CA2359100C - Molecular computer - Google Patents
Molecular computer Download PDFInfo
- Publication number
- CA2359100C CA2359100C CA002359100A CA2359100A CA2359100C CA 2359100 C CA2359100 C CA 2359100C CA 002359100 A CA002359100 A CA 002359100A CA 2359100 A CA2359100 A CA 2359100A CA 2359100 C CA2359100 C CA 2359100C
- Authority
- CA
- Canada
- Prior art keywords
- molecular
- computer
- recited
- moleware
- input
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K10/00—Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
- H10K10/701—Organic molecular electronic devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y10/00—Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N99/00—Subject matter not provided for in other groups of this subclass
- G06N99/007—Molecular computers, i.e. using inorganic molecules
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C13/00—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
- G11C13/0002—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
- G11C13/0009—RRAM elements whose operation depends upon chemical change
- G11C13/0014—RRAM elements whose operation depends upon chemical change comprising cells based on organic memory material
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C13/00—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
- G11C13/02—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using elements whose operation depends upon chemical change
- G11C13/025—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using elements whose operation depends upon chemical change using fullerenes, e.g. C60, or nanotubes, e.g. carbon or silicon nanotubes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C2211/00—Indexing scheme relating to digital stores characterized by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C2211/56—Indexing scheme relating to G11C11/56 and sub-groups for features not covered by these groups
- G11C2211/561—Multilevel memory cell aspects
- G11C2211/5614—Multilevel memory cell comprising negative resistance, quantum tunneling or resonance tunneling elements
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C2213/00—Indexing scheme relating to G11C13/00 for features not covered by this group
- G11C2213/10—Resistive cells; Technology aspects
- G11C2213/14—Use of different molecule structures as storage states, e.g. part of molecule being rotated
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C2213/00—Indexing scheme relating to G11C13/00 for features not covered by this group
- G11C2213/70—Resistive array aspects
- G11C2213/71—Three dimensional array
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C2213/00—Indexing scheme relating to G11C13/00 for features not covered by this group
- G11C2213/70—Resistive array aspects
- G11C2213/81—Array wherein the array conductors, e.g. word lines, bit lines, are made of nanowires
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/20—Carbon compounds, e.g. carbon nanotubes or fullerenes
- H10K85/211—Fullerenes, e.g. C60
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/615—Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S977/00—Nanotechnology
- Y10S977/70—Nanostructure
- Y10S977/701—Integrated with dissimilar structures on a common substrate
- Y10S977/708—Integrated with dissimilar structures on a common substrate with distinct switching device
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S977/00—Nanotechnology
- Y10S977/70—Nanostructure
- Y10S977/724—Devices having flexible or movable element
- Y10S977/731—Devices having flexible or movable element formed from a single atom, molecule, or cluster
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S977/00—Nanotechnology
- Y10S977/839—Mathematical algorithms, e.g. computer software, specifically adapted for modeling configurations or properties of nanostructure
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S977/00—Nanotechnology
- Y10S977/902—Specified use of nanostructure
- Y10S977/932—Specified use of nanostructure for electronic or optoelectronic application
- Y10S977/94—Specified use of nanostructure for electronic or optoelectronic application in a logic circuit
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S977/00—Nanotechnology
- Y10S977/902—Specified use of nanostructure
- Y10S977/932—Specified use of nanostructure for electronic or optoelectronic application
- Y10S977/943—Information storage or retrieval using nanostructure
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Nanotechnology (AREA)
- Chemical & Material Sciences (AREA)
- Theoretical Computer Science (AREA)
- Mathematical Physics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- General Health & Medical Sciences (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Molecular Biology (AREA)
- Software Systems (AREA)
- Computing Systems (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Semiconductor Memories (AREA)
- Mram Or Spin Memory Techniques (AREA)
- Carbon And Carbon Compounds (AREA)
- Hall/Mr Elements (AREA)
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US11671499P | 1999-01-21 | 1999-01-21 | |
| US60/116,714 | 1999-01-21 | ||
| PCT/US2000/001360 WO2000044094A1 (en) | 1999-01-21 | 2000-01-20 | Molecular computer |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CA2359100A1 CA2359100A1 (en) | 2000-07-27 |
| CA2359100C true CA2359100C (en) | 2007-09-18 |
Family
ID=22368781
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CA002359100A Expired - Fee Related CA2359100C (en) | 1999-01-21 | 2000-01-20 | Molecular computer |
Country Status (6)
| Country | Link |
|---|---|
| US (1) | US6430511B1 (enExample) |
| EP (1) | EP1153479A4 (enExample) |
| JP (1) | JP2003530610A (enExample) |
| AU (1) | AU762451B2 (enExample) |
| CA (1) | CA2359100C (enExample) |
| WO (1) | WO2000044094A1 (enExample) |
Families Citing this family (79)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| GB2412370B (en) * | 2001-01-29 | 2005-11-09 | Univ Rice William M | Process for derivatizing carbon nanotubes with diazonium species and compositions thereof |
| US7250147B2 (en) * | 2001-01-29 | 2007-07-31 | Tour James M | Process for derivatizing carbon nanotubes with diazonium species |
| US6820244B2 (en) * | 2001-02-09 | 2004-11-16 | Sri International | Methods for testing and programming nanoscale electronic devices |
| US20070128744A1 (en) * | 2005-07-27 | 2007-06-07 | Tour James M | Self-assembly of molecules and nanotubes and/or nanowires in nanocell computing devices, and methods for programming same |
| ATE366379T1 (de) | 2001-03-12 | 2007-07-15 | Yeda Res & Dev | Synthetische molekulare federvorrichtung |
| US7974123B2 (en) | 2001-03-12 | 2011-07-05 | Yeda Research And Development Co. Ltd. | Method using a synthetic molecular spring device in a system for dynamically controlling a system property and a corresponding system thereof |
| US6777982B2 (en) | 2001-04-03 | 2004-08-17 | Carnegie Mellon University | Molecular scale latch and associated clocking scheme to provide gain, memory and I/O isolation |
| US6723299B1 (en) * | 2001-05-17 | 2004-04-20 | Zyvex Corporation | System and method for manipulating nanotubes |
| GB0116943D0 (en) | 2001-07-11 | 2001-09-05 | Isis Innovation | Information register |
| US6706402B2 (en) | 2001-07-25 | 2004-03-16 | Nantero, Inc. | Nanotube films and articles |
| US6911682B2 (en) | 2001-12-28 | 2005-06-28 | Nantero, Inc. | Electromechanical three-trace junction devices |
| US6835591B2 (en) | 2001-07-25 | 2004-12-28 | Nantero, Inc. | Methods of nanotube films and articles |
| US6924538B2 (en) | 2001-07-25 | 2005-08-02 | Nantero, Inc. | Devices having vertically-disposed nanofabric articles and methods of making the same |
| US6574130B2 (en) | 2001-07-25 | 2003-06-03 | Nantero, Inc. | Hybrid circuit having nanotube electromechanical memory |
| US7259410B2 (en) | 2001-07-25 | 2007-08-21 | Nantero, Inc. | Devices having horizontally-disposed nanofabric articles and methods of making the same |
| US6919592B2 (en) | 2001-07-25 | 2005-07-19 | Nantero, Inc. | Electromechanical memory array using nanotube ribbons and method for making same |
| US7566478B2 (en) | 2001-07-25 | 2009-07-28 | Nantero, Inc. | Methods of making carbon nanotube films, layers, fabrics, ribbons, elements and articles |
| US6643165B2 (en) | 2001-07-25 | 2003-11-04 | Nantero, Inc. | Electromechanical memory having cell selection circuitry constructed with nanotube technology |
| US7020560B2 (en) | 2001-09-06 | 2006-03-28 | University Of Tennessee Research Foundation | Methods for cell-based combinatorial logic |
| KR20040052461A (ko) * | 2001-11-07 | 2004-06-23 | 더 마이터 코포레이션 | 일분자 전자 디바이스 |
| US7385262B2 (en) * | 2001-11-27 | 2008-06-10 | The Board Of Trustees Of The Leland Stanford Junior University | Band-structure modulation of nano-structures in an electric field |
| US7176505B2 (en) | 2001-12-28 | 2007-02-13 | Nantero, Inc. | Electromechanical three-trace junction devices |
| US6784028B2 (en) | 2001-12-28 | 2004-08-31 | Nantero, Inc. | Methods of making electromechanical three-trace junction devices |
| US6972155B2 (en) * | 2002-01-18 | 2005-12-06 | North Carolina State University | Gradient fabrication to direct transport on a surface |
| US20030139907A1 (en) * | 2002-01-24 | 2003-07-24 | Mccarthy Robert J | System, Method, and Product for Nanoscale Modeling, Analysis, Simulation, and Synthesis (NMASS) |
| WO2004046099A2 (en) | 2002-02-01 | 2004-06-03 | William Marsh Rice University | Method of making a molecule-surface interface |
| US8362559B2 (en) | 2002-02-01 | 2013-01-29 | William Marsh Rice University | Hybrid molecular electronic devices containing molecule-functionalized surfaces for switching, memory, and sensor applications and methods for fabricating same |
| DE60230110D1 (de) * | 2002-02-25 | 2009-01-15 | St Microelectronics Srl | Optisch lesbarer Molekularspeicher hergestellt mit Hilfe von Kohlenstoff-Nanoröhren und Verfahren zum Speichern von Information in diesem Molekularspeicher |
| AU2003216456A1 (en) * | 2002-02-27 | 2003-09-09 | North Carolina State University | Use of electroactive monolayers in generating negative differential resistance behaviors and devices employing the same |
| US8156057B2 (en) | 2003-03-27 | 2012-04-10 | Knowm Tech, Llc | Adaptive neural network utilizing nanotechnology-based components |
| US6889216B2 (en) | 2002-03-12 | 2005-05-03 | Knowm Tech, Llc | Physical neural network design incorporating nanotechnology |
| US7412428B2 (en) | 2002-03-12 | 2008-08-12 | Knowmtech, Llc. | Application of hebbian and anti-hebbian learning to nanotechnology-based physical neural networks |
| US9269043B2 (en) | 2002-03-12 | 2016-02-23 | Knowm Tech, Llc | Memristive neural processor utilizing anti-hebbian and hebbian technology |
| US7392230B2 (en) | 2002-03-12 | 2008-06-24 | Knowmtech, Llc | Physical neural network liquid state machine utilizing nanotechnology |
| US7398259B2 (en) | 2002-03-12 | 2008-07-08 | Knowmtech, Llc | Training of a physical neural network |
| US7049625B2 (en) | 2002-03-18 | 2006-05-23 | Max-Planck-Gesellschaft Zur Fonderung Der Wissenschaften E.V. | Field effect transistor memory cell, memory device and method for manufacturing a field effect transistor memory cell |
| US7335395B2 (en) | 2002-04-23 | 2008-02-26 | Nantero, Inc. | Methods of using pre-formed nanotubes to make carbon nanotube films, layers, fabrics, ribbons, elements and articles |
| US6905667B1 (en) | 2002-05-02 | 2005-06-14 | Zyvex Corporation | Polymer and method for using the polymer for noncovalently functionalizing nanotubes |
| US20040034177A1 (en) | 2002-05-02 | 2004-02-19 | Jian Chen | Polymer and method for using the polymer for solubilizing nanotubes |
| US7752151B2 (en) | 2002-06-05 | 2010-07-06 | Knowmtech, Llc | Multilayer training in a physical neural network formed utilizing nanotechnology |
| JP4635410B2 (ja) * | 2002-07-02 | 2011-02-23 | ソニー株式会社 | 半導体装置及びその製造方法 |
| US7827131B2 (en) | 2002-08-22 | 2010-11-02 | Knowm Tech, Llc | High density synapse chip using nanoparticles |
| US20040191567A1 (en) * | 2002-09-03 | 2004-09-30 | Caballero Gabriel Joseph | Light emitting molecules and organic light emitting devices including light emitting molecules |
| AU2003296900A1 (en) * | 2002-09-03 | 2004-05-04 | Coled Technologies, Inc. | Light emitting molecules and organic light emitting devices including light emitting molecules |
| US20040138467A1 (en) | 2002-11-26 | 2004-07-15 | French Roger Harquail | Aromatic and aromatic/heteroaromatic molecular structures with controllable electron conducting properties |
| US7560136B2 (en) | 2003-01-13 | 2009-07-14 | Nantero, Inc. | Methods of using thin metal layers to make carbon nanotube films, layers, fabrics, ribbons, elements and articles |
| WO2004068497A2 (en) * | 2003-01-28 | 2004-08-12 | William Marsh Rice University | Self-assembly of molecules and nanotubes and/or nanowires in nanocell computing devices, and methods for programming same |
| WO2004106420A2 (en) | 2003-05-22 | 2004-12-09 | Zyvex Corporation | Nanocomposites and method for production |
| US6982903B2 (en) | 2003-06-09 | 2006-01-03 | Nantero, Inc. | Field effect devices having a source controlled via a nanotube switching element |
| US7274064B2 (en) * | 2003-06-09 | 2007-09-25 | Nanatero, Inc. | Non-volatile electromechanical field effect devices and circuits using same and methods of forming same |
| US6812117B1 (en) * | 2003-06-30 | 2004-11-02 | The United States Of America As Represented By The Secretary Of The Air Force | Method for creating a reconfigurable nanometer-scale electronic network |
| US7466523B1 (en) * | 2003-07-10 | 2008-12-16 | Yingjian Chen | Nanotube spin valve and method of producing the same |
| US7426501B2 (en) | 2003-07-18 | 2008-09-16 | Knowntech, Llc | Nanotechnology neural network methods and systems |
| US20080093224A1 (en) * | 2003-07-29 | 2008-04-24 | Tour James M | Process for derivatizing carbon nanotubes with diazonium species and compositions thereof |
| US6989290B2 (en) * | 2003-11-15 | 2006-01-24 | Ari Aviram | Electrical contacts for molecular electronic transistors |
| US7393598B2 (en) * | 2004-03-10 | 2008-07-01 | Hcf Partners, L.P. | Light emitting molecules and organic light emitting devices including light emitting molecules |
| US20050212022A1 (en) * | 2004-03-24 | 2005-09-29 | Greer Edward C | Memory cell having an electric field programmable storage element, and method of operating same |
| US20050218397A1 (en) * | 2004-04-06 | 2005-10-06 | Availableip.Com | NANO-electronics for programmable array IC |
| US7709880B2 (en) * | 2004-06-09 | 2010-05-04 | Nantero, Inc. | Field effect devices having a gate controlled via a nanotube switching element |
| US8019555B1 (en) | 2004-07-30 | 2011-09-13 | The United States Of America As Represented By The Secretary Of The Navy | Virus as a scaffold for hierarchical self-assembly of functional nanoscale devices |
| US7296576B2 (en) | 2004-08-18 | 2007-11-20 | Zyvex Performance Materials, Llc | Polymers for enhanced solubility of nanomaterials, compositions and methods therefor |
| US20060063197A1 (en) * | 2004-09-17 | 2006-03-23 | Anderson Bart R | Quality control and normalization methods for protein microarrays |
| US7309875B2 (en) * | 2004-11-22 | 2007-12-18 | Hewlett-Packard Development Company, L.P. | Nanocrystal protective layer for crossbar molecular electronic devices |
| US7598544B2 (en) * | 2005-01-14 | 2009-10-06 | Nanotero, Inc. | Hybrid carbon nanotude FET(CNFET)-FET static RAM (SRAM) and method of making same |
| US8362525B2 (en) * | 2005-01-14 | 2013-01-29 | Nantero Inc. | Field effect device having a channel of nanofabric and methods of making same |
| US7502769B2 (en) | 2005-01-31 | 2009-03-10 | Knowmtech, Llc | Fractal memory and computational methods and systems based on nanotechnology |
| US7409375B2 (en) | 2005-05-23 | 2008-08-05 | Knowmtech, Llc | Plasticity-induced self organizing nanotechnology for the extraction of independent components from a data stream |
| US7479654B2 (en) | 2005-05-09 | 2009-01-20 | Nantero, Inc. | Memory arrays using nanotube articles with reprogrammable resistance |
| US7420396B2 (en) | 2005-06-17 | 2008-09-02 | Knowmtech, Llc | Universal logic gate utilizing nanotechnology |
| US7599895B2 (en) | 2005-07-07 | 2009-10-06 | Knowm Tech, Llc | Methodology for the configuration and repair of unreliable switching elements |
| US7622567B2 (en) * | 2006-01-23 | 2009-11-24 | New York University | Multidimensional organization of heteromolecules by robust DNA motifs |
| US7667043B2 (en) * | 2006-03-20 | 2010-02-23 | E.I. Du Pont De Nemours And Company | Molecular structures with controllable electron conducting properties |
| US7580239B2 (en) * | 2006-06-29 | 2009-08-25 | Hewlett-Packard Development Company, L.P. | Capacitive latched bi-stable molecular switch |
| US7930257B2 (en) | 2007-01-05 | 2011-04-19 | Knowm Tech, Llc | Hierarchical temporal memory utilizing nanotechnology |
| JP5614685B2 (ja) | 2008-11-27 | 2014-10-29 | 株式会社カネカ | 有機半導体素子 |
| WO2014009952A2 (en) * | 2012-07-09 | 2014-01-16 | Yeda Research And Development Co. Ltd | Logic circuits with plug and play solid-state molecular chips |
| US10421701B2 (en) * | 2017-02-06 | 2019-09-24 | Raytheon Company | Method for material packaging and developing rotationally anisotropic materials |
| US10703692B2 (en) * | 2017-02-06 | 2020-07-07 | Raytheon Company | Solid state materials with tunable dielectric response and rotational anisotropy |
| US12041864B2 (en) | 2021-10-01 | 2024-07-16 | Paul Scherrer Institut | Method and device for storing free atoms, molecules and ions in a contact-less, albeit well-defined near surface arrangement |
Family Cites Families (15)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4144561A (en) * | 1977-07-08 | 1979-03-13 | Xerox Corporation | Chip topography for MOS integrated circuitry microprocessor chip |
| US5276893A (en) * | 1989-02-08 | 1994-01-04 | Yvon Savaria | Parallel microprocessor architecture |
| DE3924454A1 (de) * | 1989-07-24 | 1991-02-07 | Cornelis P Prof Dr Hollenberg | Die anwendung von dna und dna-technologie fuer die konstruktion von netzwerken zur verwendung in der chip-konstruktion und chip-produktion (dna chips) |
| DE69225527T2 (de) * | 1991-04-11 | 1998-09-10 | Hewlett Packard Co | Verfahren und System zur automatischen Bestimmung der logischen Funktion einer Schaltung |
| US5787032A (en) | 1991-11-07 | 1998-07-28 | Nanogen | Deoxyribonucleic acid(DNA) optical storage using non-radiative energy transfer between a donor group, an acceptor group and a quencher group |
| US5475341A (en) * | 1992-06-01 | 1995-12-12 | Yale University | Sub-nanoscale electronic systems and devices |
| JPH0669494A (ja) * | 1992-08-20 | 1994-03-11 | Hitachi Ltd | カーボン分子とその集合体の製造方法 |
| JP3500541B2 (ja) | 1994-02-15 | 2004-02-23 | 富士通株式会社 | 単電子トンネル接合装置の製造方法 |
| US5751683A (en) | 1995-07-24 | 1998-05-12 | General Nanotechnology, L.L.C. | Nanometer scale data storage device and associated positioning system |
| AU5525296A (en) * | 1995-03-24 | 1996-10-16 | Ely Michael Rabani | Assembly of complex molecular and supramolecular objects and devices and uses thereof |
| US5804373A (en) | 1995-03-31 | 1998-09-08 | Nec Research Institute, Inc. | Molecular automata utilizing single- or double-strand oligonucleotides |
| US5789940A (en) | 1995-04-18 | 1998-08-04 | Texas Instruments Incorporated | Reduced complexity multiple resonant tunneling circuits for positive digit multivalued logic operations |
| US5780613A (en) | 1995-08-01 | 1998-07-14 | Northwestern University | Covalent lock for self-assembled oligonucleotide constructs |
| US5835772A (en) | 1995-12-29 | 1998-11-10 | Intel Corporation | Method and apparatus for providing an interface between a system and a peripheral device |
| US5847565A (en) | 1997-03-31 | 1998-12-08 | Council Of Scientific And Industrial Research | Logic device |
-
2000
- 2000-01-20 JP JP2000595426A patent/JP2003530610A/ja active Pending
- 2000-01-20 EP EP00903361A patent/EP1153479A4/en not_active Withdrawn
- 2000-01-20 WO PCT/US2000/001360 patent/WO2000044094A1/en not_active Ceased
- 2000-01-20 AU AU25119/00A patent/AU762451B2/en not_active Ceased
- 2000-01-20 US US09/488,339 patent/US6430511B1/en not_active Expired - Lifetime
- 2000-01-20 CA CA002359100A patent/CA2359100C/en not_active Expired - Fee Related
Also Published As
| Publication number | Publication date |
|---|---|
| CA2359100A1 (en) | 2000-07-27 |
| EP1153479A4 (en) | 2004-08-18 |
| AU762451B2 (en) | 2003-06-26 |
| US6430511B1 (en) | 2002-08-06 |
| WO2000044094A1 (en) | 2000-07-27 |
| EP1153479A1 (en) | 2001-11-14 |
| JP2003530610A (ja) | 2003-10-14 |
| AU2511900A (en) | 2000-08-07 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CA2359100C (en) | Molecular computer | |
| Fu et al. | Molecular and nanoscale materials and devices in electronics | |
| Joachim et al. | Electronics using hybrid-molecular and mono-molecular devices | |
| US6314019B1 (en) | Molecular-wire crossbar interconnect (MWCI) for signal routing and communications | |
| US5475341A (en) | Sub-nanoscale electronic systems and devices | |
| US6846682B2 (en) | Chemically synthesized and assembled electronic devices | |
| US20060220067A1 (en) | Nanoscopic wire-based devices and arrays | |
| US20030021966A1 (en) | Electromechanical memory array using nanotube ribbons and method for making same | |
| Wu et al. | Rotaxane nanomachines in future molecular electronics | |
| US7272511B2 (en) | Molecular memory obtained using DNA strand molecular switches and carbon nanotubes, and method for manufacturing the same | |
| US20040122233A1 (en) | Photopatternable molecular circuitry | |
| US6958270B2 (en) | Methods of fabricating crossbar array microelectronic electrochemical cells | |
| US6989290B2 (en) | Electrical contacts for molecular electronic transistors | |
| Datta et al. | Molecular ribbons | |
| US5930162A (en) | Quantum random address memory with polymer mixer and/or memory | |
| CN1334964A (zh) | 具有至少一只纳米电子元件的电路装置及其制法 | |
| JP2001284572A (ja) | 電子デバイス | |
| Raymo | Nanomaterials synthesis and applications: molecule-based devices | |
| James et al. | Self-assembled molecular electronics | |
| Tour et al. | Molecular Computing: Integration of Molecules for Nanocomputing | |
| Gupta et al. | Current state and perspectives of nanoscale molecular rectifiers | |
| Lüssem et al. | Concepts in Single-Molecule Electronics | |
| WO2001057939A2 (en) | A hybrid organic-inorganic semiconductor device and a method of its fabrication | |
| Stadler | Molecular Electronics | |
| Zhang | Electrical properties of metal-molecular nanoparticle networks: modeling and experiment |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| EEER | Examination request | ||
| MKLA | Lapsed |