CA2319137C - Planar patterns with superimposed diffraction grating - Google Patents

Planar patterns with superimposed diffraction grating Download PDF

Info

Publication number
CA2319137C
CA2319137C CA002319137A CA2319137A CA2319137C CA 2319137 C CA2319137 C CA 2319137C CA 002319137 A CA002319137 A CA 002319137A CA 2319137 A CA2319137 A CA 2319137A CA 2319137 C CA2319137 C CA 2319137C
Authority
CA
Canada
Prior art keywords
diffraction grating
relief structure
diffraction
surface pattern
spatial frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA002319137A
Other languages
French (fr)
Other versions
CA2319137A1 (en
Inventor
Rene Staub
Wayne Robert Tompkin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OVD Kinegram AG
Original Assignee
OVD Kinegram AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OVD Kinegram AG filed Critical OVD Kinegram AG
Publication of CA2319137A1 publication Critical patent/CA2319137A1/en
Application granted granted Critical
Publication of CA2319137C publication Critical patent/CA2319137C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1842Gratings for image generation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/08Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code using markings of different kinds or more than one marking of the same kind in the same record carrier, e.g. one marking being sensed by optical and the other by magnetic means
    • G06K19/10Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code using markings of different kinds or more than one marking of the same kind in the same record carrier, e.g. one marking being sensed by optical and the other by magnetic means at least one kind of marking being used for authentication, e.g. of credit or identity cards
    • G06K19/16Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code using markings of different kinds or more than one marking of the same kind in the same record carrier, e.g. one marking being sensed by optical and the other by magnetic means at least one kind of marking being used for authentication, e.g. of credit or identity cards the marking being a hologram or diffraction grating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/328Diffraction gratings; Holograms

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Credit Cards Or The Like (AREA)
  • Polishing Bodies And Polishing Tools (AREA)
  • Laminated Bodies (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

A surface pattern (1) is composed of elements (2 to 5) which are arranged in a mosaic-like fashion and of which at least one pattern is formed from a background element (4) and a pixel (2) with microscopically fine relief structures diffracting visible light. The surface elements (3) a nd the element portions (5) either contain the microscopically fine relief structures diffracting visible light or they comprise reflecting or scatteri ng surfaces. Arranged in the pixel (2) is a first diffraction grating B1 and arranged in the background element (4) is a second diffraction grating B2, wherein the first diffraction grating B1 and the second diffraction grating B2 are a superimposition of at least two different, microscopically fine relief structures F1 and F2 diffracting visible light. The first diffraction gratin g B1 and the second diffraction grating B2 differ only by virtue of a relative phase shift .DELTA..phi. between the relief structure F1 and the relief structure F2. Upon illumination with polychromatic light the pattern is of a single color which has brightness differences in zones involving different values of the phase shift .DELTA..phi..

Description

Surface pattern with superimposed diffraction gratings The invention relates to an arrangement of surfaces with an optical diffraction effect .
Surface patterns of that kind are additionally used to enhance the level of safeguard against forgery in relation to optical-diffraction security elements which are made up of holograms and/or diffraction gratings of a mosaic-like composition.
An arrangement of the kind set forth in the opening part of this specification, in relation to optical-diffraction security elements, is known from EP-A 105 099. It: describes the production of variable patterns of surface portions which have an optical diffraction effect and which are glued for example in the form of a stamp on a document and authenticate that it is genuine. When the sE~curity feature is illuminated, those surface portions are successively lit up upon rotation about an axis perpendicularly to the plane of the security feature, along a path.
PCT application VrIG 9727504 discloses a surface pattern having at least two surface portions of which at least one surface portion includes a diffraction grating which is superimposed of two relief structures and which 2o in a marked direction has the same diffraction property as a different second surface having a diffraction effect. Ln other directions the two surface portions exhibit: a different diffraction behaviour. The twc relief structures of the superirnpased diffraction grating differ at least in terms of one of the parameters consisting of spatial frequency, relief shape and azimuth.
It is also known from EP-A 0 360 969 for at least one optical diffraction element of the optical-diffraction authenticity feature to be subdivided into two surface portions whose microscopically fine asymmetrical diffraction gratings only differ in terms of azimuth through 180°, with the other grating parameters otherwise being the same. With those subdivided diffraction elements, machine-readable information pan be inconspicuously disposed in a visually perceptible pattern.

The above-listed documents describe security elements without effectively utilising brightness modulation within relatively large areas which can be well perceived by the naked wluman eye.
In addition EP-A 0 401 466 ,describes a plastic laminate with embedded, microscopically fine, optically effective relief structures and the use thereof as a secur°ity element. The materials which can be used are known for example from EP 0 ZO1 323 B1.
The abject of tf°e invention is to provide an inexpensive surface pattern whir_h is difficult to forge even with holographic copying processes, with a new authenticity feature which is readily visible even in diffuse light, for optical-diffraction security elements.
Embodiments of the invention are described in greater detail hereinafter and illustrated in the drawings in which:
Figure 1 shows a surface pattern, Figure 2 shows 'the surface pattern turned through an angle of 2o rotation a ~ 90°, Figure 3 shows the second pixel with script band at 0° and 180', Figure 4 shows a pattern with a locally varying phase shift, Figure 5 shows another pattern with the phase shift which varies from a central point, Figure 6 shows another pattern with a radially varying phase shift, Figure 7 shows the diffraction efficiency and the relative phase shift, and Figure 8 shows diffraction orders.
Referring to Figure 1, therein reference 1 denotes a surface pattern, reference 2 denotes a picture element or pixel, reference 3 denotes a surface element, referen~:e 4 denotes a background element and reference 5 denotes further element portions which complete the mosaic-like surface pattern 1. In this example the surface element 3 and the element portions are occupied by relief structures which have an optical diffraction effect or scattering microscopic relief structures (holograms, kinoforms and diffraction gratings of all kind) or have reflecting or transparent surfaces.
The outer boundary and number of all elements 2 to 5 of the surface 5 pattern 1 are not subject to any limitation. The pixel 2 and the background element 4 each have a respective diffraction grating B (Fl, FZ, Ocp) with the grating vector G which is produced by a superimposition of at least two relief structures Fl, FZ and whose grating vectors G1, GZ are oriented in substantially parallel and anti-parallel relationship respectively with a marked axis 6. The properties of the diffraction gratings and the illustration of the grating vectors G1, G2 are described in above-mentioned PCT
specification WO 97/27504. The spatial frequency fl of the relief structure Fl is less than the spatial frequency f2 of the relief structure FZ. The relief structure FZ has a relative phase shift Ocp in relation to the relief structure F1. The relative phase shift ocp of the diffraction grating B (Fl, F2, ocp) can be of a constant value in the entire field of the pixel 2 and/or in the field of the background element 4, in which case the values in respect of the pixel 2 and the background element 4 differ markedly (that is to say more than 20° modulo 360°), for example Ocp - 45°, 90°, 180°, 270°, etc. The diffraction gratings B (Fl, F2, ocp) of the picture and background elements 2, 4 behave optically differently from the relief structures used in the surface elements and element portions 3, 5.
Preferably, the relief structures used in the surface elements and element portions 3, 5 do not divert any light which is incident on the surface element 1, in the directions of the radiation which is diffracted by the diffraction gratings B (Fl, Fz, ocp).
In the surface element 1 the diffraction grating B (F1, F2, ocp) is produced for example from the relief structures F1 and Fz whose profiles in cross-section are sine functions. The ratio VF of the spatial frequency f2 of 3o the second sine function (relief structure FZ) to the spatial frequency fl of the first sine function (relief structure Fl), that is to say VF = f2/fl, is advantageously selected from the range 1.5 <_ VF <_ 3 and the ratio VA of the amplitude AZ of the second sine function to the amplitude A1 of the first sine function (VA = Az/A1) is selected from the range between O.i and 10.
The period of the superimposed relief structure F1 + F2 or the spatial frequency of the diffraction grating B (F~, Fz~, ~c~) is equal to the lower one of the two spatial frequencies f,, f2, here the spatial frequency fl of the first sine function. Instead of the spatial frequency fZ of the seconc relief structure F2 being selected from the range 1.5 <_ VF <_ 3, it is also possible to select a higher spatial frequency fz' which is harmonic in relation to the spatial frequency fz.
By way of example, the two relief structures Fl = A1 ~ sin(Kx) and FZ
i0 = Az ~ sin(2~Kx+90°) with the amplitude A, = 50 nm and the amplitude Az = 25 nm = 'lz A1 produce the diffraction grating BB (Fl, Fz, 90°) for the pixel 2. The background element 4 has the diffraction grating B" (Fl, FZ, 0°) whose parameters are the same, except for the relative phase shift ecp. The grating vectors G1, GZ and therefore also the grating vector GB of the diffraction grating BB (Fx, Fz, 90°) and the grating vector GH of the diffraction grating BH are directed to the marked axis 6. With polychromatic light incident perpendicularly on to the surface pattern 1, an observer who views the surface pattern 1 with the naked eye sees at feast the light which is diffracted at the structures of the pixel 2 and the bacw;ground element 4 2o when the viewing direction is in a plane, the diffraction plane, which is defined by the incident: light and the axis 5, and a diffraction order coincides with the viewing direction. The relief structures used for the surface elements 3 and for the element portions 5 involve different visibility conditions, for example which are to be found in above-mentioned EP-A
105 099, and are possib y visible in the form of matte surfaces. As the two diffraction gratings BB(F_, Fz, 90°) and BH(Fl, Fz, 0°) have the same spatial frequency, t:he observerw sees the two surfaces of the pixel 2 and the background element 4 in the same color, for example green. In the construction selected by way of example, the relief structure FZ is the first harmonic in relation to the relief structure F,. The diffraction grating BB(F,, Fz, 90°) of the pixel 2 iv therefore substantially symmetrical and deflects the diffracted, perpendicularly incident light at the same level of intensity into the positive and irvto the negative diffraction orders at the same diffraction angles. The diffraction grating BB(F1, FZ, 0°) used in the background element 4 is asymmetrical and prefers the positive diffraction orders. The background element 4 involves a Power level of brightness than the pixel 2 if a component of the viewing direction is in the direction of the marked axis 0. However the level of brightness of the background element 4 is greater than that of the pixel ~ when the one component of the viewing direction is opposite to the direction of the marked axis 6, that is to say after a rotation in the direction of the arrow 8 through 180° about an axis of rotation 7 which is notionally perpendicular to the plane of the surface pattern 1. In Figure ? for example the background element 4 is more intensive (shown lighter in the drawing) than the pixel 2. The two elements 2 and 4 serve relative to each other as a reference which helps the observer to judge the brightness distribution in the two elements 2 and 4.
A plurality of background elements 4 and pixels 2 which at least in pairs have a marked axis 6 which is different from the others can be arranged in the surface pattern 1.
Figure 2 shows the surface pattern 1 after the 180° rotation about the axis of rotation 7. The background element 4 is now substantially less intensive than the pixel 2. That variation in the brightness of the surfaces of the background elements 4 relative to those of the pixel 2 is easy to detect even with diffuse light incidence. That is shown by different shading in the drawing. The observer can check the authenticity feature of the surface pattern 1 by viewing the surface pattern 1 in the direction of the axis 6 or in opposite relationship to that direction, under otherwise identical conditions. If the incident light is polychromatic, then the surfaces of the background element 4 and the pixel 2 appear to the observer as being of the same color but with a marked contrast in terms of brightness, which is clearly visible in particular at a boundary 9 between the two elements 2 and 4. The contrast in the brightness changes depending on whether the surface pattern 1 is being viewed in the direction of the axis 6 or in opposite relationship to that direction, under otherwise equal conditions.
The pixel 2 and the background element 4 are only visible in a relatively narrow range rA from the azimuth of the diffraction plane (that is to say in the range 0° ~ rA and 180° ~ rA), that is to say parallel to the axis 6, as is generally known from linear diffraction gratings. The elements 2 and 4 are matte in the remaining regions of the azimuth, but the surface elements 3 and/or the element portions 5 can light up.
A use of this novel authenticity feature in the surface element 1 affords the advantages that it is clearly discernible in particular with weak illumination and also with diffuse incident light, that it can be easily detected by the man in the street without auxiliary aids, and that it can be copied with holographic methods only at very great cost, if at ail.
The brightness of the pixel 2 is to be inconspicuously weakened by means of the surface elements 3. If there are arranged in the surface of the pixel 2 a plurality of the very small surface elements 3 whose dimensions do not exceed the size (0.3 mrn) referred to in EP-A 0 330 738 and which as reflecting or scattering surface elements 3 project no light or only light with a very low level of intensity in the viewing direction of the observer.
8y way of example the surface elements 3 can be in the form of reflecting microscripts. With a predetermined surface proportion of the surface elements 3 within the pixel 2, in that way the brightness of the pixel 2 can be lowered to the value of the brightness of the background element 4 so that the contrast between the pixel 2 and the background element 4 disappears at a boundary 9 of the pixel 2, as is shown here in a dotted line, and the pixel 2, of the same color, can no longer be perceived in relation to the background element 4. After a further 180° rotation the contrast at the boundary 9 in Figure 1 is again at its maximum, with the brightness ~f the pixel 2 remaining at the value reduced by the surface elements 4.
Figure 3 shows a script field or area 10 with a script band 11 with surfaces which represent alphanumeric characters and which are occupied by the diffracaion gratinc; B.~~F,, F2, 0°). The area 10 corresponds to the pixel 2 with the diffraction grating BB ( Fl, Fz, 90°) while the surfaces of the script band ~11 with the diffraction grating BH (F,, FZ, 0°) behave like the background area 4 (Figure 1) upon rotation through 180°. In the left-hand part of the drawing in Figure 3, that is to say prior to the 180°
rotation about the axi:5 of rotation i, the script band 11 is bright in the same color against the script area 10. In the right-hand part in Figure 3, that is to say after the 180'' rotation about the axis of rotation 7, the script band 11 is darker in the same color than the script area 10 which is uniformly occupied by the diffraction grating BB(Fl, F2, 90°). If once again the surface elements 3 (Figure 2} are used to darken the script area 10, the brightness of the script area 10 can be so adapted to that of the script band 11 that the text is readable prior to rotation through 180°, but not after the rotation through 180°. As in the description relating to Figure 2, in the right-hand part in Figure 3 the contrast at the boundaries 9 (Figure 2) of the alphanumeric characters of the script band 11 disappears in a darkening zone 12 between the area 10 and the script band 11. The script band 11 is no longer perceived against the script area 10 of the same color, when the levels of brightness are substantially the same. Conversely, in the left-hand part in Figure 3, that is to say prior to the 180° rotation about the axis of rotation 7, the contrast between the script band 1i and the script area 10 is increased corresponding to the degree of darkening in the script area 10.
i5 The left-hand part of Figure 4 shows a pattern 13 with a plurality of the pixels 2 (Figure 1) and the background elements 4 (Figure 1) arranged alternately, wherein a wave-shaped division of the pattern 13 is afforded by wavy parallel bands 14 which all involve the same diffraction grating B(Fl, FZ, ocp} and whose grating vectors GB are oriented parallel to the marked axis 6, Along a line 15 which intersects the bands, the bands 14 of the pattern 13 are divided into regions a to l, as are identified beneath the pattern 13 by the letters a to I. The relative phase shift ~cp varies in the bands 14 along the line 15 stepwise corresponding to the identifications a to !. The brightness of the bands 14 and the relative phase shift Oc~ in each of the bands 14 are summarised in Table 1.
Table 1 Band a b c d a f ~g h i k I
region Pixel - es - es - es - e_s_ - e~ -Backgroundyes - yes - yes - yes - yes - yes ecp: 0 90 180 270 0 90 180 270 0 90 180 Brightness:dark med lightmed dark med lightmed dark med light [med = medium]
[background (4) = background element (4)]
Shown beneath the pattern 13 in a first graph 16 is the relative brightness of the bands 14 as a function of the distance x along the line 15.
The contrast, that is to say the transition from one of the bands 14 to the other, follows the solid stepped first brightness function H1(x) which ranges 1o between a high value 17 of relative brightness (_ 'light'), a medium value 18 (_ 'medium') and a low value 19 of relative brightness (_ 'dark').
The right-hand part of Figure 4 shows the pattern 13' after the 180°
rotation about the axis of rotation 7 (Figure 1). The brightnesses of the background elements 4 are interchanged. The brightness of the pixels 2 remains the same prior to and after the 180° rotation about the axis of rotation 7. Beneath the turned pattern 13' shown in a second graph 20 is the relative brightness of the bands 14' as a function of the distance x along the line 21. The contrast, that is to say the transition from one of the bands 14' to the other, follows the solid stepped second brightness function HZ(x) which clearly shows the change of brightness in the pattern 13'. The regions b, d, f, h and k with the medium values 18 form the reference for the brightness change in the regions a, c, e, g and I.
Shown in dotted line in the graphs 16 and 20 respectively is the brightness function H1(x) and HZ(x) respectively, which causes a simple steady function in respect of the relative phase shift Ocp(x). If in the pattern 13 and 13' respectively the relative phase shift ocp(x) periodically changes between 0° and 360°, for example as a sine function, the brightness function H1(x) and HZ(x) also becomes steady and periodic (dotted-line function configuration). The contrast between the bands 14 occurs in a 3o continuous transition and no longer in steps. From the point of view of the observer the regions t:, d, f, h and k with the medium values 18 shrink somewhat, but still fo~~rr~ the reference for the brightness change in the regions a, c, e, g and ~,. The bands L4, 14' in Figure 4 are all visible in the same color and differ only in terms of their brightness.
The simple steac:iy function of the relative phase shift ~cp(x) is to be found for example in the diffraction grating B(F1, Fz, act) whose relief structure Fl has a sinusoidal profile in cross-section. The spatial frequency fl of the first relief stru~;~ture F, variety slowly over the pattern 13, 1.' along the line 1~ and 21 respectively, wherein successive maxima of the brightness function H1(x) and HZ(x) respectively occur when the relief structures F_~ and FZ are in phase.
In an example, in the case of the first relief structure Fl the spatial frequency fl is 1006 lines/mm with a frequency change (_ 'frequency chirp') of 6% of the spatial frequency fl over 10G mm. The maxima of the observed brightness function H,(x) and HZ(x) are 1.8 mrn apart. The second relief structure F~ has the constant spatial frequency f2 or 2012 lines/mm.
Figure 5 shows mutually interlocked rectangles as patterns 13, the y-axis being parallel to the marked axis 6 (Figure 1). The brightness z0 distributian shown by gray stages in the drawing in Figure 5 changes in the 180° rotation of the surface pattern 1 (Figure 1) about the axis of rotation 7, in which respect, in the rotated pattern 13' which is not shown here (see Figure 4), the surfaces :chown in white of the one background elements 4 are to be shown as darkly toned-down surfaces of the other background elements 4 and the darkly toned-down surfaces of the other background elements 4 are to be Shawn as white ones, while the mediumly toned-down surfaces of the pixels 2 rernain unchanged. Notional lines 22 and 23 delimit the four sectors S1 to S4 of the pattern 13. In the sectars S1 and S3 the relative phase shift dcp(ac) changes in the direction of the x-axis and in opposite relationship ttnereto respectively, In the sector S2 and S4 respectively the relative phase shift o~ changes as a function of y .n the direction of the negative y-axis and in she direction of the positive y-axis.
If that sector division is sufficiently fine, the pattern 13 is transformed into mutually interlocked circular rings and the relative phase shift acp changes from a center radially outwardly.
Such a substantially radially changing relative phase shift acp(x,y} is produced by the superimposition of the relief structure Fl with the spatial frequency fl = 1006 lines/mm, which changes by 0.6 period/mm, and the relief structure FZ with the spatial frequency fz of 2012 lines/mm, when the grating vectors G1 and Gz of the relief structures F1, Fz include a very small angle a (0° s a <_ 10°). The angle a and the frequency change in the spatial frequency f~ are to be precisely matched if a relative phase shift ocp(r) is to io be produced. The viewer sees in Figure 6 on the surface pattern 1 (Figure 1) the pattern 13 which, starting from the center, has the relative phase shift ecp(r), comprising concentric circular rings of the same color but entailing different degrees of brightness. After a rotation through 180° the pattern 13' lights up again in perpendicularly incident polychromatic light, i5 but the maxima and minima of the brightness of the concentric circular rings are interchanged. In the entire pattern 13 the grating vectors GB are substantially parallel to the marked axis 6.
The picture and background elements 2 (Figure 1) and 4 (Figure 1) which are occupied by the diffraction gratings B (Fl, FZ, ocp) are highly 2o effective in terms of representing shading and shiny locations in relation to band loops or other images which in the two-dimensional surface pattern 1 (Figure 1) simulate three-dimensional bodies. In particular the picture and background elements 2 and 4 which are occupied with the diffraction gratings B (Fl, Fz, bcp) can produce the patterns 13 which are described in 25 WO 99/38038.
The described diffraction gratings 8 (Fl, Fz, ecp) for the relative phase shifts act have different diffraction efficiencies for light which is incident in a polarised mode. If the incident light swings parallel to the channel lines of 3o the diffraction grating a (Fl, Fz, ~c~), that is to say in the case of TE-polarisation, the relative diffraction efficiency is a function of the relative phase shift ocp, as Figure 7 shows. The TE-diffraction efficiency of the +1st diffraction order in percent follows a cos (oc~)-function 24 and has for Ocp =
0° and 360° respectively a maximum, and the diffraction efficiency of the -1st diffraction order is at a minimum there as a sin (ecp)-function 25. The asymmetry disappears for the values dc~ = 90° and 270°. If the incident fight moves perpendicularly to the channel fines of the diffraction grating B
(Fl, Fz, dcp), that is to say in the case of TM-polarisation, the asymmetry of the diffraction efficiency in percent is substantially less and ranges in a band width 26 of about ~ 5°/o around the value 20°/0. Upon consideration of the surface pattern 1 (Figure 1) with incident unpolarised light the asymmetry of the diffraction grating B (Fl, FZ, dcp) is less pronounced. Upon consideration of the surface pattern 1 through a polarisation filter, the brightness change in the 180° rotation can be increased if, in the case of incident unpolarised light, the component of the TM-polarisation is filtered out. At this point attention is expressly directed to WO 99!38038.
Figure 8 shows a rectangular function 27 and an asymmetrical sawtooth function 28. The diffraction grating B (F,, Fz, Ocp) has a relief structure which involves a superimposition of the first relief structure F1, the rectangular function 27, and the second relief structure Fz, the asymmetrical sawtooth function 28. The relative phase shift ocp again considerably influences the diffraction behaviour of the diffraction grating B
(F1, Fz, acp). Table 2 sets out the asymmetry values measured in polarised light 29 of the wavelength 632.8 nm, that is to say the relationship of the intensity in the diffraction order +1 to the intensity in the diffraction order -1, in dependence on the relative phase shift acp.
Table 2 Relative phase shift oc~ 0 45 l 90 +lst diffraction order TE 12.9 1.8 j 7.7 -1st diffraction order TE 2.9 15.8 14.3 Asymmetry: I 4.4 ~ 0.1 ~ 0.5 The surtace patterns 1 (Figure 1) described hitherto can in another embodiment also have the diffraction grating B (F1, Fz, ocp) produced from the rectangular function 27 and the sawtooth function 28, for the picture and background elemfynts 2 (Figure 1) and 4 (Figure 1) or the patterns I3 (Fgure 6). The relationship of the spatial frequency fz of the asymmetrical sawtooth function 28 to the spatial frequency fl of the rectangular function 27 is to be selected from the range of between 2 and 5 while the relationship of the profile height PZ of the asymmetrical sawtooth function 28 to the profile height P, of the rectangular function 27 is in the range of between :. and 4. The relative phase shift ,~c~ between the first relief structure F, and the second relief structure FZ determines whether the diffraction grating B (F,, Fz, ocp) symmetrically or asymmetrically diffracts the light 29 which is incident perpendicularly on the surface pattern 1.
The relief structures F, and FZ of the diffraction grating B (Fl, FZ, oc~) in the example for the measurement values in Table 2 show for the first relief structure F, a constant spatial frequency fl = 259 lines/mm and a profile height P1 of 200 nm; for the second relief structure FZ the spatial frequency f; is 1036 iines/mm with a profile height Pz of 200 nm with a blaze angle of 17°. Advantageously the second spatial frequency ~z may also have a low "frequency chirp' so that the relative phase shift of ~cp =

changes to nip = 180° ors a distance over the surface pattern 1 of 2.8 mm.
In the case of a pattern 13 (Figure 6), the brightness pattern 2o changes, upon tilting about a tilt axis 30 which is parallel to the channel lines of the k3 (Fl, F2, oc~), from one diffraction order to another, identified by the integers of -4 to +4. For example the contrast is intensive at the +3rd order, it is quite weak at the +2nd order, at the +lst order the contrasts are again intensive but the brightness distribution is interchanged as in the case of the pattern 13' (Figure fi). In specific cases the brightness distributions can be reflected in the negative diffraction orders, the -1st order corresponds to the +3rd order and the -3rd order corresponds ~o the +lst order. Thus there is also the change in brightness distribution upon the 180° rotation in the plane of the pattern 13.
3o It i s to be noted that in the drawings the relative brightness distributions which an observer sees at the corresponding viewing direction are illustrated by means of gray scales in the pixels 2 and the backgrounds elements 4 respectively, but not in the elements 3 and 5 which are possibly shown. The marked axis 6 shows the relative position of the surface pattern 1. The term 'brightness' always means the surface brightness, that is to say the level of intensity of the diffracted light sent in the viewing direction, per unit of area of the diffracting elements 2 to 5.

Claims (15)

1. A surface pattern (1) comprising elements (2 to 5) arranged in a mosaic-like fashion and of which at least a background element (4) and a pixel (2) have microscopically fine diffraction gratings B diffracting visible light (29) comprising a superimposition of at least two different relief structures F1, F2 and surface elements (3) and element portions (5) contain surfaces selected from the group consisting of surfaces containing the microscopically fine relief structures diffracting visible light (29), reflecting surfaces and scattering surfaces, characterised in that a first diffraction grating B B (F1, F2, .DELTA. .phi. B) is arranged in the pixel (2) and a second diffraction grating B H (F1, F2, .DELTA..phi. H) is arranged in the background element (4), the diffraction gratings B B and B H each have a superimposed relief structure F1 + F2, wherein F1 is a first relief structure having the spatial frequency f1 and F2 is a second relief structure having the spatial frequency f2 and .DELTA..phi. is a relative phase shift of the second relief structure F2 with respect to the first relief structure F1 and the spatial frequency of the diffraction grating B B and that of the diffraction grating B H are equal to the lower of the two spatial frequencies f1 and f2, the relationship V F of the second to the first spatial frequencies f2/f1 is of a value from the range 1.5 <= V F <=3, the grating vectors of the first diffraction grating B B in the pixel (2) and the second diffraction grating B H in the background element (4) as well as the grating vectors of the two relief structures F1, F2, are oriented in substantially parallel or anti-parallel relationship to a marked axis (6), and the first diffraction grating B B and the second diffraction grating B H
differ only by the relative phase shift .DELTA..phi. of the second relief structure F2 which is used for superimposition with the first relief structure F1.
2. A surface pattern (1) according to claim 1 characterised in that the relative phase shift .DELTA..phi. of the diffraction grating B B and B H
respectively in the entire area of the pixel (2) or the background element (4) is of a constant value.
3. A surface pattern (1) according to claim 2 characterised in that the values of the relative phase shift .DELTA..phi. of the diffraction gratings B B and B H
differ by more than 20° modulo 360°.
4. A surface pattern (1) according to one of claims 1 to 3 characterised in that a plurality of the pixels (2) and the background elements (4) are arranged alternately, that the grating vectors of all diffraction gratings B (F1, F2, .DELTA..phi.) of the pixels (2) and the background elements (4) are oriented towards the axis (6) and that the relative phase shift .DELTA..phi. in the transition from one element (2; 4) to the adjacent element (4; 2) changes stepwise by a predetermined value.
5. A surface pattern (1) according to one of claims 1 to 4 characterised in that the relief structures F1, F2 are sine functions, wherein the relationship of the amplitude A2 of the second sine function to the amplitude A1 of the first sine function is in the range of between 0.1 and 10.
6. A surface pattern (1) comprising elements (5) arranged in a mosaic-like fashion and of which at least a pixel has a microscopically fine diffraction grating B diffracting visible light (29) comprising a superimposition of at least two relief structures and the other elements (3 to 5) contain surfaces selected from the group consisting of surfaces containing the microscopically fine relief structures diffracting visible light (29), reflecting surfaces and scattering surfaces, characterised in that the diffraction grating B has a superimposed relief structure F1 + F2, wherein F1 is a first relief structure having the spatial frequency f1 and F2 is a second relief structure having the spatial frequency f2 and .DELTA..phi. is a relative phase shift of the second relief structure F2 with respect to the first relief structure F1 and the spatial frequency of the diffraction grating B is equal to the lower of the two spatial frequencies f1 and f2, the diffraction grating B has a location-dependent function, which is steady in a portion-wise manner, of the relative phase shift .DELTA..phi. (x, y) between the relief structure F1 and the relief structure F2, and the diffraction grating B and the relief structures F1, F2 have grating vectors which are substantially parallel to a marked axis (6).
7. A surface pattern (1) according to claim 6 characterised in that the diffraction grating B, from at least one center, has a location-dependent radial function, which is steady in a portion-wise manner, of the relative phase shift .DELTA..phi. (r) between the relief structure F1 and the relief structure F2.
8. A surface pattern (1) according to claim 5 or claim 6 characterised in that the spatial frequency f1 has a 'frequency chirp' of 6% of the spatial frequency f1 over 100 mm.
9. A surface pattern (1) according to claim 8 characterised in that the grating vectors of the two relief structures F1 and F2 include an angle of less than 10°.
10. A surface pattern (1) according to one of claims 6 to 9 characterised in that the relief structures F1, F2 are sine functions, wherein the relationship of the spatial frequency f2 of the second sine function to the spatial frequency f1 of the first sine function is in the range of between 1.5 and 3 and the relationship of the amplitude A2 of the second sine function to the amplitude A1 of the first sine function is in the range of between 0.1 and 10.
11. A surface pattern (1) according to one of claims 6 to 9 characterised in that the first relief structure F1 is a rectangular function (28) and the second relief structure F2 is an asymmetrical sawtooth function (29), wherein the relationship of the spatial frequency f2 of the asymmetrical sawtooth function (29) to the spatial frequency f1 of the rectangular function (28) is in the range of between 2 and 5 and the relationship of the profile height P2 of the asymmetrical sawtooth function (29) to the profile height P1 of the rectangular function (28) is in the range of between 1 and 4.
12. A surface pattern (1) according to claim 11 characterised in that upon tilting about a tilt axis parallel to the channel lines of the diffraction structures B and upon illumination with perpendicularly incident light (29) the surfaces of the pixels (2), which are occupied with the diffraction structures B, have a predetermined change in the brightness which occurs in comparison with the surfaces of a plurality of background elements (4), which are occupied by the diffraction structures, wherein the pixels (2) and the background elements (4) are each of the same respective color or spatial frequency.
13. A surface pattern (1) according to one of claim 1 to claim 12 characterised in that arranged in the surfaces of the pixels (2) are a plurality of small surface elements (3) which cannot be discerned by the naked eye, with a different optical behaviour from the diffraction structure B, in order to reduce the brightness of the pixels (2).
14. A surface pattern (1) according to one of claim 1 to claim 13 characterised in that a contrast between the pixels (2) and a plurality of background elements (4) only disappears with polarised light (29) and that the contrast is retained with unpolarised light (29).
15. A surface pattern (1) according to one of claim 1 to claim 13 characterised in that a contrast between the pixels (2) and a plurality of background elements (4) only disappears in unpolarised light (29) and that the contrast is retained with polarised light (29).
CA002319137A 1998-01-27 1999-01-21 Planar patterns with superimposed diffraction grating Expired - Fee Related CA2319137C (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CH00191/98A CH693316A5 (en) 1998-01-27 1998-01-27 Surface patterns with superimposed diffraction gratings.
CH191/98 1998-01-27
PCT/EP1999/000388 WO1999038039A1 (en) 1998-01-27 1999-01-21 Planar patterns with superimposed diffraction grating

Publications (2)

Publication Number Publication Date
CA2319137A1 CA2319137A1 (en) 1999-07-29
CA2319137C true CA2319137C (en) 2003-09-23

Family

ID=4181330

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002319137A Expired - Fee Related CA2319137C (en) 1998-01-27 1999-01-21 Planar patterns with superimposed diffraction grating

Country Status (8)

Country Link
EP (1) EP1051648B1 (en)
AT (1) ATE237145T1 (en)
CA (1) CA2319137C (en)
CH (1) CH693316A5 (en)
DE (1) DE59904949D1 (en)
ES (1) ES2197612T3 (en)
HK (1) HK1029180A1 (en)
WO (1) WO1999038039A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9929752D0 (en) * 1999-12-17 2000-02-09 Secr Defence Textured surface
AU2001231674C1 (en) * 2000-04-15 2006-07-27 Ovd Kinegram Ag Pattern
DE10127981C1 (en) * 2001-06-08 2003-01-16 Ovd Kinegram Ag Zug Diffractive security element
DE10129938B4 (en) * 2001-06-20 2005-05-25 Ovd Kinegram Ag As an authenticity feature on a document arranged optically variable surface pattern
DE10216563B4 (en) * 2002-04-05 2016-08-04 Ovd Kinegram Ag Security element as photocopy protection
DE102004003984A1 (en) 2004-01-26 2005-08-11 Giesecke & Devrient Gmbh Lattice image with one or more grid fields

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4155627A (en) * 1976-02-02 1979-05-22 Rca Corporation Color diffractive subtractive filter master recording comprising a plurality of superposed two-level relief patterns on the surface of a substrate
AU6355996A (en) * 1996-01-26 1997-08-20 Landis & Gyr Technology Innovation Ag Surface pattern

Also Published As

Publication number Publication date
CH693316A5 (en) 2003-05-30
CA2319137A1 (en) 1999-07-29
WO1999038039A1 (en) 1999-07-29
ES2197612T3 (en) 2004-01-01
ATE237145T1 (en) 2003-04-15
EP1051648B1 (en) 2003-04-09
DE59904949D1 (en) 2003-05-15
EP1051648A1 (en) 2000-11-15
HK1029180A1 (en) 2001-03-23

Similar Documents

Publication Publication Date Title
US6324004B1 (en) Planar patterns with superimposed diffraction gratings
AU2001231674B2 (en) Pattern
US6417968B1 (en) Diffractive surface pattern
EP0868313B1 (en) Optically variable surface pattern
US6909547B2 (en) Security element with diffraction structures
CA2292594C (en) Diffractive surface pattern
KR101129148B1 (en) Optical Safety Element and System For Visualising Hidden Information
CA2168772C (en) A diffractive device
US6924934B2 (en) Diffractive safety element
CN100537267C (en) Security element comprising micro- and macrostructures
US20040021945A1 (en) Light-diffracting binary grating structure
PL203166B1 (en) Optically variable element
RU2136508C1 (en) Visually identifiable optical member
CA2319137C (en) Planar patterns with superimposed diffraction grating
RU2128585C1 (en) Structural system, particularly, for protective member
AU2006319105B2 (en) Optical security device offering 2D image
EP3793840B1 (en) Security device and method of manufacture thereof
CA3223481A1 (en) Optically variable security element, and value document containing the optically variable security element
BG67098B1 (en) Optical variable element

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed