N 'r 5r -r-i O
N

.,~ tdto ~ O -ri ~ O 11 ~, to U
~, .-. ~",~I ~ N M
U7 11 ~I

~-IM O N '~ '~'~ S-IUl -ri '~-ri~ '~~
N 1J N (a f~ O ~ N
([j la ri U U N I ''p~ .~ p c~ +~-rl?-t p ~-IO N t~
U7 ~ C~, + O ~ N
'~ ~ t~

1-11-~N N .-I .t->~-I U7.~,~'-,.~J~ S J--1U
-ri ca N U~ U ; 'L~
O N rl S-i U t~t0'L3~ O ,~ toH :~m ~ to'~ -rltdtd W, O v to c6 --IU O ~ ri rlra O to ?-I r-IH U H 'Lj ~ p N ?-I~ ~ S-a ~-I p O -ri'~ U ~ ca O ZS U 3 tti O N ~-IO H
U -ri '~-IO N N b~
U7 7~
N

tn~ ca I -~I u~~ ~ m .-~ca tno .~ ~ 3 ra ~ ~I
~s .~
~

~ -r-I~ ?-I~ ~ O -ri~ U1FC 'L3 -rlttiU -~I
t~ N ~ ~I '~ W N U
N to ~ o ~ +~ .~I c~z ~ ~ a~ ~I
rt a~ ~ a~ ~ 5 tn -.-~
it ~Ctn~ ~ ~ -~ ~C~ 3 rx ca ~C~ ~ FCrt 3 -~Izs ,~ ..~
o ~ z ~ ~-, z3 ~a z ~ Ts a~ z ~ ,-~z a~
m ~I ~ ~a ~ m ~p ?~

rx.~to ~ s~ to rx~ ~ . x to v ~ ~
ra ~I o +~ to ~p o ~-INU ~ c~-G~~t~c~ U1N ~-IO ~Ca, -~It~UO I
~U

b~~ ~-Ica~ ~I b~N tIi~r O b~tn 1 bm~
N ~ ~ ,~ tri W ~ ~
+-~

N r-i S~'-,r-I S-I?-I-~-I~'~ ~-I~.,"V~
(O N 3 'Z~ ~ ~'., -rl O C'-, U

o m 3 -~~a 'Rtrsm .~U ra -~I
~ a~ ~ rt ~ -~I
~I a~

tna~~ zs~I ~I u~~ -~~ ~ m ~ t~ tnrt ~I ~I c7 a~ ~
~ o m -a H O N ON1~ ~ vN rl.RrlNN s car-iN~ ~ ~O
rdN W U >~ .rl~ U ~ W
W --I ~I ra ~-I ca O a 'Z3 ~I
-rl U

'-O~ ~ O Ra ~ 'O([S U7r-I~-I 't~~ --I'~O
~ -rl rti ~ N (($
U ~ O

N N -riU p ~ N -rl ~ N N U 'L3N N U
N +~ ~ 3 N m r-i -rl 1JW U! U W J--1ill ~ U7 (2, l~rl f~ J-1N
~J to O W 1~ -r-I
!.-1 1-J U

U to ~ N ~r U ~ ~ ~ ?, U O N U ~
-rl O ~ >~ U1 ttS~ 'p O ~

~ 5 +s?-ml ~ U cISf.2,,~ ~ I '-C3~ O
+~ ~ ~ -~-I ~ ~ H ~ ~
N O

(a.~',O 11 ,~?,S~-I~ U .~,O ~-I~-Ito ~-1r-I
-r-I N N U ~'S -rl-rl -ri -rl ~I

1-1-rl..-I~ N ~., 1-Wa O QS -~-i1Jt~ ~-It-1O
U1 1.1 S-I -rl ~., ,-C,' !-1 r1 U7U1O ~ N U1U C~U ~-t U1N b1 U7~-I
U1 to U1 .L.J ~ .G 'r ~-I td ,~
U

t~'-O~ O S-I >~U S~O N ~ ?~ ~ ~ U
CZ t($ C~ to -ri is U1 1-~

O U U ~ S-I O '-CS -rl~1,U O I ttiO C2, ?-m-I O U '~ '~ -.-I O
'~ t6 O

U ~ 1.~+~N ~ U ~-I .~~2,~ U M 3 U ~2, U1 f~, ~ ~ ~ ~ H
~ ~I N

c($tIS-~t~ U O -~-It0 d~ '~ ~
N O t~ N td O ttS O
U ~ 'Z3 U7U U U1U7 ~ U7I 'L~,~ U U1 N U1..~
'~ r-I '~ U U 77 N
,-!~ E-~ ~

to -ri N O to~I N o~ ttitri~ to~
O ~ ~ to ~ N ~
-I-~ '-O

3 ~p~p ~ b~ U 3 to N rl a~ 3 s~ ca 3 ,-G
~ 5 >. ~ ~ ~ to ca N

r-I~ -.1O .-I 4J -~ItIStJ1 ~ U b1 U ~ r-IO O '~ C4 J--~ N r-i O -r1 ~I a 5,5r ~ ~ O y,O -,-i~,.rl .~ tIf t~ O -r-f --1-.-i U
~ ~ ~ o ~II ~ UI~ ~'., ~II tf3S-I~".,~-i~I '~p~I~t 'J O I JJ UI ,~ W, O ~, toS-I?~ to~ N aSu1 ~ O td tdW ~ rtS~
--~ 23 h ,-i -ri -~r ~-1ttSbl 3 ~., ~-Il0 S-I~'.,''L~~-IU w-IS-aN
-rl N ttfN J-~ O
'~p N O1 U -.-I

a~o a~ ~ .o~ o v a~ .~ro W ,~z,~
~ a~ s~ .~, x -~
-.~
.u -rl~,H N b~ N -.it~ ~ ~ '~ -riN N -ria 'p td ~r '~ p N ~
W U f~ ~ 1-~
~-I

r-II O ~ O C1 r-iU I ~ r-i~ ~ rlU
M ~ W -rl ~-I O
~-I d~

In~".,~ ~I r-i .~_, i!)~, rl O UI ~, N ~ to -ri N ~I N CU

!U~ 1~ r-I1J N N O -rlO U N ~ U1 N O
U U7 '-O t~ .~ '~p~ U7 td O U7 ~ ~ ~-I ,~~I ~ .~N -rl,~?a W ~ ~ ~ ?, O .~ N
S~ r-i ~ .rl E-~toW ,~N E-~ EiW E-~ H S-IiJ E-~W
O -r-I -~-i W ~".1~ ~-I
-ri to to ,S-,' -rl --I
~'., '-' (YJ N N 61 M

~t O v-I O O rl ~ H ~ Z ~

E E
-~ -~ E, m O W

-~I

a ~ x m a~ x ~C a ~
o -~
z O N M ~ Lfl l0 Ca N M M M M M
H

r1 as ~w z~

~a ~a a~zs a~ ~

~

o~ r~ o ~ ~~ ~~ o '~ v~I~, o ~I

s~o I ~I~ -,~,~ ~a ,~~s ~ ~ ~c~a~ a~
~ ~o 4-IW f~ W -rl1JG~ -~ C~ ~ ~ U7U ''~ U
-rl U ~ -~

U '~ G~ ~ ~ .rILn 1-1 U7-rl .rl I ~
(~

~d~ H '-c5r-i~?~ N ~N -~ -~I'-O~a ~rtf ~ ~ O O ~
~-r Ntn i-I N ~ O?-I O-- U7 1-ma rl U1U
td TJ U 3 ~
-~ ,l~

O .~ ~ N ~O -~ f~ ~ O ~IN -~I
U O cn ,~
--I

Or-I 1-~ O ~1.~ U7 ~ ~-1 ~ U1LS
U S.7u ~
S~

O --i ~ ~--I+~N -~I ~S.a 'O N~ tn O
'L3 N O '~ N
O N

a~~ 3 v as ~I r, s~o ~ ~ ~?~cn ~
~ ~ +~ .~ ~
m i~ O ?-W.a''OU ~ NC '~ ~
O ~ t~ p -~I c0O +~ U
~ Zi N NN ~ ~O .-i ~
~ ~I N

NP.~ N N +~1U7 p, N'-C3N O rlI w S.~'~
?i w ~L1 ~ U ~ c0 ~ ~ ca', ~r .~'N U ~ ~U S-I N

U11 cU U7~ -~IN .~ rdN U N O ~td ~ '~ , ~ ~ O

U7'r N Ul-r-iU,.~ c~ri ~ O r-IJ,~
N L5' r-I
U

-.-IU1 S-I ri,-RO1~ 'C3 ~ ~ ,W -ic~~ t~
'., 'J ~ to r-i U

l~~ 1~ 1J U7N ~ '~~ 1-1 ~.!--11J N
~-I rl ~ N (a Z31 (IS

o s~ ,~cn~ ~ s~?, rt 3m 3 ~n Urt ~n ~ ~ ~a-~ ~a~ ~ o ~ ~~a .~ a~ -~ ~ x o zs ~I s~ o -~I.~ ,-~ ~I-~I ~I v ~a ~ ~ ~I~Iv u~a~
,~ ro ~ ~I
+~

-~I r-I rt3 NU7 U ~.~-i~ ~ OOr+~ caU7 ,17 ~-i ..~ O

''C3~ ~ .~c~ ~ GU7 ~I -~I c~ ri-~i ~ cn ~I O -ri +~ 'L~

o-~I U o ~ ~3 -.~ a~ca a~ ~~I-~I R~~
co -~ ~ ~ o -~ ~
s~

O ~ ~-I ~U U1 Oc~U O
GZ N U ~ N
S~ c0 C3~W O +~O ~~ ~, O~ ~ ~ ~U O N7, N O U -~ .u ~, a W 1-1O~ ?-I ~c~ ~ r.-~U~-riU1 ~l-I
rl ~ U ~ fi.i~ ~

C~.G N NN U w-~I ''CU c~ O'r~U1 N
-rl O >~ ~ rtS
cd U1 ~

N~ x rlr-IN ?-r c~~ ~ O' S~cdcd -a~
O .-i ~ ca U1 U

cIS cd S-a'r1.~ I'O ~ O ~ N tI~?-I
'LJ U7. O 'O ctS
U

~-I ~ ~~ N b~N -~-t ~N ,~ N O t~tCS
c~ ~I -U ~ ,~
>~ ~-I

-,~ O~tS O UO ~ O~ .~ ON ~ ,~~ .~ O
~-I ~I ~ U7 '~ N
Oa y~ ?-tC2, ~ 4-a?-IU7~-IO O ~ca .-i t~ ~ ~-I~, is N t0 N ~ O

w w W ~,O'~ J-W .-I t15 b~~ .~~-1 U -I -~-~I'~ ~
N ~

.x ,~.~~ ~ ~a~ ~ o ~~ ~ rt o s~ ~I z o r~

,~ '-OU'~ ~N N O? ?-I O-r-iO
~ c6 U ~7 a U
-rl U

U Nbl N tdN r-it~-rl S-I~ O U2 ?a?-Iw S~O
Q7 a ?-I ca bl 1~.ri iJ r~J-)(~WN L 4a~ ~i ~~ -~. ~~-I
S~i N ' ~ ~ ~ ~, ~

o ca~I ~a wrts~ ~ ~a ~ ~ c~ ~ ~ s~o ~ x v s~ o ~

q ri~ rl ~-I-~-I H C4 '~O bl '~ b1 blU
''a.~ ~ y-i (d o,~ o ~o ~ ~ a~3 ~ ~ a~a~o U a~ a~ ~ -~I

U1J.~ U1 r-IU7(d~r-I ~.t-~-rl 1.~rlr-I r-~U
~ ,~ . ~-I ~ U
~ '~

~ -rl.rl -rlO-rl~ b~ca t~ cdN :~ c6t0O rtS-rl ~ E-~ U N ~ ?-i -~ (U

3 I ~~ -,~ ~I~ -~I ~I~ ,~
~ m 3 '~ rt s~ ~

FC'~ ~-IFC~ ~O t~ OO to O ~ O
~C -~ ~ U
c~ -~ ~

O ~ z~, z ~az ~
a~ ~ ' V , rx~ rx a~x ~ a~~ .~ ..~w s~ -~Icaw a~
-,~ +~ ~I ~, o ~ ~ ~I
m U

a o ~ >, ~ ~Io ~I ~ o ~ -~I,~ zs~I
~a ~I ~ s~
-~, b~~-i b~ Ib~-~--I~-~-1 r.~'~ U ~ FCU1N NU
U O ~-I O O -rl O '~

S~U ~ .--I~ 5-IUN O ZO U ~2S~ 'dm -~-i~ 1~ '~ U

-ri~ -riM-r-I~ r-I R.'1.~ ~ ~ G..'U O ~O
'~ ~ U7 'y 'r U1b~ U1 U7''~'~JJ -rl U ~ ~ ~ -rl rlS-1 ~ o ~.1 ~ ~-1 ' r-I
O ?~

~ to~ ~~-I b~N -rl LN U7 UN
N O ,~ U N r r0 N O

', O toc~~ ~r-IC~TS~w ~U SaW
1~ ~

''L~~-I '~ ~'~ri ~r ?W-1w-irl ~ ~ -rl v -ri11 N ~-I N W O

Ncd N ON c~~~ .W-i U1O ~ ~ U1'd ~ O ca ~

1~r-I J-1~-1~ ~ O~ 1' ~U ~ ,~ ~~ -rl 'r Ul 4-I -,1 ~ 1J
~

' UU1 U 4-IU N -~-i~ -ri O f~ O 'L~
~ ~., ~ -~I

tr ~ ~ w a~ 3 ~u~ -~I ~I ~n Oa~
-~ .~ c~ ~I I ~
~I rt ~1S~-,,~-1'~~-I rt$~ Ci.i N.-~I~ N~-I', 1-1u1 J-1 U ([$ 4-~ ~, S~

1~-~ +~ N~ ~ ri~ '~ 1~~-I ~ O
cd ~ ~

U7~.I U7 5U)cd.--I-~-i UN -I UN c('j -~-i $-I O N U7 ?-I ~
O ~ v w ~ ~ O~ -r-I'i~~ ~ ~U ~ ~?~~ ~U7 O S-I r-I ~
t~

O'~ O ~O U7 N G ?-m-I O ~ ~-Ii ~ .-I O O TS

U~ U NU cd'~~--I t~~-I ~ ~ W ~
~ 0l N
-~I
U

U~ U7~o~ r-N W ~-I U ~b7 N U1Irk -I
J--~ il) U

U1r-I U1 U7~ c~~ N ~N ~o ~ N -rl~-I
C51 ~ U ?~

rti~ ~ ~ratd -~I Or-I a~ Ocd'~ ~cd '-O ~ ?-a WI '~
N -rl ~

3~N 3O ~3 U ~nOr+~+-~UU-- ~ U ~~s~ it~

a ,-~O ~s~ o ~ ~ ~ ~ ~ t~
~ ~ ~
-~I

>,'zf ?, ~~ 'z3~to ~ UI~ O ~ U7O ~ U
rt N S-I rl V7 ~-i r-i ~I -ri~I~ O~ C~ tdO W ~ c~~ ?, U1 -ri ~ N O P7 N

o ca U~ao +~2~ N 3~ ~ w 3~ ~ ~it U f~ >. ~
~I ~

~-Ii ~ ~~ I UN -~I O '~ O O
O .-I .>~ U7 '~ N
U -N

~I ,~ ~~7S-~N1.~ 7r~G N ~ ~,'~1~ -r-iO
U! I 1.~ ?-I ~ 1~
UI O

-rlto -~-IU-rlc~S-Ica ca S.-~ctS ?-I ?-~N U U1~-I
U7 a ~ O U 4S
-rl ~-I

-IN r-IOr-IN OU 5.2, W'~ ~ ~ cd~ N tn,L2 ~ H bi dN U
S- ~

~ ~ ~

NN N ON C~'-O ,LlO rl .>=t~ U1 'ZS N !~ ,-I '~
,~ U 'C
FC

rl ,~ ZS.~t~OS~ ~ -.f-I ~ X -rlN ~r NN
.~ ~ N +-~ iof ~ ~
Z ~

E-W E-~t~E-~Wit'O-~I a,-~ U N aSaU 1~U
~ ~ E-~ N O -rl ~ ,~ fx ca ctS

rl u-i M rl l0 ~r O O rl O O

H E-~ E-~ N E-~

O >C O f~ O

-Q ~

a ~ a a w w ~ ~ a w x o H w ~a o -~
z O ~ ao o~ O
Ca N M M M ~ d~
H

~1 U
O~

W

zs o rt~, a~

rt~0 0 a~ ~I ~,a~ ro o c~w a ~ I ~ zi w ~ o m ~ c~

v r, o a~ o rl~ o tn o cn?~ N ~ . ~o ~ ~ ~ ~Io ~ ~I~b~
-~I

~Ic~b~ ~ U1 N c~ N w ,~c~ 4-IN
~ N

4.-IUO ~,'U7 00 (a ~-IU N .1~iy"
1J ~,' ,5 r-I ~ .riN ~ -r-I J--1 '~~ .~ '~-Sue.r5 ~. J--1 -ri O
-r-I

U1ttfO R.t~ o~ ~ ~ ''C ?W-I N CLb~ N N-~
bi ~ U
rt N U~ N ~ o~ O ~ ~ U ~ -rl ~ t~U1 -rl 'tf ''C O U
?a to fd ~I tn-~I o o s~ o xro .~I. ~ v ~ as a~
s~

o ''C~~ ~ ~ G w u~x ~ ~ ?~S~ ~ N5 +~ ,-a~ 0 rlrlw -~Ip, rt ~ r-I~., -~I a~~ a~ v Wn a~ ~s o, .~I v o .

U O,~ . ~ '~ +~C7~ ~ ~IO ~ 1-Ir-I-r-I
W ~-I ~ ~ 1~
N

I-U ~ di >~ N O to 1-y-I c(S
~ U -rf U1 +~Sa>~ O U O 5 ?a~-i ?-mi N U 'LS N ?a~
d~ ~ o ~ ~

cdO -riO -.-iO O O N ~ U s~ ~ Nc~
~ a~ -rl u1 f~ .~
N

N ~-~I ,-~~L -a ~ ~ .~ X m ~ .~I tn+~a .~I ~ a, ,-I ~I rt tn ~ ~ ro a~ ~ ~ ~ ~ ro.
~ ~ ~

C:,IN -rl-rlN ~I totd J--1 -riJ-1(a -rir-1N
(a N v ~I ~ N to ~-I
'~

N tor-i ~ ,-G-riO r-IW U! 1~U1~ 1-1-rlt~
~ r-1 rl U -rl N

(~NO ,~ ri ~ ~ N ~ O O 1~~
U7 1-1 F. 11 ~-I

N r-I tn ~ (~ ~ rl1~ N ~-I~-I~., ~-I~U
d, U7 N ~ t~
ttf ~-I

zstoto ~ ,-,~~ m rl~, ~I o s~-.~ o -~
?~ ,-Iz -~I ra ~ ~I a~
r-I a~

N +~ ?-IU7 tti~ ,.q ~ U ~ rd'~
U to W ~ ~ ~, O ~I
. ~ U

-~I~Cr ~-i-rlO -rl b~O U ~ 'C3~-I ~ ~
O ~- -rl ~, ~I is U

o~ ~ ~ ~ ~ .H ~ s~c~ ~ is-~I
~I ~ r, x o N
~I tn ~-I.rl ~ O ~ '~U t~ toU ~TS
N t0 O ~ +~ U
v to O wC O S-.IN .-I N N ~~ S-W l! 1J-rl~y U7 ?-I.--IN ~-I -rl ~
t77 -.-I N S-a4-I.~ ttS W ~ O~-I N ~rrl u~~-Ib~
ca U cd -rl C~ 1 N to ~ O
S-I

-t'~~ w rt E-~~ cISm -~-iN '~~ rl rtS~O
O rJ CL to rl a1 ~ ~

r-IUtT 'O ~ U U ?~ U7'O '~O N v '~r-~I
~-I ctS ~ S-a O U7 U7 .-Q t~

w-15.H r0U N ~I U1U >~-~-i c~~ U ~-I O
-rl rJ G-~ N .~ N
N N

~ Oto N a '~ -.i~ Nf.~ r-iU U ~ N,~
rt ~ ,~ .x ~-I ~
~ S-a ?-I 1Jc[SU1 tt3 '~rl 1~~ ~-1N r~ .-i1~
O -r-IU1 1~ O ~-I ~

N.Q U r-i-ri~., O ~-I~ a cd ~ ttScd U -ri -rl N ~
U

o a ~ ~ ,.,~N~ ~ tnG o ~w >~ ~I ~ 3 tn s~ r~
~

?-IU1 -.-IO O U p,O O ?~O ~-INN
r(Sra O t0 ~ N
U ~

d~NN t-~.ri~-I~-I ~-IU1 '.,~-I ~iU -rl w w4-I
U N O 1~ N ,~
~ ~

~U U1~ .~ w 4-Ic~ ,-!~4-I w 1~
'Z3 U7 U -rl ~-I O
''~

U1(rj >~U1 -I-~~ Ul ,~ .-I-rl '~~O
O N N N
-rl r-I

O tA(~ O cIS~-I'~ '-L3t'31~'~ '~tdU7 ~ cIS-~-i ?-I ~-I~ r-1 to ~-I ?-i ~
U1 i~ U

~I-~b~ U 3 to U N f~ b~N N U s~ ~ -rl~
~I O to w-i >~ ~ -rl Zf I U

w J-14-I ~-IJ-.~ 1.J-.-1-~-I.U J,-rltd rtSU1U
~ .~ cd ~1 S-i ~ W S-I -ri O U1FC '~ 4S tt5?-I~.,t0 t0'~~..I a-IctS~
to '~ 4-I~ J-~ .~., t6 U
ttS U7 lOz >~ r-i r-i~ Nrl rlt~1-1 O US-I
N ~-1 -rl ~ 't~ O
r-1 t~ w ~, N -~I~ 3 fx td o O ~ .~o O ~ ~ tn~~
zi .~I~ ~ ~ ,~ s~ ~., b~ N ~I

O ~ N toO ~ N U7 U1N U7 U1 -- -~-itoU1 N (d ~.I 'ZS to -rl O

V -,~-~I~I-~ >., . -~ -~IN ~u-.~ .~Iitt~-, Us~
~ +~ rl ~-I cn ~
,~

a ~ ~~ ~ o ~ ,~ .H a~.~, rl . ~ o ~ ~ ~a o ~ .~
m r~ -~-i>~ttf~r O FC FCt~ 'Lf~C ~Cb~w S~z 'Z3U
U .~ ~ N .~ Cr U ~
s~ tt3 -~-I

U -rl~I?a -riz z ~ ~z z ~ O O .fl.'r-iN
-rl 3 '~ ~I U ~ S~ .rl N f~ -rl ~Iox rt.~rtitn cx cxa~ rlrx rx-~I-- -~I o~I
~ c~ a~ ,-I -~I 3 ~I -~I zJ

o ~I- ~-~I~I >~ ~ v~ vo ~I~I ~ ~ I
a~ v ~ ~ ~I
s~

~ w-rl .~7r-I~7 N b~ b~s~ ~LW t3~~ ry, U ~ S-I1 r-IN td n to ~
ttS ~ N
>~

-r-IJ--1C,' ~,'(; -rl~,' ~.,''ZS~t ~-I-rlcaU7 t~ ~I rl t0 N U C~
'~ N

'~N~ NU7.H ~I -rl -rlcd -rl -ri N ttSU7Nr~
N ~ N -rl I O ?i N O .rl N N tn tn-~I>.,tn tnv ~ w ~ ~.,v 3 .t~ m U ~ -a ~ N ~, rtc~tn ~C>a-I C~ ~ ~ tn ~I~ ~ ~ c~ ~ I~I
~ +~ -~I U tn c~
~ ~

?i ~ ~ ?i c~ to O~ c6~-I -rl'Lfto,~
~ ~ ~ 2S -r-I r-I
i W

''C~ !.~ 4-IcISC~ ~ ''Z~ 'LfU .LJ'~ ''~~ b7 N d~c~
-~-I ~ ~ 4-I -rl ~ .~
'~

N UIma OU ~toO NtsO N ~t~UIN.~N N N .H~ ,~1~

~ ~t0 O c~ . r, ~ to -~~ ~ ~ N ~ U ttSt~
-ri-~ ~ tn U I, U
4-I '~ 1~

U 3~ ~f~iU ?a U U U ,GU U c~~ -rl~ -ri ~ U1 -I~-.-i 'r N ~ ~
~I ~

~ cz ~I~ o a~ ~ ~ v ~ ~ -~I-~I zs~Iwg o ca -~ ~I ~ a~ ~
a~ x .H a~

~IFCO ca-rlp, U ~-I ~-I'~ ~,~-I ~ U1U7 S-I~ O
~ U '~ ~ ~ >~ -rl '~ U U

z-~ Cz.>~R ~ ~ a ~ ~-I+~ +~t~~ t~U7 ~, ~ ~ ~ '~ .-i O t~ .
~-I ra ~ O

U7P.'~ -rlc~ U1 U7O -~--IU1 ff1U ~ U S~1.~~
J--~ c(SO O O rl cIS t~
rl -rl C~

ca r-i'C~.~ U S~ ~ I ~~ ~ ~ ~ O O U)O
U U N ,.>~ U p.r U7 ,Q

O S-I t6N O O ?-IcaO O to-rl ~ U cd~
'~ r-I U v ~r O
..-I O

U 5,UN 4~N t~~U~ Uto'C3U ttSCs~U U U ~I ~ UU~U
'CS

~I1-~ N-rl~-1U7 ~ N x ~ tl1~-IN
O U rl N -~I
O

U1to~7 -rlr1~ O U7 U7?i U1 U1'L3ca 'LSc(S.~7t-~
to O -~--IN -ri W U1 U
'~ O J-1 rl ~IC~. ~-If~o ~'.,Wt$ (aI m(~ (~r-I(~ .(',3 U7 -r-I I 1 4-I C; x U7 ~I
N I

3 ~-~I to~ ~I ~s 3 3 M v3 3 0 ~ r~ ~~a U ~I ~~ o z ~ c~
~ -.~

-rl~-I C1,~ 4-I'~ '~ tn >_,'t~ I N ~,.~.'F.
O tt1N w ~-I .~' U
U
I

~,~-I~ IO N N ~, ~.,,-GO?~ ?~S-I1-~ ~ ~Ib~O
U1 -.-i~-I S-~
-.-i N

S-I TJ O1~N '~ ~I ~-Ica 1JS-I S-W t~ ~Ito..-IN
U7 ?i '~ O U -- d N f~
U 5r 7r (a~".,t~ J.J N ~ to (IS U1((S toN U N ~-I~-Irl I -r-II x. 'ZS N
~ I r-I (~

~I-.-iN Gtn~ ~-I~I ~I~ ~--I?a ~I?~-~I U .~ ~
N ~I ?~ ~ W 'ta 'Z3 Pa o -~I ?a ,~tor-i O-riO U ~ .fitO r-1,s2 .~I 'ZS ~ -riN~
4J ~ .~ ai r-i x to to U7 M ~ 1~

-~~Ito ~I,.~,-I~ -~, -~,s~ ~a-~, ..-~N >~ caa ~-~I
,~ ~ a~ .a z ~
~ ~a a ~~ ~Ir-~U -~Ia a ~-It~a a ~ -.~ U ~cn ~ ra ~ ~, ~ -- ,~ r-, ~ ~a r~ .~I

u-I N (~ .-I N O~ tYt i ~r O O O O O O r-i z z H ~ ~ ~ ~.

0 0 0 0 o z z H PU.~ ~ ~ V7 a H a m W a cx m x ~C c7 x oa cn ~a o ~
z O N M d~ In lfl L~ O~
Ca N d' d' d' d' ~' V~ d' H

r-I

U
Ot W

z~

U rl r-I

N ~ -~
c~ ~

O J.-~
1~ -rl U2 ~ O
-rl ~

-r1 !->
~ ~

t~ U

'~ rl ~
O

b~ N c~ N
N ~

N ~

<d -r-I U2 fa r-i -~ m ~ N N

U O U1 -r-I
1-~

N O ''O
-r U7 'Q '-O
U

~

ri (a N N td O
N O

r~ ,.W-.~ CZr ''(~

~ (~ r-I r-i S-~ '~
U

O ~ ~, U1 ~

w ~ ~ -~
N

1-1 U ra .i O

O O
~ O U7 r-i >, S-~
O ~ -ri Q
O ~I U W
U1 '~

O ~

-4 ~ U 'TS
.~ ?~

cI3 U7 N
-~ ~

W W -ri t~
+~ ?~
O

O ~

S-a -rl rl ~
'LS -4J N 1-~ O
QJ ~ ~

1J rl ~i Ul ~ f~

~ Gx, ~

to W N fx - ~ O

a -~ ~ a ~

cn . +~
~ o ~ r-I U

C.t~ U
~

U U ~ ~
O

u7 'TJ N
S-a .~
~ ?a O U ~ -~-IU
ri ''(~ i O ,~ 1~
U

N ~ C

a c~ a~ +~
m ~n O

~r ~ ~-I

?~ c~ 'd ~ N

i -~ .~ O

t~ r7 M U
U V1 .U

N -.-I U1 U

O rti '~ ca 'LS -rl ~

U c~ ~ 3 ~ ~

rt o ~a U1 O b~
U ?a U
o ~
-~ ~ +~ ,~

O rt3 ?W~ -rl U

c~ ~ U r-I
?-i -.~
~

S-a O -~-1 ~ ~ c~

N

~ ~ N G .G

~S .~ -.~ H

r-I N

M O

H

a a z o.

~o -~
z O o. O
f~

O d' H

ri U ~
O

~

z ' L
O y L "

~' II as O w _'n c W '~ ~' ~ '~ ~ .c a~

_ ..i ~ C ~ O

p v~ ~ O p ~
L ~ ~'' d a.
~~ II

. 'a ~ cs ~ W c3 II C ~
a> ~
' 'O O ~i v a~ a) ~ W P, ~; L i.: ~ O
y, r v~ O
O p~

O c3 ~ ~ II ~ ~ o ~ C ~ ~ b ~ D .~

y ~ p O ~. _G O ~.~. L ~ '.>
~ p ' .O -y y N . p -s ~ a~ O a ~s ~ i o H v~ > ~ ; ~ o > O o y ~

V ~ .~ W s O
~

G) ,~ O Cp ~ v~ ~ C ~, ~ r/~ O' c~ ~G C ."~ by ' y L ~ ,-, ~ b-0 > O ,.-r c~.,~, p.., ~ ~ ~ ' "' -"

c~ ,~ II , ~ II Q ~ C
O p ~ W ~ II
~

~ ~ t/~ ~ ~ ~ '~' Y
N O y "

_ ~ ~ ~' ~ O ~ ~ O U
O c3 ~ ' > W ;a-~V~ L O :,..
Q G\ -1 V) U ~.., ~ n D

U ~ 3 -~
d v ~ U

w N OC~ i d pN" "WN
OoO~

'd a.7 ~ p ~ ',~ ~ a p ~ ~ M
G~ :n G~
_.r ~' " o~N c0.~~ z~~ ~W
E ~~ ~~

L ~~ ~ ~ . .- _ ,"M
c3 ...~ -.
~ N~

~M ~ ~ O U
. 00 . V' Vr W o v~ ~'' LT, ~ C ~"
n U n oo '- ~ -, ~ C~ W ~
n :? cJ ~ N
y O

~ ~ O p ~ c'; _ , r O " ,...] N ~' '~
O ~ N

_ _ C ~
0.l _M ~3 ~ N
Pa ~ " ~; ~ c w .-~ ~ ~
~ s O R' ~ c x ~ ~
'O 'O '~ ~ ~ ~. T Uj '~ '~ r r N ~ 00 N ~, N ~ W
n N ~ U N N 'ct ~ Cb r 'c E'-'t~
p"' - "' ~ ~

n. n. a ~ _~ ~ v -~ ~ v~
, W ~ N v oo d d d d y d C~ ca -~
v v -o -U U U ~ N n ~ 3 :~
~ ;J p ~ rn ~ N
~ -N ~ c) ! O .~ C~ S_ rV
U - ~ ..J
V7 y ~
d p ~ p U W ~ ~
, i c w~ w~ w~ y.:

cue.~ ~ ~ ~ ~~ ~ap y csU .~~oo y 'a~ . X
~

W ~ x ~ _ _ _ p ~ ~ ~ C1 _ ' G' vW' U

vy .., v; .~ c3 ~ ~ V7 x a ~ a 1 v ~ Q x ~
i 7 : z x x ~
Q i z r w r . rs a c w ., .J

U C U C
U ~ ~

U Y
Q1 ~ ~ U ~ ~ O

~ Q.

a~ fl- ~- ~ " ~ O ~= c :~.

O v~ v~ ~ O L1 ~ O" " _ C U b r ~3 U :3 '~" O ;n O
U Of C ~ ~y" N ! v~
'O ~- C U " ~ _ c3 p ~ . U
. 'n O yn c O G . a _ - 3 c J O
'W O U ii ~ ~ ~ O' C y p v ~n C a y . ~ . ~ a~
v s ~ c7 o y ~ r ~ ~ ~.-, d ~s .

U a~ ~ ~ _ ~ ~
m p ~ O O . LL
~ U U O U
b-0 C bfj ~ _ , N C b ~ :j U c3 ~ ~
L

. U ~ ~ ~ r 'a ~ c~ N r . b ;n L1 c3 E.., "~ .~... C -0 C ~ c3 U .~-O. E'~ ~ C/) T
' (~ ' : _ G7 U ~ r > ~ ~ ~ ~ 3 ct~
i-. U .fl ca0-. U
a.
-C
'Z

~ 'o ~ ~ p- d y , O _~
, O
--~ ~
y W ~

N cc3 ~ t Gw s' v~
rn 4~ C_ >y ; ~ ~~ ~~ rVl~ ~
~ ~ ~N~

~ C. n r~iC
, r ~' ~ E
~

_ c L E O a~ U -B
_ ' a> c~
b Q > r ;n ~ w O
v:

N v: C!~ - pn ~: O Pa U ' ~
~

y. ~ ~ ~ U U
~ ~ t d r ~l -+. 0.~
v: O U 3 Y ~
~

, . . . o c o ~ _ .n o 0 O ~ ~- ~ ~ c ~
' ~ . ~ ~ c ~ ~ _ ~ >; ~
s ~' ~~ ~c3 ice.. U-'~'U~ ~-'-_'U~ U dO , 0, , N >
O

cv3 ~ r N Y ~ .~ ,..J C ' ~ + G, O ~ U
. ~

. ~ ~ . E
~ = -o d ~ d d ~' ~ d ~~ ~ o d ~
~ d ~ 4:. ~ w.
d ~ ~c ~

r d a E

~

H Q

U rx W

d d Q ~ d a.

rs a ., ., ~

a: Q Q Q rya w ~ ~
..

U t :j ni ~

by o v ~

s y > ~ ~s p i ii ' w' x .7 '~ ~
o ~~
~ C

(..wp~ i--i O t 7-.
O ~J

x ~ p ~, ~; o -~ ~
~

n a i.~. U N
.
.-U.
N

~ o ~ o ~ ~

w a a c~
z Q

~

G, C3 ~ . L.

V7 N .--, ~ U
o = ~ ~- w ~. w b O~O '~' r C, E'a ~

'-p -~ J C ' y C
d ~C C O Q 'v~
~N ~tp'~. i O ~ ~ nNO
U ~ ~ ~
~ ' .

y ? ~
. ~ a >
~ ' U
o > ~
~ 3~'~ ~
~ 3 ~ r x v , ~ V7 _ V7 ~ ~ ~
00 C ~ a ~ C1 ~ ~ ~ G
p,. ~ N M ~ '3 ~

N 00 N '.
~ ~
y f3a R ~ m C7 .- r ~
-' N
c ~ ~ ~
C/~

~"' _ _ c NO ~O ~

-C N 3~~cbG
'~ d Ur ~ x U ' ~
w :~ ~

> > GG ~ ~ .b ~ p ~
~ E'_' ~ ~ ~yc ~ ~ O na~
oo '~ ' ~b a> p ~ c ~ . r o ? ~ o ;.~ o r au n.

s>.nM~ ~:~ '~~~t~~ o~ ~._..'~.~vn.o ~3a x ~~-,z ~ ~d~~3 ~x zU oa~.~~
wx~~

U

o c ~ _ p >, L C ~ E -p N ~ ~ ~ d ~ t a~ c n.

s b U ~ v a o 3 ~ ~ ~

~ i1 ~ , U c3 ~ o- a ~ i o ~ ~ ,= U
O ~ ~

p , . ~ r .bu N
. b . d C
~ ~ ~ ~ ' y ~

vw N . _T ~
'v' . .

_~U C~ U~ y c30 v~

w J ' ~

E ~ .y ~ ~' ~ .~ E ~ O

~

c3 ~ ~ p O ~ ~ ~.- O
._ ~_ ~ c~ ~ P.
N . b-0 C
w C

O c3 P..i N by O C
O ~

N ~ t 7, ~ ~ ~ O R U ~
'O

U b_-0 c3 ~ ~ ~ C N C

U S ~ rn N N
~ :

N 6' _ ~ ~ ~ ~ c0 > c3 N U
' '-d Y

v O ~i-~.~..'>'O G'a cry an 3 d bn ~? 4 r . ~

~ ~ ~ .
'~
~

O CL v c30 t-d ~ .. ,"
..' ~ Q ~ y V !_'' c3 ~ U
r ..C U

C~..i c3 ~ ~ ~
~ N y O. O -d ,~ ~ C C.
' bu a yr ~ U r ~ N C e3 ~y ~ C
U c3 C n y c.: ~ o 3 n c o ~- ~ o- a. n a- .
Q o ~

D dE-o d~' dUo~' d d~' d~

c U
rte. =' -o n.
on o " L ° ~' c p; c : a. a U ran SEQUENCE LISTING
<110> INCYTE PHARMACEUTICALS, INC.
BANDMAN, Olga HILLMAN, Jennifer L.
TANG, Y. Tom LAL, Preeti YUE, Henry BAUGHN, Mariah R.
LU, Dyung Aina M.
AZIMZAI, Yalda <120> EXTRACELLULAR MATRIX AND ADHESION-ASSOCIATED PROTEINS
<130> PF-0693 PCT
<140> To Be Assigned <141> Herewith <150> 60/133,643; 60/150,409 <151> 1999-05-11; 1999-08-23 <160> 50 <170> PERL Program <210> 1 <211> 309 <212> PRT
<213> Homo Sapiens <220>
<221> misc_feature <223> Incyte ID No: 398269CD1 <400> 1 Met Val Phe Pro Ala Lys Arg Phe Cys Leu Val Pro Ser Met Glu Gly Val Arg Trp Ala Phe Ser Cys Gly Thr Trp Leu Pro Ser Arg Ala Glu Trp Leu Leu Ala Val Arg Ser Ile Gln Pro Glu Glu Lys Glu Arg Ile Gly Gln Phe Val Phe Ala Arg Asp Ala Lys Ala Ala Met Ala Gly Arg Leu Met Ile Arg Lys Leu Val Ala Glu Lys Leu Asn Ile Pro Trp Asn His Ile Arg Leu Gln Arg Thr Ala Lys Gly Lys Pro Val Leu Ala Lys Asp Ser Ser Asn Pro Tyr Pro Asn Phe Asn Phe Asn Ile Ser His Gln Gly Asp Tyr Ala Val Leu Ala Ala Glu Pro Glu Leu Gln Val Gly Ile Asp Ile Met Lys Thr Ser Phe Pro Gly Arg Gly Ser Ile Pro Glu Phe Phe His Ile Met Lys Arg Lys Phe Thr Asn Lys Glu Trp Glu Thr Ile Arg Ser Phe Lys Asp Glu Trp Thr Gln Leu Asp Met Phe Tyr Arg Asn Trp Ala Leu Lys Glu Ser Phe Ile Lys Ala Ile Gly Val Gly Leu Gly Phe Glu Leu Gln Arg Leu Glu Phe Asp Leu Ser Pro Leu Asn Leu Asp Ile Gly Gln Val Tyr Lys Glu Thr Arg Leu Phe Leu Asp Gly Glu Glu Glu Lys Glu Trp Ala Phe Glu Glu Ser Lys Ile Asp Glu His His Phe WO 00/68380 . PCT/US00/12811 Val Ala Val Ala Leu Arg Lys Pro Asp Gly Ser Arg His Gln Asp Val Pro Ser Gln Asp Asp Ser Lys Pro Thr Gln Arg Gln Phe Thr Ile Leu Asn Phe Asn Asp Leu Met Ser Ser Ala Val Pro Met Thr Pro Glu Asp Pro Ser Phe Trp Asp Cys Phe Cys Phe Thr Glu Glu Ile Pro Ile Arg Asn Gly Thr Lys Ser <210> 2 <211> 554 <212> PRT
<213> Homo Sapiens <220>
<221> misc_feature <223> Incyte ID No: 1258888CD1 <400> 2 Met Pro Leu Pro Trp Ser Leu Ala Leu Pro Leu Leu Leu Ser Trp Val Ala Gly Gly Phe Gly Asn Ala Ala Ser Ala Arg His His Gly Leu Leu Ala Ser Ala Arg Gln Pro Gly Val Cys His Tyr Gly Thr Lys Leu Ala Cys Cys Tyr Gly Trp Arg Arg Asn Ser Lys Gly Val Cys Glu Ala Thr Cys Glu Pro Gly Cys Lys Phe Gly Glu Cys Val Gly Pro Asn Lys Cys Arg Cys Phe Pro Gly Tyr Thr Gly Lys Thr Cys Ser Gln Asp Val Asn Glu Cys Gly Met Lys Pro Arg Pro Cys Gln His Arg Cys Val Asn Thr His Gly Ser Tyr Lys Cys Phe Cys Leu Ser Gly His Met Leu Met Pro Asp Ala Thr Cys Val Asn Ser Arg Thr Cys Ala Met Ile Asn Cys Gln Tyr Ser Cys Glu Asp Thr Glu Glu Gly Pro Gln Cys Leu Cys Pro Ser Ser Gly Leu Arg Leu Ala Pro Asn Gly Arg Asp Cys Leu Asp Ile Asp Glu Cys Ala Ser Gly Lys Val Ile Cys Pro Tyr Asn Arg Arg Cys Val Asn Thr Phe Gly Ser Tyr Tyr Cys Lys Cys His Ile Gly Phe Glu Leu Gln Tyr Ile Ser Gly Arg Tyr Asp Cys Ile Asp Ile Asn Glu Cys Thr Met Asp Ser His Thr Cys Ser His His Ala Asn Cys Phe Asn Thr Gln Gly Ser Phe Lys Cys Lys Cys Lys Gln Gly Tyr Lys Gly Asn Gly Leu Arg Cys Ser Ala Ile Pro Glu Asn Ser Val Lys Glu Val Leu Arg Ala Pro Gly Thr Ile Lys Asp Arg Ile Lys Lys Leu Leu Ala His Lys Asn Ser Met Lys Lys Lys Ala Lys Ile Lys Asn Val Thr Pro Glu Pro Thr Arg Thr Pro Thr Pro Lys Val Asn Leu Gln Pro Phe Asn Tyr Glu Glu Ile Val Ser Arg Gly Gly Asn Ser His Gly Gly Lys Lys Gly Asn Glu Glu Lys Met Lys Glu Gly Leu Glu Asp Glu Lys Arg Glu Glu Lys Ala Leu Lys Asn Asp Ile Glu Glu Arg Ser Leu Arg Gly Asp Val Phe Phe Pro Lys Val Asn Glu Ala Gly Glu Phe Gly Leu Ile Leu Val Gln Arg Lys Ala Leu Thr Ser Lys Leu Glu His Lys Ala Asp Leu Asn Ile Ser Val Asp Cys Ser Phe Asn His Gly Ile Cys Asp Trp Lys Gln Asp Arg Glu Asp Asp Phe Asp Trp Asn Pro Ala Asp Arg Asp Asn Ala Ile Gly Phe Tyr Met Ala Val Pro Ala Leu Ala Gly His Lys Lys Asp Ile Gly Arg Leu Lys Leu Leu Leu Pro Asp Leu Gln Pro Gln Ser Asn Phe Cys Leu Leu Phe Asp Tyr Arg Leu Ala Gly Asp Lys Val Gly Lys Leu Arg Val Phe Val Lys Asn Ser Asn Asn Ala Leu Ala Trp Glu Lys Thr Thr Ser Glu Asp Glu Lys Trp Lys Thr Gly Lys Ile Gln Leu Tyr Gln Gly Thr Asp Ala Thr Lys Ser Ile Ile Phe Glu Ala Glu Arg Gly Lys Gly Lys Thr Gly Glu Ile Ala Val Asp Gly Val Leu Leu Val Ser Gly Leu Cys Pro Asp Ser Leu Leu Ser Val Asp Asp <210> 3 <211> 482 <212> PRT
<213> Homo Sapiens <220>
<221> misc_feature <223> Incyte ID No: 1375891CD1 <400> 3 Met Gly Cys Leu Trp Gly Leu Ala Leu Pro Leu Phe Phe Phe Cys Trp Glu Val Gly Val Ser Gly Ser Ser Ala Gly Pro Ser Thr Arg Arg Ala Asp Thr Ala Met Thr Thr Asp Asp Thr Glu Val Pro Ala Met Thr Leu Ala Pro Gly His Ala Ala Leu Glu Thr Gln Thr Leu Ser Ala Glu Thr Ser Ser Arg Ala Ser Thr Pro Ala Gly Pro Ile Pro Glu Ala Glu Thr Arg Gly Ala Lys Arg Ile Ser Pro Ala Arg Glu Thr Arg Ser Phe Thr Lys Thr Ser Pro Asn Phe Met Val Leu Ile Ala Thr Ser Val Glu Thr Ser Ala Ala Ser Gly Ser Pro Glu Gly Ala Gly Met Thr Thr Val Gln Thr Ile Thr Gly Ser Asp Pro Glu Glu Ala Ile Phe Asp Thr Leu Cys Thr Asp Asp Ser Ser Glu Glu Ala Lys Thr Leu Thr Met Asp Ile Leu Thr Leu Ala His Thr Ser Thr Glu Ala Lys Gly Leu Ser Ser Glu Ser Ser Ala Ser Ser Asp Gly Pro His Pro Val Ile Thr Pro Ser Arg Ala Ser Glu Ser Ser Ala Ser Ser Asp Gly Pro His Pro Val Ile Thr Pro Ser Arg Ala Ser Glu Ser Ser Ala Ser Ser Asp Gly Pro His Pro Val Ile Thr Pro Ser Trp Ser Pro Gly Ser Asp Val Thr Leu Leu Ala Glu Ala Leu Val Thr Val Thr Asn Ile Glu Val Ile Asn Cys Ser Ile Thr Glu Ile Glu Thr Thr Thr Ser Ser Ile Pro Gly Ala Ser Asp Ile Asp Leu Ile Pro Thr Glu Gly Val Lys Ala Ser Ser Thr Ser Asp Pro Pro Ala Leu Pro Asp Ser Thr Glu Ala Lys Pro His Ile Thr Glu Val Thr Ala Ser Ala Glu Thr Leu Ser Thr Ala Gly Thr Thr Glu Ser Ala Ala Pro His Ala Thr Val Gly Thr Pro Leu Pro Thr Asn Ser Ala Thr Glu Arg Glu Val Thr Ala Pro Gly Ala Thr Thr Leu Ser Gly Ala Leu Val Thr Val Ser Arg Asn Pro Leu Glu Glu Thr Ser Ala Leu Ser Val Glu Thr Pro Ser Tyr Val Lys Val Ser Gly Ala Ala Pro Val Ser Ile Glu Ala Gly Ser Ala Val Gly Lys Thr Thr Ser Phe Ala Gly Ser Ser Ala Ser Ser Tyr Ser Pro Ser Glu Ala Ala Leu Lys Asn Phe Thr Pro Ser Glu Thr Pro Thr Met Asp Ile Ala Thr Lys Gly Pro Phe Pro Thr Ser Arg Asp Pro Leu Pro Ser Val Pro Pro Thr Thr Thr Asn Ser Ser Arg Gly Thr Asn Ser Thr Leu Ala Lys Ile Thr Thr Ser Ala Lys Thr Thr Met Lys Pro Gln Gln Pro Arg Pro Arg Leu Pro Gly Arg Gly Arg Pro Gln Thr <210> 4 <211> 735 <212> PRT
<213> Homo Sapiens <220>
<221> misc_feature <223> Incyte ID No: 1524355CD1 <400> 4 Met Ala Ala Gly Gly Ala Val Ala Ala Ala Pro Glu Cys Arg Leu Leu Pro Tyr Ala Leu His Lys Trp Ser Ser Phe Ser Ser Thr Tyr Leu Pro Glu Asn Ile Leu Val Asp Lys Pro Asn Asp Gln Ser Ser Arg Trp Ser Ser Glu Ser Asn Tyr Pro Pro Gln Tyr Leu Ile Leu Lys Leu Glu Arg Pro Ala Ile Val Gln Asn Ile Thr Phe Gly Lys Tyr Glu Lys Thr His Val Cys Asn Leu Lys Lys Phe Lys Val Phe Gly Gly Met Asn Glu Glu Asn Met Thr Glu Leu Leu Ser Ser Gly Leu Lys Asn Asp Tyr Asn Lys Glu Thr Phe Thr Leu Lys His Lys Ile Asp Glu Gln Met Phe Pro Cys Arg Phe Ile Lys Ile Val Pro Leu Leu Ser Trp Gly Pro Ser Phe Asn Phe Ser Ile Trp Tyr Val Glu Leu Ser Gly Ile Asp Asp Pro Asp Ile Val Gln Pro Cys Leu Asn Trp Tyr Ser Lys Tyr Arg Glu Gln Glu Ala Ile Arg Leu Cys Leu Lys His Phe Arg Gln His Asn Tyr Thr Glu Ala Phe Glu Ser Leu Gln Lys Lys Thr Lys Ile Ala Leu Glu His Pro Met Leu Thr Asp Ile His Asp Lys Leu Val Leu Lys Gly Asp Phe Asp Ala Cys Glu Glu Leu Ile Glu Lys Ala Val Asn Asp Gly Leu Phe Asn Gln Tyr Ile Ser Gln Gln Glu Tyr Lys Pro Arg Trp Ser Gln Ile Ile Pro Lys Ser Thr Lys Gly Asp Gly Glu Asp Asn Arg Pro Gly Met Arg Gly Gly His Gln Met Val Ile Asp Val Gln Thr Glu Thr Val Tyr Leu Phe Gly Gly Trp Asp Gly Thr Gln Asp Leu Ala Asp Phe Trp Ala Tyr Ser Val Lys Glu Asn Gln Trp Thr Cys Ile Ser Arg Asp Thr Glu Lys Glu Asn Gly Pro Ser Ala Arg Ser Cys His Lys Met Cys Ile Asp Ile Gln Arg Arg Gln Ile Tyr Thr Leu Gly Arg Tyr Leu Asp Ser Ser Val Arg Asn Ser Lys Ser Leu Lys Ser Asp Phe Tyr Arg Tyr Asp Ile Asp Thr Asn Thr Trp Met Leu Leu Ser Glu Asp Thr Ala Ala Asp Gly Gly Pro Lys Leu Val Phe Asp His Gln Met Cys Met Asp Ser Glu Lys His Met Ile Tyr Thr Phe Gly Gly Arg Ile Leu Thr Cys Asn Gly Ser Val Asp Asp Ser Arg Ala Ser Glu Pro Gln Phe Ser Gly Leu Phe Ala Phe Asn Cys Gln Cys Gln Thr Trp Lys Leu Leu Arg Glu Asp Ser Cys Asn Ala Gly Pro Glu Asp Ile Gln Ser Arg Ile Gly His Cys Met Leu Phe His Ser Lys Asn Arg Cys Leu Tyr Val Phe Gly Gly Gln Arg Ser Lys Thr Tyr Leu Asn Asp Phe Phe Ser Tyr Asp Val Asp Ser Asp His Val Asp Ile Ile Ser Asp Gly Thr Lys Lys Asp Ser Gly Met Val Pro Met Thr Gly Phe Thr Gln Arg Ala Thr Ile Asp Pro Glu Leu Asn Glu Ile His Val Leu Ser Gly Leu Ser Lys Asp Lys Glu Lys Arg Glu Glu Asn Val Arg Asn Ser Phe Trp Ile Tyr Asp Ile Val Arg Asn Ser Trp Ser Cys Val Tyr Lys Asn Asp Gln Ala Ala Lys Asp Asn Pro Thr Lys Ser Leu Gln Glu Glu Glu Pro Cys Pro Arg Phe Ala His Gln Leu Val Tyr Asp Glu Leu His Lys Val His Tyr Leu Phe Gly Gly Asn Pro Gly Lys Ser Cys Ser Pro Lys Met Arg Leu Asp Asp Phe Trp Ser Leu Lys Leu Cys Arg Pro Ser Lys Asp Tyr Leu Leu Arg His Cys Lys Tyr Leu Ile Arg Lys His Arg Phe Glu Glu Lys Ala Gln Val Asp Pro Leu Ser Ala Leu Lys Tyr Leu Gln Asn Asp Leu Tyr Ile Thr Val Asp His Ser Asp Pro Glu Glu Thr Lys Glu Phe Gln Leu Leu Ala Ser Ala Leu Phe Lys Ser Gly Ser Asp Phe Thr Ala Leu Gly Phe Ser Asp Val Asp His Thr Tyr Ala Gln Arg Thr Gln Leu Phe Asp Thr Leu Va1 Asn Phe Phe Pro Asp Ser Met Thr Pro Pro Lys Gly Asn Leu Val Asp Leu Ile Thr Leu <210> 5 <211> 424 <212> PRT
<213> Homo sapiens <220>
<221> misc_feature <223> Incyte ID No: 1598937CD1 <400> 5 Met Ala Pro Glu Glu Asp Ala Gly Gly Glu Ala Leu Gly Gly Ser Phe Trp Glu Ala Gly Asn Tyr Arg Arg Thr Val Gln Arg Val Glu Asp Gly His Arg Leu Cys Gly Asp Leu Val Ser Cys Phe Gln Glu Arg Ala Arg Ile Glu Lys Ala Tyr Ala Gln Gln Leu Ala Asp Trp Ala Arg Lys Trp Arg Gly Thr Val Glu Lys Gly Pro Gln Tyr Gly Thr Leu Glu Lys Ala Trp His Ala Phe Phe Thr Ala Ala Glu Arg Leu Ser Ala Leu His Leu Glu Val Arg Glu Lys Leu Gln Gly Gln Asp Ser Glu Arg Val Arg Ala Trp Gln Arg Gly Ala Phe His Arg Pro Val Leu Gly Gly Phe Arg Glu Ser Arg Ala Ala Glu Asp Gly Phe Arg Lys Ala Gln Lys Pro Trp Leu Lys Arg Leu Lys Glu Val Glu Ala Ser Lys Lys Ser Tyr His Ala Ala Arg Lys Asp Glu Lys Thr Ala Gln Thr Arg Glu Ser His Ala Lys Ala Asp Ser Ala Val Ser Gln Glu Gln Leu Arg Lys Leu Gln Glu Arg Val Glu Arg Cys Ala Lys Glu Ala Glu Lys Thr Lys Ala Gln Tyr Glu Gln Thr Leu Ala Glu Leu His Arg Tyr Thr Pro Arg Tyr Met Glu Asp Met Glu Gln Ala Phe Glu Thr Cys Gln Ala Ala Glu Arg Gln Arg Leu Leu Phe Phe Lys Asp Met Leu Leu Thr Leu His Gln His Leu Asp Leu Ser Ser Ser Glu Lys Phe His Glu Leu His Arg Asp Leu His Gln Gly Ile Glu Ala Ala Ser Asp Glu Glu Asp Leu Arg Trp Trp Arg Ser Thr His Gly Pro Gly Met Ala Met Asn Trp Pro Gln Phe Glu Glu Trp Ser Leu Asp Thr Gln Arg Thr Ile Ser Arg Lys Glu Lys Gly Gly Arg Ser Pro Asp Glu Val Thr Leu Thr Ser Ile Val Pro Thr Arg Asp Gly Thr Ala Pro Pro Pro Gln Ser Pro Gly ser Pro Gly Thr Gly Gln Asp Glu Glu Trp Ser Asp Glu Glu Ser Pro Arg Lys Ala Ala Thr Gly Val Arg Val Arg Ala Leu Tyr Asp Tyr Ala Gly Gln Glu Ala Asp Glu Leu Ser Phe Arg Ala Gly Glu Glu Leu Leu Lys Met Ser Glu Glu Asp Glu Gln Gly Trp Cys Gln Gly Gln Leu Gln Ser Gly Arg Ile Gly Leu Tyr Pro Ala Asn Tyr Val Glu Cys Val Gly Ala <210> 6 <211> 420 <212> PRT
<213> Homo Sapiens <220>
<221> misc_feature <223> Incyte ID No: 1725801CD1 <400> 6 Met Ala Pro Trp Pro Pro Lys Gly Leu Val Pro Ala Val Leu Trp Gly Leu Ser Leu Phe Leu Asn Leu Pro Gly Pro Ile Trp Leu Gln Pro Ser Pro Pro Pro Gln Ser Ser Pro Pro Pro Gln Pro His Pro Cys His Thr Cys Arg Gly Leu Val Asp Ser Phe Asn Lys Gly Leu Glu Arg Thr Ile Arg Asp Asn Phe Gly Gly Gly Asn Thr Ala Trp Glu Glu Glu Asn Leu Ser Lys Tyr Lys Asp Ser Glu Thr Arg Leu Val Glu Val Leu Glu Gly Val Cys Ser Lys Ser Asp Phe Glu Cys His Arg Leu Leu Glu Leu Ser Glu Glu Leu Val Glu Ser Trp Trp Phe His Lys Gln Gln Glu Ala Pro Asp Leu Phe Gln Trp Leu Cys Ser Asp Ser Leu Lys Leu Cys Cys Pro Ala Gly Thr Phe Gly Pro Ser Cys Leu Pro Cys Pro Gly Gly Thr Glu Arg Pro Cys Gly Gly Tyr Gly Gln Cys Glu Gly Glu Gly Thr Arg Gly Gly Ser Gly His Cys Asp Cys Gln Ala Gly Tyr Gly Gly Glu Ala Cys Gly Gln Cys Gly Leu Gly Tyr Phe Glu Ala Glu Arg Asn Ala Ser His Leu Val Cys Ser Ala Cys Phe Gly Pro Cys Ala Arg Cys Ser Gly Pro Glu Glu Ser Asn Cys Leu Gln Cys Lys Lys Gly Trp Ala Leu His His Leu Lys Cys Val Asp Ile Asp Glu Cys Gly Thr Glu Gly Ala Asn Cys Gly Ala Asp Gln Phe Cys Val Asn Thr Glu Gly Ser Tyr Glu Cys Arg Asp Cys Ala Lys Ala Cys Leu Gly Cys Met Gly Ala Gly Pro Gly Arg Cys Lys Lys Cys Ser Pro Gly Tyr Gln Gln Val Gly Ser Lys Cys Leu Asp Val Asp Glu Cys Glu Thr Glu Val Cys Pro Gly Glu Asn Lys Gln Cys Glu Asn Thr Glu Gly Gly Tyr Arg Cys Ile Cys Ala Glu Gly Tyr Lys Gln Met Glu Gly Ile Cys Val Lys Glu Gln Ile Pro Glu Ser Ala Gly Phe Phe Ser Glu Met Thr Glu Asp Glu Leu Val Val Leu Gln Gln Met Phe Phe Gly Ile Ile Ile Cys Ala Leu Ala Thr Leu Ala Ala Lys Gly Asp Leu Val Phe Thr Ala Ile Phe Ile Gly Ala Val Ala Ala Met Thr Gly Tyr Trp Leu Ser Glu Arg Ser Asp Arg Val Leu Glu Gly Phe Ile Lys Gly Arg <210> 7 <211> 795 <212> PRT
<213> Homo Sapiens <220>
<221> misc_feature <223> Incyte ID No: 1730482CD1 <400> 7 Met Glu Lys Thr Gln Ser Leu Pro Thr Arg Pro Pro Thr Phe Pro Pro Thr Ile Pro Pro Ala Lys Glu Val Cys Lys Ala Ala Lys Ala Asp Leu Val Phe Met Val Asp Gly Ser Trp Ser Ile Gly Asp Glu Asn Phe Asn Lys Ile Ile Ser Phe Leu Tyr Ser Thr Val Gly Ala Leu Asn Lys Ile Gly Thr Asp Gly Thr Gln Val Ala Met Val Gln Phe Thr Asp Asp Pro Arg Thr Glu Phe Lys Leu Asn Ala Tyr Lys Thr Lys Glu Thr Leu Leu Asp Ala Ile Lys His Ile Ser Tyr Lys Gly Gly Asn Thr Lys Thr Gly Lys Ala Ile Lys Tyr Val Arg Asp Thr Leu Phe Thr Ala Glu Ser Gly Thr Arg Arg Gly Ile Pro Lys Val Ile Val Val Ile Thr Asp Gly Arg Ser Gln Asp Asp Val Asn Lys Ile Ser Arg Glu Met Gln Leu Asp Gly Tyr Ser Ile Phe Ala Ile Gly Val Ala Asp Ala Asp Tyr Ser Glu Leu Val Ser Ile Gly Ser Lys Pro Ser Ala Arg His Val Phe Phe Val Asp Asp Phe Asp Ala Phe Lys Lys Ile Glu Asp Glu Leu Ile Thr Phe Val Cys Glu Thr Ala Ser Ala Thr Cys Pro Val Val His Lys Asp Gly Ile Asp Leu Ala Gly Phe Lys Met Met Glu Met Phe Gly Leu Val Glu Lys Asp Phe Ser Ser Val Glu Gly Val Ser Met Glu Pro Gly Thr Phe Asn Val Phe Pro Cys Tyr Gln Leu His Lys Asp Ala Leu Val Ser Gln Pro Thr Arg Tyr Leu His Pro Glu Gly Leu Pro Ser Asp Tyr Thr Ile Ser Phe Leu Phe Arg Ile Leu Pro Asp Thr Pro Gln Glu Pro Phe Ala Leu Trp Glu Ile Leu Asn Lys Asn Ser Asp Pro Leu Val Gly Val Ile Leu Asp Asn Gly Gly Lys Thr Leu Thr Tyr Phe Asn Tyr Asp Gln Ser Gly Asp Phe Gln Thr Val Thr Phe Glu Gly Pro Glu Ile Arg Lys Ile Phe Tyr Gly Ser Phe His Lys Leu His Ile Val Val Ser Glu Thr Leu Val Lys Val Val Ile Asp Cys Lys Gln Val Gly Glu Lys Ala Met Asn Ala Ser Ala Asn Ile Thr Ser Asp Gly Val Glu Val Leu Gly Lys Met Val Arg Ser Arg Gly Pro Gly Gly Asn Ser Ala Pro Phe Gln Leu Gln Met Phe Asp Ile Val Cys Ser Thr Ser Trp Ala Asn Thr Asp Lys Cys Cys Glu Leu Pro Gly Leu Arg Asp Asp Glu Ser Cys Pro Asp Leu Pro His Ser Cys Ser Cys Ser Glu Thr Asn Glu Val Ala Leu Gly Pro Ala Gly Pro Pro Gly Gly Pro Gly Leu Arg Gly Pro Lys Gly Gln Gln Gly Glu Pro Gly Pro Lys Gly Pro Asp Gly Pro Arg Gly Glu Ile Gly Leu Pro Gly Pro Gln Gly Pro Pro Gly Pro Gln Gly Pro Ser Gly Leu Ser Ile Gln Gly Met Pro Gly Met Pro Gly Glu Lys Gly Glu Lys Gly Asp Thr Gly Leu Pro Gly Pro Gln Gly Ile Pro Gly Gly Val Gly Ser Pro Gly Arg Asp Gly Ser Pro Gly Gln Arg Gly Leu Pro Gly Lys Asp Gly Ser Ser Gly Pro Pro Gly Pro Pro Gly Pro Ile Gly Ile Pro Gly Thr Pro Gly Val Pro Gly Ile Thr Gly Ser Met Gly Pro Gln Gly Ala Leu Gly Pro Pro Gly Val Pro Gly Ala Lys Gly Glu Arg Gly Glu Arg Gly Asp Leu Gln Ser Gln Ala Met Val Arg Ser Val Ala Arg Gln Val Cys Glu Gln Leu Ile Gln Ser His Met Ala Arg Tyr Thr Ala Ile Leu Asn Gln Ile Pro Ser His Ser Ser Ser Ile Arg Thr Val Gln Gly Pro Pro Gly Glu Pro Gly Arg Pro Gly Ser Pro Gly Ala Pro Gly Glu Gln Gly Pro Pro Gly Thr Pro Gly Phe Pro Gly Asn Ala Gly Val Pro Gly Thr Pro Gly Glu Arg Gly Leu Thr Gly Ile Lys Gly Glu Lys Gly Asn Pro Gly Val Gly Thr Gln Gly Pro Arg Gly Pro Pro Gly Pro Ala Gly Pro Ser Gly Glu Ser Arg Pro Gly Ser Pro Gly Pro Pro Gly Ser Pro Gly Pro Arg Gly Pro Pro Gly His Leu Gly Val Pro Gly Pro Gln Gly Pro Ser Gly Gln Pro Gly Tyr Cys Asp Pro Ser Ser Cys Ser Ala Tyr Gly Val Arg Ala Pro His Pro Asp Gln Pro Glu Phe Thr Pro Val Gln Asp Glu Leu Glu Ala Met Glu Leu Trp Gly Pro Gly Val <210> 8 <211> 306 <212> PRT
<213> Homo sapiens <220>
<221> misc feature <223> Incyte ID No: 1810058CD1 <400> 8 Met Arg Ile Trp Trp Leu Leu Leu Ala Ile Glu Ile Cys Thr Gly Asn Ile Asn Ser Gln Asp Thr Cys Arg Gln Gly His Pro Gly Ile Pro Gly Asn Pro Gly His Asn Gly Leu Pro Gly Arg Asp Gly Arg Asp Gly Ala Lys Gly Asp Lys Gly Asp Ala Gly Glu Pro Gly Arg Pro Gly Ser Pro Gly Lys Asp Gly Thr Ser Gly Glu Lys Gly Glu Arg Gly Ala Asp Gly Lys Val Glu Ala Lys Gly Ile Lys Gly Asp Gln Gly Ser Arg Gly Ser Pro Gly Lys His Gly Pro Lys Gly Leu Ala Gly Pro Met Gly Glu Lys Gly Leu Arg Gly Glu Thr Gly Pro Gln Gly Gln Lys Gly Asn Lys Gly Asp Val Gly Pro Thr Gly Pro Glu Gly Pro Arg Gly Asn Ile Gly Pro Leu Gly Pro Thr Gly Leu Pro Gly Pro Met Gly Pro Ile Gly Lys Pro Gly Pro Lys Gly Glu Ala Gly Pro Thr Gly Pro Gln Gly Glu Pro Gly Val Arg Gly Ile Arg Gly Trp Lys Gly Asp Arg Gly Glu Lys Gly Lys Ile Gly Glu Thr Leu Val Leu Pro Lys Ser Ala Phe Thr Val Gly Leu Thr Val Leu Ser Lys Phe Pro Ser Ser Asp Val Pro Ile Lys Phe Asp Lys Ile His Ile Thr Val Phe Ser Arg Asn Val Gln Val Ser Leu Val Lys Asn Gly Val Lys Ile Leu His Thr Arg Asp Ala Tyr Val Ser Ser Glu Asp Gln Ala Ser Gly Ser Ile Val Leu Gln Leu Lys Leu Gly Asp Glu Met Trp Leu Gln Val Thr Gly Gly Glu Arg Phe Asn Gly Leu Phe Ala Asp Glu Asp Asp Asp Thr Thr Phe Thr Gly Phe Leu Leu Phe Ser Ser Gln <210> 9 <211> 338 <212> PRT
<213> Homo Sapiens <220>
<221> misc_feature <223> Incyte ID No: 2040679CD1 <400> 9 Met Tyr Val Leu Ser Pro Val Glu Phe Ile Ile Leu Gln Leu Leu Phe Ile Gln Ala Ile Ser Ser Ser Leu Lys Gly Phe Leu Ser Ala Met Arg Leu Ala His Arg Gly Cys Asn Val Asp Thr Pro Val Ser Thr Leu Thr Pro Val Lys Thr Ser Glu Phe Glu Asn Phe Lys Thr Lys Met Val Ile Thr Ser Lys Lys Asp Tyr Pro Leu Ser Lys Asn Phe Pro Tyr Ser Leu Glu His Leu Gln Thr Ser Tyr Cys Gly Leu Val Arg Val Asp Met Arg Met Leu Cys Leu Lys Ser Leu Arg Lys Leu Asp Leu Ser His Asn His Ile Lys Lys Leu Pro Ala Thr Ile Gly Asp Leu Ile His Leu Gln Glu Leu Asn Leu Asn Asp Asn His Leu Glu Ser Phe Ser Val Ala Leu Cys His Ser Thr Leu Gln Lys Ser Leu Arg Ser Leu Asp Leu Ser Lys Asn Lys Ile Lys Ala Leu Pro Val Gln Phe Cys Gln Leu Gln Glu Leu Lys Asn Leu Lys Leu Asp Asp Asn Glu Leu Ile Gln Phe Pro Cys Lys Ile Gly Gln Leu Ile Asn Leu Arg Phe Leu Ser Ala Ala Arg Asn Lys Leu Pro Phe Leu Pro Ser Glu Phe Arg Asn Leu Ser Leu Glu Tyr Leu Asp Leu Phe Gly Asn Thr Phe Glu Gln Pro Lys Val Leu Pro Val Ile Lys Leu Gln Ala Pro Leu Thr Leu Leu Glu Ser Ser Ala Arg Thr Ile Leu His Asn Arg Ile Pro Tyr Gly Ser His Ile Ile Pro Phe His Leu Cys Gln Asp Leu Asp Thr Ala Lys Ile Cys Val Cys Gly Arg Phe Cys Leu Asn Ser Phe Ile Gln Gly Thr Thr Thr Met Asn Leu His Ser Val Ala His Thr Val Val Leu Val Asp Asn Leu Gly Gly Thr Glu Ala Pro Ile Ile Ser Tyr Phe Cys Ser Leu Gly Cys Tyr Val Asn Ser Ser Asp Met Leu Lys <210> 10 <211> 164 <212> PRT
<213> Homo sapiens <220>
<221> misc_feature <223> Incyte ID No: 2960051CD1 <400> 10 Met Lys Ile Ala Val Leu Phe Cys Phe Phe Leu Leu Ile Ile Phe Gln Thr Asp Phe Gly Lys Asn Glu Glu Ile Pro Arg Lys Gln Arg Arg Lys Ile Tyr His Arg Arg Leu Arg Lys Ser Ser Thr Ser His Lys His Arg Ser Asn Arg Gln Leu Gly Ile Pro Gln Thr Thr Val Phe Thr Pro Va1 Ala Arg Leu Pro Ile Val Asn Phe Asp Tyr Ser Met Glu Glu Lys Phe Glu Ser Phe Ser Ser Phe Pro Gly Val Glu Ser Ser Tyr Asn Val Leu Pro Gly Lys Lys Gly His Cys Leu Val Lys Gly Ile Thr Met Tyr Asn Lys Ala Val Trp Ser Pro Glu Pro Cys Thr Thr Cys Leu Cys Ser Asp Gly Arg Val Leu Cys Asp Glu Thr Met Cys His Pro Gln Arg Cys Pro Gln Thr Val Ile Pro Glu Gly Glu Cys Cys Pro Val Cys Ser Ala Thr Gly Thr Glu Ile <210> 11 <211> 327 <212> PRT
<213> Homo sapiens <220>
<221> misc_feature <223> Incyte ID No: 3117318CD1 <400> 11 Met Arg Ala Leu Pro Gly Leu Leu Glu Ala Arg Ala Arg Thr Pro Arg Leu Leu Leu Leu Gln Cys Leu Leu Ala Ala Ala Arg Pro Ser Ser Ala Asp Gly Ser Ala Pro Asp Ser Ala Phe Thr Ser Pro Pro Leu Arg Glu Glu Ile Met Ala Asn Asn Phe Ser Leu Glu Ser His Asn Ile Ser Leu Thr Glu His Ser Ser Met Pro Val Glu Lys Asn Ile Thr Leu Glu Arg Pro Ser Asn Val Asn Leu Thr Cys Gln Phe Thr Thr Ser Gly Asp Leu Asn Ala Val Asn Val Thr Trp Lys Lys Asp Gly Glu Gln Leu Glu Asn Asn Tyr Leu Val Ser Ala Thr Gly Ser Thr Leu Tyr Thr Gln Tyr Arg Phe Thr Ile Ile Asn Ser Lys Gln Met Gly Ser Tyr Ser Cys Phe Phe Arg Glu Glu Lys Glu Gln Arg Gly Thr Phe Asn Phe Lys Val Pro Glu Leu His Gly Lys Asn Lys Pro Leu Ile Ser Tyr Val Gly Asp Ser Thr Val Leu Thr Cys Lys Cys Gln Asn Cys Phe Pro Leu Asn Trp Thr Trp Tyr Ser Ser Asn Gly Ser Val Lys Val Pro Val Gly Val Gln Met Asn Lys Tyr Val Ile Asn Gly Thr Tyr Ala Asn Glu Thr Lys Leu Lys Ile Thr Gln Leu Leu Glu Glu Asp Gly Glu Ser Tyr Trp Cys Arg Ala Leu Phe Gln Leu Gly Glu Ser Glu Glu His Ile Glu Leu Val Val Leu Ser Tyr Leu Val Pro Leu Lys Pro Phe Leu Val Ile Val Ala Glu Val Ile Leu Leu Val Ala Thr Ile Leu Leu Cys Glu Lys Tyr Thr Gln Lys Lys Lys Lys His Ser Asp Glu Gly Lys Glu Phe Glu Gln Ile Glu Gln Leu Lys Ser Asp Asp Ser Asn Gly Ile Glu Asn Asn Val Pro Arg His Arg Lys Asn Glu Ser Leu Gly Gln <210> 12 <211> 716 <212> PRT
<213> Homo sapiens <220>
<221> misc_feature <223> Incyte ID No: 3486992CD1 <400> 12 Met Ala Arg Met Ser Phe Val Ile Ala Ala Cys Gln Leu Val Leu Gly Leu Leu Met Thr Ser Leu Thr Glu Ser Ser Ile Gln Asn Ser Glu Cys Pro Gln Leu Cys Val Cys Glu Ile Arg Pro Trp Phe Thr Pro Gln Ser Thr Tyr Arg Glu Ala Thr Thr Val Asp Cys Asn Asp Leu Arg Leu Thr Arg Ile Pro Ser Asn Leu Ser Ser Asp Thr Gln Val Leu Leu Leu Gln Ser Asn Asn Ile Ala Lys Thr Val Asp Glu Leu Gln Gln Leu Phe Asn Leu Thr Glu Leu Asp Phe Ser Gln Asn Asn Phe Thr Asn Ile Lys Glu Val Gly Leu Ala Asn Leu Thr Gln Leu Thr Thr Leu His Leu Glu Glu Asn Gln Ile Thr Glu Met Thr Asp Tyr Cys Leu Gln Asp Leu Ser Asn Leu Gln Glu Leu Tyr Ile Asn His Asn Gln Ile Ser Thr Ile Ser Ala His Ala Phe Ala Gly Leu Lys Asn Leu Leu Arg Leu His Leu Asn Ser Asn Lys Leu Lys Val Ile Asp Ser Arg Trp Phe Asp Ser Thr Pro Asn Leu Glu Ile Leu Met Ile Gly Glu Asn Pro Val Ile Gly Ile Leu Asp Met Asn Phe Lys Pro Leu Ala Asn Leu Arg Ser Leu Val Leu Ala Gly Met Tyr Leu Thr Asp Ile Pro Gly Asn Ala Leu Val Gly Leu Asp Ser Leu Glu Ser Leu Ser Phe Tyr Asp Asn Lys Leu Val Lys Val Pro Gln Leu Ala Leu Gln Lys Val Pro Asn Leu Lys Phe Leu Asp Leu Asn Lys Asn Pro Ile His Lys Ile Gln Glu Gly Asp Phe Lys Asn Met Leu Arg Leu Lys Glu Leu Gly Ile Asn Asn Met Gly Glu Leu Val Ser Val Asp Arg Tyr Ala Leu Asp Asn Leu Pro Glu Leu Thr Lys Leu Glu Ala Thr Asn Asn Pro Lys Leu Ser Tyr Ile His Arg Leu Ala Phe Arg Ser Val Pro Ala Leu Glu Ser Leu Met Leu Asn Asn Asn Ala Leu Asn Ala Ile Tyr Gln Lys Thr Val Glu Ser Leu Pro Asn Leu Arg Glu Ile Ser Ile His Ser Asn Pro Leu Arg Cys Asp Cys Val Ile His Trp Ile Asn Ser Asn Lys Thr Asn Ile Arg Phe Met Glu Pro Leu Ser Met Phe Cys Ala Met Pro Pro Glu Tyr Lys Gly His Gln Val Lys Glu Val Leu Ile Gln Asp Ser Ser Glu Gln Cys Leu Pro Met Ile Ser His Asp Ser Phe Pro Asn Arg Leu Asn Val Asp Ile Gly Thr Thr Val Phe Leu Asp Cys Arg Ala Met Ala Glu Pro Glu Pro Glu Ile Tyr Trp Val Thr Pro Ile Gly Asn Lys Ile Thr Val Glu Thr Leu Ser Asp Lys Tyr Lys Leu Ser Ser Glu Gly Thr Leu Glu Ile Ser Asn Ile Gln Ile Glu Asp Ser Gly Arg Tyr Thr Cys Val Ala Gln Asn Val Gln Gly Ala Asp Thr Arg Val Ala Thr Ile Lys Val Asn Gly Thr Leu Leu Asp Gly Thr Gln Val Leu Lys Ile Tyr Va1 Lys Gln Thr Glu Ser His Ser Ile Leu Val Ser Trp Lys Val Asn Ser Asn Val Met Thr Ser Asn Leu Lys Trp Ser Ser Ala Thr Met Lys Ile Asp Asn Pro His Ile Thr Tyr Thr Ala Arg Val Pro Val Asp Val His Glu Tyr Asn Leu Thr His Leu Gln Pro Ser Thr Asp Tyr Glu Val Cys Leu Thr Val Ser Asn Ile His Gln Gln Thr Gln Lys Ser Cys Val Asn Val Thr Thr Lys Asn Ala Ala Phe Ala Val Asp Ile Ser Asp Gln Glu Thr Ser Thr Ala Leu Ala Ala Val Met Gly Ser Met Phe Ala Val Ile Ser Leu Ala Ser Ile Ala Val Tyr Phe Ala Lys Arg Phe Lys Arg Lys Asn Tyr His His Ser Leu Lys Lys Tyr Met Gln Lys Thr Ser Ser Ile Pro Leu Asn Glu Leu Tyr Pro Pro Leu Ile Asn Leu Trp Glu Gly Asp Ser Glu Lys Asp Lys Asp Gly Ser Ala Asp Thr Lys Pro Thr Gln Val Asp Thr Ser Arg Ser Tyr Tyr Met Trp <210> 13 <211> 665 <212> PRT
<213> Homo Sapiens <220>
<221> misc_feature <223> Incyte ID No: 4568384CD1 <400> 13 Met Val Leu Val Phe His Lys Gly Glu Leu Gly His Pro Leu Glu Gln Ser Thr Asp Trp Pro Lys Ser Pro Lys Thr Pro Thr Gly Leu Arg Arg Gly Arg Gln Cys Ile Arg Pro Ala Glu Ile Val Ala Ser Leu Leu Glu Gly Glu Glu Asn Thr Cys Gly Lys Gln Lys Pro Lys Glu Asn Asn Leu Lys Pro Lys Phe Gln Ala Phe Lys Gly Val Gly Cys Leu Tyr Glu Lys Glu Ser Met Lys Lys Ser Leu Lys Asp Ser Val Ala Ser Asn Asn Lys Asp Gln Asn Ser Met Lys His Glu Asp Pro Ser Ile Ile Ser Met Glu Asp Gly Ser Pro Tyr Val Asn Gly Ser Leu Gly Glu Val Thr Pro Cys Gln His Ala Lys Lys Ala Asn Gly Pro Asn Tyr Ile Gln Pro Gln Lys Arg Gln Thr Thr Phe Glu Ser Gln Asp Arg Lys Ala Val Ser Pro Ser Ser Ser Glu Lys Arg Ser Lys Asn Pro Ile Ser Arg Pro Leu Glu Gly Lys Lys Ser Leu Ser Leu Ser Ala Lys Thr His Asn Ile Gly Phe Asp Lys Asp Ser Cys His Ser Thr Thr Lys Thr Glu Ala Ser Gln Glu Glu Arg Ser Asp Ser Ser Gly Leu Thr Ser Leu Lys Lys Ser Pro Lys Val Ser Ser Lys Asp Thr Arg Glu Ile Lys Thr Asp Phe Ser Leu Ser Ile Ser Asn Ser Ser Asp Val Ser Ala Lys Asp Lys His Ala Glu Asp Asn Glu Lys Arg Leu Ala Ala Leu Glu Ala Arg Gln Lys Ala Lys Glu Val Gln Lys Lys Leu Val His Asn Ala Leu Ala Asn Leu Asp Gly His Pro Glu Asp Lys Pro Thr His Ile Ile Phe Gly Ser Asp 290 . 295 300 Ser Glu Cys Glu Thr Glu Glu Thr Ser Thr Gln Glu Gln Ser His Pro Gly Glu Glu Trp Val Lys Glu Ser Met Gly Lys Thr Ser Gly Lys Leu Phe Asp Ser Ser Asp Asp Asp Glu Ser Asp Ser Glu Asp Asp Ser Asn Arg Phe Lys Ile Lys Pro Gln Phe Glu Gly Arg Ala Gly Gln Lys Leu Met Asp Leu Gln Ser His Phe Gly Thr Asp Asp Arg Phe Arg Met Asp Ser Arg Phe Leu Glu Thr Asp Ser Glu Glu Glu Gln Glu Glu Val Asn Glu Lys Lys Thr Ala Glu Glu Glu Glu Leu Ala Glu Glu Lys Lys Lys Ala Leu Asn Val Val Gln Ser Val Leu Gln Ile Asn Leu Ser Asn Ser Thr Asn Arg Gly Ser Val Ala Ala Lys Lys Phe Lys Asp Ile Ile His Tyr Asp Pro Thr Lys Gln Asp His Ala Thr Tyr Glu Arg Lys Arg Asp Asp Lys Pro Lys Glu Ser Lys Ala Lys Arg Lys Lys Lys Arg Glu Glu Ala Glu Lys Leu Pro Glu Val Ser Lys Glu Met Tyr Tyr Asn Ile Ala Met Asp Leu Lys Glu Ile Phe Gln Thr Thr Lys Tyr Thr Ser Glu Lys Glu Glu Gly Thr Pro Trp Asn Glu Asp Cys Gly Lys Glu Lys Pro Glu Glu Ile Gln Asp Pro Ala Ala Leu Thr Ser Asp Ala Glu Gln Pro Ser Gly Phe Thr Phe Ser Phe Phe Asp Ser Asp Thr Lys Asp Ile Lys Glu Glu Thr Tyr Arg Val Glu Thr Val Lys Pro Gly Lys Ile Va1 Trp Gln Glu Asp Pro Arg Leu Gln Asp Ser Ser Ser Glu Glu Glu Asp Val Thr Glu Glu Thr Asp His Arg Asn Ser Ser Pro Gly Glu Ala Ser Leu Leu Glu Lys Glu Thr Thr Arg Phe Phe Phe Phe Ser Lys Asn Asp Glu Arg Leu Gln Gly Ser Asp Leu Phe Trp Arg Gly Val Gly Ser Asn Met Ser Arg Asn Ser Trp Glu Ala Arg Thr Thr Asn Leu Arg Met Asp Cys Arg Lys Lys His Lys Asp Ala Lys Arg Lys Met Lys Pro Lys <210> 14 <211> 547 <212> PRT
<213> Homo Sapiens <220>
<221> misc_feature <223> Incyte ID No: 4586187CD1 <400> 14 Met Tyr Ser His Asn Val Val Ile Met Asn Leu Asn Asn Leu Asn Leu Thr Gln Val Gln Gln Arg Asn Leu Ile Thr Asn Leu Gln Arg Ser Val Asp Asp Thr Ser Gln Ala Ile Gln Arg Ile Lys Asn Asp Phe Gln Asn Leu Gln Gln Val Phe Leu Gln Ala Lys Lys Asp Thr Asp Trp Leu Lys Glu Lys Val Gln Ser Leu Gln Thr Leu Ala Ala Asn Asn Ser Ala Leu Ala Lys Ala Asn Asn Asp Thr Leu Glu Asp Met Asn Ser Gln Leu Asn Ser Phe Thr Gly Gln Met Glu Asn Ile Thr Thr Ile Ser Gln Ala Asn Glu Gln Asn Leu Lys Asp Leu Gln Asp Leu His Lys Asp Ala Glu Asn Arg Thr Ala Ile Lys Phe Asn Gln Leu Glu Glu Arg Phe Gln Leu Phe Glu Thr Asp Ile Val Asn Ile Ile Ser Asn Ile Ser Tyr Thr Ala His His Leu Arg Thr Leu Thr Ser Asn Leu Asn Glu Val Arg Thr Thr Cys Thr.Asp Thr Leu Thr Lys His Thr Asp Asp Leu Thr Ser Leu Asn Asn Thr Leu Ala Asn Ile Arg Leu Asp Ser Val Ser Leu Arg Met Gln Gln Asp Leu Met Arg Ser Arg Leu Asp Thr Glu Val Ala Asn Leu Ser Val Ile Met Glu Glu Met Lys Leu Val Asp Ser Lys His Gly Gln Leu Ile Lys Asn Phe Thr Ile Leu Gln Gly Pro Pro Gly Pro Arg Gly Pro Arg Gly Asp Arg Gly Ser Gln Gly Pro Pro Gly Pro Thr Gly Asn Lys Gly Gln Lys Gly Glu Lys Gly Glu Pro Gly Pro Pro Gly Pro Ala Gly Glu Arg Gly Pro Ile Gly Pro Ala Gly Pro Pro Gly Glu Arg Gly Gly Lys Gly Ser Lys Gly Ser Gln Gly Pro Lys Gly Ser Arg Gly Ser Pro Gly Lys Pro Gly Pro Gln Gly Pro Ser Gly Asp Pro Gly Pro Pro Gly Pro Pro Gly Lys Glu Gly Leu Pro Gly Pro Gln Gly Pro Pro Gly Phe Gln Gly Leu Gln Gly Thr Val Gly Glu Pro Gly Val Pro Gly Pro Arg Gly Leu Pro Gly Leu Pro Gly Val Pro Gly Met Pro Gly Pro Lys Gly Pro Pro Gly Pro Pro Gly Pro Ser Gly Ala Val Val Pro Leu Ala Leu Gln Asn Glu Pro Thr Pro Ala Pro Glu Asp Asn Ser Cys Pro Pro His Trp Lys Asn Phe Thr Asp Lys Cys Tyr Tyr Phe Ser Val Glu Lys Glu Ile Phe Glu Asp Ala Lys Leu Phe Cys Glu Asp Lys Ser Ser His Leu Val Phe Ile Asn Thr Arg Glu Glu Gln Gln Trp Ile Lys Lys Gln Met Val Gly Arg Glu Ser His Trp Ile Gly Leu Thr Asp Ser Glu Arg Glu Asn Glu Trp Lys Trp Leu Asp Gly Thr Ser Pro Asp Tyr Lys Asn Trp Lys Ala Gly Gln Pro Asp Asn Trp Gly His Gly His Gly Pro Gly Glu Asp Cys Ala Gly Leu Ile Tyr Ala Gly Gln Trp Asn Asp Phe Gln Cys Glu Asp Val Asn Asn Phe Ile Cys Glu Lys Asp Arg Glu Thr Val Leu Ser Ser Ala Leu <210> 15 <211> 109 <212> PRT
<213> Homo Sapiens <220>
<221> misc_feature <223> Incyte ID No: 401801CD1 <400> 15 Met Tyr Phe Asn Leu Gln Glu Asn Ile Phe Met Tyr Gly Gly Arg Ile Glu Thr Asn Asp Gly Asn Val Thr Asp Glu Leu Trp Val Phe Asn Ile His Ser Gln Ser Trp Ser Thr Lys Thr Pro Thr Val Leu Gly His Gly Gln Gln Tyr Ala Val Glu Gly His Ser Ala His Ile Met Glu Leu Asp Ser Arg Asp Val Val Met Ile Ile Ile Phe Gly Tyr Ser Ala Ile Tyr Gly Tyr Thr Ser Ser Ile Gln Glu Tyr His Ile Cys Glu Leu Leu Lys Asn Cys Asn Phe Phe Ile Asp Trp Glu Cys Phe Ser Leu <210> 16 <211> 192 <212> PRT
<213> Homo Sapiens <220>
<221> misc_feature <223> Incyte ID No: 1721842CD1 <400> 16 Met Asn Lys Arg Asp Tyr Met Asn Thr Ser Val Gln Glu Pro Pro Leu Asp Tyr Ser Phe Arg Ser Ile His Val Ile Gln Asp Leu Val Asn Glu Glu Pro Arg Thr Gly Leu Arg Pro Leu Lys Arg Ser Lys Ser Gly Lys Ser Leu Thr Gln Ser Leu Trp Leu Asn Asn Asn Val Leu Asn Asp Leu Arg Asp Phe Asn Gln Val Ala Ser Gln Leu Leu Glu His Pro Glu Asn Leu Ala Trp Ile Asp Leu Ser Phe Asn Asp Leu Thr Ser Ile Asp Pro Val Leu Thr Thr Phe Phe Asn Leu Ser Val Leu Tyr Leu His Gly Asn Ser Ile Gln Arg Leu Gly Glu Val Asn Lys Leu Ala Val Leu Pro Arg Leu Arg Ser Leu Thr Leu His Gly Asn Pro Met Glu Glu Glu Lys Gly Tyr Arg Gln Tyr Val Leu Cys Thr Leu Ser Arg Ile Thr Thr Phe Asp Phe Ser Gly Val Thr Lys Ala Asp Arg Thr Thr Ala Glu Val Trp Lys Arg Met Asn Ile Lys Pro Lys Lys Ala Trp Thr Lys Gln Asn Thr Leu <210> 17 <211> 575 <212> PRT
<213> Homo Sapiens <220>
<221> misc_feature <223> Incyte ID No: 1833221CD1 <400> 17 Met Val Leu Gly Ser Phe Gly Thr Asp Leu Met Arg Glu Arg Arg Asp Leu Glu Arg Arg Thr Asp Ser Ser Ile Ser Asn Leu Met Asp Tyr Ser His Arg Ser Gly Asp Phe Thr Thr Ser Ser Tyr Val Gln Asp Arg Val Pro Ser Tyr Ser Gln Gly Ala Arg Pro Lys Glu Asn Ser Met Ser Thr Leu Gln Leu Asn Thr Ser Ser Thr Asn His Gln Leu Pro Ser Glu His G1n Thr Ile Leu Ser Ser Arg Asp Ser Arg Asn Ser Leu Arg Ser Asn Phe Ser Ser Arg Glu Ser Glu Ser Ser Arg Ser Asn Thr Gln Pro Gly Phe Ser Tyr Ser Ser Ser Arg Asp Glu Ala Pro Ile Ile Ser Asn Ser Glu Arg Val Val Ser Ser Gln Arg Pro Phe Gln Glu Ser Ser Asp Asn Glu Gly Arg Arg Thr Thr Arg Arg Leu Leu Ser Arg Ile Ala Ser Ser Met Ser Ser Thr Phe Phe Ser Arg Arg Ser Ser Gln Asp Ser Leu Asn Thr Arg Ser Leu Asn Ser Glu Asn Ser Tyr Val Ser Pro Arg Ile Leu Thr Ala Ser Gln Ser Arg Ser Asn Val Pro Ser Ala Ser Glu Val Pro Asp Asn Arg Ala Ser Glu Ala Ser Gln Gly Phe Arg Phe Leu Arg Arg Arg Trp Gly Leu Ser Ser Leu Ser His Asn His Ser Ser Glu Ser Asp Ser Glu Asn Phe Asn Gln Glu Ser Glu Gly Arg Asn Thr Gly Pro Trp Leu Ser Ser Ser Leu Arg Asn Arg Cys Thr Pro Leu Phe Ser Arg Arg Arg Arg Glu Gly Arg Asp Glu Ser Ser Arg Ile Pro Thr Ser Asp Thr Ser Ser Arg Ser His Ile Phe Arg Arg Glu Ser Asn Glu Val Val His Leu Glu Ala Gln Asn Asp Pro Leu Gly Ala Ala Ala Asn Arg Pro Gln Ala Ser Ala Ala Ser Ser Ser Ala Thr Thr Gly Gly Ser Thr Ser Asp Ser Ala Gln Gly Gly Arg Asn Thr Gly Ile Ser Gly Ile Leu Pro Gly Ser Leu Phe Arg Phe Ala Val Pro Pro Ala Leu Gly Ser Asn Leu Thr Asp Asn Val Met Ile Thr Val Asp Ile Ile Pro Ser Gly Trp Asn Ser Ala Asp Gly Lys Ser Asp Lys Thr Lys Ser Ala Pro Ser Arg Asp Pro Glu Arg Leu Gln Lys Ile Lys Glu Ser Leu Leu Leu Glu Asp Ser Glu Glu Glu Glu Gly Asp Leu Cys Arg Ile Cys Gln Met Ala Ala Ala Ser Ser Ser Asn Leu Leu Ile Glu Pro Cys Lys Cys Thr Gly Ser Leu Gln Tyr Val His Gln Asp Cys Met Lys Lys Trp Leu Gln Ala Lys Ile Asn Ser Gly Ser Ser Leu Glu Ala Val Thr Thr Cys Glu Leu Cys Lys Glu Lys Leu Glu Leu Asn Leu Glu Asp Phe Asp Ile His Glu Leu His Arg Ala His Ala Asn Glu Gln Ala Glu Tyr Glu Phe Ile Ser Ser Gly Leu Tyr Leu Val Val Leu Leu His Leu Cys Glu Gln Ser Phe Ser Asp Met Met Gly Asn Thr Asn Glu Pro Ser Thr Arg Val Arg Phe Ile Asn Leu Ala Arg Thr Leu Gln Ala His Met Glu Asp Leu Glu Thr Ser Glu Asp Asp Ser Glu Glu Asp Gly Asp His Asn Arg Thr Phe Asp Ile Ala <210> 18 <211> 342 <212> PRT
<213> Homo Sapiens <220>
<221> misc_feature <223> Incyte ID No: 2041168CD1 <400> 18 Met Ala Glu Gly Gly Ser Gly Asp Val Asp Asp Ala Gly Asp Cys Ser Gly Ala Arg Tyr Asn Asp Trp Ser Asp Asp Asp Asp Asp Ser Asn Glu Ser Lys Ser Ile Val Trp Tyr Pro Pro Trp Ala Arg Ile Gly Thr Glu Ala Gly Thr Arg Ala Arg Ala Arg Ala Arg Ala Arg Ala Thr Arg Ala Arg Arg Ala Val Gln Lys Arg Ala Ser Pro Asn Ser Asp Asp Thr Val Leu Ser Pro Gln Glu Leu Gln Lys Val Leu Cys Leu Val Glu Met Ser Glu Lys Pro Tyr Ile Leu Glu Ala Ala Leu Ile Ala Leu Gly Asn Asn Ala Ala Tyr Ala Phe Asn Arg Asp Ile Ile Arg Asp Leu Gly Gly Leu Pro Ile Val Ala Lys Ile Leu Asn Thr Arg Asp Pro Ile Val Lys Glu Lys Ala Leu Ile Val Leu Asn Asn Leu Ser Val Asn Ala Glu Asn Gln Arg Arg Leu Lys Val Tyr Met Asn Gln Val Cys Asp Asp Thr Ile Thr Ser Arg Leu Asn Ser Ser Val Gln Leu Ala Gly Leu Arg Leu Leu Thr Asn Met Thr Val Thr Asn Glu Tyr Gln His Met Leu Ala Asn Ser Ile Ser Asp Phe Phe Arg Leu Phe Ser Ala Gly Asn Glu Glu Thr Lys Leu Gln Val Leu Lys Leu Leu Leu Asn Leu Ala Glu Asn Pro Ala Met Thr Arg Glu Leu Leu Arg Ala Gln Val Pro Ser Ser Leu Gly Ser Leu Phe Asn Lys Lys Glu Asn Lys Glu Val Ile Leu Lys Leu Leu Val Ile Phe Glu Asn Ile Asn Asp Asn Phe Lys Trp Glu Glu Asn Glu Pro Thr Gln Asn Gln Phe Gly Glu Gly Ser Leu Phe Phe Phe Leu Lys Glu Phe Gln Val Cys Ala Asp Lys Val Leu Gly Ile Glu Ser His His Asp Phe Leu Val Lys Val Lys Val Gly Lys Phe Met Ala Lys Leu Ala Glu His Met Phe Pro Lys Ser Gln Glu <210> 19 <211> 110 <212> PRT
<213> Homo sapiens <220>
<221> misc_feature <223> Incyte ID No: 2365794CD1 <400> 19 Met Ala Ala Val Val Ala Lys Arg Glu Gly Pro Pro Phe Ile Ser Glu Ala Ala Val Arg Gly Asn Ala Ala Val Leu Asp 'hyr Cys Arg Thr Ser Val Ser Ala Leu Ser Gly Ala Thr Ala Gly Ile Leu Gly Leu Thr Gly Leu Tyr Gly Phe Ile Phe Tyr Leu Leu Ala Ser Val Leu Leu Ser Leu Leu Leu Ile Leu Lys Ala Gly Arg Arg Trp Asn Lys Tyr Phe Lys Ser Arg Arg Pro Leu Phe Thr Gly Gly Leu Ile Gly Gly Leu Phe Thr Tyr Val Leu Phe Trp Thr Phe Leu Tyr Gly Met Val His Val Tyr <210> 20 <211> 571 <212> PRT
<213> Homo sapiens <220>
<221> misc_feature <223> Incyte ID No: 2618452CD1 <400> 20 Met Pro Thr Gly Thr Ile Pro Pro Pro Thr Thr Leu Lys Ala Thr Gly Ser Thr His Thr Ala Pro Pro Met Met Pro Thr Thr Ser Gly Thr Ser Gln Ala Ser Ser Ser Phe Asn Thr Ala Lys Thr Ser Thr Ser Leu His Ser His Thr Ser Ser Thr His His Pro Glu Val Thr Pro Thr Ser Ile Thr Asn Ile Thr Leu Asn Pro Thr Ser Ile Gly Thr Trp Thr Pro Val Ala His Thr Thr Ser Ala Thr Ser Ser Arg Leu Thr Thr Pro Phe Thr Thr His Ser Pro Pro Thr G1y Ser Ser Pro Ile Ser Ser Thr Gly Pro Met Thr Ala Thr Ser Phe Gln Thr Thr Thr Tyr Tyr Thr Pro Pro Ser His Pro Gln Thr Thr Leu Pro Thr His Val Pro Pro Phe Ser Thr Ser Leu Val Thr Pro Ser Thr His Thr Val Ile Ile Thr Thr His Thr Gln Met Ala Thr Ser Ala Ser Ile His Ser Thr Pro Thr Gly Thr Val Pro Pro Pro Thr Thr Leu Lys Ala Thr Gly Ser Thr His Thr Ala Pro Pro Met Thr Val Thr Thr Ser Gly Thr Ser Gln Thr His Ser Ser Phe Ser Thr Ala Thr Ala Ser Ser Ser Phe Ile Ser Ser Ser Ser Trp Ser Ser Trp Leu Pro Gln Asn Ser Ser Ser Arg Pro Pro Ser Ser Pro Ile Thr Thr Gln Leu Pro His Leu Ser Ser Ala Thr Thr Pro Val Ser Thr Thr Asn Gln Leu Ser Ser Ser Phe Ser Pro Ser Pro Ser Ala Pro Ser Thr Val Ser Ser Tyr Val Pro Ser Ser His Ser Ser Pro Gln Thr Ser Ser Pro Ser Val Gly Thr Ser Ser Ser Phe Val Ser Ala Pro Val His Ser Thr Thr Leu Ser Ser Gly Ser His Ser Ser Leu Ser Thr His Pro Thr Thr Ala Ser Val Ser Ala Ser Pro Leu Phe Pro Ser Ser Pro Ala Ala Ser Thr Thr Ile Arg Ala Thr Leu Pro His Thr Ile Ser Ser Pro Phe Thr Leu Ser Ala Leu Leu Pro Ile Ser Thr Val Thr Val Ser Pro Thr Pro Ser Ser His Leu Ala Ser Ser Thr Ile Ala Phe Pro Ser Thr Pro Arg Thr Thr Ala Ser Thr His Thr Ala Pro Ala Phe Ser Ser Gln Ser Thr Thr Ser Arg Ser Thr Ser Leu Thr Thr Arg Val Pro Thr Ser Gly Phe Val Ser Leu Thr Ser Gly Val Thr Gly Ile Pro Thr Ser Pro Val Thr Asn Leu Thr Thr Arg His Pro Gly Pro Thr Leu Ser Pro Thr Thr Arg Phe Leu Thr Ser Ser Leu Thr Ala His Gly Ser Thr Pro Ala Ser Ala Pro Val Ser Ser Leu Gly Thr Pro Thr Pro Thr Ser Pro Gly Val Cys Ser Val Arg Glu Gln Gln Glu Glu Ile Thr Phe Lys Gly Cys Met Ala Asn Val Thr Val Thr Arg Cys Glu Gly Ala Cys Ile Ser Ala Ala Ser Phe Asn Ile Ile Thr Gln Gln Val Asp Ala Arg Cys Ser Cys Cys Arg Pro Leu His Ser Tyr Glu Gln Gln Leu Glu Leu Pro Cys Pro Asp Pro Ser Thr Pro Gly Arg Arg Leu Val Leu Thr Leu Gln Val Phe Ser His Cys Val Cys Ser Ser Val Ala Cys Gly Asp <210> 21 <211> 262 <212> PRT
<213> Homo Sapiens <220>
<221> misc_feature <223> Incyte ID No: 2622288CD1 <400> 21 Met Val A1a Trp Arg Ser Ala Phe Leu Val Cys Leu Ala Phe Ser Leu Ala Thr Leu Val Gln Arg Gly Ser Gly Asp Phe Asp Asp Phe Asn Leu Glu Asp Ala Val Lys Glu Thr Ser Ser Val Lys Gln Pro Trp Asp His Thr Thr Thr Thr Thr Thr Asn Arg Pro Gly Thr Thr Arg Ala Pro Ala Lys Pro Pro Gly Ser Gly Leu Asp Leu Ala Asp Ala Leu Asp Asp Gln Asp Asp Gly Arg Arg Lys Pro Gly Ile Gly Gly Arg Glu Arg Trp Asn His Val Thr Thr Thr Thr Lys Arg Pro Val Thr Thr Arg Ala Pro Ala Asn Thr Leu Gly Asn Asp Phe Asp Leu Ala Asp Ala Leu Asp Asp Arg Asn Asp Arg Asp Asp Gly Arg Arg Lys Pro Ile Ala Gly Gly Gly Gly Phe Ser Asp Lys Asp Leu Glu Asp Ile Val Gly Gly Gly Glu Tyr Lys Pro Asp Lys Gly Lys Gly Asp Gly Arg Tyr Gly Ser Asn Asp Asp Pro Gly Ser Gly Met Val Ala Glu Pro Gly Thr Ile Ala Gly Val Ala Ser Ala Leu Ala Met Ala Leu Ile Gly Ala Val Ser Ser Tyr Ile Ser Tyr Gln Gln Lys Lys Phe Cys Phe Ser Ile Gln Gln Gly Leu Asn Ala Asp Tyr Val Lys Gly Glu Asn Leu Glu Ala Val Val Cys Glu Glu Pro Gln Val Lys Tyr Ser Thr Leu His Thr Gln Ser Ala Glu Pro Pro Pro Pro Pro Glu Pro Ala Arg Ile <210> 22 <211> 172 <212> PRT
<213> Homo Sapiens <220>
<221> misc_feature <223> Incyte ID No: 2806595CD1 <400> 22 Met Gly Leu Leu Leu Leu Val Pro Leu Leu Leu Leu Pro Gly Ser Tyr Gly Leu Pro Phe Tyr Asn Gly Phe Tyr Tyr Ser Asn Ser Ala Asn Asp Gln Asn Leu Gly Asn Gly His Gly Lys Asp Leu Leu Asn Gly Val Lys Leu Val Val Glu Thr Pro Glu Glu Thr Leu Phe Thr Tyr Gln Gly Ala Ser Val Ile Leu Pro Cys Arg Tyr Arg Tyr Glu Pro Ala Leu Val Ser Pro Arg Arg Val Arg Val Lys Trp Trp Lys Leu Ser Glu Asn Gly Ala Pro Glu Lys Asp Val Leu Val Ala Ile Gly Leu Arg His Arg Ser Phe Gly Asp Tyr Gln Gly Arg Val His Leu Arg Gln Asp Lys Glu His Asp Val Ser Leu Glu Ile Gln Asp Leu Arg Leu Glu Asp Tyr Gly Arg Tyr Arg Cys Glu Val Ile Asp Gly Leu Glu Asp Glu Ser Gly Leu Val Glu Leu Glu Leu Arg Gly Glu Met Leu Thr Gly Thr Gly <210> 23 <211> 571 <212> PRT
<213> Homo sapiens <220>
<221> misc_feature <223> Incyte ID No: 2850987CD1 <400> 23 Met Thr Arg Ala Gly Asp His Asn Arg Gln Arg Gly Cys Cys Gly Ser Leu Ala Asp Tyr Leu Thr Ser Ala Lys Phe Leu Leu Tyr Leu Gly His Ser Leu Ser Thr Trp Gly Asp Arg Met Trp His Phe Ala Val Ser Val Phe Leu Val Glu Leu Tyr Gly Asn Ser Leu Leu Leu Thr Ala Val Tyr Gly Leu Val Val Ala Gly Ser Val Leu Val Leu Gly Ala Ile Ile Gly Asp Trp Val Asp Lys Asn Ala Arg Leu Lys Val Ala Gln Thr Ser Leu Val Val Gln Asn Val Ser Val Ile Leu Cys Gly Ile Ile Leu Met Met Val Phe Leu His Lys His Glu Leu Leu Thr Met Tyr His Gly Trp Val Leu Thr Ser Cys Tyr Ile Leu Ile Ile Thr Ile Ala Asn Ile Ala Asn Leu Ala Ser Thr Ala Thr Ala Ile Thr Ile Gln Arg Asp Trp Ile Val Val Val Ala Gly Glu Asp Arg Ser Lys Leu Ala Asn Met Asn Ala Thr Ile Arg Arg Ile Asp Gln Leu Thr Asn Ile Leu Ala Pro Met Ala Val Gly Gln Ile Met Thr Phe Gly Ser Pro Val Ile Gly Cys Gly Phe Ile Ser Gly Trp Asn Leu Val Ser Met Cys Val Glu Tyr Val Leu Leu Trp Lys Val Tyr Gln Lys Thr Pro Ala Leu Ala Val Lys Ala Gly Leu Lys Glu Glu Glu Thr Glu Leu Lys Gln Leu Asn Leu His Lys Asp Thr Glu Pro Lys Pro Leu Glu Gly Thr His Leu Met Gly Val Lys Asp Ser Asn Ile His Glu Leu Glu His Glu Gln Glu Pro Thr Cys Ala Ser Gln Met Ala Glu Pro Phe Arg Thr Phe Arg Asp Gly Trp Val Ser Tyr Tyr Asn Gln Pro Val Phe Leu Ala Gly Met Gly Leu Ala Phe Leu Tyr Met Thr Val Leu Gly Phe Asp Cys Ile Thr Thr Gly Tyr Ala Tyr Thr Gln Gly Leu Ser Gly Ser Ile Leu Ser Ile Leu Met Gly Ala Ser Ala Ile Thr Gly Ile Met Gly Thr Val Ala Phe Thr Trp Leu Arg Arg Lys Cys Gly Leu Val Arg Thr Gly Leu Ile Ser Gly Leu Ala Gln Leu Ser Cys Leu Ile Leu Cys Val Ile Ser Val Phe Met Pro Gly Ser Pro Leu Asp Leu Ser Val Ser Pro Phe Glu Asp Ile Arg Ser Arg Phe Ile Gln Gly Glu Ser Ile Thr Pro Thr Lys Ile Pro Glu Ile Thr Thr Glu Ile Tyr Met Ser Asn Gly Ser Asn Ser Ala Asn Ile Val Pro Glu Thr Ser Pro Glu Ser Val Pro Ile Ile Ser Val Ser Leu Leu Phe Ala Gly Val Ile Ala Ala Arg Ile Gly Leu Trp Ser Phe Asp Leu Thr Val Thr Gln Leu Leu Gln Glu Asn Val Ile Glu Ser Glu Arg Gly Ile Ile Asn Gly Val Gln Asn Ser Met Asn Tyr Leu Leu Asp Leu Leu His Phe Ile Met Val Ile Leu Ala Pro Asn Pro Glu Ala Phe Gly Leu Leu Val Leu Ile Ser Val Ser Phe Val Ala Met Gly His Ile Met Tyr Phe Arg Phe Ala Gln Asn Thr Leu Gly Asn Lys Leu Phe Ala Cys Gly Pro Asp Ala Lys Glu Val Arg Lys Glu Asn Gln Ala Asn Thr Ser Val Val <210> 24 <211> 455 <212> PRT
<213> Homo sapiens <220>
<221> misc_feature <223> Incyte ID No: 3557211CD1 <400> 24 Met Asp Pro Thr Gly Asn Ser Ala Thr Pro Gln Ile Leu Glu Leu Lys Trp Ser His Ile Glu Trp Ser Gln Thr Glu Tyr Ile Cys Glu Asn Val Gly Leu Leu Pro Leu Glu Ile Ile Arg Arg Gly Tyr Ser Met Asp Ser Ala Phe Val Gly Ile Lys Val Asn Gln Val Ser Ala Ala Val Gly Lys Asp Phe Thr Val Ile Pro Ser Lys Leu Ile Gln Phe Asp Pro Gly Met Ser Thr Lys Met Trp Asn Ile Ala Ile Thr Tyr Asp Gly Leu Glu Glu Asp Asp Glu Val Phe Glu Val Ile Leu Asn Ser Pro Val Asn Ala Val Leu Gly Thr Lys Thr Lys Ala Ala Val Lys Ile Leu Asp Ser Lys Gly Gly Gln Cys His Pro Ser Tyr Ser Ser Asn Gln Ser Lys His Ser Thr Trp Glu Lys Gly Ile Trp His Leu Leu Pro Pro Gly Ser Ser Ser Ser Thr Thr Ser Gly Ser Phe His Leu Glu Arg Arg Pro Leu Pro Ser Ser Met Gln Leu Ala Val Ile Arg Gly Asp Thr Leu Arg Gly Phe Asp Ser Thr Asp Leu Ser Gln Arg Lys Leu Arg Thr Arg Gly Asn Gly Lys Thr Val Arg Pro Ser Ser Val Tyr Arg Asn Gly Thr Asp Ile Ile Tyr Asn Tyr His Gly Ile Val Ser Leu Lys Leu Glu Asp Asp Ser Phe Pro Thr His Lys Arg Lys Ala Lys Val Ser Ile Ile Ser Gln Pro Gln Lys Thr Ile Lys Val Ala Glu Leu Pro Gln Ala Asp Lys Val Glu Ser Thr Thr Asp Ser His Phe Pro Arg Gln Asp Gln Leu Pro Ser Phe Pro Lys Asn Cys Thr Leu Glu Leu Lys Gly Leu Phe His Phe Glu Glu Gly Ile Gln Lys Leu Tyr Gln Cys Asn Gly Ile Ala Trp Lys Ala Trp Ser Pro Gln Thr Lys Asp Val Glu Asp Lys Ser Cys Pro Ala Gly Trp His Gln His Ser Gly Tyr Cys His Ile Leu Ile Thr Glu Gln Lys Gly Thr Trp Asn Ala Ala Ala Gln Ala Cys Arg Glu Gln Tyr Leu Gly Asn Leu Val Thr Val Phe Ser Arg Gln His Met Arg Trp Leu Trp Asp Ile Gly Gly Arg Lys Ser Phe Trp Ile Gly Leu Asn Asp Gln Val His Ala Gly His Trp Glu Trp Ile Gly Gly Glu Pro Val Ala Phe Thr Asn Gly Arg Arg Gly Pro Ser Pro Arg Ser Lys Leu Gly Lys Ser Cys Val Leu Val Gln Arg Gln Gly Lys Trp Gln Thr Lys Asp Cys Arg Arg Ala Lys Pro His Asn Tyr Val Cys Ser Arg Lys Leu <210> 25 <211> 437 <212> PRT
<213> Homo Sapiens <220>
<221> misc_feature <223> Incyte ID No: 4675668CD1 <400> 25 Met Pro Lys Phe Lys Ala Ala Arg Gly Val Gly Gly Gln Glu Lys His Ala Pro Leu Ala Asp Gln Ile Leu Ala Gly Asn Ala Val Arg Ala Gly Val Arg Glu Lys Arg Arg Gly Arg Gly Thr Gly Glu Ala Glu Glu Glu Tyr Val Gly Pro Arg Leu Ser Arg Arg Ile Leu Gln Gln Ala Arg Gln Gln Gln Glu Glu Leu Glu Ala Glu His Gly Thr Gly Asp Lys Pro Ala Ala Pro Arg Glu Arg Thr Thr Arg Leu Gly Pro Arg Met Pro Gln Asp Gly Ser Asp Asp Glu Asp Glu Glu Trp Pro Thr Leu Glu Lys Ala Ala Thr Met Thr Ala Ala Gly His His Ala Glu Val Val Val Asp Pro Glu Asp Glu Arg Ala Ile Glu Met Phe Met Asn Lys Asn Pro Pro Ala Arg Arg Thr Leu Ala Asp Ile Ile Met Glu Lys Leu Thr Glu Lys Gln Thr Glu Val Glu Thr Val Met Ser Glu Val Ser Gly Phe Pro Met Pro Gln Leu Asp Pro Arg Val Leu Glu Val Tyr Arg Gly Val Arg Glu Val Leu Ser Lys Tyr Arg Ser Gly Lys Leu Pro Lys Ala Phe Lys Ile Ile Pro Ala Leu Ser Asn Trp Glu Gln Ile Leu Tyr Val Thr Glu Pro Glu Ala Trp Thr Ala Ala Ala Met Tyr Gln Ala Thr Arg Ile Phe Ala Ser Asn Leu Lys Glu Arg Met Ala Gln Arg Phe Tyr Asn Leu Val Leu Leu Pro Arg Val Arg Asp Asp Val Ala Glu Tyr Lys Arg Leu Asn Phe His Leu Tyr Met Ala Leu Lys Lys Ala Leu Phe Lys Pro Gly Ala Trp Phe Lys Gly Ile Leu Ile Pro Leu Cys Glu Ser Gly Thr Cys Thr Leu Arg Glu Ala Ile Ile Val Gly Ser Ile Ile Thr Lys Cys Ser Ile Pro Val Leu His Ser Ser Ala Ala Met Leu Lys Ile Ala Glu Met Glu Tyr Ser Gly Ala Asn Ser Ile Phe Leu Arg Leu Leu Leu Asp Lys Lys Tyr Ala Leu Pro Tyr Arg Val Leu Asp Ala Leu Val Phe His Phe Leu Gly Phe Arg Thr Glu Lys Arg Glu Leu Pro Val Leu Trp His Gln Cys Leu Leu Thr Leu Val Gln Arg Tyr Lys Ala Asp Leu Ala Thr Asp Gln Lys Glu Ala Leu Leu Glu Leu Leu Arg Leu Gln Pro His Pro Gln Leu Ser Pro Glu Ile Arg Arg Glu Leu Gln Ser Ala Val Pro Arg Asp Val Glu Asp Val Pro Ile Thr Val Glu <21U> 26 <211> 2893 <212> DNA
<213> Homo Sapiens <220>
<221> misc_feature <223> Incyte ID No: 398269CB1 <400> 26 agtggctgag tcgggggcgg gctgggaggg ctgtcggtgg gccagtctgc gtacgacggc 60 ccgtcccctg cgcacggacg ccgggaagaa gggggtgggg ccacgtttgc gtccgcgcca 120 tcaggcccga gatagcggcg aggtccgctt tcagtgtatg gttttccctg ccaaacggtt 180 ctgcttggtg ccatccatgg agggcgtgcg ctgggccttt tcctgcggca cttggctgcc 240 gagccgagcc gaatggctgc tggcagtgcg atcgattcag cccgaggaga aggagcgcat 300 tggccagttc gtctttgccc gggacgctaa ggcagccatg gctggtcgtc tgatgataag 360 gaaattagtt gcagagaaat tgaatatccc ttggaatcat attcgtttgc aaagaactgc 420 aaaaggaaaa ccagttcttg caaaggactc atcgaatcct tacccgaatt tcaactttaa 480 catctctcat caaggagact atgcagtgct tgctgctgaa cctgagctgc aagttggaat 540 tgatataatg aagactagtt ttccaggtcg tggttcaatt ccagaattct ttcatattat 600 gaaaagaaag tttaccaaca aagaatggga aacaatcaga agctttaagg atgagtggac 660 tcagctggat atgttttata ggaattgggc acttaaggaa agcttcataa aagccattgg 720 tgttggacta ggatttgaat tgcagcggct tgaatttgat ctatctccat taaacttgga 780 tataggccaa gtttataaag aaacacgttt attcctggat ggagaggaag aaaaagaatg 840 ggcatttgag gaaagcaaaa tagatgagca ccattttgtt gcagttgctc ttaggaaacc 900 cgatggatct agacatcagg atgttccatc tcaggatgat tccaaaccaa cccagaggca 960 atttactatt ctcaacttta atgatttaat gtcatctgcc gttcccatga cacctgaaga 1020 tccttcattt tgggactgtt tttgcttcac agaagaaatt ccaatacgaa atggtacaaa 1080 gtcatgatga ttccctgagt aacaaaggga aatgaaaact gtttgtgatc ttccgtattc 1140 actgaaaaat aaatgcttgt ttagtatcaa attttatttc acgaaagttt ttttaaagaa 1200 cagaaacttt tccaattaaa aaaaaaaagc agacttctgg ttcaagatag ctcactggaa 1260 tacatgttta cctctttctt tcctaaattg cattgaattg ataggaagga tggcggaatc 1320 ttaaagtgat acatgctaac tgtagaaaaa aatagaaaat gcacataagc aaaaggaaac 1380 atttaaatgc tatctttcaa agataactac tcttaaaacc ttgagtatct tttcagacct 1440 ttttcttggc aaatgaatcc atattgacat atttgatttt tttaaaaaca tggaaacgta 1500 ctgttttgta aattcttttt aactgcacat ctactgttca taaatatacc tctgtaacat 1560 aactttttgt ggttctaatg tactctgttg tatagctaat acaagttagg atgcttttgg 1620 ccagaggtaa cagtgtccaa atataattgg cctaagtaac ctaggaaatt gtttgacata 1680 acacagggtt caggggtgtc attaaagaca cacttttttt gccttgacct cagttggttt 1740 gttttgcctt aggctattcc acctctcgat cacaagagct gctgctataa cttccagttt 1800 tacatctttg taaaattgta tctcaaaggc agaaaaggcc atttcgtctc tcatttgttt 1860 tatccatgag gaagattttt aacaaaagcc tccagaagat ttcccctcag tttccattga 1920 cttagatcag gttacagaga aaggcaatgt ctgacatttt tggtctctgt tagaagtaga 1980 ctctgttgaa aagaaagaag ctaagctagg tgtgaagaat ggaattggaa gcccactgcc 2040 ttcccataag aaaggtttac cataatttac tcactttttt ctgtgttaga cattttgatt 2100 atctgcagtt tattactaca agcagtggca gagtgaatgt ccttgtacat tttgagttac 2160 atgcttaatt atgtccttga gaaagtttct aaaagtggaa tgattggttt gactggttca 2220 tagggcttta attatacaat ttacccctct aattagtact atatgtatgt gacttccctc 2280 cccctgccag aatactcctt ggtcaattgt aggtattctt tttggtttaa tttttgccaa 2340 tgtaattaaa aaatggtatg tcatttttaa aatttgtatt tctttcatta caaataagat 2400 tgttatgtca gtattgttat tggcttttcg tattcctctt aacgtgaacc gtctgttcat 2460 tgtttttacc tgttttcgtt ttagcaagta gtacttaatt taaagtgtga acttaatata 2520 taagatgcca ggaccatcat attgatgaca aaaatctatt atgtggttgt agtgcatgtc 2580 ttggagttaa actcttaagt atcaagaagt aaaataattt cattgtttct gttactaaca 2640 ttaaaagtgt gcaaattgta taaaattagg tacttcgatt agtaaaagaa aaaaatttga 2700 atgttttttt ttttatttta ttaagcatgc ccagttatgc caagcatagt aaataaaggt 2760 caagtagcat ttataataga ggaagtattg ttatccctag catgagtgta atggtgatat 2820 gaaaaacttt gtcttgtcat tataataata aaaaaatgaa catttattat ggaatttcaa 2880 aaaaaaaaaa aaa 2893 <210> 27 <211> 2276 <212> DNA
<213> Homo sapiens <220>
<221> misc_feature <223> Incyte ID No: 1258888CB1 <400> 27 gcgagtggag cggaggaccc gagcggctga ggagagagga ggcggcggct tagctgctac 60 ggggtccggc cggcgccctc ccgagggggg ctcaggagga ggaaggagga cccgtgcgag 120 aatgcctctg ccctggagcc ttgcgctccc gctgctgctc tcctgggtgg caggtggttt 180 cgggaacgcg gccagtgcaa ggcatcacgg gttgttagca tcggcacgtc agcctggggt 240 ctgtcactat ggaactaaac tggcctgctg ctacggctgg agaagaaaca gcaagggagt 300 ctgtgaagct acatgcgaac ctggatgtaa gtttggtgag tgcgtgggac caaacaaatg 360 cagatgcttt ccaggataca ccgggaaaac ctgcagtcaa gatgtgaatg agtgtggaat 420 gaaaccccgg ccatgccaac acagatgtgt gaatacacac ggaagctaca agtgcttttg 480 cctcagtggc cacatgctca tgccagatgc tacgtgtgtg aactctagga catgtgccat 540 gataaactgt cagtacagct gtgaagacac agaagaaggg ccacagtgcc tgtgtccatc 600 ctcaggactc cgcctggccc caaatggaag agactgtcta gatattgatg aatgtgcctc 660 tggtaaagtc atctgtccct acaatcgaag atgtgtgaac acatttggaa gctactactg 720 caaatgtcac attggtttcg aactgcaata tatcagtgga cgatatgact gtatagatat 780 aaatgaatgt actatggata gccatacgtg cagccaccat gccaattgct tcaataccca 840 agggtccttc aagtgtaaat gcaagcaggg atataaaggc aatggacttc ggtgttctgc 900 tatccctgaa aattctgtga aggaagtcct cagagcacct ggtaccatca aagacagaat 960 caagaagttg cttgctcaca aaaacagcat gaaaaagaag gcaaaaatta aaaatgttac 1020 cccagaaccc accaggactc ctacccctaa ggtgaacttg cagcccttca actatgaaga 1080 gatagtttcc agaggcggga actctcatgg aggtaaaaaa gggaatgaag agaaaatgaa 1140 agaggggctt gaggatgaga aaagagaaga gaaagccctg aagaatgaca tagaggagcg 1200 aagcctgcga ggagatgtgt ttttccctaa ggtgaatgaa gcaggtgaat tcggcctgat 1260 tctggtccaa aggaaagcgc taacttccaa actggaacat aaagcagatt taaatatctc 1320 ggttgactgc agcttcaatc atgggatctg tgactggaaa caggatagag aagatgattt 1380 tgactggaat cctgctgatc gagataatgc tattggcttc tatatggcag ttccggcctt 1440 ggcaggtcac aagaaagaca ttggccgatt gaaacttctc ctacctgacc tgcaacccca 1500 aagcaacttc tgtttgctct ttgattaccg gctggccgga gacaaagtcg ggaaacttcg 1560 agtgtttgtg aaaaacagta acaatgccct ggcatgggag aagaccacga gtgaggatga 1620 aaagtggaag acagggaaaa ttcagttgta tcaaggaact gatgctacca aaagcatcat 1680 ttttgaagca gaacgtggca agggcaaaac cggcgaaatc gcagtggatg gcgtcttgct 1740 tgtttcaggc ttatgtccag atagcctttt atctgtggat gactgaatgt tactatcttt 1800 atatttgact ttgtatgtca gttccctggt ttttttgata ttgcatcata ggacctctgg 1860 cattttagaa ttactagctg aaaaattgta atgtaccaac agaaatatta ttgtaagatg 1920 cctttcttgt ataagatatg ccaatatttg ctttaaatat catatcactg tatcttctca 1980 gtcatttctg aatctttcca cattatatta taaaatatgg aaatgtcagt ttatctcccc 2040 tcctcagtat atctgatttg tataagtaag ttgatgagct tctctctaca acatttctag 2100 aaaatagaaa aaaaagcaca gagaaatgtt taactgtttg actcttatga tacttcttgg 2160 aaactatgac atcaaagata gacttttgcc taagtggctt agctgggtct ttcatagcca 2220 aacttgtata tttaaattct ttgtaataat aatatccaaa tcatcaaaaa aaaaaa 2276 <210> 28 <211> 2016 <212> DNA
<213> Homo Sapiens <220>
<221> misc_feature <223> Incyte ID No: 1375891CB1 <400> 28 gaaaaggtac ccgcgagaga cagccagcag ttctgtggag cagcggtggc cggctaggat 60 gggctgtctc tggggtctgg ctctgcccct tttcttcttc tgctgggagg ttggggtctc 120 tgggagctct gcaggcccca gcacccgcag agcagacact gcgatgacaa cggacgacac 180 agaagtgccc gctatgactc tagcaccggg ccacgccgct ctggaaactc aaacgctgag 240 cgctgagacc tcttctaggg cctcaacccc agccggcccc attccagaag cagagaccag 300 gggagccaag agaatttccc ctgcaagaga gaccaggagt ttcacaaaaa catctcccaa 360 cttcatggtg ctgatcgcca cctccgtgga gacatcagcc gccagtggca gccccgaggg 420 agctggaatg accacagttc agaccatcac aggcagtgat cccgaggaag ccatctttga 480 caccctttgc accgatgaca gctctgaaga ggcaaagaca ctcacaatgg acatattgac 540 attggctcac acctccacag aagctaaggg cctgtcctca gagagcagtg cctcttccga 600 cggcccccat ccagtcatca ccccgtcacg ggcctcagag agcagcgcct cttccgacgg 660 cccccatcca gtcatcaccc cgtcacgggc ctcagagagc agcgcctctt ccgacggccc 720 ccatccagtc atcaccccgt catggtcccc gggatctgat gtcactctcc tcgctgaagc 780 cctggtgact gtcacaaaca tcgaggttat taattgcagc atcacagaaa tagaaacaac 840 aacttccagc atccctgggg cctcagacat agatctcatc cccacggaag gggtgaaggc 900 ctcgtccacc tccgatccac cagctctgcc tgactccact gaag~aaaac cacacatcac 960 tgaggtcaca gcctctgccg agaccctgtc cacagccggc accacagagt cagctgcacc 1020 tcatgccacg gttgggaccc cactccccac taacagcgcc acagaaagag aagtgacagc 1080 acccggggcc acgaccctca gtggagctct ggtcacagtt agcaggaatc ccctggaaga 1140 aacctcagcc ctctctgttg agacaccaag ttacgtcaaa gtctcaggag cagctccggt 1200 ctccatagag gctgggtcag cagtgggcaa aacaacttcc tttgctggga gctctgcttc 1260 ctcctacagc ccctcggaag ccgccctcaa gaacttcacc ccttcagaga caccgaccat 1320 ggacatcgca accaaggggc ccttccccac cagcagggac cctcttcctt ctgtccctcc 1380 gactacaacc aacagcagcc gagggacgaa cagcacctta gccaagatca caacctcagc 1440 gaagaccacg atgaagcccc aacagccacg cccacgactg cccggacgag gccgaccaca 1500 gacgtgagtg caggtgaaaa tggaggtttc ctcctcctgc ggctgagtgt ggcttccccg 1560 gaagacctca ctgaccccag agtggcagaa aggctgatgc agcagctcca ccgggaactc 1620 cacgcccacg cgcctcactt ccaggtctcc ttactgcgtg tcaggagagg ctaacggaca 1680 tcagctgcag ccaggcatgt cccgtatgcc aaaagagggt gctgccccta gcctgggccc 1740 ccaccgacag actgcagctg cgttactgtg ctgagaggta cccagaaggt tcccatgaag 1800 ggcagcatgt ccaagcccct gaccccagat gtggcaacag gaccctcgct cacatccacc 1860 ggagtgtatg tgtggggagg ggcttcacct gttcccagag gtgtccttgg actcaccttg 1920 gcacatgttc tgtgtttcag taaagagaga cctgatcacc catctgtgtg cttccatcct 1980 gcattaaaat tcactcagtg tggcccaaaa aaaaaa 2016 <210> 29 <211> 2520 <212> DNA
<213> Homo Sapiens <220>
<221> misc_feature <223> Incyte ID No: 1524355CB1 <400> 29 caagatggcg gctggcggag ctgtcgctgc ggcgcccgag tgccggcttc tcccctacgc 60 gctacacaag tggagctcct tttcctccac ctaccttccc gagaacattt tagtggacaa 120 accaaatgac caatcttcaa gatggtcttc agagagcaac tatcctcccc agtacttgat 180 tctaaagctc gaaaggcctg ctatagttca gaatatcaca tttggaaaat atgagaaaac 240 tcatgtttgc aatttgaaga aatttaaagt ctttggtgga atgaatgaag aaaatatgac 300 agagctgttg tccagtggct taaagaatga ttataacaaa gaaacattca ccttgaagca 360 taaaattgat gaacagatgt tcccttgtcg attcattaaa atagttccac tcttgtcctg 420 gggacccagc tttaacttta gcatctggta tgttgaactt agtggcattg atgatcctga 480 tatagtacaa ccttgtctca actggtatag caagtaccgt gaacaggaag ctattcgcct 540 ttgcctaaaa cacttcagac aacacaacta tacagaagct tttgagtcac tgcaaaagaa 600 aaccaagatt gcactggaac atcccatgtt aacagatatt catgacaagc tggtgttgaa 660 gggtgatttt gatgcttgcg aagagttgat tgaaaaggct gtaaatgatg gcttgttcaa 720 tcagtatatc agtcaacagg aatataagcc acgatggagt caaatcattc ccaaaagtac 780 caaaggtgat ggggaagata accgtccagg aatgagagga ggccatcaga tggttattga 840 tgttcaaaca gagactgttt atttgtttgg tggctgggat ggaacacaag atcttgctga 900 cttctgggcg tacagtgtga aggagaacca gtggacatgt atctctagag acactgaaaa 960 agagaatggt cctagtgcca gatcgtgtca taaaatgtgc attgatattc aacggaggca 1020 aatctacaca ttggggcgtt acttggattc ctctgtgagg aacagcaaat ctctgaaaag 1080 tgacttctat cgttatgaca ttgatacaaa cacatggatg ttactaagtg aggatactgc 1140 tgctgatgga gggccgaaat tggtgtttga tcatcagatg tgtatggact cagaaaaaca 1200 tatgatctac acttttggtg gtagaatttt gacttgtaat ggcagcgtag atgacagcag 1260 agccagtgaa ccacaattca gtggcttgtt tgctttcaac tgtcaatgtc aaacctggaa 1320 acttcttcga gaggactcct gtaatgctgg gcctgaggac atccagtctc gaataggaca 1380 ctgcatgtta ttccactcaa aaaatcgttg cttatatgta tttggtggcc agcgatcaaa 1440 gacctatttg aatgatttct ttagttatga tgtggactct gatcatgtag acataatatc 1500 agatggcacc aagaaagact ctgggatggt tccaatgaca ggatttacac agagagcaac 1560 tattgatcca gaactgaatg aaatacacgt cttatctgga ctcagcaaag ataaggaaaa 1620 gagggaagaa aatgttagaa attcattctg gatttatgac attgtgagga atagttggtc 1680 ttgtgtctat aagaatgatc aagctgcaaa ggataatcca actaaaagtc ttcaggaaga 1740 agaaccatgt ccaaggtttg cccatcagct tgtatacgat gagctacaca aggttcatta 1800 cttatttggt gggaatccag gaaaatcttg ctctccaaag atgagattag atgacttctg 1860 gtcactgaag ttgtgtagac cttcaaaaga ttatttactg aggcattgca agtacctcat 1920 aagaaaacac aggtttgaag aaaaggccca agtggatccc cttagtgctc tgaaatattt 1980 acaaaatgat ctttatataa ctgtggatca ttcagaccca gaagagacaa aagagtttca 2040 gctcctggca tcagctctat tcaaatctgg ttcagatttt acagctctgg gcttttctga 2100 tgtggatcac acctatgctc aaagaactca gctctttgac accttagtaa atttctttcc 2160 tgacagcatg actcctccta aaggcaacct ggtagacctc atcacactgt aactgaagag 2220 tcactggaca cagaaatgga aaacaggagt cgattttccg tcttttggat tgcagctcca 2280 ctgactgaca gtaaagctgc agtgattgag gactgcacca gagttctgaa gggatcttaa 2340 ccatcacaag tttttaccct cttccttcat gcctgacctc aaccccgctc tcctcatcct 2400 attcctaaat taggctaata aagtgaaatt ggtatacttt ccagttaaat atatatatat 2460 atatattttt tcttacttta tcttttaaga attaatgagt ataaaagcaa aattaggcag 2520 <210> 30 <211> 1954 <212> DNA
<213> Homo Sapiens <220>
<221> misc_feature <223> Incyte ID No: 1598937CB1 <400> 30 ccgagttatg cagctccggg cggcaagggg tcctgtcgag gggcgcggtc cataagggtt 60 gaggccagag gcgcgtacct ctgggcgccg agctctggag tggaggctgg ggttcggagt 120 gcgtcatctg gaagcaggca ccccggccgg caggcagagt cacggtggca gcattgagag 180 ttggacaccc gggtccttga agtgatctct aggccccagc cccaaatccg ccaccattcc 240 gtgctgcggg gacaccatgg ctccagaaga ggacgctgga ggggaggcct tagggggcag 300 tttctgggag gctggcaact acaggcgcac ggtacagcgg gtggaggacg ggcaccggct 360 gtgcggggac ctggtcagct gcttccagga gcgcgcccgc atcgagaagg cttatgccca 420 gcagttggct gactgggccc gaaagtggag ggggaccgtg gagaagggcc cccagtatgg 480 cacactggag aaggcctggc atgccttttt cacggcggct gagcggctga gcgcgctgca 540 cctggaggtg cgggagaagc tgcaagggca ggacagtgag cgggtgcgcg cctggcagcg 600 gggggctttc caccggcctg tgctgggcgg cttccgcgag agccgggcgg ccgaggacgg 660 cttccgcaag gcccagaagc cctggctgaa gaggctgaag gaggttgagg cttccaagaa 720 aagctaccac gcagcccgga aggatgagaa gaccgcccag acgagggaga gccacgcaaa 780 ggcagacagc gccgtctccc aggagcagct gcgcaaactg caggaacggg tggaacgctg 840 tgccaaggag gccgagaaga caaaagctca gtatgagcag acgctggcag agctgcatcg 900 ctacactcca cgctacatgg aggacatgga acaggccttt gagacctgcc aggccgccga 960 gcgccagcgg cttcttttct tcaaggatat gctgctcacc ttacaccagc acctggacct 1020 ttccagcagt gagaagttcc atgaactcca ccgtgacttg caccagggca ttgaggcagc 1080 cagtgacgaa gaggatctgc gctggtggcg cagcacccac gggccaggca tggccatgaa 1140 ctggccacag ttcgaggagt ggtccttgga cacacagagg acaatcagcc ggaaagagaa 1200 gggtggccgg agccctgatg aggttaccct gaccagcatt gtgcctacaa gagatggcac 1260 cgcaccccca ccccagtccc cggggtcccc aggcacgggg caggatgagg agtggtcaga 1320 tgaagagagt ccccggaagg ctgccaccgg ggttcgggtg agggcactct atgactacgc 1380 tggccaggaa gctgatgagc tgagcttccg agcaggggag gagctgctga agatgagtga 1440 ggaggacgag cagggctggt gccaaggcca gttgcagagt ggccgcattg gcctgtaccc 1500 tgccaactac gtggagtgtg tgggcgcctg agtgtcctga cagcccttct gcaacgttta 1560 cccaccctgg ttcagagccc agcttctcct ggagagccgg accctcaggg ccctgaaccg 1620 tcgctctctg gctgctcctc tgtcccttga gggaggaagt cctgggaccc agggagggga 1680 ggggcctttg tctagggaag ggactggtag ggaagggacg agtctaggct gagggcaaga 1740 tgggaggtca gaggtgacag aagcgttcag gggtgcctgg gcctccccag gagctgtgga 1800 ctcagttcct gacctctgct ttggggttcc tggggtgggc ttggggtgag tgtagttctg 1860 gcctagcagc accctcttgt ggcttgttct agcgtgtatt aaaacttgac acacacccac 1920 acacaaaaac aaaaacacca aaaaaaaaaa aaaa 1954 <210> 31 <211> 1817 <212> DNA
<213> Homo Sapiens <220>
<221> misc_feature <223> Incyte ID No: 1725801CB1 <400> 31 gacgcggtga ggagacggcc cacggcgccc gcgggctggg gcggtcgctt cttccttctc 60 cgtggcctac gagggtcccc agcctgggta aagatggccc catggccccc gaagggccta 120 gtcccagctg tgctctgggg cctcagcctc ttcctcaacc tcccaggacc tatctggctc 180 cagccctctc cacctcccca gtcttctccc ccgcctcagc cccatccgtg tcatacctgc 240 cggggactgg ttgacagctt taacaagggc ctggagagaa ccatccggga caactttgga 300 ggtggaaaca ctgcctggga ggaagagaat ttgtccaaat acaaagacag tgagacccgc 360 ctggtagagg tgctggaggg tgtgtgcagc aagtcagact tcgagtgcca ccgcctgctg 420 gagctgagtg aggagctggt ggagagctgg tggtttcaca agcagcagga ggccccggac 480 ctcttccagt ggctgtgctc agattccctg aagctctgct gccccgcagg caccttcggg 540 ccctcctgcc ttccctgtcc tgggggaaca gagaggccct gcggtggcta cgggcagtgt 600 gaaggagaag ggacacgagg gggcagcggg cactgtgact gccaagccgg ctacgggggt 660 gaggcctgtg gccagtgtgg ccttggctac tttgaggcag aacgcaacgc cagccatctg 720 gtatgttcgg cttgttttgg cccctgtgcc cgatgctcag gacctgagga atcaaactgt 780 ttgcaatgca agaagggctg ggccctgcat cacctcaagt gtgtagacat tgatgagtgt 840 ggcacagagg gagccaactg tggagctgac caattctgcg tgaacactga gggctcctat 900 gagtgccgag actgtgccaa ggcctgccta ggctgcatgg gggcagggcc aggtcgctgt 960 aagaagtgta gccctggcta tcagcaggtg ggctccaagt gtctcgatgt ggatgagtgt 1020 gagacagagg tgtgtccggg agagaacaag cagtgtgaaa acaccgaggg cggttatcgc 1080 tgcatctgtg ccgagggcta caagcagatg gaaggcatct gtgtgaagga gcagatccca 1140 gagtcagcag gcttcttctc agagatgaca gaagacgagt tggtggtgct gcagcagatg 1200 ttctttggca tcatcatctg tgcactggcc acgctggctg ctaagggcga cttggtgttc 1260 accgccatct tcattggggc tgtggcggcc atgactggct actggttgtc agagcgcagt 1320 gaccgtgtgc tggagggctt catcaagggc agataatcgc ggccaccacc tgtaggacct 1380 cctcccaccc acgctgcccc cagagcttgg gctgccctcc tgctggacac tcaggacagc 1440 ttggtttatt tttgagagtg gggtaagcac ccctacctgc cttacagagc agcccaggta 1500 cccaggcccg ggcagacaag gcccctgggg taaaaagtag ccctgaaggt ggataccatg 1560 agctcttcac ctggcgggga ctggcaggct tcacaatgtg tgaatttcaa aagtttttcc 1620 ttaatggtgg ctgctagagc tttggcccct gcttaggatt aggtggtcct cacaggggtg 1680 gggccatcac agctccctcc tgccagctgc atgctgccag ttcctgttct gtgttcacca 1740 catccccaca ccccattgcc acttatttat tcatctcagg aaataaagaa aggtcttgga 1800 aagttaaaaa aaaaaaa 1817 <210> 32 <211> 2694 <212> DNA
<213> Homo Sapiens <220>
<221> misc_feature <223> Incyte ID No: 1730482CB1 <400> 32 gacctagtgt gagcataatg gaaaaaacac aatcacttcc tacacgacca ccaacttttc 60 ctccaaccat tccaccagca aaagaagtat gtaaggcggc caaggctgac ctggtattta 120 tggtggatgg atcctggagc attggagatg aaaatttcaa taagatcatc agctttctat 180 acagcactgt tggagccctg aacaagattg gcacagatgg aacccaagtt gcaatggttc 240 agttcactga tgatcccaga acagaattta aactaaatgc ttacaaaacc aaagagactc 300 ttcttgatgc aattaaacac atttcataca aaggaggaaa tacaaaaaca ggaaaagcaa 360 ttaagtatgt tcgagatacc ttgttcactg cagagtcagg tacaagaagg ggcatcccaa 420 aggttatcgt ggttataact gatggaagat cacaagatga tgtgaacaaa atctccaggg 480 agatgcaatt agatggctat agcatttttg caattggtgt ggccgatgca gattactcgg 540 agttggttag cattggcagt aagcccagcg cacgccatgt cttctttgtg gatgactttg 600 acgcctttaa gaaaatcgaa gatgagttaa ttacttttgt ctgcgaaaca gcatcagcaa 660 cctgtccagt ggtacacaag gatggcattg atcttgcagg atttaagatg atggaaatgt 720 ttggtttggt tgaaaaagat ttttcatcag tggaaggggt ttctatggag cctggtacct 780 tcaatgtgtt tccatgttac caactccata aagatgccct ggtttcccag ccaaccaggt 840 acttgcaccc agaaggattg ccctccgact acacaatcag ttttctattc cggattcttc 900 ctgacactcc acaggagcca tttgctcttt gggagatttt aaataaaaat tctgacccat 960 tggttggggt tattttagac aatggtggga aaactctaac atatttcaac tatgaccaga 1020 gtggggattt tcaaactgtt actttcgaag gacctgaaat taggaaaatt ttttatggaa 1080 gctttcacaa gctacacatt gttgtcagtg agactttggt caaagtggtt attgactgca 1140 agcaagtggg tgagaaggca atgaacgcat cagctaatat cacgtcagat ggtgtagaag 1200 tgctagggaa aatggttcga tcaagaggac caggtggaaa ctctgcaccg ttccagttac 1260 agatgtttga tattgtttgc tccacatcat gggccaatac agacaaatgc tgtgaacttc 1320 caggcctgag agatgatgag tcttgcccag accttcccca ttcctgctcc tgttctgaaa 1380 ccaatgaagt ggctctggga ccagcgggcc caccaggtgg tccaggactc cgaggaccaa 1440 agggccagca aggtgaaccg ggtccaaagg gaccagatgg ccctcggggt gaaattggtc 1500 tgccaggacc tcagggtcca cctggacctc aaggaccaag tggtctgtcc attcaaggaa 1560 tgcccggaat gccaggagaa aaaggagaga aaggagatac tggccttcca ggtccacagg 1620 gtatcccagg aggcgttggt tcaccaggac gtgatggctc accaggccag aggggccttc 1680 cgggaaagga tggatcctcg ggacctccag gaccaccagg gccaataggc attcctggca 1740 cccctggagt cccagggatc acaggaagca tgggaccgca aggcgccctg ggaccacctg 1800 gtgtccctgg agcaaagggg gaacgaggag agcggggtga cctgcagtct caagccatgg 1860 tgagatcagt ggcgcgtcaa gtatgcgaac agctcatcca gagtcacatg gccaggtaca 1920 ctgccatcct caaccagatt cccagccact :~ctcatccat ccggactgtc caagggcctc 1980 ctggggagcc tgggaggcca ggctcacctg gagcccctgg tgaacaagga cccccaggca 2040 caccaggctt ccccggaaat gcaggcgtgc cagggacccc aggagaacga ggtctaactg 2100 gtatcaaagg agaaaaagga aatccaggcg ttggaaccca aggtccaaga ggcccccctg 2160 gaccagcagg accttcaggg gagagtcggc ctggcagccc tgggccccct ggctctcctg 2220 gaccaagagg cccaccaggt catctggggg ttcctggacc ccaaggtcct tctggccagc 2280 ctggatattg tgacccctca tcatgttctg cctatggtgt gagagctccc catccagatc 2340 agccagagtt cacccctgtc caagatgagc tggaagccat ggaactgtgg ggccctggag 2400 tctgatagcc tcaggagaaa tttgaagacc aactgcaaga actcttaagg aatcttgttt 2460 gagaaaatgt tgttatgtgg tttgtatgct acttttgggg ggcagggctc atttcagcag 2520 cctaaatctc ctccttggat aatgttaata ttattattat tattaacaaa aaatatatat 2580 ttttaaaaag ttcccttaat ctatgacatg gtagcaatga tttccctttg gtgtcttaat 2640 ggcatgtcag ataatttgtt tttccagaga agagagctca aagaggaatt ggga 2694 <210> 33 <211> 1149 <212> DNA
<213> Homo Sapiens <220>
<221> misc_feature <223> Incyte ID No: 1810058CB1 <400> 33 cagtatctgg gtccagcctg cagccttagg gtccaggtga tgttaccgtg tgtgtggccc 60 ttcttcacag tggcctccta gaaaaacaag accctgactc aaagaacacc tctcactaca 120 ttcagagtct gtcatctgaa ccatgaggat ctggtggctt ctgcttgcca ttgaaatctg 180 cacagggaac ataaactcac aggacacctg caggcaaggg caccctggaa tccctgggaa 240 ccccggtcac aatggtctgc ctggaagaga tggacgagac ggagcgaagg gtgacaaagg 300 cgatgcagga gaaccaggac gtcctggcag cccggggaag gatgggacga gtggagagaa 360 gggagaacga ggagcagatg gaaaagttga agcaaaaggc atcaaaggtg atcaaggctc 420 aagaggatcc ccaggaaaac atggccccaa ggggcttgca gggcccatgg gagagaaagg 480 cctccgagga gagactgggc ctcaggggca gaaggggaat aagggtgacg tgggtcccac 540 tggtcctgag gggccaaggg gcaacattgg gcctttgggc ccaactggtt taccgggccc 600 catgggccct attggaaagc ctggtcccaa gggagaagct ggacccacgg ggccccaggg 660 tgagccagga gtccggggaa taagaggctg gaaaggagat cgaggagaga aagggaaaat 720 cggtgagact ctagtcttgc caaaaagtgc tttcactgtg gggctcacgg tgctgagcaa 780 gtttccttct tcagatgtgc ccattaaatt tgataagatc cacatcactg ttttctccag 840 gaatgttcag gtgtctttgg tcaaaaacgg agtaaaaata ctgcacacca gagatgctta 900 cgtgagctct gaggaccagg cctctggcag cattgtcctg cagctgaagc tcggggatga 960 gatgtggctg caggtgacag gaggagagag gttcaatggc ttgtttgctg atgaggacga 1020 tgacacaact ttcacagggt tccttctgtt cagcagccag tgacagagga gagtttataa 1080 atctgccaga ccatccatca gaatcagctt gggatgaact tattcagatg gttttacttt 1140 attaattca 1149 <210> 34 <211> 1215 <212> DNA
<213> Homo Sapiens <220>
<221> misc_feature <223> Incyte ID No: 2040679CB1 <400> 34 gaagaactag catgtatgta ttatctccag tggaatttat aattctacaa cttttattta 60 ttcaggccat ttccagcagt ttaaaaggtt tcctttcagc tatgagactg gctcatagag 120 gctgtaatgt tgatacacca gtttcaacgc tcacaccagt gaagacttca gaatttgaaa 180 actttaaaac taaaatggtt atcacatcca aaaaagacta tcctctaagt aagaattttc 240 catattcctt ggaacatctt cagacttctt actgtgggct tgtccgagtt gatatgcgta 300 tgctttgctt aaaaagcctt aggaaattag acttgagtca caaccatata aaaaagcttc 360 cagctacaat tggagacctc atacaccttc aagaacttaa cctgaatgac aatcacttgg 420 agtcatttag tgtagccttg tgtcattcta cactccagaa gtcacttcgg agtttggacc 480 tcagcaagaa caaaatcaag gcactccctg tgcagttttg ccagctccag gaacttaaga 540 atttaaaact tgacgataat gaattgattc aatttccttg caagatagga caactaataa 600 accttcgctt tttgtcagca gctcgaaata agcttccatt tttgcctagt gaatttagaa 660 atttatccct tgaatacttg gatctttttg gaaatacttt tgaacaacca aaagtccttc 720 cagtaataaa gctgcaagca ccattaactt tattggaatc ttctgcacga accatattac 780 ataataggat tccatatggc tctcatatca ttccattcca tctctgccaa gatttggata 840 ccgcaaaaat ttgtgtttgt ggaagattct gtctgaactc tttcattcaa ggaactacta 900 ccatgaatct gcattctgtt gcccacactg tggtcttagt agataatttg ggtggtactg 960 aagcacctat tatctcttat ttctgttctc taggctgtta tgttaattcc tctgatatgt 1020 taaagtaatg ggtgagacca gaaaaagaaa tttcaataac agatcagttt ggggtgcatg 1080 tatgattttg cagcgtcaaa ttggagtaag ggaagatttc tgtatacttg ctggagagga 1140 ggaatgtgta tagttactca tttagatgac tccaaaactt ttattaaaac caattttagt 1200 tttaaaaaaa aaaaa 1215 <210> 35 <211> 1300 <212> DNA
<213> Homo Sapiens <220>
<221> misc_feature <223> Incyte ID No: 2960051CB1 <400> 35 ttctgcacaa agaactgaaa ggcatttatc cccaagggag gcagttattt tagattttac 60 taagaagttc agcaaatact tttcaacatt cccttctgtc ctttctttgt ttttaaagaa 120 agctctgatt ttgtttcatt ttcagctgga gacttaaatg acaccaagca aagcctactt 180 agtttagatc tccagaaatt ggctggtgga aaaaaatcaa acatgaagat tgcagttttg 240 ttttgttttt ttctgcttat catttttcaa actgactttg gaaaaaatga agaaattcct 300 aggaagcaaa ggaggaagat ctaccacaga aggttgagga aaagttcaac ctcacacaag 360 cacagatcaa acagacagct tggaattccg caaacaacag tttttacacc agtagcaaga 420 cttcctattg ttaactttga ttatagcatg gaggaaaagt ttgaatcctt ttcaagtttt 480 cctggagtag aatcaagcta taatgtgtta ccaggaaaga agggacactg tttggtaaag 540 ggcataacca tgtacaacaa agctgtgtgg tcgcctgagc cctgcactac ctgcctctgc 600 tcagatggaa gagttctttg tgatgaaacc atgtgccatc cccagaggtg cccccaaaca 660 gttatacctg aaggggaatg ctgccctgtc tgctccgcta ctggtacaga gatttagcta 720 agcaaaatat cagtgtgtga ttaatcttta acttccattt gtttttgtta ctaattttag 780 attaaaatta tgatacatta gtcagatctg agtacttaaa atattggcaa aatgctgatt 840 aacatagaaa atatctggga aaatgtatgg taggggatat aaataataga ctgtggcttt 900 atagttctag ctctatcaga ttcagtaaac ttggatgaga ttacattcca catttgactc 960 tcagctttag agatatggta acagaatttc tacaacagat cctgaattct tattgcatta 1020 agggctctgc tttggtctat atgtgcatta tcccacttaa tccagtgcaa cgtgccttta 1080 tcaccttgaa gccagggtaa acaaaggaag agtgatttgc atctaaagag aacaaagccc 1140 caaccctctg gctataccca accactcaaa ggcagcacag gaacccacat cactgcttgg 1200 ataatcccag gaaaatgcag aaaaagtgta gcctgaagca tgattttctc atgtggcact 1260 tctgtgtgca ggagatcaca gcgcggtttt gttgctgcca 1300 <210> 36 <211> 1562 <212> DNA
<213> Homo Sapiens <220>
<221> misc_feature <223> Incyte ID No: 3117318CB1 <400> 36 aaggccgggc gcggtaagag cgtctcgggg agtagggcaa ggcggccggg cccctcccat 60 tccgcctttt cttcagcgtc ctgcccgcgg cactggctgc gggtgccggg ccacctgcga 120 gtgtgcgcag ggactctgga cacccgcggc ggcgagctga gggagcagtc tccacgagga 180 cccaggcgga ccctctggcg ccatgcgcgc cctccccggc ctgctggagg ccagggcgcg 240 tacgccccgg ctgctcctcc tccagtgcct tctcgctgcc gcgcgcccaa gctcggcgga 300 cggcagtgcc ccagattcgg cttttacaag tccacctctc agagaagaaa taatggcaaa 360 taacttttcc ttggagagtc ataacatatc actgactgaa cattctagta tgccagtaga 420 aaaaaatatc actttagaaa ggccttctaa tgtaaatctc acatgccagt tcacaacatc 480 tggggatttg aatgcagtaa atgtgacttg gaaaaaagat ggtgaacaac ttgagaataa 540 ttatcttgtc agtgcaacag gaagcacctt gtatacccaa tacaggttca ccatcattaa 600 tagcaaacaa atgggaagtt attcttgttt ctttcgagag gaaaaggaac aaaggggaac 660 atttaatttc aaagtccctg aacttcatgg gaaaaacaag ccattgatct cttacgtagg 720 ggattctact gtcttgacat gtaaatgtca aaattgtttt cctttaaatt ggacctggta 780 cagtagtaat gggagtgtaa aggttcctgt tggtgttcaa atgaataaat atgtgatcaa 840 tggaacatat gctaacgaaa caaagctgaa gataacacaa cttttggagg aagatgggga 900 atcttactgg tgccgtgcac tattccaatt aggcgagagt gaagaacaca ttgagcttgt 960 ggtgctgagc tatttggtgc ccctcaaacc atttcttgta atagtggctg aggtgattct 1020 tttagtggcc accattctgc tttgtgaaaa gtacacacaa aagaaaaaga agcactcaga 1080 tgaggggaaa gaatttgagc agattgaaca gctgaaatca gatgatagca atggtataga 1140 aaataatgtc cccaggcata gaaaaaatga gtctctgggc cagtgaatac aaaacatcat 1200 gtcgagaatc attggaagat atacagagtt cgtatttcag ctttgtttat ccttcctgtt 1260 aagagcctct gagtttttag ttttaaaagg atgaaaagct tatgcaacat gctcagcagg 1320 agcttcatca acgatatatg tcagatctaa aggtatattt tcattctgta attatgttac 1380 ataaaagcaa tgtaaatcag aataaatatg ttagaccaga atacaaatta attatattct 1440 ggtcttcaaa ggacacacag aacagatatc agcagaatca cttaatactt catagaacaa 1500 aaatcactca aaacctgttt ataaccaaag aattcatgaa aaagaaagcc tttggccatt 1560 tg 1562 <210> 37 <211> 2801 <212> DNA
<213> Homo Sapiens <220>
<221> unsure <222> 2793 <223> a, t, c, g, or other <220>
<221> misc_feature <223> Incyte ID No: 3486992CB1 <400> 37 gactttgctt gaatgtttac attttctgct cgctgtccta catatcacaa tatagtgttc 60 acgttttgtt aaaactttgg ggtgtcagga gttgagcttg ctcagcaagc cagcatggct 120 aggatgagct ttgttatagc agcttgccaa ttggtgctgg gcctactaat gacttcatta 180 accgagtctt ccatacagaa tagtgagtgt ccacaacttt gcgtatgtga aattcgtccc 240 tggtttaccc cacagtcaac ttacagagaa gccaccactg ttgattgcaa tgacctccgc 300 ttaacaagga ttcccagtaa cctctctagt gacacacaag tgcttctctt acagagcaat 360 aacatcgcga agactgtgga tgagctgcag cagcttttca acttgactga actagatttc 420 tcccaaaaca actttactaa cattaaggag gtcgggctgg caaacctaac ccagctcaca 480 acgctgcatt tggaggaaaa tcagattacc gagatgactg attactgtct acaagacctc 540 agcaaccttc aagaactcta catcaaccac aaccaaatta gcactatttc tgctcatgct 600 tttgcaggct taaaaaatct attaaggctc cacctgaact ccaacaaatt gaaagttatt 660 gatagtcgct ggtttgattc tacacccaac ctggaaattc tcatgatcgg agaaaaccct 720 gtgattggaa ttctggatat gaacttcaaa cccctcgcaa atttgagaag cttagttttg 780 gcaggaatgt atctcactga tattcctgga aatgctttgg tgggtctgga tagccttgag 840 agcctgtctt tttatgataa caaactggtt aaagtccctc aacttgccct gcaaaaagtt 900 ccaaatttga aattcttaga cctcaacaaa aaccccattc acaaaatcca agaaggggac 960 ttcaaaaata tgcttcggtt aaaagaactg ggaatcaaca atatgggcga gctcgtttct 1020 gtcgaccgct atgccctgga taacttgcct gaactcacaa agctggaagc caccaataac 1080 cctaaactct cttacatcca ccgcttggct ttccgaagtg tccctgctct ggaaagcttg 1140 atgctgaaca acaatgcctt gaatgccatt taccaaaaga cagtcgaatc cctccccaat 1200 ctgcgtgaga tcagtatcca tagcaatccc ctcaggtgtg actgtgtgat ccactggatt 1260 aactccaaca aaaccaacat ccgcttcatg gagcccctgt ccatgttctg tgccatgccg 1320 cccgaatata aagggcacca ggtgaaggaa gttttaatcc aggattcgag tgaacagtgc 1380 ctcccaatga tatctcacga cagcttccca aatcgtttaa acgtggatat cggcacgacg 1440 gttttcctag actgtcgagc catggctgag ccagaacctg aaatttactg ggtcactccc 1500 attggaaata agataactgt ggaaaccctt tcagataaat acaagctaag tagcgaaggt 1560 accttggaaa tatctaacat acaaattgaa gactcaggaa gatacacatg tgttgcccag 1620 aatgtccaag gggcagacac tcgggtggca acaattaagg ttaacgggac ccttctggat 1680 ggtacccagg tgctaaaaat atacgtcaag cagacagaat cccattccat cttagtgtcc 1740 tggaaagtta attccaatgt catgacgtca aacttaaaat ggtcgtctgc caccatgaag 1800 attgataacc ctcacataac atatactgcc agggtcccag tcgatgtcca tgaatacaac 1860 ctaacgcatc tgcagccttc cacagattat gaagtgtgtc tcacagtgtc caatattcat 1920 cagcagactc aaaagtcatg cgtaaatgtc acaaccaaaa atgccgcctt cgcagtggac 1980 atctctgatc aagaaaccag tacagccctt gctgcagtaa tggggtctat gtttgccgtc 2040 attagccttg cgtccattgc tgtgtacttt gccaaaagat ttaagagaaa aaactaccac 2100 cactcattaa aaaagtatat gcaaaaaacc tcttcaatcc cactaaatga gctgtaccca 2160 ccactcatta acctctggga aggtgacagc gagaaagaca aagatggttc tgcagacacc 2220 aagccaaccc aggtcgacac atccagaagc tattacatgt ggtaactcag aggatatttt 2280 gcttctggta gtaaggagca caaagacgtt tttgctttat tctgcaaaag tgaacaagtt 2340 gaagactttt gtatttttga ctttgctagt ttgtggcaga gtggagagga cgggtggata 2400 tttcaaattt ttttagtata gcgtatcgca agggtttgac acggctgcca gcgactctag 2460 gcttccagtc tgtgtttggt ttttattctt atcattatta tgattgttat tatattatta 2520 ttttatttta gttgttgtgc taaactcaat aatgctgttc taactacagt gctcaataaa 2580 atgattaatg acaggatggg gttcccctgt gcttttacca gtagcatgac cccttctgaa 2640 gccatccgta gaaagtactt tgtccccaaa aagcaacata cggtttgaac agcatgaaac 2700 tttgtagcat cgggctaaga ctttaactca gagcaaggca gactggtacc tcgttaagat 2760 gtagtgactg cggatgttta cactgaatga agntgcttaa t 2801 <210> 38 <211> 2597 <212> DNA
<213> Homo Sapiens <220>
<221> misc_feature <223> Incyte ID No: 4568384CB1 <400> 38 ccagaggcaa agaggccagt gaggactgct ctgtgcagtt gtccaggcct gaagaaggtg 60 gcggtgattt gaatcagaag aggtggcatt ctcttcatta ggaggatatg gataatcaag 120 acctaacaaa ttgggctccg aaagatacct tcgtcatggg gaagagtgaa tggagagaag 180 ataatataaa atgccaaacg tatataaatt gaaaggggaa aattgagaga acttgcgatc 240 catggtcttg gtcttccata aaggggaact gggacatcca ctggagcaga gcacagattg 300 gcccaagagc cccaagactc ccactggcct ccgcagaggc cgacagtgta ttcgtcctgc 360 ggagattgtg gcttccctgt tagaaggaga ggagaacacc tgtggcaaac agaaaccaaa 420 ggaaaacaat ttaaagccaa aatttcaggc tttcaaggga gtaggctgtc tatatgaaaa 480 ggagtcaatg aaaaaatcct tgaaagacag tgttgcctct aacaataaag atcagaattc 540 catgaaacat gaggatccca gtatcatatc catggaagat gggtccccat atgttaatgg 600 ctcattaggt gaagtgactc catgccaaca tgcaaagaag gcgaatggcc caaactatat 660 tcagcctcaa aaaagacaga ccacttttga aagccaggat cgcaaggcag tgtcccctag 720 cagttctgaa aagagaagta agaatcctat ttctaggcca ttagaaggta agaagtcctt 780 aagtcttagt gcaaagactc acaacatagg ctttgacaaa gacagctgcc atagtaccac 840 aaagacagaa gcttcacagg aagagcggtc tgattcaagc ggcctcacat ctctcaagaa 900 atcaccaaag gtctcatcca aggacactcg ggaaatcaaa actgatttct cactttctat 960 tagtaattcg tcagatgtga gtgctaaaga taagcatgct gaagacaatg agaagcgttt 1020 ggcagccttg gaagcgaggc aaaaagcaaa agaagtgcag aagaagctgg tgcataatgc 1080 tctggcaaat ttggatggtc atccagagga taagccaacg cacatcatct tcggttctga 1140 cagtgaatgt gaaacagagg agacatcgac tcaggagcag agccatccag gagaggaatg 1200 ggtgaaagag tctatgggta aaacatcagg gaagctgttt gatagcagtg atgatgacga 1260 atctgattct gaagatgaca gtaataggtt caaaattaaa cctcagtttg agggcagagc 1320 tggacagaag ctcatggatt tacagtcgca ctttggcacc gatgacagat tccgcatgga 1380 ctctcgattt ctagaaactg acagtgaaga ggaacaggaa gaggtaaatg aaaagaaaac 1440 tgctgaggaa gaagagcttg ctgaagaaaa aaagaaagcc ctgaatgttg tacaaagtgt 1500 tttgcaaatc aacttaagca attctacaaa cagaggatca gtagctgcta agaaatttaa 1560 ggacatcata cattatgatc caacgaagca agaccatgcc acttacgaaa gaaaaagaga 1620 tgataaacca aaagaaagta aagcaaaacg aaaaaagaaa agggaggaag ctgagaaact 1680 acctgaggtg tctaaagaaa tgtattataa tattgctatg gatctgaaag aaatattcca 1740 aactacaaaa tataccagtg aaaaggaaga gggcacaccc tggaatgagg actgtggtaa 1800 agagaaacct gaggaaatcc aggaccctgc agctctgacc agtgacgctg agcagcccag 1860 cgggttcacg ttctcttttt ttgattcaga cactaaagac ataaaggaag agacctacag 1920 agttgaaaca gtgaaacctg gaaagattgt ctggcaggaa gaccctcgtt tacaagacag 1980 cagttcagaa gaggaagatg ttactgaaga aacagatcac agaaactcca gtcctggaga 2040 agcatcatta cttgagaaag agaccactag atttttcttt ttctctaaga atgatgaacg 2100 acttcaaggt tctgacttat tctggagagg agtaggaagt aatatgagca ggaactcttg 2160 ggaggccaga acaaccaacc tgcgtatgga ttgtcgaaag aaacataaag acgcaaaaag 2220 gaaaatgaaa ccaaaataat aaatgtcagc tggttttgat actgaatgtg aacaaggctc 2280 acctaaggaa actgacccag aaaacagttt tagctgacaa agaagaaatt tcagagtgaa 2340 ggaattttaa aaatctggct gacggaatat cattctggtt gccatctttt tctgtggaac 2400 tcctctgcat ttcttcctaa gtaattactt caaaaattaa attcaacttc ttataaagga 2460 agaacaagat agtccttgaa aatacttttt gtatataatc tctttgccct ctatcctgag 2520 taactaatgg acatcttctc atgcaaggtt tatatgaagc ctttttaaat aaatgagtca 2580 aagcaaaaaa aaaaaaa 2597 <210> 39 <211> 2641 <212> DNA
<213> Homo Sapiens <220>
<221> misc_feature <223> Incyte ID No: 4586187CB1 <400> 39 ctgggaagaa agctatcagc accaactcag aactctccac cttcagatca gacattctag 60 atctccgtca gcaacttcgt gagattacag aaaaaaccag caagaacaag gatacgctgg 120 agaagttaca ggcgagcggg gatgctctgg tggacaggca gagtcaattg aaagaaactt 180 tggagaataa ctctttcctc atcaccactg taaacaaaac cctccaggcg tataatggct 240 atgtcacgaa tctgcagcaa gataccagcg tgctccaggg caatctgcag aaccaaatgt 300 attctcataa tgtggtcatc atgaacctca acaacctgaa cctgacccag gtgcagcaga 360 ggaacctcat cacgaatctg cagcggtctg tggatgacac aagccaggct atccagcgaa 420 tcaagaacga ctttcaaaat ctgcagcagg tttttcttca agccaagaag gacacggatt 480 ggctgaagga gaaagtgcag agcttgcaga cgctggctgc caacaactct gcgttggcca 540 aagccaacaa cgacaccctg gaggatatga acagccagct caactcattc acaggtcaga 600 tggagaacat caccactatc tctcaagcca acgagcagaa cctgaaagac ctgcaggact 660 tacacaaaga tgcagagaat agaacagcca tcaagttcaa ccaactggag gaacgcttcc 720 agctctttga gacggatatt gtgaacatca ttagcaatat cagttacaca gcccaccacc 780 tgcggacgct gaccagcaat ctaaatgaag tcaggaccac ttgcacagat acccttacca 840 aacacacaga tgatctgacc tccttgaata ataccctggc caacatccgt ttggattctg 900 tttctctcag gatgcaacaa gatttgatga ggtcgaggtt agacactgaa gtagccaact 960 tatcagtgat tatggaagaa atgaagctag tagactccaa gcatggtcag ctcatcaaga 1020 attttacaat actacaaggt ccaccgggcc ccaggggtcc aagaggtgac agaggatccc 1080 agggaccccc tggcccaact ggcaacaagg gacagaaagg agagaagggg gagcct.ggac 1140 cacctggccc tgcgggtgag agaggcccaa ttggaccagc tggtcccccc ggagagcgtg 1200 gcggcaaagg atctaaaggc tcccagggcc ccaaaggctc ccgtggttcc cctgggaagc 1260 ccggccctca gggccccagt ggggacccag gccccccggg cccaccaggc aaagagggac 1320 tccccggccc tcagggccct cctggcttcc agggacttca gggcaccgtt ggggagcctg 1380 gggtgcctgg acctcgggga ctgccaggct tgcctggggt accaggcatg ccaggcccca 1440 agggcccccc cggccctcct ggcccatcag gagcggtggt gcccctggcc ctgcagaatg 1500 agccaacccc ggcaccggag gacaatagct gcccgcctca ctggaagaac ttcacagaca 1560 aatgctacta tttttcagtt gagaaagaaa tttttgagga tgcaaagctt ttctgtgaag 1620 acaagtcttc acatcttgtt ttcataaaca ctagagagga acagcaatgg ataaaaaaac 1680 agatggtagg gagagagagc cactggatcg gcctcacaga ctcagagcgt gaaaatgaat 1740 ggaagtggct ggatgggaca tctccagact acaaaaattg gaaagctgga cagccggata 1800 actggggtca tggccatggg ccaggagaag actgtgctgg gttgatttat gctgggcagt 1860 ggaacgattt ccaatgtgaa gacgtcaata acttcatttg cgaaaaagac agggagacag 1920 tactgtcatc tgcattataa cggactgtga tgggatcaca tgagcaaatt ttcagctctc 1980 aaaggcaaag gacactcctt tctaattgca tcaccttctc atcagattga aaaaaaaaaa 2040 gcactgaaaa ccaattactg aaaaaaaatt gacagctagt gttttttacc atccgtcatt 2100 acccaaagac ttgggaacta aaatgttccc cagggtgata tgctgatttt cattgtgcac 2160 atggactgaa tcacatagat tctcctccgt cagtaaccgt gcgattatac aaattatgtc 2220 ttccaaagta tggaacactc caatcagaaa aaggttatca ttggtcgttg agttatggga 2280 agaacttaag catatactgt gtaaacagtg ccatacattt ctaaaatccc aagtgtagga 2340 aaaatatgca gacatacaga tatataggcc aactattagt aataatatga aatatactta 2400 aagagctttt aaaactttgt atttttgtac aaaatatttg tcttttacaa tttttttcct 2460 tttttttttt ttgtcatttt accgacataa tacatggagc caaagaaaac aataatggta 2520 ctaataaaaa ctcctagggt ttcctgtcag atttaattct acccagtggc aaagaatttt 2580 ttcaattgtg gctttaaaaa aataattaaa tatacatgta tatatatata aaaaaaaaaa 2640 a 2641 <210> 40 <211> 914 <212> DNA
<213> Homo Sapiens <220>
<221> misc_feature <223> Incyte ID No: 401801CB1 <400> 40 cagaggtgta ctctacatga tgcacaaatg tgatatgtct ttttggtgaa gagcacgtga 60 tgaaaacagt aaataactga gaatagcaca aagctactag ggactcagat gattcaaata 120 ttgaagacta tgagtaatat taatcagcaa cttagtttgt tatcttcagt tatatgggag 18C
gagtacatta ttctttgtta taggactacc tcacccttaa attgtaagtt ctttattagc 24C
ttattgcatt ttccattctt aaagcagtag tttagtgttc tcttactgta tgacaattaa 300 aagtatactt aattgactac ataatgtgat agttaaaaaa tatatttaaa gtagcttttt 360 gaaagctttg ctgtttcccc ccctttttgt atataaaagc attagttgtc attattcatg 420 tgttctcatt actttttaca aatgagaaca atgccttatg catgttgtga acaattacta 480 aaattttatg taaatttaac ctttattttt aattaatatg tgttaagata taacattatt 540 ttatctatta atatatgtat tttaatttac aggaaaacat ctttatgtat ggaggcagaa 600 ttgaaacaaa tgatggcaat gtcacagatg aattatgggt ttttaacata catagtcagt 660 catggagtac aaaaactcct actgttcttg gacatggtca gcagtatgct gtggagggac 720 attcagcaca tattatggag ttggatagta gagatgttgt catgatcata atatttggat 780 attctgcaat atatggttat acaagcagca tacaggaata ccatatctgt gagttactta 840 aaaattgtaa tttctttatt gattgggaat gtttttctct ttaataaaat cttcatatga 900 atttaaaaaa aaaa 914 <210> 41 <211> 1006 <212> DNA
<213> Homo Sapiens <220>
<221> misc_feature <223> Incyte ID No: 1721842CB1 <400> 41 ggcaaagaga actacaaatc ccagcgtcac ccgcggcctt gaagccccgc ccctgacaaa 60 ctgaaggtcc cggtaagcat cgcgtcagta cttatggcgc ctgccgggtt gtggtgacga 120 aagcagttgc catggagttg ctctgagtaa ccctgaggca gtgggacgcc aagactggag 180 aggaagcgac tgcggggagt atttccattt taaccggaaa caatccctga acccacagga 240 atgaatgcct aatggtggag tttcagccat cagtgacagg ctgaacccag actcccaggg 300 cacctgcttg cacctttgaa tgatggcctg aactatgaac aaacgggact atatgaacac 360 ttcggtacag gagccccctc ttgactactc cttcagaagc atccacgtca ttcaagatct 420 ggtaaatgag gagccaagga caggactacg accactgaag cgttcaaagt cggggaaatc 480 actgacccag tccctgtggc tgaataacaa tgttctcaat gatctgagag acttcaacca 540 ggtggcttca cagctgttgg agcacccaga gaacctggcc tggatcgacc tgtcctttaa 600 tgacctgact tccattgacc ctgtcctaac aactttcttc aacctgagtg tcctctatct 660 tcacggcaac agcatccagc gcctggggga ggtgaataag ctggctgtcc ttcctcggct 720 ccgtagcctg acactccatg ggaaccccat ggaggaagag aaagggtata ggcaatatgt 780 gctgtgcacc ctgtcccgta tcaccacgtt cgacttcagt ggggtcacca aagcagaccg 840 caccacagct gaagtctgga aacgcatgaa catcaagccc aagaaggcct ggaccaagca 900 gaatacactt tgaggctccc acgaccctag tagtcctaaa ggcctaagca tagacagcat 960 ggtttgacaa taaataattt gagctgttga gcagaaaaaa aaaaaa 1006 <210> 42 <211> 2582 <212> DNA
<213> Homo Sapiens <220>
<221> misc_feature <223> Incyte ID No: 1833221CB1 <400> 42 gttaaattta gtactgaatg cagccttttg ttgtttaaaa aatttttttg aactcacagt 60 ctacatcagc atcagcatct gcgtcaccat ttcaatctgc atggtatagt gaatctgaga 120 taactcaggg agcacgctca agatcgcaga accagcaacg ggatcatgat tcaaaaagac 180 ctaaactttc ctgtacaaac tgtactacct cagctgggag aaatgttgga aatggtttaa 240 acacattatc agattcatct tggaggcata gtcaagttcc tagatcttca tcaatggtac 300 ttggatcatt tggaacagac ttaatgagag agaggagaga tttggagaga agaacagatt 360 cctctattag taatcttatg gattatagtc accgaagtgg tgatttcaca acttcatcat 420 atgttcaaga cagagttcct tcatattcac aaggagcaag accaaaagaa aactcaatga 480 gcactttaca gttgaataca tcatccacaa accaccaatt gccttctgaa catcagacca 540 tactaagttc tagggactcc agaaattctt taagatcaaa tttttcttca agagaatcag 600 aatcttcccg aagcaatacg cagcctggat tttcttacag ttcaagtaga gatgaagccc 660 caatcataag caattcagaa agggttgttt catctcaaag accatttcaa gaatcttctg 720 acaatgaagg taggcggaca acgaggagat tgctgtcacg catagcttct agcatgtcat 780 ctactttttt ttcacgaaga tctagtcagg attccttgaa tacaagatca ttgaattctg 840 aaaattctta cgtttctcca agaatcttga cagcttcaca gtcccgtagt aatgtaccat 900 cagcttctga agttcccgat aatagggcat ctgaagcttc tcagggattt cgatttctta 960 ggcgaagatg gggtttgtca tctcttagcc acaatcatag ctctgagtca gattcagaaa 1020 attttaacca agaatctgaa ggtagaaata caggaccatg gttatcttcc tcacttagaa 1080 atagatgcac acctttgttc tctagaagga ggcgagaggg aagagatgaa tcttcaagga 1140 tacctacctc tgatacatca tctagatctc atatttttag aagagaatca aatgaagtgg 1200 ttcaccttga agcacagaat gatcctcttg gagctgctgc caacagacca caagcatctg 1260 cagcatcaag cagtgccaca acaggtggct ctacatcaga ttcggctcaa ggtggaagaa 1320 atacaggaat atcagggatt cttcctggtt ccttattccg gtttgcagtc cccccagcac 1380 ttgggagtaa tttgaccgac aatgtcatga tcacagtaga tattattcct tcaggttgga 1440 attcagctga tggtaaaagt gataaaacta aaagtgcgcc ttcaagagat ccagaaagat 1500 tgcagaaaat aaaagagagc ctccttttag aggactcaga agaagaagaa ggtgacttat 1560 gtagaatttg tcaaatggca gctgcatcat catctaattt gctgatagag ccatgcaagt 1620 gcacaggaag tttgcagtat gtccaccaag actgtatgaa aaagtggtta caggccaaaa 1680 ttaactctgg ttcttcatta gaagctgtaa ccacctgtga actatgtaaa gagaagttgg 1740 agcttaacct ggaggatttt gatattcatg aactacatag agctcatgca aatgaacaag 1800 ctgagtatga gtttatcagc tctggtctct acctagtggt gttattgcac ttgtgcgaac 1860 aaagcttttc tgatatgatg ggaaatacaa atgaaccaag cacacgtgtc cgatttatta 1920 accttgcaag aactcttcag gcacatatgg aagatctcga aacttcagag gatgattccg 1980 aagaagacgg agaccataac aggacatttg atattgccta acttcatata agacagatgg 2040 atgatctgtg aacataagtg tttattaaaa atggcaatta aatataaatt acttttgtgg 2100 gggaatgcct aataaataca ttgactatat ataaaatgaa tatatacata cacatgtatg 2160 cctgtatata tatattcatt ctccagtgtt gctgaattaa aattctgctg gactttttaa 2220 catagcaaat ccgatgttta taaactggta atcaaaaagg ttttttcttt taggtgagtg 2280 ggaaagtatt acccttgttt taaatatcta agcaatgcct atcaaccctt ttttgtgtta 2340 tgattactgt agtcatattt atgaaaaaag gtttgtgttt tactcttgct agtgagaaaa 2400 gtgggacaaa atatactttt gaaataaaat gctatatggc acctaattat tttttctttt 2460 aaaatgcctt aagttgcagt ctcattttga taatcatttg cttccagtgt ttaaaaatta 2520 aaaaaagaat ggggagaagg ttatgagaag agcattatta agtttccaaa tttaatttga 2580 at 2582 <210> 43 <211> 2849 <212> DNA
<213> Homo Sapiens <220>
<221> misc_feature <223> Incyte ID No: 2041168CB1 <400> 43 acgtgaccaa gagctgacgt gtgcagaagt ccttcttgtc ctggtcgttg ttcccgtctg 60 agtaccagct ccccactgcc ctgagggcgg gccggcctgc ggcggaggga aaaaggaaga 120 ggagaaggaa attgtcccga atccctgcag tctttctgta ggttgcggca caacgccagg 180 caaaagaaga ggaaggaatt taatcctaat cggtggaggt cgatttgagg gtctgctgta 240 gcaggtggct ccgcttgaag cgagggagga agtttcctcc gatcagtaga gattggaaag 300 attgttggga gtggcacacc actagggaaa agaagaaggg gcgaactgct tgtcttgagg 360 aggtcaaccc ccagaatcag ctcttgtggc cttgaagtgg ctgaagacga tcaccctcca 420 caggcttgag cccagtccca cagccttcct cccccagcct gagtgactac tctattcctt 480 ggtccctgct attgtcgggg acgattgcat gggctacgcc aggaaagtag gctgggtgac 540 cgcagcctgg tgattggggc tggcgcctgc tattgcattt atagactgac taggggaaga 600 aaacagaaca aggaaaaaat ggctgagggt ggatctgggg atgtggatga tgctggggac 660 tgttctgggg ccaggtataa tgactggtct gatgatgatg atgacagcaa tgagagcaag 720 agtatagtat ggtacccacc ttgggctcgg attgggactg aagctggaac cagagctagg 780 gccagggcaa gggccagggc tacccgggca cgtcgggctg tccagaaacg ggcttccccc 840 aattcagatg ataccgtttt gtcccctcaa gagctacaaa aggttctttg cttggttgag 900 atgtctgaaa agccttatat tcttgaagca gctttaattg ctctgggtaa caatgctgct 960 tatgcattta acagagatat tattcgtgat ctgggtggtc tcccaattgt cgcaaagatt 1020 ctcaatactc gggatcccat agttaaggaa aaggctttaa ttgtcctgaa taacttgagt 1080 gtgaatgctg aaaatcagcg caggcttaaa gtatacatga atcaagtgtg tgatgacaca 1140 atcacttctc gcttgaactc atctgtgcag cttgctggac tgagattgct tacaaatatg 1200 actgttacta atgagtatca gcacatgctt gctaattcca tttctgactt ttttcgttta 1260 ttttcagcgg gaaatgaaga aaccaaactt caggttctga aactcctttt gaatttggct 1320 gaaaatccag ccatgactag ggaactgctc agggcccaag taccatcttc actgggctcc 1380 ctctttaata agaaggagaa caaagaagtt attcttaaac ttctggtcat atttgagaac 1440 ataaatgata atttcaaatg ggaagaaaat gaacctactc agaatcaatt cggtgaaggt 1500 tcactttttt tctttttaaa agaatttcaa gtgtgtgctg ataaggttct gggaatagaa 1560 agtcaccatg attttttggt gaaagtaaaa gttggaaaat tcatggccaa acttgctgaa 1620 catatgttcc caaagagcca ggaataacac cttgattttg taatttagaa gcaacacaca 1680 ttgtaaacta ttcattttct ccaccttgtt tatatggtaa aggaatcctt tcagctgcca 1740 gttttgaata atgaatatca tattgtatca tcaatgctga tatttaactg agttggtctt 1800 taggtttaag atggataaat gaatatcact acttgttctg aaaacatgtt tgttgctttt 1860 tatctcgctg cctagattga aatattttgc tatttcttct gcataagtga cagtgaacca 1920 attcatcatg agtaagctcc cttctgtcat tttcattgat ttaatttgtg tatcatcaat 1980 aaaattgtat gttaatgctg gaaagaaaaa aagaagaaag aaaaaaacca tccctgtcct 2040 tcagtttata atctagttgg agagataaga aacgtacaaa ccaaaagata acagaatatc 2100 tgaagcatgt actcattgtc agatgttccc tctgagagca cagaggaggc aaaagcttct 2160 gtgggatgtg ctagtcggct aaagcttcac agaggaggtg gcaattgaaa atgagtcctg 2220 aatggggtag ggtggttagg gaattccatg agacaagaca aggggggcat ggtgtgagaa 2280 aggcatggaa gtaggaaccc tcttcctatg acaggagatc attctgctta gagtggagag 2340 tgtggagagt gggagtagat aattttggaa agctgggtga agccagttgt ggagaattgt 2400 ttgaatatta tcccattgaa tacccagagc cactaaatct ttttttacta gaaaataatt 2460 ggggtccata tgaaagtctc tattactgag tagtgtcaat gagggtgtgg caaaatggag 2520 cctttcacat cctagtggtg gccatttggt aatacagata taagccttaa actatgtaaa 2580 cccttgtcct aaggaagtaa ttgaataatt gcccaaagat tgtatgtatg aggctgttca 2640 tcccagcact gtctaagcta gtaaaaattg gaaacaattt aagtatctag cacattggat 2700 tggttataaa gcaaggaatg ttcacacagt aggatattat aagtatgctg atggaaatct 2760 atattgccag gaaaagctat tcattatgcg ttgtgaagtc agaaagtaaa aaagggtaga 2820 tagaagtatt cgaagtatag ttccatttt 2849 <210> 44 <211> 670 <212> DNA
<213> Homo Sapiens <220>
<221> misc_feature <223> Incyte ID No: 2365794CB1 <400> 44 gaggcaagaa ttcggcacga ggggcgccgc gggcatttct tccactgccc gtctgaggga 60 acgctaagta gtgtgtccgg cgccgtgttc cagctccgcg ttgttccgcg agaaagcgag 120 aggccgagcc cgggctggtg cgatggccgc ggtggtggcc aagcgggaag ggccgccgtt 180 catcagcgag gcggccgtgc ggggcaacgc cgccgtcctg gattattgcc ggacctcggt 240 gtcagcgctg tcgggggcca cggccggcat cctcggcctc accggcctct acggcttcat 300 cttctacctg ctcgcctccg tcctgctctc cctgctcctc attctcaagg cgggaaggag 360 gtggaacaaa tatttcaaat cacggagacc tctctttaca ggaggcctca tcgggggcct 420 cttcacctac gtcctgttct ggacgttcct ctacggcatg gtgcacgtct actgaaatgg 480 gggcccgggg gactttttta aaaaaccaga tcgggaggac tgtggccagc aattaacacc 540 atgtagactt ccttagttct taagtggttg aattcgctgc ttgttctgta acgttataaa 600 taatttatat ctgaagacgg agagcctgta atattcttca gattaaatga agcgtgagac 660 aaaaaaaaaa 670 <210> 45 <211> 2364 <212> DNA
<213> Homo Sapiens <220>
<221> misc_feature <223> Incyte ID No: 2618452CB1 <400> 45 ctcaatgcca acaggcacca ttcctccacc gacaacgctg aaggccacag ggtccaccca 60 cacagcccca ccaatgatgc caaccaccag tgggaccagc caagcctcaa gctccttcaa 120 cacagccaaa acctctacat ccctacattc acacacttcc tccacacacc atcctgaagt 180 caccccaact tctatcacca acatcaccct caaccccacc agtataggaa cctggacacc 240 cgtggcccac accacctcgg ccaccagcag caggctaacc acacccttca ccacacattc 300 cccacctaca gggagcagtc ccatctcttc cacaggtcct atgactgcaa catcctttca 360 gaccaccact tattatacac caccatcaca ccctcagacc acacttccca ctcacgttcc 420 acctttctcc acctccttgg tgactccaag tactcacaca gtcatcatca ctacccacac 480 acagatggcc acttctgcct ccatccactc aacgccaaca ggcaccgttc ctccaccaac 540 aacgctcaag gccacagggt ccacccacac agccccacca atgacagtga ccaccagtgg 600 gaccagccaa acccacagct cattcagcac agctacagcc tcttcttcct tcatatcctc 660 ctcgtcttgg tcgtcttggc tgcctcagaa ctctagctca aggccaccgt catcacctat 720 caccacacaa ctcccccact tgagttctgc aaccactcct gtttccacaa ctaatcagct 780 gtcctcctca ttttctccca gtccttctgc cccctctact gtttcttctt atgtgccctc 840 ctcccactcc tctccccaga cttcatcgcc ttctgttggc acatcttcct ctttcgtgtc 900 cgcccccgtg cactccacaa ccctgagctc ggggtcacac tcctcattgt ccactcatcc 960 cacgactgca tcagtgtctg catctcctct ttttccttct tctccagctg cctctactac 1020 cattagggcc actctccccc acactatctc ctctcctttc accctctctg ctctactccc 1080 catatccact gttaccgtgt ctcccacccc atccagccac ctagcctcca gcaccattgc 1140 atttccgtcc acgcccagga ccacggccag cacccacacc gcccctgcct tctcctctca 1200 gtccaccacc tcgcggtcca cttctctcac cacccgagtt cccacatcag gctttgtgtc 1260 actcacctcg ggggtgacgg gtatccccac ctctccagtc accaacctta ccaccaggca 1320 ccctggtccc accttgtcgc ctaccacacg gttcctgacc agctccctca ctgcccatgg 1380 aagcacccct gcttctgccc cggtatcttc tctcgggaca cctacgccca cctcacccgg 1440 ggtctgcagt gtgcgggagc agcaggagga gatcacgttc aaggggtgca tggcgaacgt 1500 gacggtaacc cgctgtgagg gcgcctgcat ttccgctgcc agcttcaaca tcatcaccca 1560 gcaggtggat gcccgctgca gctgctgccg ccccctccac tcctatgagc agcagctgga 1620 gctgccctgc cccgatccca gcacgcctgg ccggcggctc gtactcaccc tgcaggtgtt 1680 cagccactgc gtgtgcagct ctgtggcctg tggagactag cagggtcgct gcctgctctc 1740 ctggggctga aggactgcag atgacagaca ggaaaacacc caccagcccc cttcccgctt 1800 gtgccagcag ctgctttcct ggtcaccagg cctggccccc aagtgccctg ggccgtggct 1860 ccctggggca ccggttggag aggggctgcc aagcaggggc tcagactacc acactcctgc 1920 agaccctgag ccagcagaga gggactgagg cggacagtgg tcacggacct cccaggcaca 1980 cagggcactc ccgaccaccc ctgcccactg tccaacacct cccagcccct gaacttggcc 2040 ccagccctgc tgggcccaga accctgcaga tgaagccaca gagcaggcgc tcgaccagac 2100 ccatcagggg cgaggagggc acggaaacct gtgccgagat gggggcaaga ggcccaggca 2160 gccaccagca cagagaagag gagatcccca gagtcaggga gggcagaggg tggcagcgag 2220 ggcagggcag ccgcccccgc tcccagccag gcagaaggcc cccaccagca ccacacccat 2280 ccccagcagc ctgtccttgg gagagggcgt cacccggtca gagactccaa ataaaccggt 2340 tcttgtcaag gcacaaaaaa aaaa 2364 <210> 46 <211> 3600 <212> DNA
<213> Homo Sapiens <220>
<221> misc_feature <223> Incyte ID No: 2622288CB1 <400> 46 gcagaggcgg cggggctcct cctcccgctc ctcctcggcc tccccttcgg gcgctctcgc 60 gctaactgtg ctcctccggg gccctccgcc tgctcccagc catggtggcc tggcgctcgg 120 cgttccttgt ctgcctcgct ttctccttgg ccaccctggt ccagcgagga tctggggact 180 ttgatgattt taacctggag gatgcagtga aagaaacttc ctcagtaaag cagccatggg 240 accacaccac caccaccaca accaataggc caggaaccac cagagctccg gcaaaacctc 300 caggtagtgg attggacttg gctgatgctt tggatgatca agatgatggc cgcaggaaac 360 cgggtatagg aggaagagag agatggaacc atgtaaccac cacgaccaag aggccagtaa 420 ccaccagagc tccagcaaat actttaggaa atgattttga cttggctgat gccctggatg 480 atcgaaatga tcgagatgat ggccgcagga aaccaattgc tggaggagga ggtttttcag 540 acaaggatct tgaagacata gtagggggtg gagaatacaa acctgacaag ggtaaaggtg 600 atggccggta cggcagcaat gacgaccctg gatctggcat ggtggcagag cctggcacca 660 ttgccggggt ggccagcgcc ctggccatgg ccctcatcgg tgccgtctcc agctacatct 720 cctaccagca gaagaagttc tgcttcagca ttcagcaggg tctcaacgca gactacgtga 780 agggagagaa cctggaagcc gtggtatgtg aggaacccca agtgaaatac tccacgttgc 840 acacgcagtc tgcagagccg ccgccgccgc ccgaaccagc ccggatctga gggccctgtc 900 cagctgcagg catgcacaat ggtgccaccg cttgtcaccc ggctcccccc accccttcat 960 ttggacccgc agctgctgtg ctgctctgtg ccatcggctc cttgttggtc tgagtttccc 1020 ggatgagctc tgggtgtttg tgagtttggt ttctctgccc tgccccaagc gtgctgagac 1080 ttggtgccga aattcaagag ccagctctga tagaaagcca gcaccagcct cgggagctgc 1140 tgagccacca actcccaaag ccagcctgcc tccagcttta ctgagcacag gatgcggggg 1200 ccaagatgat gctgaggcct gatgacattt atgcttaggg gacaagagtt tgaactcaag 1260 ggactgtgac ccctgcacac tggagtggct cattgtggca ggtttctgcc aatagacagc 1320 ccctgacagt ggcctcaagg agctgcaggt ggggggctca gcctgcaccc acttggagcc 1380 cctgcaagga gcgaaccggt cagcaccaag taacaccaca cacacgcagc acccaggatg 1440 atggtttcac ttcagtcttc cccatcccag gttttatgtt gctgggcttc cggagagccg 1500 gtccaagcgg aggctttcag tgatttaagt acaaacatgc atctcgtgat agtcctgcct 1560 tgagagctta ggaatcttcc ggataagtat gaagcaattc gtaggcctgt ttcccatctg 1620 attccatagg gggctgggtg tggccttcgg gttgacatga gaaaggtctt tagcaatcat 1680 ttctgcaccg gagatgagtt ttatcctgtg ttggggagag gtgctcGccc tccaccctgt 1740 gtccctgttt tggtagcaag agtgaccgat gtcaagaacg agcatcaaag ccagaatcct 1800 gcttgtttgc ttaaaaatgt aattgggggc ggcgggggag gagaggggaa agagacattc 1860 gcttggttta gtgaaacgca ggtgactttg tagctctgtg gtcagcctac ttgtctgctc 1920 tgagggagag tgcgtgggga gccatgctca ccgtggcaaa cacaggaacc ccatgactcg 1980 cccctcacct ggcgtggagc tgcctggttt gggctggagc agagctggtt tcctggaatg 2040 ttcctttggc ccacatatgg ttctgtcccg gtgagctctg ttgtcagagg ctcacgggac 2100 agaaccacat gctagggtct agggcccctg tctactgata gtcagtttgc tgtgtcagaa 2160 agcacttctg aaagcagata tgagtcacca gacaggcagg atcttacaaa actcacgggc 2220 ctctttggtc tgcatgatgg ccccatgcgt ttcataggct gtccactgag cgggattgtc 2280 tgctgagtgg gatgagccaa ctccagtttc ttaaggaaac cactggaatc tgcagccccc 2340 acatgcatct gtctaacgca tgcctcgtgt tcgttttgca aacatgcctg tggtggaggg 2400 tggtcagttg tagccctgtg cgtctcaagg ctgccttgtg aggccattcc cagtgcgtgc 2460 ccttgagctc cttaccaccc cttttcctgc tcggcccttt aatccctgac agacctggac 2520 tgtgtggctg aagggggacc tgcagcactg cagaaatgcc tctgcgtggt gccatgaagg 2580 aaagaaacct tggcctggtc tcgagaagct tcccatgctt caggaagtta gtaagggtgg 2640 ggtggcttgc aggattggcc tgtttccagg gcctcccaca ctcattggcc agattgtgaa 2700 ctttgtcagg cttgtccctc cctgatacca agtatgtcga gaaccgatgg ccccaccctc 2760 tggctggtgc tgggccggag gtggctatgg aggattttgg catgcgtggc ctgtcgccac 2820 ctggacagcg tgacctcagg ggttgtccac tttaccttta tggtgaggcc tgtcggatgg 2880 ctaagtcctt gaaaccctag agctgtgacg tagaatatgt gctgtctgtg agaccgtgtt 2940 cccaggagca ctgactgcag ttgagagaga cccattttgc tctcccttac cgccccccgc 3000 cccgggtgct ttctgcacaa agcctagagc ctggcactca agcccaccgg tggcagctcc 3060 tagtgactgg acatgcctgg aagacccctc agccttctgt ttgcagaacg ttcatttcag 3120 gagcttctcc ttcccacaga catcttacac ttgctcgaca ctgccacctg cagaagcctg 3180 gcgggctctg gtcaccatgt gtctatctga aggttgcact ggccagcatg ggcctgtccc 3240 aagcgagagg ggagacacag tggactgaaa ggactggttg aaagtggcca atctctatca 3300 gcttaatttg gcagagaaaa tttgtaacaa ctctgagcac atgctgggtg aagtcacagc 3360 tcaaggaaag ataaagctgg gcggaaggag gtgtgcgtgg cttctggggt gggacccaga 3420 ggggaggctc tgggacaggg gctggggttc agtgccaggg ccctgaggaa gaaatgggga 3480 ctgatctcaa aattccagaa ttccctgtac atctgttcac gtgcttgtgt ccaggtgtga 3540 cttgtaaact gtctagtgtt tgcattaaat aaaatggcac cgagcagaaa aaaaaaaaaa 3600 <210> 47 <211> 1236 <212> DNA
<213> Homo Sapiens <220>
<221> misc_feature <223> Incyte ID No: 2806595CB1 <400> 47 ttaatttccc-cgaaatcaga ctgctgcctt ggaccgggac agctcgcggc ccccgagagc 60 tctagccgtc gaggagctgc ctggggacgt ttgccctggg gccccagcct ggcccgggtc 120 accctggcat gaggagatgg gcctgttgct cctggtcccg ttgctcctgc tgcccggctc 180 ctacggactg cccttctaca acggcttcta ctactccaac agcgccaacg accagaacct 240 aggcaacggt catggcaaag acctccttaa tggagtgaag ctggtggtgg agacacccga 300 ggagaccctg ttcacctacc aaggggccag tgtgatcctg ccctgccgct accgctacga 360 gccggccctg gtctccccgc ggcgtgtgcg tgtcaaatgg tggaagctgt cggagaacgg 420 ggccccagag aaggacgtgc tggtggccat cgggctgagg caccgctcct ttggggacta 480 ccaaggccgc gtgcacctgc ggcaggacaa agagcatgac gtctcgctgg agatccagga 540 tctgcggctg gaggactatg ggcgttaccg ctgtgaggtc attgacgggc tggaggatga 600 aagcggtctg gtggagctgg agctgcgggg tgagatgcta acggggactg ggtgacactg 660 ggacctgaga gcagagggga gaggaccaga gaaaacatcc agacctctgt gctttagaca 720 tttaaaagta cttaattctc aaaacaaccc acatggaagc tactgttgtg acccccattt 780 tacaggtgag aaaactgagg cacagagagg tcaagtaact tacctaaggt cacacagctt 840 gtaaacgaca gagctggggt ctgaacccaa gcacccagcc tctagaatct gttcccctct 900 acccgctgta attcacatct cattcagaga gaggaaaacc agagctggtc ccacagctta 960 ttagagacag agctgagatt taagcaaggt tagcgggtaa cacaagcgaa tgaggcagcc 1020 cactgtgaga cgatgggagt ggtggggact gggcacactc ctgagccctt gtcctgtgcc 1080 cagggagctc ccacactact caggcccagc tgatgatgcc acgccagaat gcagacccca 1140 ctgccaaatt ttctggcttg acaagataag cttatatttt tatgtgagat ctccagattt 1200 ttatgtaaaa acctcctttt taaaaacaaa acaaaa 1236 <210> 48 <211> 3081 <212> DNA
<213> Homo Sapiens <220>
<221> misc_feature <223> Incyte ID No: 285098'7CB1 <400> 48 gcccggccca cggcggcggc ggcggcggcg gagagagctg gctcagggcg tccgctaggc 60 tcggacgacc tgctgagcct cccaaaccgc ttccataagg ctttgccttt ccaacttcag 120 ctacagtgtt agctaagttt ggaaagaagg aaaaaagaaa atccctgggc cccttttctt 180 ttgttctttg ccaaagtcgt cgttgtagtc tttttgccca aggctgttgt gtttttagag 240 gtgctatctc cagttccttg cactcctgtt aacaagcacc tcagcgagag cagcagcagc 300 gatagcagcc gcagaagagc cagcggggtc gcctagtgtc atgaccaggg cgggagatca 360 caaccgccag agaggatgct gtggatcctt ggccgactac ctgacctctg caaaattcct 420 tctctacctt ggtcattctc tctctacttg gggagatcgg atgtggcact ttgcggtgtc 480 tgtgtttctg gtagagctct atggaaacag cctccttttg acagcagtct acgggctggt 540 ggtggcaggg tctgttctgg tcctgggagc catcatcggt gactgggtgg acaagaatgc 600 tagacttaaa gtggcccaga cctcgctggt ggtacagaat gtttcagtca tcctgtgtgg 660 aatcatcctg atgatggttt tcttacataa acatgagctt ctgaccatgt accatggatg 720 ggttctcact tcctgctata tcctgatcat cactattgca aatattgcaa atttggccag 780 tactgctact gcaatcacaa tccaaaggga ttggattgtt gttgttgcag gagaagacag 840 aagcaaacta gcaaatatga atgccacaat acgaaggatt gaccagttaa ccaacatctt 900 agcccccatg gctgttggcc agattatgac atttggctcc ccagtcatcg gctgtggctt 960 tatttcggga tggaacttgg tatccatgtg cgtggagtac gtcctgctct ggaaggttta 1020 ccagaaaacc ccagctctag ctgtgaaagc tggtcttaaa gaagaggaaa ctgaattgaa 1080 acagctgaat ttacacaaag atactgagcc aaaacccctg gagggaactc atctaatggg 1140 tgtgaaagac tctaacatcc atgagcttga acatgagcaa gagcctactt gtgcctccca 1200 gatggctgag cccttccgta ccttccgaga tggatgggtc tcctactaca accagcctgt 1260 gtttctggct ggcatgggtc ttgctttcct ttatatgact gtcctgggct ttgactgcat 1320 caccacaggg tacgcctaca ctcagggact gagtggttcc atcctcagta ttttgatggg 1380 agcatcagct ataactggaa taatgggaac tgtagctttt acttggctac gtcgaaaatg 1440 tggtttggtt cggacaggtc tgatctcagg attggcacag ctttcctgtt tgatcttgtg 1500 tgtgatctct gtattcatgc ctggaagccc cctggacttg tccgtttctc cttttgaaga 1560 tatccgatca aggttcattc aaggagagtc aattacacct accaagatac ctgaaattac 1620 aactgaaata tacatgtcta atgggtctaa ttctgctaat attgtcccgg agacaagtcc 1680 tgaatctgtg cccataatct ctgtcagtct gctgtttgca ggcgtcattg ctgctagaat 1740 cggtctttgg tcctttgatt taactgtgac acagttgctg caagaaaatg taattgaatc 1800 tgaaagaggc attataaatg gtgtacagaa ctccatgaac tatcttcttg atcttctgca 1860 tttcatcatg gtcatcctgg ctccaaatcc tgaagctttt ggcttgctcg tattgatttc 1920 agtctccttt gtggcaatgg gccacattat gtatttccga tttgcccaaa atactctggg 1980 aaacaagctc tttgcttgcg gtcctgatgc aaaagaagtt aggaaggaaa atcaagcaaa 2040 tacatctgtt gtttgagaca gtttaactgt tgctatcctg ttactagatt atatagagca 2100 catgtgctta ttttgtactg cagaattcca ataaatggct gggtgttttg ctctgttttt 2160 accacagctg tgccttgaga actaaaagct gtttaggaaa cctaagtcag cagaaattaa 2220 ctgattaatt tcccttatgt tgaggcatgg aaaaaaaatt ggaaaagaaa aactcagttt 2280 aaatacggag actataatga taacactgaa ttcccctatt tctcatgagt agatacaatc 2340 ttacgtaaaa gagtggttag tcacgtgaat tcagttatca tttgacagat tcttatctgt 2400 actagaattc agatatgtca gttttctgca aaactcactc ttgttcaaga ctagctaatt 2460 tatttttttg catcttagtt atttttaaaa acaaattctt caagtatgaa gactaaattt 2520 tgataactaa tattatcctt attgatccta ttgatcttaa ggtatttaca tgtatgtgga 2580 aaaacaaaac acttaactag aattctctaa taaggtttat ggtttagctt aaagagcacc 2640 tttgtatttt tattatcaga tggggcaaca tattgtatga agcatatgta gcacttcaca 2700 gcatggttat catgtaagct gcaggtagaa gcaaagctgt aaagtagatt tatcacacaa 2760 tgactgcata cagacttcaa atatgtcaat agtttggtca tagaacctag aagccaaaag 2820 ccacacagaa gggcaagaat cccaatttaa ctcatgttat catcattagt gatctgtgtt 2880 gtagaacatg agggtgtaag ccttcagcct ggcaagttac atgtagaaag cccacacttg 2940 tgaaggtttt gttttacaaa tcacttgatt taacacactc aggtagaata tttttatttt 3000 tactgtttta tacccagaag ttatttctac attgttctac agcaagaata ttcataaagg 3060 tggaccttgc aagtgcgtat a 3081 <210> 49 <211> 1825 <212> DNA
<213> Homo Sapiens <220>
<221> misc_feature <223> Incyte ID No: 3557211CB1 <400> 49 cgtgttgaag gcatcagacc ctgacactga ggacgatcag ataatcttta aaattctaca 60 aggcccaaaa catggacatc tggagaacac aacaacaggt gaatttatcc atgagaaatt 120 tagccaaaag gacttaaaca gtaagactat tctttacatc ataaacccat ctttggaagt 180 aaattcagat accgtggaat ttcaaatcat ggaccccaca gggaactcgg ccactcctca 240 aattttggaa ctgaagtggt ctcatattga atggtcacag accgaatata tctgtgagaa 300 tgtgggtttg ttgcccttgg aaattatcag aaggggatat tccatggact cggcctttgt 360 gggtataaag gtcaaccaag tgtcagctgc agttggaaaa gatttcaccg tgattccatc 420 taaactgatt cagtttgacc caggaatgtc aactaagatg tggaatatag caattaccta 480 tgacggatta gaggaagatg atgaggtctt tgaagtaatt ctgaactccc ctgtgaatgc 540 agttcttggc acaaagacaa aagctgcagt gaaaattttg gactcaaaag gaggacaatg 600 ccatccttca tattcctcca accaaagcaa gcacagcaca tgggagaagg gcatttggca 660 tctgctgccc ccagggtctt cctcatccac cacttctggt tcctttcatc tggaaagaag 720 acctcttcca tcttccatgc agctagcagt catcagggga gacaccctgc ggggctttga 780 ttctacagat ctttctcaaa ggaagcttag gacccgtggg aatggcaaaa cagttcgtcc 840 atcctctgtt tatagaaatg gaacagacat catctataat tatcatggga tagtttcctt 900 gaaactggag gatgacagtt tcccaactca caaaaggaag gccaaagtat ccatcattag 960 tcagccacaa aagacaatca aagtggcaga actgcctcaa gcagataagg tggaatccac 1020 aactgactca cacttcccca gacaggacca gttgccctca tttccaaaga actgcactct 1080 ggaattaaag ggactcttcc attttgaaga aggcatccag aagctgtatc agtgcaatgg 1140 gatcgcctgg aaagcctgga gtccccaaac caaggatgtg gaagacaaat cctgtccagc 1200 cgggtggcac cagcactcag gctactgtca catcttgatc acagagcaga aaggcacctg 1260 gaatgcggct gcccaagctt gcagggaaca atacctgggc aaccttgtaa ctgtattctc 1320 caggcagcac atgcggtggc tctgggacat tggtgggaga aagtcctttt ggataggttt 1380 gaacgaccaa gtgcatgctg gccactggga gtggatcggt ggtgaacctg ttgccttcac 1440 caatgggaga agagggccct ctccacgctc caagcttgga aagagctgtg ttttggttca 1500 aagacaaggg aaatggcaaa caaaagactg taggagagcc aaacctcata attatgtgtg 1560 ttccagaaaa ctctaaatat aacagaccct acagggggcc acctggagtt tgtcacctat 1620 ttattcacag gatctgtgaa tattgctcca tagaaaacaa attgttatga ttgagtgggt 1680 atacctttgt gattctgtct agtgaaaatg ggacattttt aatagtgcca gaaagattga 1740 taaataaata ttttttacaa gataagatac aatttttgta tctcaatacc ttttaaaata 1800 aatgccagca gtattaaaaa aaaaa 1825 <210> 50 <211> 1712 <212> DNA
<213> Homo sapiens <220>
<221> misc_feature <223> Incyte ID No: 4675668CB1 <400> 50 ctttcttcag tccccacgtg cgatccttcc cggcaacttt ttcgagaaaa atgcccaaat 60 tcaaggcggc ccgtggggtg gggggtcagg aaaaacatgc gcccctggcc gatcagatcc 120 tggctgggaa tgcggtgcgg gcgggggtcc gggagaagcg gcggggtcgc gggacaggag 180 aagcggagga agagtatgtg gggccccggc tgagccgacg gattttgcag caagcacggc 240 agcaacagga ggaactcgag gccgagcatg ggactgggga caagcccgcg gcgccgcggg 300 aacgcaccac gcggctgggt ccaagaatgc ctcaggatgg atcagatgac gaggacgagg 360 agtggcccac cctggagaag gctgccacaa tgacagcagc gggccatcat gcagaggtgg 420 ttgtggaccc tgaggatgag cgtgccatag agatgttcat gaacaagaac cctcctgcca 480 ggcgcaccct ggctgacatc atcatggaga agctgactga gaagcagaca gaggttgaga 540 cagtcatgtc agaggtgtcg ggcttcccta tgccccagct ggacccccgg gtcctagaag 600 tgtacagggg ggtccgggag gtattatcta agtaccgcag tggaaaactg cccaaggcat 660 ttaagatcat ccctgcactc tccaactggg agcaaatcct ctacgtcaca gagccggagg 720 cctggactgc agctgccatg taccaggcca ccaggatttt tgcctctaac etgaaggaac 780 gcatggccca gcgcttctac aaccttgtcc tgctccctcg agtacgagat gacgttgctg 840 aatacaaacg actcaacttc catctctaca tggctctcaa gaaggccctt ttcaaacctg 900 gagcctggtt caaagggatc ctgattccac tgtgcgagtc tggcacttgt accctccggg 960 aagccatcat tgtgggtagc atcatcacca agtgctccat ccctgtgttg cactccagtg 1020 cggccatgct gaaaattgct gagatggaat acagcggtgc caacagcatc ttcctgcgac 1080 tgctgctgga taagaagtat gcactgcctt accgggtgct ggatgcccta gtcttccact 1140 tcctggggtt ccggacagag aagcgtgaac tgcctgtgct gtggcaccag tgcctcctga 1200 ctttggtcca gcgctacaag gccgacttgg ccacagacca gaaagaggcc ctcttagaac 1260 tgctccggct gcagccccat ccacagctat cgcccgaaat caggcgtgag cttcagagtg 1320 cagtcccccg cgatgtggaa gatgttccca tcaccgtgga gtgaggaaaa cagtcagctg 1380 tcctggccaa aggggtttgg aaggacacca agacccccgt tggtgactga agatgacact 1440 gagctttaat ggctgaagac ccagatcagg gcagtgacag atcacaggga catctgtggc 1500 tcccagtcca ggacaggaag gactgagggt ctggctggtt ccctcttcca ttctaggccc 1560 ttatccctgt ttagttctga gagccaactt gagataccat atgctagcat tcccagtccc 1620 cagctggggc ttggtgtgag tactttttct atggctattg tgtcaggtca ctgtggataa 1680 aggcaaagac agatatttat tgaaaaaaaa as 1712

Claims (95)

What is claimed is:
1. An isolated polypeptide comprising an amino acid sequence selected from the group consisting of:
a) an amino acid sequence selected from the group consisting of SEQ ID NO:1-25, b) a naturally occurring amino acid sequence having at least 90% sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO:1-25, c) a biologically active fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:1-25, and d) an immunogenic fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:1-25.
2. An isolated polypeptide of claim 1 selected from the group consisting of SEQ ID NO:1-25.
3. An isolated polynucleotide encoding a polypeptide of claim 1.
4. An isolated polynucleotide of claim 3 selected from the group consisting of SEQ ID
NO:26-50.
5. A recombinant polynucleotide comprising a promoter sequence operably linked to a polynucleotide of claim 3.
6. A cell transformed with a recombinant polynucleotide of claim 5.
7. A transgenic organism comprising a recombinant polynucleotide of claim 5.
8. A method for producing a polypeptide of claim 1, the method comprising:
a) culturing a cell under conditions suitable for expression of the polypeptide, wherein said cell is transformed with a recombinant polynucleotide, and said recombinant polynucleotide comprises a promoter sequence operably linked to a polynucleotide encoding the polypeptide of claim 1, and b) recovering the polypeptide so expressed.
9. An isolated antibody which specifically binds to a polypeptide of claim 1.
10. An isolated polynucleotide comprising a polynucleotide sequence selected from the group consisting of:
a) a polynucleotide sequence selected from the group consisting of SEQ ID
NO:26-50, b) a naturally occurring polynucleotide sequence having at least 90% sequence identity to a polynucleotide sequence selected from the group consisting of SEQ ID NO:26-50, c) a polynucleotide sequence complementary to a), d) a polynucleotide sequence complementary to b), and e) an RNA equivalent of a)-d).
11. An isolated polynucleotide comprising at least 60 contiguous nucleotides of a polynucleotide of claim 10.
12. A method for detecting a target polynucleotide in a sample, said target polynucleotide having a sequence of a polynucleotide of claim 10, the method comprising:
a) hybridizing the sample with a probe comprising at least 16 contiguous nucleotides comprising a sequence complementary to said target polynucleotide in the sample, and which probe specifically hybridizes to said target polynucleotide, under conditions whereby a hybridization complex is formed between said probe and said target polynucleotide, and b) detecting the presence or absence of said hybridization complex, and, optionally, if present, the amount thereof.
13. A method of claim 12, wherein the probe comprises at least 30 contiguous nucleotides.
14. A method of claim 12, wherein the probe comprises at least 60 contiguous nucleotides.
15. A pharmaceutical composition comprising an effective amount of a polypeptide of claim 1 and a pharmaceutically acceptable excipient.
16. A method for treating a disease or condition associated with decreased expression of functional EXMAD, comprising administering to a patient in need of such treatment the pharmaceutical composition of claim 15.
17. A method for screening a compound for effectiveness as an agonist of a polypeptide of claim 1, the method comprising:
a) exposing a sample comprising a polypeptide of claim 1 to a compound, and b) detecting agonist activity in the sample.
18. A pharmaceutical composition comprising an agonist compound identified by a method of claim 17 and a pharmaceutically acceptable excipient.
19. A method for treating a disease or condition associated with decreased expression of functional EXMAD, comprising administering to a patient in need of such treatment a pharmaceutical composition of claim 18.
20. A method for screening a compound for effectiveness as an antagonist of a polypeptide of claim 1, the method comprising:
a) exposing a sample comprising a polypeptide of claim 1 to a compound, and b) detecting antagonist activity in the sample.
21. A pharmaceutical composition comprising an antagonist compound identified by a method of claim 20 and a pharmaceutically acceptable excipient.
22. A method for treating a disease or condition associated with overexpression of functional EXMAD, comprising administering to a patient in need of such treatment a pharmaceutical composition of claim 21.
23. A method for screening a compound for effectiveness in altering expression of a target polynucleotide, wherein said target polynucleotide comprises a sequence of claim 4, the method comprising:
a) exposing a sample comprising the target polynucleotide to a compound, and b) detecting altered expression of the target polynucleotide.
24. An isolated polynucleotide encoding a polypeptide of claim 2.
25. A method of detecting a target polynucleotide in a sample, said target polynucleotide having a sequence of a polynucleotide of claim 10, the method comprising:
a) amplifying said target polynucleotide or fragment thereof using polymerase chain reaction amplification, and b) detecting the presence or absence of said amplified target polynucleotide or fragment thereof, and, optionally, if present, the amount thereof.
26. A composition of claim 15, wherein the polypeptide has an amino acid sequence selected from the group consisting of SEQ ID NO:1-25.
27. A method of screening for a compound that specifically binds to the polypeptide of claim 1, the method comprising:
a) combining the polypeptide of claim 1 with at least one test compound under suitable conditions, and b) detecting binding of the polypeptide of claim 1 to the test compound, thereby identifying a compound that specifically binds to the polypeptide of claim 1.
28. A method of screening for a compound that modulates the activity of the polypeptide of claim 1, the method comprising:
a) combining the polypeptide of claim 1 with at least one test compound under conditions permissive for the activity of the polypeptide of claim 1, b) assessing the activity of the polypeptide of claim 1 in the presence of the test compound, and c) comparing the activity of the polypeptide of claim 1 in the presence of the test compound with the activity of the polypeptide of claim 1 in the absence of the test compound, wherein a change in the activity of the polypeptide of claim 1 in the presence of the test compound is indicative of a compound that modulates the activity of the polypeptide of claim 1.
29. A method of assessing toxicity of a test compound, the method comprising:
a) treating a biological sample containing nucleic acids with the test compound, b) hybridizing the nucleic acids of the treated biological sample with a probe comprising at least 20 contiguous nucleotides of a polynucleotide of claim 10 under conditions whereby a specific hybridization complex is formed between said probe and a target polynucleotide in the biological sample, said target polynucleotide comprising a polynucleotide sequence of a polynucleotide of claim 10 or fragment thereof, c) quantifying the amount of hybridization complex, and d) comparing the amount of hybridization complex in the treated biological sample with the amount of hybridization complex in an untreated biological sample, wherein a difference in the amount of hybridization complex in the treated biological sample is indicative of toxicity of the test compound.
30. A diagnostic test for a condition or disease associated with the expression of EXMAD in a biological sample, the method comprising:
a) combining the biological sample with an antibody of claim 9, under conditions suitable for the antibody to bind the polypeptide and form an antibody:polypeptide complex, and b) detecting the complex, wherein the presence of the complex correlates with the presence of the polypeptide in the biological sample.
31. The antibody of claim 9, wherein the antibody is:
a) a chimeric antibody, b) a single chain antibody, c) a Fab fragment, d) a F(ab')2 fragment, or e) a humanized antibody.
32. A composition comprising an antibody of claim 9 and an acceptable excipient.
33. A method of diagnosing a condition or disease associated with the expression of EXMAD in a subject, comprising administering to said subject an effective amount of the composition of claim 32.
34. A composition of claim 32, wherein the antibody is labeled.
35. A method of diagnosing a condition or disease associated with the expression of EXMAD in a subject, comprising administering to said subject an effective amount of the composition of claim 34.
36. A method of preparing a polyclonal antibody with the specificity of the antibody of claim 9, the method comprising:
a) immunizing an animal with a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-25, or an immunogenic fragment thereof, under conditions to elicit an antibody response, b) isolating antibodies from said animal, and c) screening the isolated antibodies with the polypeptide, thereby identifying a polyclonal antibody which binds specifically to a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-25.
37. An antibody produced by a method of claim 36.
38. A composition comprising the antibody of claim 37 and a suitable carrier.
39. A method of making a monoclonal antibody with the specificity of the antibody of claim 9, the method comprising:
a) immunizing an animal with a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-25, or an immunogenic fragment thereof, under conditions to elicit an antibody response, b) isolating antibody producing cells from the animal, c) fusing the antibody producing cells with immortalized cells to form monoclonal antibody-producing hybridoma cells, d) culturing the hybridoma cells, and e) isolating from the culture monoclonal antibody which binds specifically to a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-25.
40. A monoclonal antibody produced by a method of claim 39.
41. A composition comprising the antibody of claim 40 and a suitable carrier.
42. The antibody of claim 9, wherein the antibody is produced by screening a Fab expression library.
43. The antibody of claim 9, wherein the antibody is produced by screening a recombinant immunoglobulin library.
44. A method of detecting a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-25 in a sample, the method comprising:
a) incubating the antibody of claim 9 with a sample under conditions to allow specific binding of the antibody and the polypeptide, and b) detecting specific binding, wherein specific binding indicates the presence of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-25 in the sample.
45. A method of purifying a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-25 from a sample, the method comprising:
a) incubating the antibody of claim 9 with a sample under conditions to allow specific binding of the antibody and the polypeptide, and b) separating the antibody from the sample and obtaining the purified polypeptide having an amino acid sequence selected from the group consisting of SEQ ID
NO:1-25.
46. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID
NO:1.
47. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID
NO:2.
48. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID
NO:3.
49. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID
NO:4.
50. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID
NO:5.
51. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID
NO:6.
52. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID
NO:7.
53. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID
NO:8.
54. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID
NO:9.
55. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID
NO:10.
56. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID
NO:11.
57. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID
NO:12.
58. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID
NO:13.
59. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID
NO:14.
60. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID
NO:15.
61. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID
NO:16.
62. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID
NO:17.
63. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID
NO:18.
64. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID
NO:19.
65. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID
NO:20.
66. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID
NO:21.
67. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID
NO:22.
68. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID
NO:23
69. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID
NO:24.
70. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID
NO:25.
71. A polynucleotide of claim 10, comprising the polynucleotide sequence of SEQ ID
NO:26.
72. A polynucleotide of claim 10, comprising the polynucleotide sequence of SEQ ID
NO:27.
73. A polynucleotide of claim 10, comprising the polynucleotide sequence of SEQ ID
NO:28.
74. A polynucleotide of claim 10, comprising the polynucleotide sequence of SEQ ID
NO:29.
75. A polynucleotide of claim 10, comprising the polynucleotide sequence of SEQ ID
NO:30.
76. A polynucleotide of claim 10, comprising the polynucleotide sequence of SEQ ID
NO:31.
77. A polynucleotide of claim 10, comprising the polynucleotide sequence of SEQ ID
NO:32.
78. A polynucleotide of claim 10, comprising the polynucleotide sequence of SEQ ID
NO:33.
79. A polynucleotide of claim 10, comprising the polynucleotide sequence of SEQ ID
NO:34.
80. A polynucleotide of claim 10, comprising the polynucleotide sequence of SEQ ID
NO:35.
81. A polynucleotide of claim 10, comprising the polynucleotide sequence of SEQ ID
NO:36.
82. A polynucleotide of claim 10, comprising the polynucleotide sequence of SEQ ID
NO:37.
83. A polynucleotide of claim 10, comprising the polynucleotide sequence of SEQ ID
NO:38.
84. A polynucleotide of claim 10, comprising the polynucleotide sequence of SEQ ID
NO:39.
85. A polynucleotide of claim 10, comprising the polynucleotide sequence of SEQ ID
NO:40.
86. A polynucleotide of claim 10, comprising the polynucleotide sequence of SEQ ID
NO:41.
87. A polynucleotide of claim 10, comprising the polynucleotide sequence of SEQ ID
NO:42.
88. A polynucleotide of claim 10, comprising the polynucleotide sequence of SEQ ID
NO:43.
89. A polynucleotide of claim 10, comprising the polynucleotide sequence of SEQ ID
NO:44.
90. A polynucleotide of claim 10, comprising the polynucleotide sequence of SEQ ID
NO:45.
91. A polynucleotide of claim 10, comprising the polynucleotide sequence of SEQ ID
NO:46.
92. A polynucleotide of claim 10, comprising the polynucleotide sequence of SEQ ID
NO:47.
93. A polynucleotide of claim 10, comprising the polynucleotide sequence of SEQ ID
NO:48.
94. A polynucleotide of claim 10, comprising the polynucleotide sequence of SEQ ID
NO:49.
95. A polynucleotide of claim 10, comprising the polynucleotide sequence of SEQ ID
NO:50.
CA002372815A 1999-05-11 2000-05-10 Extracellular matrix and adhesion-associated proteins Abandoned CA2372815A1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US13364399P 1999-05-11 1999-05-11
US15040999P 1999-08-23 1999-08-23
US60/150,409 1999-08-23
US60/133,643 1999-08-23
PCT/US2000/012811 WO2000068380A2 (en) 1999-05-11 2000-05-10 Extracellular matrix and adhesion-associated proteins

Publications (1)

Publication Number Publication Date
CA2372815A1 true CA2372815A1 (en) 2000-11-16

Family

ID=26831550

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002372815A Abandoned CA2372815A1 (en) 1999-05-11 2000-05-10 Extracellular matrix and adhesion-associated proteins

Country Status (5)

Country Link
EP (1) EP1177296A2 (en)
JP (1) JP2002543785A (en)
AU (1) AU5129800A (en)
CA (1) CA2372815A1 (en)
WO (1) WO2000068380A2 (en)

Families Citing this family (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2075335A3 (en) * 1998-12-22 2009-09-30 Genentech, Inc. Methods and compositions for inhibiting neoplastic cell growth
AU1473801A (en) * 1999-11-12 2001-06-06 Human Genome Sciences, Inc. 6 human secreted proteins
FR2804962B1 (en) * 2000-02-10 2005-02-25 Aventis Pharma Sa PARTNERS OF THE PTB1 DOMAIN OF FE65, PREPARATION AND USES
CN100485035C (en) 2000-02-14 2009-05-06 扶桑药品工业株式会社 Novel scavenger albumen receptors
DE10043227A1 (en) * 2000-09-01 2002-03-14 Develogen Ag Novel developmental gene
CA2433841A1 (en) * 2001-01-16 2002-08-29 Mary Ruth Erickson Gmg-3, gmg-4, and gmg-6 polynucleotides and polypeptides and uses thereof
US6762293B2 (en) * 2001-06-29 2004-07-13 Erasmus University Rotterdam Diagnostics and therapeutics for autosomal dominant hemochromatosis
WO2003009862A1 (en) * 2001-07-20 2003-02-06 Genset S.A. Agonists and antagonists of modumet for use in the treatment of metabolic disorders
WO2003009864A1 (en) * 2001-07-23 2003-02-06 Genset S.A. Agonists and antagonists of disomet for the treatment of metabolic disorders
WO2003009861A1 (en) * 2001-07-24 2003-02-06 Genset S.A. Agonists and antagonists of metabolix in the treatment of metabolic disorders
WO2003009865A1 (en) * 2001-07-25 2003-02-06 Genset S.A. Agonists and antagonists of energen for use in the treatment of metabolic disorders
WO2003009863A1 (en) * 2001-07-26 2003-02-06 Genset S.A. Agonists and antagonists of cofoxin for use in the treatment of metabolic disorders
WO2003011325A1 (en) * 2001-07-27 2003-02-13 Genset S.A. Agonists and antagonists of moceptin for the treatment of metabolic disorders
WO2003011323A1 (en) * 2001-07-30 2003-02-13 Genset S.A. Agonists and antagonists of contabix for use in the treatment of metabolic disorders
WO2003011321A1 (en) * 2001-07-31 2003-02-13 Genset S.A. Agonists and antagonists of cobesin for the treatment of metabolic disorders
US20050054565A1 (en) * 2001-07-31 2005-03-10 John Lucas Agonists and antagonists of moxifin for the treatment of metabolic disorders
US20070129291A1 (en) * 2001-08-01 2007-06-07 Genset S.A. Genobix agonists and antagonists for use in the treatment of metabolic disorders
WO2003011318A1 (en) * 2001-08-01 2003-02-13 Genset S.A. Agonists and antagonists of famoset for use in the treatment of metabolic disorders
WO2003011319A1 (en) * 2001-08-02 2003-02-13 Genset S.A Xobesin agonists and antagonists for the treatment of metabolic disorders
WO2003011322A1 (en) * 2001-08-02 2003-02-13 Genset S.A. Agonists and antagonists of genoxin for use in the treatment of metabolic disorders
WO2003011320A1 (en) * 2001-08-02 2003-02-13 Genset S.A. Agonists and antagonists of obesingen for the treatment of metabolic disorders
WO2003013580A1 (en) * 2001-08-03 2003-02-20 Genset S.A. Tr xidatin agonists and antagonists treatment of metabolic disorders
WO2003013581A1 (en) * 2001-08-03 2003-02-20 Genset S.A. Agonists and antagonists of genceptin for the treatment of metabolic disorders
WO2003013579A1 (en) * 2001-08-03 2003-02-20 Genset S.A. Lypergix agonists and antagonists for use in the treatment of metabolic disorders
WO2003013582A1 (en) * 2001-08-06 2003-02-20 Genset S.A. Genoxit agonists and antagonists for use in the treatment of metabolic disorders
AU2002328173A1 (en) * 2001-08-07 2003-02-24 Genset S.A. Omoxin agonists and antagonists for use in the treatment of metabolic disorders
WO2003013585A1 (en) * 2001-08-08 2003-02-20 Genset S.A. Mifaxin agonists and antagonists for use in the treatment of metabolic
WO2003013584A1 (en) * 2001-08-09 2003-02-20 Genset S.A. Xafinix agonists and antagonists for use in the treatment of metabolic disorders
WO2003013604A2 (en) * 2001-08-09 2003-02-20 Genset S.A. Migenix agonists and antagonists for use in the treatment of metabolic disorders
WO2003013583A1 (en) * 2001-08-10 2003-02-20 Genset S.A. Faxigen agonists and antagonists in the treatment of metabolic disorders
WO2003026695A1 (en) * 2001-09-21 2003-04-03 Genset S.A. Agonists and antagonists of cylixin for the treatment of metabolic disorders
WO2003041730A1 (en) * 2001-11-16 2003-05-22 Genset S.A. Ditacin agonists and antagonists for use in the treatment of metabolic disorders
US20060089311A1 (en) * 2001-11-28 2006-04-27 Deno Dialvnas Agonists and antagonists of ryzn for the treatment of metabolic disorders
US7344843B2 (en) 2001-11-29 2008-03-18 Serono Genetics Institute S.A. Agonists and antagonists of prolixin for the treatment of metabolic disorders
AU2002339689A1 (en) * 2001-12-05 2003-06-17 Genset S.A. Dexar agonists and antagonists for use in the treatment of metabolic disorders
AU2002339683A1 (en) * 2001-12-05 2003-06-17 Genset S.A. Agonist and antagonists of redax for the treatment of metabolic disorders
WO2003049757A1 (en) * 2001-12-12 2003-06-19 Genset S.A. Agonists and antagonists of glucomin for the treatment of metabolic disorders
WO2003049758A1 (en) * 2001-12-13 2003-06-19 Genset S.A. Emergen agonists and antagonists for use in the treatment of metabolic disorders
AU2002339679A1 (en) * 2001-12-13 2003-06-23 Genset S.A. Glucomin agonists and antagonists for use in the treatment of metabolic disorders
WO2003049759A1 (en) * 2001-12-13 2003-06-19 Genset S.A. Agonists and antagonists of oxifan for the treatment of metabolic disorders
AU2002339688A1 (en) * 2001-12-14 2003-06-30 Genset S.A. Glucoset agonists and antagonists for use in the treatment of metabolic disorders
AU2002339680A1 (en) * 2001-12-26 2003-07-15 Genset S.A. Agonists and antagonists of bromix for the treatment of metabolic disorders
AU2003219167A1 (en) * 2002-03-19 2003-09-29 Genset Sa Treatment of metabolic disorders with a tnf receptor family member (fradj and/or cryptic) agonists or antagonists
WO2003090514A2 (en) * 2002-04-26 2003-11-06 Zymogenetics, Inc. Adipocyte complement related protein zacrp14
EP1572712A4 (en) * 2002-06-11 2007-07-04 Avalon Pharmaceuticals Cancer-linked gene as target for chemotherapy
TW200413539A (en) * 2002-09-30 2004-08-01 Oncotherapy Science Inc Genes and polypeptides relating to prostate cancers
BR0318307A (en) * 2003-05-21 2006-07-11 Ares Trading Sa polypeptide, purified nucleic acid molecule, vector, host cell, ligand, compound, method for diagnosing a disease in a patient, use of a polypeptide, pharmaceutical composition, vaccine composition, methods for treating a disease for monitoring therapeutic treatment of disease in a patient, method for identifying a compound that is effective in treating and / or diagnosing disease, kit, and transgenic, non-human animal or knockout
GB0424497D0 (en) * 2004-11-05 2004-12-08 Univ Sheffield Anti-inflammatory agent
GB0424494D0 (en) * 2004-11-05 2004-12-08 Univ Sheffield Use
AU2011222224B9 (en) 2010-03-04 2014-03-13 Fuso Pharmaceutical Industries, Ltd. Polypeptide Acting To Enhance Ischemic Diseases
JP2012021943A (en) * 2010-07-16 2012-02-02 National Cancer Center Method for inspecting uterine cancer, test drug for uterine cancer and antibody for uterine cancer antigen

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5872234A (en) * 1997-06-27 1999-02-16 Incyte Pharmaceuticals, Inc. Human extracellular matrix proteins

Also Published As

Publication number Publication date
WO2000068380A2 (en) 2000-11-16
EP1177296A2 (en) 2002-02-06
AU5129800A (en) 2000-11-21
WO2000068380A3 (en) 2001-04-19
JP2002543785A (en) 2002-12-24

Similar Documents

Publication Publication Date Title
CA2372815A1 (en) Extracellular matrix and adhesion-associated proteins
EP1313854A2 (en) Transporters and ion channels
CA2395007A1 (en) Transporters and ion channels
EP1320600A1 (en) Transporters and ion channels
CA2338386A1 (en) Proteases and associated proteins
WO2002046415A2 (en) Polynucleotide and polypeptide sequences of putative transporters and ion channells
CA2427010A1 (en) Transporters and ion channels
WO2000017355A2 (en) Human cytoskeleton associated proteins
CA2375493A1 (en) Human transport proteins
CA2363684A1 (en) Human secretory proteins
CA2402735A1 (en) Human transcription factors
CA2410084A1 (en) Transporters and ion channels
CA2405781A1 (en) Secreted proteins
US20060035315A1 (en) Transporters and ion channels
CA2374911A1 (en) G-protein coupled receptors
CA2443897A1 (en) Transporters and ion channels
CA2347836A1 (en) Proliferation and apoptosis related proteins
CA2404229A1 (en) Human transporters and ion channels
CA2370195A1 (en) Human membrane-associated proteins
CA2438206A1 (en) Transporters and ion channels
CA2390093A1 (en) Extracellular matrix and cell adhesion molecules
CA2394049A1 (en) Vesicle trafficking proteins
CA2426939A1 (en) Cystoskeleton-associated proteins
CA2410679A1 (en) Secretion and trafficking molecules
CA2413128A1 (en) Transporters and ion channels

Legal Events

Date Code Title Description
FZDE Dead