CA2306457A1 - Secreted proteins and polynucleotides encoding them - Google Patents
Secreted proteins and polynucleotides encoding them Download PDFInfo
- Publication number
- CA2306457A1 CA2306457A1 CA002306457A CA2306457A CA2306457A1 CA 2306457 A1 CA2306457 A1 CA 2306457A1 CA 002306457 A CA002306457 A CA 002306457A CA 2306457 A CA2306457 A CA 2306457A CA 2306457 A1 CA2306457 A1 CA 2306457A1
- Authority
- CA
- Canada
- Prior art keywords
- polynucleotide
- seq
- protein
- amino acid
- nucleotide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/46—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
- C07K14/47—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Biochemistry (AREA)
- Biophysics (AREA)
- Zoology (AREA)
- Genetics & Genomics (AREA)
- Medicinal Chemistry (AREA)
- Gastroenterology & Hepatology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Toxicology (AREA)
- Peptides Or Proteins (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
Novel polynucleotides and the proteins encoded thereby are disclosed.
Description
~rp 99~0(,~ PCT/US98l22034 SECRETED PROTEINS AND POLYNUCLEOTIDES ENCODING THEM
This application is a continuation-in-part of the following applications: Ser.
No.
08/677,231, filed July 9, 1996; Ser. No. 08/701,819, filed August 23, 1996;
Ser. No.
08/721,488, filed September 27, 1996; and Ser. No. 08/739,066, filed October 28, 1996.
The present invention provides novel polynucleotides and proteins encoded by such polynucleotides, along with therapeutic, diagnostic and research utilities for these polynucleotides and proteins.
Technology aimed at the discovery of protein factors (including e.g., cytokines, such as lymphokines, interferons, CSFs and interleukins) has matured rapidly over the past decade. The now routine hybridization cloning and expression cloning techniques clone novel polynucleotides "directly" in the sense that they rely on information directly related to the discovered protein (i.e., partial DNA/amino acid sequence of the protein in the case of hybridization cloning; activity of the protein in the case of expression cloning). More recent "indirect" cloning techniques such as signal sequence cloning, which isolates DNA sequences based on the presence of a now well-recognized secretory leader sequence motif, as well as various PCR-based or low stringency hybridization cloning techniques, have advanced the state of the art by making available large numbers of DNA/amino acid sequences for proteins that are known to have biological activity by virtue of their secreted nature in the case of leader sequence cloning, or by virtue of the cell or tissue source in the case of PCR-based techniques.
It is to these proteins and the polynucleotides encoding them that the present invention is directed.
SL~tMARY OF THE INVENTION
In one embodiment, the present invention provides a composition comprising an isolated polynucleotide selected from the group consisting of:
{a) a polynucleotide comprising the nucleotide sequence of SEQ ID
NO:1;
(b) a polynucleotide comprising the nucleotide sequence of SEQ ID
NO:1 from nucleotide 113 to nucleotide 742;
(c) a polynucleotide comprising the nucleotide sequence of SEQ ID
NO:1 from nucleotide 179 to nucleotide 742;
(d) a polynucleotide comprising the nucleotide sequence of SEQ ID
NO:1 from nucleotide 1 to nucleotide 568;
(e) a polynucleotide comprising the nucleotide sequence of the full-length protein coding sequence of clone AC41_1 deposited under accession number ATCC 98101;
(f) a polynucleotide encoding the full-length protein encoded by the cDNA insert of clone AC41-1 deposited under accession number ATCC 98101;
(g) a polynucleotide comprising the nucleotide sequence of the mature protein coding sequence of clone AC41_1 deposited under accession number ATCC 98101;
(h) a polynucleotide encoding the mature protein encoded by the cDNA insert of clone AC41_1 deposited under accession number ATCC 98101;
{i) a polynucleotide encoding a protein comprising the amino acid sequence of SEQ TD N0:2;
{j) a polynucleotide encoding a protein comprising a fragment of the amino acid sequence of SEQ ID N0:2 having biological activity;
(k) a polynucleotide which is an allelic variant of a polynucleotide of (a)-(h) above;
(1) a polynucleotide which encodes a species homologue of the protein of (i) or (j) above ; and (m) a polynucleotide capable of hybridizing under stringent conditions to any one of the polynucleotides specified in (a)-(j).
Preferably, such polynucleotide comprises the nucleotide sequence of SEQ ID
NO:1 from nucleotide 113 to nucleotide 742; the nucleotide sequence of SEQ ID
N0:1 from nucleotide 179 to nucleotide 742; the nucleotide sequence of SEQ ID NO:1 from nucleotide 1 to nucleotide 568; the nucleotide sequence of the full-length protein coding sequence of clone AC41-1 deposited under accession number ATCC 98101; or the nucleotide sequence of the mature protein coding sequence of clone AC41-1 deposited under accession number ATCC 98101. In other preferred embodiments, the polynucleotide encodes the full-length or mature protein encoded by the cDNA
insert of clone AC41_1 deposited under accession number ATCC 98101. In yet other preferred embodiments, the present invention provides a polynucleotide encoding a protein comprising the amino acid sequence of SEQ ID N0:2 from amino acid 53 to amino acid 129.
Other embodiments provide the gene corresponding to the cDNA sequence of SEQ ID NO:1.
In other embodiments, the present invention provides a composition comprising a protein, wherein said protein comprises an amino acid sequence selected from the group consisting of:
(a) the amino acid sequence of SEQ ID N0:2;
(b) the amino acid sequence of SEQ ID N0:2 from amino acid 53 to amino acid 129;
(c) fragments of the amino acid sequence of SEQ ID N0:2; and (d) the amino acid sequence encoded by the cDNA insert of clone AC41-1 deposited under accession number ATCC 98101;
the protein being substantially free from other mammalian proteins. Preferably such protein comprises the amino acid sequence of SEQ ID N0:2 or the amino acid sequence of SEQ ID N0:2 from amino acid 53 to amino acid 129.
In one embodiment, the present invention provides a composition comprising an isolated polynucleotide selected from the group consisting of:
(a) a polynucleotide comprising the nucleotide sequence of SEQ ID
N0:3;
(b) a polynucleotide comprising the nucleotide sequence of SEQ ID
N0:3 from nucleotide 161 to nucleotide 1126;
(c) a polynucleotide comprising the nucleotide sequence of SEQ ID
This application is a continuation-in-part of the following applications: Ser.
No.
08/677,231, filed July 9, 1996; Ser. No. 08/701,819, filed August 23, 1996;
Ser. No.
08/721,488, filed September 27, 1996; and Ser. No. 08/739,066, filed October 28, 1996.
The present invention provides novel polynucleotides and proteins encoded by such polynucleotides, along with therapeutic, diagnostic and research utilities for these polynucleotides and proteins.
Technology aimed at the discovery of protein factors (including e.g., cytokines, such as lymphokines, interferons, CSFs and interleukins) has matured rapidly over the past decade. The now routine hybridization cloning and expression cloning techniques clone novel polynucleotides "directly" in the sense that they rely on information directly related to the discovered protein (i.e., partial DNA/amino acid sequence of the protein in the case of hybridization cloning; activity of the protein in the case of expression cloning). More recent "indirect" cloning techniques such as signal sequence cloning, which isolates DNA sequences based on the presence of a now well-recognized secretory leader sequence motif, as well as various PCR-based or low stringency hybridization cloning techniques, have advanced the state of the art by making available large numbers of DNA/amino acid sequences for proteins that are known to have biological activity by virtue of their secreted nature in the case of leader sequence cloning, or by virtue of the cell or tissue source in the case of PCR-based techniques.
It is to these proteins and the polynucleotides encoding them that the present invention is directed.
SL~tMARY OF THE INVENTION
In one embodiment, the present invention provides a composition comprising an isolated polynucleotide selected from the group consisting of:
{a) a polynucleotide comprising the nucleotide sequence of SEQ ID
NO:1;
(b) a polynucleotide comprising the nucleotide sequence of SEQ ID
NO:1 from nucleotide 113 to nucleotide 742;
(c) a polynucleotide comprising the nucleotide sequence of SEQ ID
NO:1 from nucleotide 179 to nucleotide 742;
(d) a polynucleotide comprising the nucleotide sequence of SEQ ID
NO:1 from nucleotide 1 to nucleotide 568;
(e) a polynucleotide comprising the nucleotide sequence of the full-length protein coding sequence of clone AC41_1 deposited under accession number ATCC 98101;
(f) a polynucleotide encoding the full-length protein encoded by the cDNA insert of clone AC41-1 deposited under accession number ATCC 98101;
(g) a polynucleotide comprising the nucleotide sequence of the mature protein coding sequence of clone AC41_1 deposited under accession number ATCC 98101;
(h) a polynucleotide encoding the mature protein encoded by the cDNA insert of clone AC41_1 deposited under accession number ATCC 98101;
{i) a polynucleotide encoding a protein comprising the amino acid sequence of SEQ TD N0:2;
{j) a polynucleotide encoding a protein comprising a fragment of the amino acid sequence of SEQ ID N0:2 having biological activity;
(k) a polynucleotide which is an allelic variant of a polynucleotide of (a)-(h) above;
(1) a polynucleotide which encodes a species homologue of the protein of (i) or (j) above ; and (m) a polynucleotide capable of hybridizing under stringent conditions to any one of the polynucleotides specified in (a)-(j).
Preferably, such polynucleotide comprises the nucleotide sequence of SEQ ID
NO:1 from nucleotide 113 to nucleotide 742; the nucleotide sequence of SEQ ID
N0:1 from nucleotide 179 to nucleotide 742; the nucleotide sequence of SEQ ID NO:1 from nucleotide 1 to nucleotide 568; the nucleotide sequence of the full-length protein coding sequence of clone AC41-1 deposited under accession number ATCC 98101; or the nucleotide sequence of the mature protein coding sequence of clone AC41-1 deposited under accession number ATCC 98101. In other preferred embodiments, the polynucleotide encodes the full-length or mature protein encoded by the cDNA
insert of clone AC41_1 deposited under accession number ATCC 98101. In yet other preferred embodiments, the present invention provides a polynucleotide encoding a protein comprising the amino acid sequence of SEQ ID N0:2 from amino acid 53 to amino acid 129.
Other embodiments provide the gene corresponding to the cDNA sequence of SEQ ID NO:1.
In other embodiments, the present invention provides a composition comprising a protein, wherein said protein comprises an amino acid sequence selected from the group consisting of:
(a) the amino acid sequence of SEQ ID N0:2;
(b) the amino acid sequence of SEQ ID N0:2 from amino acid 53 to amino acid 129;
(c) fragments of the amino acid sequence of SEQ ID N0:2; and (d) the amino acid sequence encoded by the cDNA insert of clone AC41-1 deposited under accession number ATCC 98101;
the protein being substantially free from other mammalian proteins. Preferably such protein comprises the amino acid sequence of SEQ ID N0:2 or the amino acid sequence of SEQ ID N0:2 from amino acid 53 to amino acid 129.
In one embodiment, the present invention provides a composition comprising an isolated polynucleotide selected from the group consisting of:
(a) a polynucleotide comprising the nucleotide sequence of SEQ ID
N0:3;
(b) a polynucleotide comprising the nucleotide sequence of SEQ ID
N0:3 from nucleotide 161 to nucleotide 1126;
(c) a polynucleotide comprising the nucleotide sequence of SEQ ID
N0:3 from nucleotide 218 to nucleotide 1126;
(d) a polynucleotide comprising the nucleotide sequence of SEQ ID
N0:3 from nucleotide 1 to nucleotide 553;
(e) a polynucleotide comprising the nucleotide sequence of the full-length protein coding sequence of clone AC222_1 deposited under accession number ATCC 98101;
(f) a polynucleotide encoding the full-length protein encoded by the cDNA insert of clone AC222_1 deposited under accession number ATCC
98101;
(g) a polynucleotide comprising the nucleotide sequence of the mature protein coding sequence of clone AC222_1 deposited under accession number ATCC 98101;
(h) a polynucleotide encoding the mature protein encoded by the cDNA insert of clone AC222_1 deposited under accession number ATCC
98101;
(i) a polynucleotide encoding a protein comprising the amino acid sequence of SEQ ID N0:4;
(j) a polynucleotide encoding a protein comprising a fragment of the amino acid sequence of SEQ ID N0:4 having biological activity;
(k) a polynucleotide which is an allelic variant of a polynucleotide of (a)-(h) above;
{I) a polynucleotide which encodes a species homologue of the protein of (i) or (j) above ; and (m) a polynucleotide capable of hybridizing under stringent conditions to any one of the polynucleotides specified in (a)-(j).
Preferably, such polynucleotide comprises the nucleotide sequence of SEQ ID
N0:3 from nucleotide 161 to nucleotide 1126; the nucleotide sequence of SEQ ID
N0:3 from nucleotide 218 to nucleotide 1126; the nucleotide sequence of SEQ ID N0:3 from nucleotide 1 to nucleotide 553; the nucleotide sequence of the full-length protein coding sequence of clone AC222_1 deposited under accession number ATCC 98101; or the nucleotide sequence of the mature protein coding sequence of clone AC222_1 deposited under accession number ATCC 98101. In other preferred embodiments, the polynucleotide encodes the full-length or mature protein encoded by the cDNA
insert of clone AC222_1 deposited under accession number ATCC 98101. In yet other preferred embodiments, the present invention provides a polynucleotide encoding a protein comprising the amino acid sequence of SEQ ID N0:4 from amino acid 1 to amino acid 131.
Other embodiments provide the gene corresponding to the cDNA sequence of SEQ TD N0:3.
In other embodiments, the present invention provides a composition comprising a protein, wherein said protein comprises an amino acid sequence selected from the group consisting of:
(a) the amino acid sequence of SEQ ID N0:4;
(b) the amino acid sequence of SEQ ID N0:4 from amino acid 1 to amino acid 131;
(c) fragments of the amino acid sequence of SEQ ID N0:4; and (d) the amino acid sequence encoded by the cDNA insert of clone AC222_1 deposited under accession number ATCC 98101;
the protein being substantially free from other mammalian proteins. Preferably such protein comprises the amino acid sequence of SEQ ID N0:4 or the amino acid sequence of SEQ ID N0:4 from amino acid 1 to amino acid 131.
In one embodiment, the present invention provides a composition comprising an isolated polynucleotide selected from the group consisting of:
(a) a polynucleotide comprising the nucleotide sequence of SEQ ID
NO:S;
(b) a polynucleotide comprising the nucleotide sequence of SEQ ID
NO:S from nucleotide 827 to nucleotide 994;
(c) a polynucleotide comprising the nucleotide sequence of SEQ ID
N0:5 from nucleotide 869 to nucleotide 994;
(d) a polynucleotide comprising the nucleotide sequence of the full-length protein coding sequence of clone AJ143_1 deposited under accession number ATCC 98101;
(d) a polynucleotide comprising the nucleotide sequence of SEQ ID
N0:3 from nucleotide 1 to nucleotide 553;
(e) a polynucleotide comprising the nucleotide sequence of the full-length protein coding sequence of clone AC222_1 deposited under accession number ATCC 98101;
(f) a polynucleotide encoding the full-length protein encoded by the cDNA insert of clone AC222_1 deposited under accession number ATCC
98101;
(g) a polynucleotide comprising the nucleotide sequence of the mature protein coding sequence of clone AC222_1 deposited under accession number ATCC 98101;
(h) a polynucleotide encoding the mature protein encoded by the cDNA insert of clone AC222_1 deposited under accession number ATCC
98101;
(i) a polynucleotide encoding a protein comprising the amino acid sequence of SEQ ID N0:4;
(j) a polynucleotide encoding a protein comprising a fragment of the amino acid sequence of SEQ ID N0:4 having biological activity;
(k) a polynucleotide which is an allelic variant of a polynucleotide of (a)-(h) above;
{I) a polynucleotide which encodes a species homologue of the protein of (i) or (j) above ; and (m) a polynucleotide capable of hybridizing under stringent conditions to any one of the polynucleotides specified in (a)-(j).
Preferably, such polynucleotide comprises the nucleotide sequence of SEQ ID
N0:3 from nucleotide 161 to nucleotide 1126; the nucleotide sequence of SEQ ID
N0:3 from nucleotide 218 to nucleotide 1126; the nucleotide sequence of SEQ ID N0:3 from nucleotide 1 to nucleotide 553; the nucleotide sequence of the full-length protein coding sequence of clone AC222_1 deposited under accession number ATCC 98101; or the nucleotide sequence of the mature protein coding sequence of clone AC222_1 deposited under accession number ATCC 98101. In other preferred embodiments, the polynucleotide encodes the full-length or mature protein encoded by the cDNA
insert of clone AC222_1 deposited under accession number ATCC 98101. In yet other preferred embodiments, the present invention provides a polynucleotide encoding a protein comprising the amino acid sequence of SEQ ID N0:4 from amino acid 1 to amino acid 131.
Other embodiments provide the gene corresponding to the cDNA sequence of SEQ TD N0:3.
In other embodiments, the present invention provides a composition comprising a protein, wherein said protein comprises an amino acid sequence selected from the group consisting of:
(a) the amino acid sequence of SEQ ID N0:4;
(b) the amino acid sequence of SEQ ID N0:4 from amino acid 1 to amino acid 131;
(c) fragments of the amino acid sequence of SEQ ID N0:4; and (d) the amino acid sequence encoded by the cDNA insert of clone AC222_1 deposited under accession number ATCC 98101;
the protein being substantially free from other mammalian proteins. Preferably such protein comprises the amino acid sequence of SEQ ID N0:4 or the amino acid sequence of SEQ ID N0:4 from amino acid 1 to amino acid 131.
In one embodiment, the present invention provides a composition comprising an isolated polynucleotide selected from the group consisting of:
(a) a polynucleotide comprising the nucleotide sequence of SEQ ID
NO:S;
(b) a polynucleotide comprising the nucleotide sequence of SEQ ID
NO:S from nucleotide 827 to nucleotide 994;
(c) a polynucleotide comprising the nucleotide sequence of SEQ ID
N0:5 from nucleotide 869 to nucleotide 994;
(d) a polynucleotide comprising the nucleotide sequence of the full-length protein coding sequence of clone AJ143_1 deposited under accession number ATCC 98101;
(e) a polynucleotide encoding the full-length protein encoded by the cDNA insert of clone AJ143-1 deposited under accession number ATCC 98101;
(f) a polynucleotide comprising the nucleotide sequence of the mature protein coding sequence of clone AJ143_1 deposited under accession number ATCC 98101;
(g) a polynucleotide encoding the mature protein encoded by the cDNA insert of clone AJ143_1 deposited under accession number ATCC 98101;
(h) a polynucleotide encoding a protein comprising the amino acid sequence of SEQ ID N0:6;
(i) a polynucleotide encoding a protein comprising a fragment of the amino acid sequence of SEQ ID N0:6 having biological activity;
(j) a polynucleotide which is an allelic variant of a polynucleotide of (a)-(g) above;
(k) a polynucleotide which encodes a species homologue of the protein of (h) or (i) above ; and (1) a polynucleotide capable of hybridizing under stringent conditions to any one of the polynucleotides specified in (a)-(i).
Preferably, such polynucleotide comprises the nucleotide sequence of SEQ ID
N0:5 from nucleotide 827 to nucleotide 994; the nucleotide sequence of SEQ ID
N0:5 from nucleotide 869 to nucleotide 994; the nucleotide sequence of the full-length protein coding sequence of clone AJ143_1 deposited under accession number ATCC 98101;
or the nucleotide sequence of the mature protein coding sequence of clone AJ143'1 deposited under accession number ATCC 98101. In other preferred embodiments, the polynucleotide encodes the full-length or mature protein encoded by the cDNA
insert of clone AJ143-1 deposited under accession number ATCC 98101. In yet other preferred embodiments, the present invention provides a polynucleotide encoding a protein comprising the amino acid sequence of SEQ ID N0:6 from amino acid 1 to amino acid 20.
Other embodiments provide the gene corresponding to the cDNA sequence of SEQ ID N0:5.
In other embodiments, the present invention provides a composition comprising a protein, wherein said protein comprises an amino acid sequence selected from the group consisting of:
(a) the amino acid sequence of SEQ ID N0:6;
{b) the amino acid sequence of SEQ ID N0:6 from amino acid 1 to amino acid 20;
(c) fragments of the amino acid sequence of SEQ ID N0:6; and (d) the amino acid sequence encoded by the cDNA insert of clone AJ143-1 deposited under accession number ATCC 98101;
the protein being substantially free from other mammalian proteins. Preferably such protein comprises the amino acid sequence of SEQ ID N0:6 or the amino acid sequence of SEQ ID N0:6 from amino acid 1 to amino acid 20.
In one embodiment, the present invention provides a composition comprising an isolated polynucleotide selected from the group consisting of:
(a) a polynucleotide comprising the nucleotide sequence of SEQ ID
N0:7;
(b) a polynucleotide comprising the nucleotide sequence of SEQ ID
N0:7 from nucleotide 91 to nucleotide 204;
(c) a polynucleotide comprising the nucleotide sequence of the full-length protein coding sequence of clone AJ 168 4 deposited under accession number ATCC 98101;
(d) a polynucleotide encoding the full-length protein encoded by the cDNA insert of clone AJ168 4 deposited under accession number ATCC 98101;
(e) a polynucleotide comprising the nucleotide sequence of the mature protein coding sequence of clone AJ168 4 deposited under accession number ATCC 98101;
(f) a polynucleotide encoding the mature protein encoded by the cDNA insert of clone AJ168 4 deposited under accession number ATCC 98101;
(g) a polynucleotide encoding a protein comprising the amino acid sequence of SEQ ID N0:8;
(h) a polynucleotide encoding a protein comprising a fragment of the amino acid sequence of SEQ ID N0:8 having biological activity;
(f) a polynucleotide comprising the nucleotide sequence of the mature protein coding sequence of clone AJ143_1 deposited under accession number ATCC 98101;
(g) a polynucleotide encoding the mature protein encoded by the cDNA insert of clone AJ143_1 deposited under accession number ATCC 98101;
(h) a polynucleotide encoding a protein comprising the amino acid sequence of SEQ ID N0:6;
(i) a polynucleotide encoding a protein comprising a fragment of the amino acid sequence of SEQ ID N0:6 having biological activity;
(j) a polynucleotide which is an allelic variant of a polynucleotide of (a)-(g) above;
(k) a polynucleotide which encodes a species homologue of the protein of (h) or (i) above ; and (1) a polynucleotide capable of hybridizing under stringent conditions to any one of the polynucleotides specified in (a)-(i).
Preferably, such polynucleotide comprises the nucleotide sequence of SEQ ID
N0:5 from nucleotide 827 to nucleotide 994; the nucleotide sequence of SEQ ID
N0:5 from nucleotide 869 to nucleotide 994; the nucleotide sequence of the full-length protein coding sequence of clone AJ143_1 deposited under accession number ATCC 98101;
or the nucleotide sequence of the mature protein coding sequence of clone AJ143'1 deposited under accession number ATCC 98101. In other preferred embodiments, the polynucleotide encodes the full-length or mature protein encoded by the cDNA
insert of clone AJ143-1 deposited under accession number ATCC 98101. In yet other preferred embodiments, the present invention provides a polynucleotide encoding a protein comprising the amino acid sequence of SEQ ID N0:6 from amino acid 1 to amino acid 20.
Other embodiments provide the gene corresponding to the cDNA sequence of SEQ ID N0:5.
In other embodiments, the present invention provides a composition comprising a protein, wherein said protein comprises an amino acid sequence selected from the group consisting of:
(a) the amino acid sequence of SEQ ID N0:6;
{b) the amino acid sequence of SEQ ID N0:6 from amino acid 1 to amino acid 20;
(c) fragments of the amino acid sequence of SEQ ID N0:6; and (d) the amino acid sequence encoded by the cDNA insert of clone AJ143-1 deposited under accession number ATCC 98101;
the protein being substantially free from other mammalian proteins. Preferably such protein comprises the amino acid sequence of SEQ ID N0:6 or the amino acid sequence of SEQ ID N0:6 from amino acid 1 to amino acid 20.
In one embodiment, the present invention provides a composition comprising an isolated polynucleotide selected from the group consisting of:
(a) a polynucleotide comprising the nucleotide sequence of SEQ ID
N0:7;
(b) a polynucleotide comprising the nucleotide sequence of SEQ ID
N0:7 from nucleotide 91 to nucleotide 204;
(c) a polynucleotide comprising the nucleotide sequence of the full-length protein coding sequence of clone AJ 168 4 deposited under accession number ATCC 98101;
(d) a polynucleotide encoding the full-length protein encoded by the cDNA insert of clone AJ168 4 deposited under accession number ATCC 98101;
(e) a polynucleotide comprising the nucleotide sequence of the mature protein coding sequence of clone AJ168 4 deposited under accession number ATCC 98101;
(f) a polynucleotide encoding the mature protein encoded by the cDNA insert of clone AJ168 4 deposited under accession number ATCC 98101;
(g) a polynucleotide encoding a protein comprising the amino acid sequence of SEQ ID N0:8;
(h) a polynucleotide encoding a protein comprising a fragment of the amino acid sequence of SEQ ID N0:8 having biological activity;
(i) a polynucleotide which is an allelic variant of a polynucleotide of (a)-(f) above;
(j) a polynucleotide which encodes a species homologue of the protein of (g) or (h) above ; and (k) a polynucleotide capable of hybridizing under stringent conditions to any one of the polynucleotides specified in (a)-(h).
Preferably, such polynucleotide comprises the nucleotide sequence of SEQ ID
N0:7 from nucleotide 91 to nucleotide 204; the nucleotide sequence of the full-length protein coding sequence of clone AJ168 4 deposited under accession number ATCC
98101; or the nucleotide sequence of the mature protein coding sequence of clone AJ168 4 deposited under accession number ATCC 98101. In other preferred embodiments, the polynucleotide encodes the full-length or mature protein encoded by the cDNA insert of clone AJ168 4 deposited under accession number ATCC 98101.
Other embodiments provide the gene corresponding to the cDNA sequence of SEQ ID N0:7.
In other embodiments, the present invention provides a composition comprising a protein, wherein said protein comprises an amino acid sequence selected from the group consisting of:
(a) the amino acid sequence of SEQ ID N0:8;
(b) fragments of the amino acid sequence of SEQ ID N0:8; and (c) the amino acid sequence encoded by the cDNA insert of clone AJ168 4 deposited under accession number ATCC 98101;
the protein being substantially free from other mammalian proteins. Preferably such protein comprises the amino acid sequence of SEQ ID N0:8.
In one embodiment, the present invention provides a composition comprising an isolated polynucleotide selected from the group consisting of:
(a) a polynucleotide comprising the nucleotide sequence of SEQ ID
N0:9;
(b) a polynucleotide comprising the nucleotide sequence of SEQ TD
N0:9 from nucleotide 60 to nucleotide 230;
(c) a polynucleotide comprising the nucleotide sequence of SEQ ID
(j) a polynucleotide which encodes a species homologue of the protein of (g) or (h) above ; and (k) a polynucleotide capable of hybridizing under stringent conditions to any one of the polynucleotides specified in (a)-(h).
Preferably, such polynucleotide comprises the nucleotide sequence of SEQ ID
N0:7 from nucleotide 91 to nucleotide 204; the nucleotide sequence of the full-length protein coding sequence of clone AJ168 4 deposited under accession number ATCC
98101; or the nucleotide sequence of the mature protein coding sequence of clone AJ168 4 deposited under accession number ATCC 98101. In other preferred embodiments, the polynucleotide encodes the full-length or mature protein encoded by the cDNA insert of clone AJ168 4 deposited under accession number ATCC 98101.
Other embodiments provide the gene corresponding to the cDNA sequence of SEQ ID N0:7.
In other embodiments, the present invention provides a composition comprising a protein, wherein said protein comprises an amino acid sequence selected from the group consisting of:
(a) the amino acid sequence of SEQ ID N0:8;
(b) fragments of the amino acid sequence of SEQ ID N0:8; and (c) the amino acid sequence encoded by the cDNA insert of clone AJ168 4 deposited under accession number ATCC 98101;
the protein being substantially free from other mammalian proteins. Preferably such protein comprises the amino acid sequence of SEQ ID N0:8.
In one embodiment, the present invention provides a composition comprising an isolated polynucleotide selected from the group consisting of:
(a) a polynucleotide comprising the nucleotide sequence of SEQ ID
N0:9;
(b) a polynucleotide comprising the nucleotide sequence of SEQ TD
N0:9 from nucleotide 60 to nucleotide 230;
(c) a polynucleotide comprising the nucleotide sequence of SEQ ID
N0:9 from nucleotide 1 to nucleotide 323;
(d) a polynucleotide comprising the nucleotide sequence of the full-length protein coding sequence of clone AK684_1 deposited under accession number ATCC 98101;
(e) a polynucleotide encoding the full-length protein encoded by the cDNA insert of clone AK684-1 deposited under accession number ATCC
98101;
(f) a polynucleotide comprising the nucleotide sequence of the mature protein coding sequence of clone AK684-1 deposited under accession number ATCC 98101;
(g) a polynucleotide encoding the mature protein encoded by the cDNA insert of clone AK684-1 deposited under accession number ATCC
98101;
(h) a polynucleotide encoding a protein comprising the amino acid sequence of SEQ ID N0:10;
(i) a polynucleotide encoding a protein comprising a fragment of the amino acid sequence of SEQ ID NO:10 having biological activity;
(j) a polynucleotide which is an allelic variant of a polynucleotide of (a)-(g) above;
(k) a polynucleotide which encodes a species homologue of the protein of (h) or (i) above ; and (1) a polynucleotide capable of hybridizing under stringent conditions to any one of the polynucleotides specified in (a)-(i).
Preferably, such polynucleotide comprises the nucleotide sequence of SEQ ID
N0:9 from nucleotide 60 to nucleotide 230; the nucleotide sequence of SEQ ID
N0:9 from nucleotide 1 to nucleotide 323; the nucleotide sequence of the full-length protein coding sequence of clone AK684-1 deposited under accession number ATCC 98101;
or the nucleotide sequence of the mature protein coding sequence of clone AK684_1 deposited under accession number ATCC 98101. In other preferred embodiments, the polynucleotide encodes the full-length or mature protein encoded by the cDNA
insert of clone AK684_1 deposited under accession number ATCC 98101.
(d) a polynucleotide comprising the nucleotide sequence of the full-length protein coding sequence of clone AK684_1 deposited under accession number ATCC 98101;
(e) a polynucleotide encoding the full-length protein encoded by the cDNA insert of clone AK684-1 deposited under accession number ATCC
98101;
(f) a polynucleotide comprising the nucleotide sequence of the mature protein coding sequence of clone AK684-1 deposited under accession number ATCC 98101;
(g) a polynucleotide encoding the mature protein encoded by the cDNA insert of clone AK684-1 deposited under accession number ATCC
98101;
(h) a polynucleotide encoding a protein comprising the amino acid sequence of SEQ ID N0:10;
(i) a polynucleotide encoding a protein comprising a fragment of the amino acid sequence of SEQ ID NO:10 having biological activity;
(j) a polynucleotide which is an allelic variant of a polynucleotide of (a)-(g) above;
(k) a polynucleotide which encodes a species homologue of the protein of (h) or (i) above ; and (1) a polynucleotide capable of hybridizing under stringent conditions to any one of the polynucleotides specified in (a)-(i).
Preferably, such polynucleotide comprises the nucleotide sequence of SEQ ID
N0:9 from nucleotide 60 to nucleotide 230; the nucleotide sequence of SEQ ID
N0:9 from nucleotide 1 to nucleotide 323; the nucleotide sequence of the full-length protein coding sequence of clone AK684-1 deposited under accession number ATCC 98101;
or the nucleotide sequence of the mature protein coding sequence of clone AK684_1 deposited under accession number ATCC 98101. In other preferred embodiments, the polynucleotide encodes the full-length or mature protein encoded by the cDNA
insert of clone AK684_1 deposited under accession number ATCC 98101.
Htp 99/20644 PCT/US98/2Z034 Other embodiments provide the gene corresponding to the cDNA sequence of SEQ ID N0:9.
In other embodiments, the present invention provides a composition comprising a protein, wherein said protein comprises an amino acid sequence selected from the group consisting of:
(a) the amino acid sequence of SEQ ID NO:10;
(b) fragments of the amino acid sequence of SEQ ID N0:10; and (c) the amino acid sequence encoded by the cDNA insert of clone AK684_1 deposited under accession number ATCC 98101;
the protein being substantially free from other mammalian proteins. Preferably such protein comprises the amino acid sequence of SEQ ID NO:10.
In one embodiment, the present invention provides a composition comprising an isolated polynucleotide selected from the group consisting of:
(a) a polynucleotide comprising the nucleotide sequence of SEQ ID
N0:11;
(b) a polynucleotide comprising the nucleotide sequence of SEQ ID
NO:11 from nucleotide 812 to nucleotide 2731;
(c) a polynucleotide comprising the nucleotide sequence of SEQ ID
NO:11 from nucleotide 944 to nucleotide 2731;
(d) a polynucleotide comprising the nucleotide sequence of SEQ ID
N0:11 from nucleotide 855 to nucleotide 1186;
(e) a polynucleotide comprising the nucleotide sequence of the full-length protein coding sequence of clone AS209-1 deposited under accession number ATCC 98101;
(f) a polynucleotide encoding the full-length protein encoded by the cDNA insert of clone AS209_1 deposited under accession number ATCC 98101;
(g) a polynucleotide comprising the nucleotide sequence of the mature protein coding sequence of clone AS209_1 deposited under accession number ATCC 98101;
(h) a polynucleotide encoding the mature protein encoded by the cDNA insert of clone AS209-1 deposited under accession number ATCC 98101;
WO 99120644 PCT/US98n2034 (i) a polynucleotide encoding a protein comprising the amino acid sequence of SEQ ID N0:12;
G) a polynucleotide encoding a protein comprising a fragment of the amino acid sequence of SEQ ID N0:12 having biological activity;
S (k) a polynucleotide which is an allelic variant of a polynucleotide of (a)-(h) above;
(1) a polynucleotide which encodes a species homologue of the protein of (i) or (j) above ; and (m) a polynucleotide capable of hybridizing under stringent conditions to any one of the polynucleotides specified in (a)-(j).
Preferably, such polynucleotide comprises the nucleotide sequence of SEQ ID
N0:11 from nucleotide 812 to nucleotide 2731; the nucleotide sequence of SEQ
ID
N0:11 from nucleotide 944 to nucleotide 2731; the nucleotide sequence of SEQ
ID
NO:11 from nucleotide 855 to nucleotide 1186; the nucleotide sequence of the full-length protein coding sequence of clone AS209_1 deposited under accession number ATCC 98101; or the nucleotide sequence of the mature protein coding sequence of clone AS209-1 deposited under accession number ATCC 98101. In other preferred embodiments, the polynucleotide encodes the full-length or mature protein encoded by the cDNA insert of clone AS209_1 deposited under accession number ATCC 98101.
In yet other preferred embodiments, the present invention provides a polynucleotide encoding a protein comprising the amino acid sequence of SEQ ID N0:12 from amino acid 1 to amino acid 125.
Other embodiments provide the gene corresponding to the cDNA sequence of SEQ ID N0:11.
In other embodiments, the present invention provides a composition comprising a protein, wherein said protein comprises an amino acid sequence selected from the group consisting of:
(a) the amino acid sequence of SEQ ID N0:12;
(b) the amino acid sequence of SEQ ID N0:12 from amino acid 1 to amino acid 125;
(c) fragments of the amino acid sequence of SEQ ID N0:12; and (d) the amino acid sequence encoded by the cDNA insert of clone AS209_1 deposited under accession number ATCC 98101;
the protein being substantially free from other mammalian proteins. Preferably such protein comprises the amino acid sequence of SEQ ID N0:12 or the amino acid sequence of SEQ ID N0:12 from amino acid 1 to amino acid 125.
In one embodiment, the present invention provides a composition comprising an isolated polynucleotide selected from the group consisting of:
(a) a polynucleotide comprising the nucleotide sequence of SEQ ID
N0:13;
(b) a polynucleotide comprising the nucleotide sequence of SEQ ID
N0:13 from nucleotide 2196 to nucleotide 2708;
(c) a polynucleotide comprising the nucleotide sequence of SEQ ID
N0:13 from nucleotide 489 to nucleotide 890;
(d) a polynucleotide comprising the nucleotide sequence of the full-length protein coding sequence of clone AX56 28 deposited under accession number ATCC 98180;
(e) a polynucleotide encoding the full-length protein encoded by the cDNA insert of clone AX56 28 deposited under accession number ATCC
98180;
(f) a polynucleotide comprising the nucleotide sequence of the mature protein coding sequence of clone AX56 28 deposited under accession number ATCC 98180;
(g) a polynucleotide encoding the mature protein encoded by the cDNA insert of clone AX56 28 deposited under accession number ATCC
98180;
(h) a polynucleotide encoding a protein comprising the amino acid sequence of SEQ ID N0:14;
(i) a polynucleotide encoding a protein comprising a fragment of the amino acid sequence of SEQ ID N0:14 having biological activity;
(j) a polynucleotide which is an allelic variant of a polynucleotide of (a)-(g) above;
Nrp 99/204 PCT/US98/22034 (k) a polynucleotide which encodes a species homologue of the protein of (h) or {i) above ; and (1) a polynucleotide capable of hybridizing under stringent conditions to any one of the polynucleotides specified in (a)-(i).
Preferably, such polynucleotide comprises the nucleotide sequence of SEQ ID
N0:13 from nucleotide 2196 to nucleotide 2708; the nucleotide sequence of SEQ
ID
N0:13 from nucleotide 489 to nucleotide 890; the nucleotide sequence of the full-length protein coding sequence of clone AX56 28 deposited under accession number ATCC
98180; or the nucleotide sequence of the mature protein coding sequence of clone AX56 28 deposited under accession number ATCC 98180. In other preferred embodiments, the polynucleotide encodes the full-length or mature protein encoded by the cDNA insert of clone AX56 28 deposited under accession number ATCC 98180.
Other embodiments provide the gene corresponding to the cDNA sequence of SEQ ID N0:13.
In other embodiments, the present invention provides a composition comprising a protein, wherein said protein comprises an amino acid sequence selected from the group consisting of:
(a) the amino acid sequence of SEQ ID N0:14;
(b) fragments of the amino acid sequence of SEQ ID N0:14; and (c) the amino acid sequence encoded by the cDNA insert of clone AX56 28 deposited under accession number ATCC 98180;
the protein being substantially free from other mammalian proteins. Preferably such protein comprises the amino acid sequence of SEQ ID N0:14.
In one embodiment, the present invention provides a composition comprising an isolated polynucleotide selected from the group consisting of:
(a) a polynucleotide comprising the nucleotide sequence of SEQ ID
N0:15;
(b) a polynucleotide comprising the nucleotide sequence of SEQ ID
N0:15 from nucleotide 51 to nucleotide 1319;
(c) a polynucleotide comprising the nucleotide sequence of SEQ ID
N0:15 from nucleotide 126 to nucleotide 1319;
(d) a polynucleotide comprising the nucleotide sequence of SEQ ID
N0:15 from nucleotide 409 to nucleotide 495;
(e) a polynucleotide comprising the nucleotide sequence of the full-S length protein coding sequence of clone AX92 3 deposited under accession number ATCC 98101;
(f) a polynucleotide encoding the full-length protein encoded by the cDNA insert of clone AX92 3 deposited under accession number ATCC 98101;
(g) a polynucleotide comprising the nucleotide sequence of the mature protein coding sequence of clone AX92 3 deposited under accession number ATCC 98101;
(h) a polynucleotide encoding the mature protein encoded by the cDNA insert of clone AX92 3 deposited under accession number ATCC 98101;
(i) a polynucleotide encoding a protein comprising the amino acid sequence of SEQ ID N0:16;
(j) a polynucleotide encoding a protein comprising a fragment of the amino acid sequence of SEQ ID N0:16 having biological activity;
(k) a polynucleotide which is an allelic variant of a polynucleotide of (a)-(h) above;
(1) a polynucleotide which encodes a species homologue of the protein of (i) or (j) above ; and (m) a polynucleotide capable of hybridizing under stringent conditions to any one of the polynucleotides specified in (a)-(j).
Preferably, such polynucleotide comprises the nucleotide sequence of SEQ ID
N0:15 from nucleotide 51 to nucleotide 1319; the nucleotide sequence of SEQ ID
N0:15 from nucleotide 126 to nucleotide 1319; the nucleotide sequence of SEQ
ID
N0:15 from nucleotide 409 to nucleotide 495; the nucleotide sequence of the full-length protein coding sequence of clone AX92 3 deposited under accession number ATCC
98101; or the nucleotide sequence of the mature protein coding sequence of clone AX92 3 deposited under accession number ATCC 98101. In other preferred embodiments, the polynucleotide encodes the full-length or mature protein encoded by the cDNA insert of clone AX92 3 deposited under accession number ATCC 98101.
Other embodiments provide the gene corresponding to the cDNA sequence of SEQ ID N0:15.
In other embodiments, the present invention provides a composition comprising a protein, wherein said protein comprises an amino acid sequence selected from the group consisting of:
(a) the amino acid sequence of SEQ ID N0:16;
(b) fragments of the amino acid sequence of SEQ ID N0:16; and (c) the amino acid sequence encoded by the cDNA insert of clone AX92 3 deposited under accession number ATCC 98101;
the protein being substantially free from other mammalian proteins. Preferably such protein comprises the amino acid sequence of SEQ ID N0:16.
In one embodiment, the present invention provides a composition comprising an isolated polynucleotide selected from the group consisting of:
(a) a polynucleotide comprising the nucleotide sequence of SEQ ID
N0:18;
(b) a polynucleotide comprising the nucleotide sequence of SEQ ID
N0:18 from nucleotide 210 to nucleotide 350;
(c) a polynucleotide comprising the nucleotide sequence of SEQ ID
N0:18 from nucleotide 300 to nucleotide 350;
(d) a polynucleotide comprising the nucleotide sequence of the full-length protein coding sequence of clone BF245-1 deposited under accession number ATCC 98101;
(e) a polynucleotide encoding the full-length protein encoded by the cDNA insert of clone BF245_1 deposited under accession number ATCC 98101;
(f) a polynucleotide comprising the nucleotide sequence of the mature protein coding sequence of clone BF245~1 deposited under accession number ATCC 98101;
(g) a polynucleotide encoding the mature protein encoded by the cDNA insert of clone BF245-1 deposited under accession number ATCC 98101;
(h) a polynucleotide encoding a protein comprising the amino acid sequence of SEQ ID N0:19;
(i) a polynucleotide encoding a protein comprising a fragment of the amino acid sequence of SEQ ID N0:19 having biological activity;
(j) a polynucleotide which is an allelic variant of a polynucleotide of (a)-(g) above;
(k) a polynucleotide which encodes a species homologue of the protein of (h) or (i) above ; and (1) a polynucleotide capable of hybridizing under stringent conditions to any one of the polynucleotides specified in (a)-(i).
Preferably, such polynucleotide comprises the nucleotide sequence of SEQ ID
N0:18 from nucleotide 210 to nucleotide 350; the nucleotide sequence of SEQ ID
N0:18 from nucleotide 300 to nucleotide 350; the nucleotide sequence of the full-length protein coding sequence of clone BF245_1 deposited under accession number ATCC
98101; or the nucleotide sequence of the mature protein coding sequence of clone BF245_1 deposited under accession number ATCC 98101. In other preferred embodiments, the polynucleotide encodes the full-length or mature protein encoded by the cDNA insert of clone BF245-1 deposited under accession number ATCC 98101.
Other embodiments provide the gene corresponding to the cDNA sequence of SEQ ID N0:18, SEQ ID N0:17 or SEQ ID N0:20.
In other embodiments, the present invention provides a composition comprising a protein, wherein said protein comprises an amino acid sequence selected from the group consisting of:
(a) the amino acid sequence of SEQ ID N0:19;
(b) fragments of the amino acid sequence of SEQ ID N0:19; and (c) the amino acid sequence encoded by the cDNA insert of clone BF245_1 deposited under accession number ATCC 98101;
the protein being substantially free from other mammalian proteins. Preferably such protein comprises the amino acid sequence of SEQ ID N0:19.
In one embodiment, the present invention provides a composition comprising an isolated polynucleotide selected from the group consisting of:
(a) a polynucleotide comprising the nucleotide sequence of SEQ ID
N0:21;
(b) a polynucleotide comprising the nucleotide sequence of SEQ ID
N0:21 from nucleotide 322 to nucleotide 774;
(c) a polynucleotide comprising the nucleotide sequence of SEQ ID
N0:21 from nucleotide 149 to nucleotide 477;
(d) a polynucleotide comprising the nucleotide sequence of the full-length protein coding sequence of clone BG33 7 deposited under accession number ATCC 98101;
(e) a polynucleotide encoding the full-length protein encoded by the cDNA insert of clone BG33 7 deposited under accession number ATCC 98101;
(f) a polynucleotide comprising the nucleotide sequence of the mature protein coding sequence of clone BG33 7 deposited under accession number ATCC 98101;
(g) a polynucleotide encoding the mature protein encoded by the cDNA insert of clone BG33 7 deposited under accession number ATCC 98101;
(h) a polynucleotide encoding a protein comprising the amino acid sequence of SEQ ID N0:22;
(i) a polynucleotide encoding a protein comprising a fragment of the amino acid sequence of SEQ ID N0:22 having biological activity;
(j) a polynucleotide which is an allelic variant of a poiynucleotide of (a)-(g) above;
(k) a polynucleotide which encodes a species homologue of the protein of (h) or (i) above ; and (1) a polynucleotide capable of hybridizing under stringent conditions to any one of the polynucleotides specified in (a)-(i).
Preferably, such polynucleotide comprises the nucleotide sequence of SEQ ID
N0:21 from nucleotide 322 to nucleotide 774; the nucleotide sequence of SEQ ID
N0:21 from nucleotide 149 to nucleotide 477; the nucleotide sequence of the full-length protein coding sequence of clone BG33 7 deposited under accession number ATCC
98101; or the nucleotide sequence of the mature protein coding sequence of clone BG33 7 deposited under accession number ATCC 98101. In other preferred embodiments, the polynucleotide encodes the full-length or mature protein encoded by the cDNA insert of clone BG33 7 deposited under accession number ATCC 98101.
In yet other preferred embodiments, the present invention provides a polynucleotide encoding a protein comprising the amino acid sequence of SEQ ID N0:22 from amino acid 1 to amino acid 121.
Other embodiments provide the gene corresponding to the cDNA sequence of SEQ ID N0:21.
In other embodiments, the present invention provides a composition comprising a protein, wherein said protein comprises an amino acid sequence selected from the group consisting of:
(a) the amino acid sequence of SEQ ID N0:22;
{b) the amino acid sequence of SEQ ID N0:22 from amino acid 1 to amino acid 121;
(c) fragments of the amino acid sequence of SEQ ID N0:22; and (d) the amino acid sequence encoded by the cDNA insert of clone BG33 7 deposited under accession number ATCC 98101;
the protein being substantially free from other mammalian proteins. Preferably such protein comprises the amino acid sequence of SEQ ID N0:22 or the amino acid sequence of SEQ ID N0:22 from amino acid 1 to amino acid 121.
In one embodiment, the present invention provides a composition comprising an isolated polynucleotide selected from the group consisting of:
(a) a polynucleotide comprising the nucleotide sequence of SEQ ID
N0:23;
(b) a polynucleotide comprising the nucleotide sequence of SEQ ID
N0:23 from nucleotide 80 to nucleotide 1801;
(c) a polynucleotide comprising the nucleotide sequence of SEQ ID
N0:23 from nucleotide 1 to nucleotide 421;
(d) a polynucleotide comprising the nucleotide sequence of the full-length protein coding sequence of clone BM46_10 deposited under accession number ATCC 98152;
(e) a polynucleotide encoding the full-length protein encoded by the cDNA insert of clone BM46_10 deposited under accession number ATCC
98152;
(f) a polynucleotide comprising the nucleotide sequence of the mature protein coding sequence of clone BM46-10 deposited under accession S number ATCC 98152;
(g) a polynucleotide encoding the mature protein encoded by the cDNA insert of clone BM46_10 deposited under accession number ATCC
98152;
(h) a polynucleotide encoding a protein comprising the amino acid sequence of SEQ TD N0:24;
(i) a polynucleotide encoding a protein comprising a fragment of the amino acid sequence of SEQ ID N0:24 having biological activity;
(j) a polynucleotide which is an allelic variant of a polynucleotide of (a)-(g) above;
(k) a polynucleotide which encodes a species homologue of the protein of (h) or (i) above ; and (1) a polynucleotide capable of hybridizing under stringent conditions to any one of the polynucleotides specified in (a)-(i).
Preferably, such polynucleotide comprises the nucleotide sequence of SEQ ID
N0:23 from nucleotide 80 to nucleotide 1801; the nucleotide sequence of SEQ ID
N0:23 from nucleotide 1 to nucleotide 421; the nucleotide sequence of the full-length protein coding sequence of clone BM46_10 deposited under accession number ATCC
98152; or the nucleotide sequence of the mature protein coding sequence of clone BM46_10 deposited under accession number ATCC 98152. In other preferred embodiments, the polynucleotide encodes the full-length or mature protein encoded by the cDNA insert of clone BM46_10 deposited under accession number ATCC 98152.
In yet other preferred embodiments, the present invention provides a polynucleotide encoding a protein comprising the amino acid sequence of SEQ ID N0:24 from amino acid 1 to amino acid 112.
Other embodiments provide the gene corresponding to the cDNA sequence of SEQ ID N0:23.
Wp 99/20(44 PCT/US98/22034 In other embodiments, the present invention provides a composition comprising a protein, wherein said protein comprises an amino acid sequence selected from the group consisting of:
(a) the amino acid sequence of SEQ ID N0:24;
(b) the amino acid sequence of SEQ TD N0:24 from amino acid 1 to amino acid 112;
(c) fragments of the amino acid sequence of SEQ ID N0:24; and {d) the amino acid sequence encoded by the cDNA insert of clone BM46-10 deposited under accession number ATCC 98152;
the protein being substantially free from other mammalian proteins. Preferably such protein comprises the amino acid sequence of SEQ ID N0:24 or the amino acid sequence of SEQ ID N0:24 from amino acid 1 to amino acid 112.
In one embodiment, the present invention provides a composition comprising an isolated polynucleotide selected from the group consisting of:
(a) a polynucleotide comprising the nucleotide sequence of SEQ ID
N0:25;
{b) a polynucleotide comprising the nucleotide sequence of SEQ ID
N0:25 from nucleotide 719 to nucleotide 886;
(c) a polynucleotide comprising the nucleotide sequence of SEQ ID
N0:25 from nucleotide 812 to nucleotide 886;
(d) a polynucleotide comprising the nucleotide sequence of SEQ ID
N0:25 from nucleotide 1 to nucleotide 853;
(e) a polynucleotide comprising the nucleotide sequence of the full-length protein coding sequence of clone J317_1 deposited under accession number ATCC 98101;
(f) a polynucleotide encoding the full-length protein encoded by the cDNA.insert of clone J317_1 deposited under accession number ATCC 98101;
(g) a polynucleotide comprising the nucleotide sequence of the mature protein coding sequence of clone J317 1 deposited under accession number ATCC 98101;
(h) a polynucleotide encoding the mature protein encoded by the cDNA insert of clone J317-1 deposited under accession number ATCC 98101;
(i) a polynucleotide encoding a protein comprising the amino acid sequence of SEQ ID N0:26;
(j) a polynucleotide encoding a protein comprising a fragment of the amino acid sequence of SEQ ID N0:26 having biological activity;
(k) a polynucleotide which is an allelic variant of a polynucleotide of (a)-(h) above;
(1) a polynucleotide which encodes a species homologue of the protein of (i) or (j) above ; and (m) a polynucleotide capable of hybridizing under stringent conditions to any one of the polynucleotides specified in (a)-(j).
Preferably, such polynucleotide comprises the nucleotide sequence of SEQ ID
N0:25 from nucleotide 719 to nucleotide 886; the nucleotide sequence of SEQ ID
N0:25 from nucleotide 812 to nucleotide 886; the nucleotide sequence of SEQ ID
N0:25 from nucleotide 1 to nucleotide 853; the nucleotide sequence of the full-length protein coding sequence of clone J317-1 deposited under accession number ATCC
98101; or the nucleotide sequence of the mature protein coding sequence of clone J317_1 deposited under accession number ATCC 98101. In other preferred embodiments, the polynucleotide encodes the full-length or mature protein encoded by the cDNA
insert of clone J317_1 deposited under accession number ATCC 98101.
Other embodiments provide the gene corresponding to the cDNA sequence of SEQ ID N0:25.
In other embodiments, the present invention provides a composition comprising a protein, wherein said protein comprises an amino acid sequence selected from the group consisting of:
(a) the amino acid sequence of SEQ ID N0:26;
(b) fragments of the amino acid sequence of SEQ ID N0:26; and (c) the amino acid sequence encoded by the cDNA insert of clone J317_1 deposited under accession number ATCC 98101;
the protein being substantially free from other mammalian proteins. Preferably such protein comprises the amino acid sequence of SEQ ID N0:26.
In one embodiment, the present invention provides a composition comprising an isolated polynucleotide selected from the group consisting of:
(a) a polynucleotide comprising the nucleotide sequence of SEQ ID
N0:27;
(b) a polynucleotide comprising the nucleotide sequence of SEQ ID
N0:27 from nucleotide 442 to nucleotide 609;
{c) a polynucleotide comprising the nucleotide sequence of SEQ ID
N0:27 from nucleotide 1 to nucleotide 483;
(d) a polynucleotide comprising the nucleotide sequence of the full-length protein coding sequence of clone 0289_1 deposited under accession number ATCC 98101;
(e) a polynucleotide encoding the full-length protein encoded by the cDNA insert of clone 0289_1 deposited under accession number ATCC 98101;
(f) a polynucleotide comprising the nucleotide sequence of the mature protein coding sequence of clone 0289_1 deposited under accession number ATCC 98101;
(g) a polynucleotide encoding the mature protein encoded by the cDNA insert of clone 0289_1 deposited under accession number ATCC 98101;
(h) a polynucleotide encoding a protein comprising the amino acid sequence of SEQ ID N0:28;
(i) a polynucleotide encoding a protein comprising a fragment of the amino acid sequence of SEQ ID N0:28 having biological activity;
(j) a polynucleotide which is an allelic variant o~ a polynucleotide of (a)-(g) above;
(k) a polynucleotide which encodes a species homologue of the protein of (h) or (i) above ; and (1) a polynucleotide capable of hybridizing under stringent conditions to any one of the polynucleotides specified in (a)-{i).
Preferably, such polynucleotide comprises the nucleotide sequence of SEQ ID
N0:27 from nucleotide 442 to nucleotide 609; the nucleotide sequence of SEQ ID
N0:27 from nucleotide 1 to nucleotide 483; the nucleotide sequence of the full-length protein coding sequence of clone 0289_1 deposited under accession number ATCC
98101; or the nucleotide sequence of the mature protein coding sequence of clone 0289_1 deposited under accession number ATCC 98101. In other preferred embodiments, the polynucleotide encodes the full-length or mature protein encoded by the cDNA insert of clone 0289_1 deposited under accession number ATCC 98101.
Other embodiments provide the gene corresponding to the cDNA sequence of SEQ ID N0:27.
In other embodiments, the present invention provides a.composition comprising a protein, wherein said protein comprises an amino acid sequence selected from the group consisting of:
(a) the amino acid sequence of SEQ ID N0:28;
(b) fragments of the amino acid sequence of SEQ ID N0:28; and (c) the amino acid sequence encoded by the cDNA insert of clone 0289_1 deposited under accession number ATCC 98101;
the protein being substantially free from other mammalian proteins. Preferably such protein comprises the amino acid sequence of SEQ ID N0:28.
In certain preferred embodiments, the polynucleotide is operably linked to an expression control sequence. The invention also provides a host cell, including bacterial, yeast, insect and mammalian cells, transformed with such polynucleotide compositions.
Processes are also provided for producing a protein, which comprise:
(a) growing a culture of the host cell transformed with such polynucleotide compositions in a suitable culture medium; and (b) purifying the protein from the culture.
The protein produced according to such methods is also provided by the present invention. Preferred embodiments include those in which the protein produced by such process is a mature form of the protein.
Protein compositions of the present invention may further comprise a pharmaceutically acceptable carrier. Compositions comprising an antibody which specifically reacts with such protein are also provided by the present invention.
Methods are also provided for preventing, treating or ameliorating a medical condition which comprises administering to a mammalian subject a therapeutically effective amount of a composition comprising a protein of the present invention and a pharmaceutically acceptable carrier.
BRIEF DESCRIPTION OF DRAWINGS
Fig. 1A and Fig.1B are schematic representations of the pED6 and pNOTs vectors, respectively, used for deposit of clones disclosed herein.
Fig. 2 is an autoradiograph evidencing the expression of the following clone disclosed herein, BG33_7.
DETAILED DESCRIPTION
ISOLATED PROTEINS AND POLYNUCLEOTIDES
Nucleotide and amino acid sequences, as presently determined, are reported below for each clone and protein disclosed in the present application. The nucleotide sequence of each clone can readily be determined by sequencing of the deposited clone in accordance with known methods. The predicted amino acid sequence (both full-length and mature) can then be determined from such nucleotide sequence. The amino acid sequence of the protein encoded by a particular clone can also be determined by expression of the clone in a suitable host cell, collecting the protein and determining its sequence. For each disclosed protein applicants have identified what they have determined to be the reading frame best identifiable with sequence information available at the time of filing.
As used herein a "secreted" protein is one which, when expressed in a suitable host cell, is transported across or through a membrane, including transport as a result of signal sequences in its amino acid sequence. "Secreted" proteins include without limitation proteins secreted wholly (e.g., soluble proteins) or partially (e.g. , receptors) from the cell in which they are expressed. "Secreted" proteins also include without limitation proteins which are transported across the membrane of the endoplasmic reticulum.
Clone "AC41 1"
A polynucleotide of the present invention has been identified as clone "AC41 1".
RECTIFIED SHEET (RULE 91) AC41 1 was isolated from a human adult placenta cDNA library using methods which are selective for cDNAs encoding secreted proteins (see U.S. Pat. No.
5,536,63, or was identified as encoding a secreted or transmembrane protein on the basis of computer analysis of the amino acid sequence of the encoded protein. AC41-1 is a full-length clone, including the entire coding sequence of a secreted protein (also referred to herein as "AC41-1 protein").
The nucleotide sequence of AC41_1 as presently determined is reported in SEQ
ID NO:1. What applicants presently believe to be the proper reading frame and the predicted amino acid sequence of the AC41-1 protein corresponding to the foregoing nucleotide sequence is reported in SEQ ID N0:2. Amino acids 10 to 22 are a predicted leader/signal sequence, with the predicted mature amino acid sequence beginning at amino acid 23, or are a transmembrane domain.
The EcoRI/NotI restriction fragment obtainable from the deposit containing clone AC41_1 should be approximately 1000 bp.
The nucleotide sequence disclosed herein for AC41_1 was searched against the GenBank and GeneSeq nucleotide sequence databases using BLASTN/BLASTX and FASTA search protocols. AC41-1 demonstrated at least some homology with sequences identified as L20319 (Rattus norvegicus developmentally regulated protein mRNA, complete cds), U46493 (Cloning vector pFlp recombinase gene, complete cds), and 222650 (H.sapiens insertion polymorphism DNA). The predicted amino acid sequence disclosed herein for AC41-1 was searched against the GenPept and GeneSeq amino acid sequence databases using the BLASTX search protocol. The predicted AC41_1 protein demonstrated at least some identity with sequences identified as L20319 (developmentally regulated protein [Rattus norvegicus]) and X12544 (3 HLA-DR B
protein precursor (AA -29 to 267) [Homo Sapiens]). Based upon homology, AC41-1 proteins and each homologous protein or peptide may share at least some activity.
Clone "AC222 1"
A polynucleotide of the present invention has been identified as clone "AC222 1". AC222 1 was isolated from a human adult placenta cDNA library using methods which are selective for cDNAs encoding secreted proteins (see U.S.
Pat. No.
5,536,637), or was identified as encoding a secreted or transmembrane protein on the basis of computer analysis of the amino acid sequence of the encoded protein.
is a full-length clone, including the entire coding sequence of a secreted protein (also referred to herein as "AC222-1 protein").
The nucleotide sequence of AC222-1 as presently determined is reported in SEQ
ID N0:3. What applicants presently believe to be the proper reading frame and the predicted amino acid sequence of the AC222-1 protein corresponding to the foregoing nucleotide sequence is reported in SEQ ID N0:4. Amino acids 7 to 19 are a predicted leader/signal sequence, with the predicted mature amino acid sequence beginning at amino acid 20, or are a transmembrane domain.
The EcoRI/Noti restriction fragment obtainable from the deposit containing clone AC222-1 should be approximately 1400 bp.
The nucleotide sequence disclosed herein for AC222_1 was searched against the GenBank and GeneSeq nucleotide sequence databases using BLASTN/BLASTX and FASTA search protocols. AC222-1 demonstrated at least some homology with sequences identified as D10485 (Chicken mRNA for proteoglycan (PG-Lb) core protein, complete cds), D78274 (Mouse mRNA for proteoglycan, complete cds), N22463 (yw34c10.s1 Homo Sapiens cDNA clone 254130 3'), U59111 (Human dermatan sulfate proteogiycan 3 (DSPG3) mRNA, complete cds), U77127 (Bos taurus epiphycan mRNA, complete cds), and 232693 (E.coli pT7hGH~1 DNA, 6160bp). The predicted amino acid sequence disclosed herein for AC222_1 was searched against the GenPept and GeneSeq amino acid sequence databases using the BLASTX search protocol. The predicted AC222l1 protein demonstrated at least some identity with sequences identified as D10485 (proteoglycan core protein [Gallus gallus]), D78274 (proteoglycan [Mus musculus]), U77127 (epiphycan [Bos taurus]), and U59111 (dermatan sulfate proteoglycan 3 [Homo sapiens]). Based upon homology, AC222-1 proteins and each homologous protein or peptide may share at least some activity.
Clone" ,143_1"
A polynucleotide of the present invention has been identified as clone "AJ143_1". AJ143-1 was isolated from a human adult testes cDNA library using methods which are selective for cDNAs encoding secreted proteins (see U.S.
Pat. No.
5,536,637), or was identified as encoding a secreted or transmembrane protein on the basis of computer analysis of the amino acid sequence of the encoded protein.
is a full-length clone, including the entire coding sequence of a secreted protein (also referred to herein as "AJ143l1 protein").
The nucleotide sequence of AJ143_1 as presently determined is reported in SEQ
ID N0:5. What applicants presently believe to be the proper reading frame and the predicted amino acid sequence of the AJ143_1 protein corresponding to the foregoing nucleotide sequence is reported in SEQ ID N0:6. Amino acids 2 to 14 are a predicted leader/signal sequence, with the predicted mature amino acid sequence beginning at amino acid 15, or are a transmembrane domain.
The EcoRI/NotI restriction fragment obtainable from the deposit containing clone AJ143_1 should be approximately 1000 bp.
The nucleotide sequence disclosed herein for AJ143_1 was searched against the GenBank and GeneSeq nucleotide sequence databases using BLASTN/BLASTX and FASTA search protocols. AJ143_1 demonstrated at least some homology with sequences identified as T19431 (d08002s Homo sapiens cDNA clone d08002 5' end) and 71997 (H. sapiens partial cDNA sequence; clone c-OSc07); it may also show some similarity to phosphoenolpyruvate phosphomutase. Based upon homology, AJ143-1 proteins and each homologous protein or peptide may share at least some activity.
done J 168 4"
A polynucleotide of the present invention has been identified as clone "AJ168 4". AJ168 4 was isolated from a human adult testes cDNA library using methods which are selective for cDNAs encoding secreted proteins (see U.S.
Pat. No.
5,536,637), or was identified as encoding a secreted or transmembrane protein on the basis of computer analysis of the amino acid sequence of the encoded protein.
is a full-length clone, including the entire coding sequence of a secreted protein (also referred to herein as "AJ168 4 protein").
The nucleotide sequence of AJ168 4 as presently determined is reported in SEQ
ID N0:7. What applicants presently believe to be the proper reading frame and the predicted amino acid sequence of the AJ168 4 protein corresponding to the foregoing nucleotide sequence is reported in SEQ ID N0:8.
The EcoRI/NotI restriction fragment obtainable from the deposit containing clone AJ168 4 should be approximately 700 bp.
The nucleotide sequence disclosed herein for AJ168 4 was searched against the GenBank and GeneSeq nucleotide sequence databases using BLASTN/BLASTX and FASTA search protocols. AJ168 4 demonstrated at least some homology with sequences identified as T65223 (yc79c02.s1 Homo Sapiens cDNA clone 22106 3').
Based upon homology, AJ168 4 proteins and each homologous protein or peptide may share at least some activity. The TopPredII computer program predicts a potential transmembrane domain within the AJ168 4 protein sequence (SEQ ID N0:8).
Clone "AK684 1"
A polynucleotide of the present invention has been identified as clone "AK684 1". AK684 1 was isolated from a human fetal kidney cDNA library using methods which are selective for cDNAs encoding secreted proteins (see U.S.
Pat. No.
5,536,637), or was identified as encoding a secreted or transmembrane protein on the basis of computer analysis of the amino acid sequence of the encoded protein.
AK684_1 is a full-length clone, including the entire coding sequence of a secreted protein (also referred to herein as "AK684_1 protein") The nucleotide sequence of AK684_1 as presently determined is reported in SEQ
ID N0:9. What applicants presently believe to be the proper reading frame and the predicted amino acid sequence of the AK684 1 protein corresponding to the foregoing nucleotide sequence is reported in SEQ ID NO:10.
The EcoRI/NotI restriction fragment obtainable from the deposit containing clone AK684 1 should be approximately 1000 bp.
The nucleotide sequence disclosed herein for AK684-1 was searched against the GenBank and GeneSeq nucleotide sequence databases using BLASTN/BLASTX and FASTA search protocols. AK684_1 demonstrated at least some homology with sequences identified as AA226405 (nc20cO5.r1 NCI CGAP Prl Homo sapiens cDNA
clone 2817), 615531 (human STS SHGC-17023), and T68858 (yc30d08.s1 Homo sapiens cDNA clone 82191 3' similar to contains MSR1 repetitive element). Based upon homology, AK684_1 proteins and each homologous protein or peptide may share at least some activity. The TopPredII computer program predicts a potential transmembrane domain within the AK684_i protein sequence centered around amino acid 20 of SEQ ID N0:10.
Clone "AS209 1"
A polynucleotide of the present invention has been identified as clone "AS209_1". AS209-1 was isolated from a human fetal brain cDNA library using methods which are selective for cDNAs encoding secreted proteins (see U.S.
Pat. No.
5,536,637), or was identified as encoding a secreted or transmembrane protein on the basis of computer analysis of the amino acid sequence of the encoded protein.
AS209_1 is a full-length clone, including the entire coding sequence of a secreted protein (also referred to herein as "AS209-1 protein").
The nucleotide sequence of AS209-1 as presently determined is reported in SEQ
ID N0:11. What applicants presently believe to be the proper reading frame and the predicted amino acid sequence of the AS209_1 protein corresponding to the foregoing nucleotide sequence is reported in SEQ ID N0:12. Amino acids 32 to 44 are a predicted leader/signal sequence, with the predicted mature amino acid sequence beginning at amino acid 45, or are a transmembrane domain.
The EcoRI/Notl restriction fragment obtainable from the deposit containing clone AS209_1 should be approximately 2882 bp.
The nucleotide sequence disclosed herein for AS209_1 was searched against the GenBank and GeneSeq nucleotide sequence databases using BLASTN/BLASTX and FASTA search protocols. AS209_1 demonstrated at least some homology with sequences identified as AA055217 (zf17h02.s1 Soares fetal heart NbHHI9W Homo Sapiens cDNA clone 377235 3') and H29533 (ym60h1 l.rl Homo sapiens cDNA clone 52955 5' similar to SP:A60164 534329; PLATELET MEMBRANE GLYCOPROTEIN
V PRECURSOR). The predicted amino acid sequence disclosed herein for AS209-1 was searched against the GenPept and GeneSeq amino acid sequence databases using the BLASTX search protocol. The predicted AS209-1 protein demonstrated at least some WO 99/20644 PCT/US98l22034 identity with sequences identified as D63875 (ORF [Homo Sapiens]) and X53959 (slit protein [Drosophila melanogaster]). Based upon homology, AS209-1 proteins and each homologous protein or peptide may share at least some activity. The TopPredII
computer program predicts four potential transmembrane domains within the protein sequence, centered around amino acids 32, 387, 449, and 538 of SEQ ID
N0:12.
Clone "AX56 28"
A polynucleotide of the present invention has been identified as clone "AX56 28". AX56 28 was isolated from a human adult testes cDNA library using methods which are selective for cDNAs encoding secreted proteins (see U.S.
Pat. No.
5,536,637), or was identified as encoding a secreted or transmembrane protein on the basis of computer analysis of the amino acid sequence of the encoded protein.
is a full-length clone, including the entire coding sequence of a secreted protein (also referred to herein as "AX56 28 protein").
The nucleotide sequence of AX56 28 as presently determined is reported in SEQ
ID N0:13. What applicants presently believe to be the proper reading frame and the predicted amino acid sequence of the AX56 28 protein corresponding to the foregoing nucleotide sequence is reported in SEQ ID N0:14.
The EcoRI/NotI restriction fragment obtainable from the deposit containing clone AX56 28 should be approximately 4500 bp.
The nucleotide sequence disclosed herein for AX56 28 was searched against the GenBank and GeneSeq nucleotide sequence databases using BLASTN/BLASTX and FASTA search protocols. AX56 28 demonstrated at least some homology with sequences identified as M20816 (Chicken cytotactin mRNA, partial cds, clone pEC803 [Gallus gallus]), N67571 (yz42a06.s1 Homo Sapiens cDNA clone 285682 3'), and (e05023t Testis 1 Homo sapiens cDNA clone e05023 5' end). The predicted amino acid sequence disclosed herein for AX56 28 was searched against the GenPept and GeneSeq amino acid sequence databases using the BLASTX search protocol. The predicted AX56 28 protein demonstrated at least some identity with sequences identified as L12018 (putative protein [Caenorhabditis elegans]). Based upon homology, AX56 proteins and each homologous protein or peptide may share at least some activity. The TopPredII computer program predicts a potential transmembrane domain within the AX56 28 protein sequence (SEQ ID N0:14).
Clone "AX92 3"
A polynucleotide of the present invention has been identified as clone "AX92 3".
AX92 3 was isolated from a human adult testes cDNA library using methods which are selective for cDNAs encoding secreted proteins (see U.S. Pat. No. 5,536,637, or was identified as encoding a secreted or transmembrane protein on the basis of computer analysis of the amino acid sequence of the encoded protein. AX92 3 is a full-length clone, including the entire coding sequence of a secreted protein {also referred to herein as "AX92 3 protein").
The nucleotide sequence of AX92 3 as presently determined is reported in SEQ
TD N0:15. What applicants presently believe to be the proper reading frame and the predicted amino acid sequence of the AX92 3 protein corresponding to the foregoing 1 S nucleotide sequence is reported in SEQ ID N0:16. Amino acids 13 to 25 are a predicted leader/signal sequence, with the predicted mature amino acid sequence beginning at amino acid 26, or are a transmembrane domain.
The EcoRI/NotI restriction fragment obtainable from the deposit containing clone AX92 3 should be approximately 1800 bp.
The nucleotide sequence disclosed herein for AX92 3 was searched against the GenBank and GeneSeq nucleotide sequence databases using BLASTN/BLASTX and FASTA search protocols. AX92 3 demonstrated at least some homology with sequences identified as AA003356 (mg49gOl.rl Soares mouse embryo NbME13.5 14.5 Mus musculus cDNA clone 427152 S'), AA036247 (mi74a03.r1 Soares mouse p3NMF19.5 Mus musculus cDNA clone 472300 5'), F19608 (H.sapiens mitochondria) EST sequence (009-X4-35) from skeletal muscle), M10546 (Human mitochondria) DNA, fragment M1, encoding transfer ltNAs, cytochrome oxidase I, and 2 UltFs [Mitochondrion Homo sapiens]), and U46493 (Cloning vector pFlp recombinase gene, complete cds).
Based upon homology, AX92 3 proteins and each homologous protein or peptide may share at least some activity. The TopPredII computer program predicts four potential transmembrane domains within the AX92 3 protein sequence, centered around amino acids 20, 183, 269, and 295 of SEQ ID N0:16.
Clone "BF245 1"
A polynucleotide of the present invention has been identified as clone "BF245-1". BF245-1 was isolated from a human fetal brain cDNA library using methods which are selective for cDNAs encoding secreted proteins (see U.S.
Pat. No.
5,536,637), or was identified as encoding a secreted or transmembrane protein on the basis of computer analysis of the amino acid sequence of the encoded protein.
is a full-length clone, including the entire coding sequence of a secreted protein (also referred to herein as "BF245_1 protein").
The nucleotide sequence of the 5' portion of BF245~1 as presently determined is reported in SEQ ID N0:17. An additional internal nucleotide sequence from BF245_1 as presently determined is reported in SEQ ID N0:18. What applicants believe is the proper reading frame and the predicted amino acid sequence encoded by such internal sequence is reported in SEQ ID N0:19. Amino acids 18 to 30 of SEQ ID
N0:19 are a predicted leader/signal sequence, with the predicted mature amino acid sequence beginning at amino acid 31, or are a transmembrane domain. Additional nucleotide sequence from the 3' portion of BF245-1, including the polyA tail, is reported in SEQ ID N0:20.
The EcoRI/NotI restriction fragment obtainable from the deposit containing clone BF245_1 should be approximately 2300 bp.
The nucleotide sequence disclosed herein for BF245-1 was searched against the GenBank and GeneSeq nucleotide sequence databases using BLASTN/BLASTX and FASTA search protocols. BF245_1 demonstrated at least some homology with sequences identified as AA001743 (zh86h02.s1 Soares fetal liver spleen 1NFLS
S1 Homo Sapiens cDNA clone 428211 3' similar to SW YY02 HUMAN P42285 HYPOTHETICAL
MYELOID CELL LINE PROTEIN 2}, D29641 (Human mRNA for KIAA0052 gene, partial cds), Q92779 (Human thymopoietin continuous gene fragment), and 839256 (yc91h04.s1 Homo sapiens cDNA clone 23509 3'). The predicted amino acid sequence disclosed herein for BF245_1 was searched against the GenPept and GeneSeq amino acid sequence databases using the BLASTX search protocol. The predicted BF245_1 protein demonstrated at least some identity with sequences identified as 270271 (W08D2.7 [Caenorhabditis elegans]). Based upon homology, BF245-1 proteins and each homologous protein or peptide may share at least some activity.
Clone "BG33 7"
A polynucleotide of the present invention has been identified as clone "BG33 7".
BG33 7 was isolated from a human adult brain cDNA library using methods which are selective for cDNAs encoding secreted proteins (see U.S. Pat. No. 5,536,637), or was identified as encoding a secreted or transmembrane protein on the basis of computer analysis of the amino acid sequence of the encoded protein. BG33 7 is a full-length clone, including the entire coding sequence of a secreted protein (also referred to herein as "BG33 7 protein").
The nucleotide sequence of BG33 7 as presently determined is reported in SEQ
ID N0:21. What applicants presently believe to be the proper reading frame and the predicted amino acid sequence of the BG33 7 protein corresponding to the foregoing nucleotide sequence is reported in SEQ ID N0:22.
The EcoRI/NotI restriction fragment obtainable from the deposit containing clone BG33 7 should be approximately 900 bp.
The nucleotide sequence disclosed herein for BG33 7 was searched against the GenBank and GeneSeq nucleotide sequence databases using BLASTN/BLASTX and FASTA search protocols. BG33 7 demonstrated at least some homology with sequences identified as AA033818 (z~2c08.s1 Soares fetal heart NbHHI9W Homo Sapiens cDNA clone 375758 3') and AA462657 (vg68e04.r1 Soares mouse NbMH Mus musculus cDNA clone 871134 5'). Based upon homology, BG33 7 proteins and each homologous protein or peptide may share at least some activity.
Fig. 2 is an autoradiograph evidencing expression in COS cells of clone BG33 7 of the present invention.
Clone, "BM46 10"
A polynucleotide of the present invention has been identified as clone "BM46_10". BM46-10 was isolated from a human adult muscle cDNA library using methods which are selective for cDNAs encoding secreted proteins (see U.S.
Pat. No.
5,536,637), or was identified as encoding a secreted or transmembrane protein on the basis of computer analysis of the amino acid sequence of the encoded protein.
is a full-length clone, including the entire coding sequence of a secreted protein (also referred to herein as "BM46_10 protein").
The nucleotide sequence of BM46 10 as presently determined is reported in SEQ
ID N0:23. What applicants presently believe to be the proper reading frame and the predicted amino acid sequence of the BM46 10 protein corresponding to the foregoing nucleotide sequence is reported in SEQ ID N0:24.
The EcoRI/NotI restriction fragment obtainable from the deposit containing clone BM46-10 should be approximately 3600 bp.
The nucleotide sequence disclosed herein for BM46 10 was searched against the GenBank and GeneSeq nucleotide sequence databases using BLASTN/BLASTX and FASTA search protocols. BM46 10 demonstrated at least some homology with sequences identified as F19321 (H.sapiens EST sequence 008-X (391 nt)), N79027 (zb43c09.s1 Homo sapiens cDNA clone 306352 3'), U46493 (Cloning vector pFlp recombinase gene, complete cds), and W74198 (zd74dO5.s1 Soares fetal heart NbHHI9W
Homo Sapiens cDNA clone 346377 3'). Based upon homology, BM46-10 proteins and each homologous protein or peptide may share at least some activity.
Clone "J317-1"
A polynucleotide of the present invention has been identified as clone "J317-1".
J317_1 was isolated from a human peripheral blood mononuclear cells (treated with phytohemagglutinin and phorbol myristate acetate and mixed lymphocyte reaction) cDNA library using methods which are selective for cDNAs encoding secreted proteins (see U.S. Pat. No. 5,536,637), or was identified as encoding a secreted or transmembrane protein on the basis of computer analysis of the amino acid sequence of the encoded protein. J317_1 is a full-length clone, including the entire coding sequence of a secreted protein (also referred to herein as "J317 1 protein").
The nucleotide sequence of J317_1 as presently determined is reported in SEQ
ID N0:25. What applicants presently believe to be the proper reading frame and the predicted amino acid sequence of the J317-1 protein corresponding to the foregoing nucleotide sequence is reported in SEQ ID N0:26. Amino acids 19 to 31 are a predicted leader/signal sequence, with the predicted mature amino acid sequence beginning at amino acid 32, or are a transmembrane domain.
The EcoRI/NotI restriction fragment obtainable from the deposit containing clone J317_1 should be approximately 1300 bp.
The nucleotide sequence disclosed herein for J317 1 was searched against the GenBank and GeneSeq nucleotide sequence databases using BLASTN/BLASTX and FASTA search protocols. J317_1 demonstrated at least some homology with sequences identified as N21491 (yx58fb9.s1 Homo sapiens cDNA clone 265961 3'), 839024 (yd08h03.s1 Homo sapiens cDNA clone 25214 3'), T93953 (ye06h06.r1 Homo sapiens cDNA clone 116987 5' similar to contains HGR repetitive element), and 225379 (H.
sapiens partial cDNA sequence; clone C6F07; version l; strand(+), single read). Based upon homology, J317_1 proteins and each homologous protein or peptide may share at least some activity.
Clone "0289 1"
A polynucleotide of the present invention has been identified as clone "0289-1".
0289 1 was isolated from a human adult blood (dendritic cells) cDNA library using methods which are selective for cDNAs encoding secreted proteins (see U.S.
Pat. No.
5,536,637), or was identified as encoding a secreted or transmembrane protein on the basis of computer analysis of the amino acid sequence of the encoded protein.
is a full-length clone, including the entire coding sequence of a secreted protein (also referred to herein as "0289_1 protein") The nucleotide sequence of 0289_1 as presently determined is reported in SEQ
ID N0:27. What applicants presently believe to be the proper reading frame and the predicted amino acid sequence of the 0289-1 protein ,corresponding to the foregoing nucleotide sequence is reported in SEQ ID N0:28.
The EcoRI/Notl restriction fragment obtainable from the deposit containing clone 0289-1 should be approximately 700 bp.
The nucleotide sequence disclosed herein for 0289_1 was searched against the GenBank and GeneSeq nucleotide sequence databases using BLASTN/BLASTX and FASTA search protocols. 0289_1 demonstrated at least some homology with sequences identified as H59298 (yrll4c07.r1 Homo Sapiens cDNA clone 204300 5' similar to contains MER22 repetitive element). Based upon homology, 0289_1 proteins and each homologous S protein or peptide may share at least some activity. The TopPredII computer program predicts a large potential transmembrane domain within the 0289_1 protein sequence, centered around amino acid 35 of SEQ ID N0:28. The nucleotide/amino acid sequence of 0289_1 indicates that it may contain MER transposon repetitive elements.
Deposit of Clones Clones AC41 1, AC222_1, AJ143_1, AJ168 4, AK684_1, AS209_l, AX92_3, BF245_1, BG33_7, J317 1 and 0289_1, along with AX56_8 and BM46 3 (additional isolates of clones AX56_28 and BM46_10, respectively), were deposited on July 9, 1996 with the American Type Culture Collection as an original deposit under the Budapest Treaty and were given the accession number ATCC 98101, from which each clone comprising a particular polynucleotide is obtainable. AX56_28 was deposited on September 26, 1996 with the American Type Culture Collection as an original deposit under the Budapest Treaty and was given the accession number ATCC 98180;
BM46_10 was deposited on August 23, 1996 with the American Type Culture Collection as an original deposit under the Budapest Treaty and was given the accession number ATCC
98152. All restrictions on the availability to the public of the deposited material will be irrevocably removed upon the granting of the patent, except for the requirements specified in 37 C.F.R. ~ 1.808(b).
Each clone has been transfected into separate bacterial cells (E. coli) in this composite deposit. Each clone can be removed from the vector in which it was deposited by performing an EcoRI/NotI digestion (5' site, EcoRI; 3' site, NotI) to produce the appropriate fragment for such clone. Each clone was deposited in either the pED6 or pNOTs vector depicted in Fig.1A or Fig.1B, respectively. The pED6dpc2 vector ("pED6") was derived from pED6dpc1 by insertion of a new polylinker to facilitate cDNA
cloning (Kaufman et aL, 1991, Nucleic Acids Res. 19: 4485-4490); the pNOTs vector was derived from RECTIFIED SHEET (RULE 91) pMT2 (Kaufman et al., 1989, Mol. Cell. Biol. 9: 946-958) by deletion of the DHFR
sequences, insertion of a new polylinker, and insertion of the M13 origin of replication in the CIaI site. In some instances, the deposited clone can become "flipped"
(i.e., in the reverse orientation) in the deposited isolate. In such instances, the cDNA
insert can still be isolated by digestion with EcoRI and NotI. However, NotI will then produce the 5' site and EcoRI will produce the 3' site for placement of the cDNA in proper orientation for expression in a suitable vector. The cDNA may also be expressed from the vectors in which they were deposited.
Bacterial cells containing a particular clone can be obtained from the composite deposit as follows:
An oligonucleotide probe or probes should be designed to the sequence that is known for that particular clone. This sequence can be derived from the sequences provided herein, or from a combination of those sequences. The sequence of the oligonucleotide probe that was used to isolate each full-length clone is identified below, and should be most reliable in isolating the clone of interest.
Clone Probe Seguence AC41 1 SEQ ID N0:29 AC222 1 SEQ ID N0:30 AJ 143_ 1 SEQ ID N0:31 AJ 168 4 SEQ ID N0:32 AK684 1 SEQ ID N0:33 AS209 1 SEQ ID N0:34 AX56 28 SEQ ID N0:35 AX92 3 SEQ ID N0:36 BF245 1 SEQ ID N0:37 BG33 7 SEQ ID N0:38 BM46 10 SEQ ID N0:39 J317_i SEQ ID N0:40 0289 1 SEQ ID N0:41 In the sequences listed above which include an N at position 2, that position is occupied in preferred probes/primers by a biotinylated phosphoaramidite residue rather than a nucleotide (such as , for example, that produced by use of biotin phosphoramidite (1-dirnethoxytrityloxy-2-(N-biotinyl-4-aminobutyl)-propyl-3-O-(2-cyanoethyl)-(N,N-diisopropyl)-phosphoramadite) (Glen Research, cat. no. 10-1953)).
The design of the oligonucleotide probe should preferably follow these parameters:
(a) It should be designed to an area of the sequence which has the fewest ambiguous bases ("N~S~~), if any;
(b) It should be designed to have a Tm of approx. 80 ° C (assuming 2° for each A or T and 4 degrees for each G or C).
The oligonucleotide should preferably be labeled with g-'ZP ATP (specific activity 6000 Ci/mmole) and T4 polynucleotide kinase using commonly employed techniques for labeling oligonucleotides. Other labeling techniques can also be used.
Unincorporated label should preferably be removed by gel filtration chromatography or other established methods. The amount of radioactivity incorporated into the probe should be quantitated by measurement in a scintillation counter. Preferably, specific activity of the resulting probe should be approximately 4e+6 dpm/pmole.
The bacterial culture containing the pool of full-length clones should preferably be thawed and 100 ~.rl of the stock used to inoculate a sterile culture flask containing 25 ml of sterile L-broth containing ampicillin at 100 ~cg/ml. The culture should preferably be grown to saturation at 37°C, and the saturated culture should preferably be diluted in fresh L-broth. Aliquots of these dilutions should preferably be plated to determine the dilution and volume which will yield approximately 5000 distinct and well-separated colonies on solid bacteriological media containing L-broth containing ampicillin at 100 ~,g/ml and agar at 1.5% in a 150 mm petri dish when grown overnight at 37°C. Other known methods of obtaining distinct, well-separated colonies can also be employed.
Standard colony hybridization procedures should then be used to transfer the colonies to nitrocellulose filters and lyse, denature and bake them.
The filter is then preferably incubated at 65°C for 1 hour with gentle agitation in 6X SSC (20X stock is 175.3 g NaCI/liter, 88.2 g Na citrate/liter, adjusted to pH 7.0 with NaOI~ containing 0.5% SDS, 100 ~g/ml of yeast RNA, and 10 mM EDTA
(approximately 10 mL per 150 mm filter). Preferably, the probe is then added to the hybridization mix at a concentration greater than or equal to le+6 dpm/mL. The filter is then preferably incubated at 65°C with gentle agitation overnight.
The filter is then preferably washed in 500 mL of 2X SSC/0.5% SDS at room temperature without agitation, preferably followed by 500 mL of ZX SSC/0.1% SDS at room temperature with gentle shaking for 15 minutes. A third wash with O.1X SSC/0.5% SDS at 65°C for 30 minutes to 1 hour is optional. The filter is then preferably dried and subjected to autoradiography for sufficient time to visualize the positives on the X-ray film. Other known hybridization methods can also be employed.
The positive colonies are picked, grown in culture, and plasmid DNA isolated using standard procedures. The clones can then be verified by restriction analysis, hybridization analysis, or DNA sequencing.
Fragments of the proteins of the present invention which are capable of exhibiting biological activity are also encompassed by the present invention.
Fragments of the protein may be in linear form or they may be cyclized using known methods, for example, as described in H.U. Saragovi, et al., Bio/Technology ~Q, 773-778 (1992) and in R.S. McDowell, et al., J. Amer. Chem. Soc. ~, 9245-9253 (1992), both of which are incorporated herein by reference. Such fragments may be fused to carrier molecules such as immunoglobulins for many purposes, including increasing the valency of protein binding sites. For example,. fragments of the protein may be fused through "linker"
sequences to the Fc portion of an immunoglobulin. For a bivalent form of the protein, such a fusion could be to the Fc portion of an IgG molecule. Other immunoglobulin isotypes may also be used to generate such fusions. For example, a protein -IgM fusion would generate a decavalent form of the protein of the invention.
The present invention also provides both full-length and mature forms of the disclosed proteins. The full-length form of the such proteins is identified in the sequence listing by translation of the nucleotide sequence of each disclosed clone. The mature form of such protein may be obtained by expression of the disclosed full-length polynucleotide (preferably those deposited with ATCC) in a suitable mammalian cell or other host cell. The sequence of the mature form of the protein may also be determinable from the amino acid sequence of the full-length form.
The present invention also provides genes corresponding to the cDNA sequences disclosed herein. "Corresponding genes" are the regions of the genome that are transcribed to produce the mRNAs from which the cDNA sequences are derived and any contiguous regions of the genome necessary for the regulated expression of such genes, including but not limited to coding sequences, 5' and 3' untranslated regions, alternatively spliced exons, introns, promoters, enhancers, and silencer or suppressor elements. The corresponding genes can be isolated in accordance with known methods using the sequence information disclosed herein. Such methods include the preparation of probes or primers from the disclosed sequence information for identification and/or amplification of genes in appropriate genomic libraries or other sources of genomic materials.
Where the protein of the present invention is membrane-bound (e.g., is a receptor), the present invention also provides for soluble forms of such protein. In such forms part or all of the intracellular and transmembrane domains of the protein are deleted such that the protein is fully secreted from the cell in which it is expressed. The intracellular and transmembrane domains of proteins of the invention can be identified in accordance with known techniques for determination of such domains from sequence information.
Proteins and protein fragments of the present invention include proteins with amino acid sequence lengths that are at Least 25%(more preferably at least 50%, and most preferably at least 75%) of the Length of a disclosed protein and have at least 60%
sequence identity (more preferably, at least 75% identity; most preferably at least 90%
or 95% identity) with that disclosed protein, where sequence identity is determined by comparing the amino acid sequences of the proteins when aligned so as to maximize overlap and identity while minimizing sequence gaps. Also included in the present invention are proteins and protein fragments that contain a segment preferably comprising 8 or more (more preferably 20 or more, most preferably 30 or more) contiguous amino acids that shares at least 75% sequence identity (more preferably, at least 85% identity; most preferably at least 95% identity) with any such segment of any of the disclosed proteins.
Species homologs of the disclosed polynucleotides and proteins are also provided by the present invention. Species homologs may be isolated and identified by making suitable probes or primers from the sequences provided herein and screening a suitable nucleic acid source from the desired species.
The invention also encompasses allelic variants of the disclosed polynucleotides or proteins; that is, naturally-occurring alternative forms of the isolated polynucleotide which also encode proteins which are identical, homologous or related to that encoded by the polynucleotides .
The invention also includes polynucleotides with sequences complementary to those of the polynucleotides disclosed herein.
The present invention also includes polynucleotides capable of hybridizing under reduced stringency conditions, more preferably stringent conditions, and most preferably highly stringent conditions, to polynucleotides described herein.
Examples of stringency conditions are shown in the table below: highly stringent conditions are those that are at least as stringent as, for example, conditions A-F;
stringent conditions are at least as stringent as, for example, conditions G-L; and reduced stringency conditions are at least as stringent as, for example, conditions M-R.
StringencyPolynudeotideHybridHybridization TemperatureWash ConditionHybrid Lengthand Temperature ~P)s Buffer' and Buffer' A DNA:DNA z 50 65 C; lxSSC -or- 65 C; 0.3xSSC
42C; lxSSC> 509'o formamide B DNA:DNA < 50 T$*; lxSSC TB*; lxSSC
C DNA:RNA z 50 67C; IxSSC-or- 67C; 0.3xSSC
45C; lxSSC, 5096 formamide D DNA:RNA < 50 TD*; lxSSC TD*; lxSSC
E RNA:RNA 2 50 70C; lxSSC-or- 70C;0.3xSSC
50C; lxSSC, 5090 formamide F RNA:RNA < 50 TF*; lxSSC TP"; lxSSC
G DNA:DNA 2 50 65C;4xSSC-or- 65C; lxSSC
42C; 4xSSC, 5096 formamide 1 O H DNA:DNA < 50 TH*~ 4xSSC TH"; 4xSSC
I DNA:RNA z 50 67C; 4xSSC -or- 67C; IxSSC
45C; 4xSSC, 50% formamide J DNA:RNA < 50 T~'"; 4xSSC TJ*; 4xSSC
IC RNA:RNA 2 50 70C; 4xSSC -or- 67C; lxSSC
50C; 4xSSC, 5096 formamide L RNA:RN < 50 T, "; 2xSSC T, *; 2xSSC
A
1$ M DNA:DNA Z 50 50C;4xSSC-or- 50C;2xSSC
40C; 6xSSC, 50% formamide N DNA:DNA < 50 TN*; 6xSSC TN*; 6xSSC
O DNA:RNA s 50 55C; 4xSSC-or- 55C; 2xSSC
42C; 6xSSC, 5096 formamide p DNA:RNA < 50 TP*; 6xSSC T,,*; 6xSSC
Q RNA:RNA z 50 60C; 4xSSC -or- 60C; 2xSSC
45C; 6xSSC, 509'o formamide 20 R RNA:RNA < 50 TR*; 4xSSC TR"; 4xSSC
;: The hybrid length is that anticipated for the hybridized regions) of the hybridizing polynucleotides. When hybridizing a polynucleotide to a target polynucleotide of unknown sequence, the hybrid length is assumed to be that of the hybridizing polynudeotide. When polynucleotides of known sequence are hybridized, the hybrid length 25 can be determined by aligning the sequences of the polynucleotides and identifying the region or regions of optimal sequence complementarity.
': SSPE (IxSSPE is 0.15M NaCI, lOmM NaHiI'04, and 1.25mM EDTA, pH 7.4) can be substituted for SSC (lxSSC
is 0.15M NaCI and lSmM sodium ciuate) in the hybridization and wash buffers;
washes are performed for 15 minutes after hybridization is complete.
3O *TB - TR: The hybridization temperature for hybrids anticipated to be less than 50 base pairs in length should be 5 10°C less than the melting temperature (T"J of the hybrid, where Tm is determined according to the following equations. For hybrids less than 18 base pairs in length, Tm(°C) ~ 2(#
of A + T bases) + 4(# of G + C bases). For hybrids between 18 and 49 base pairs in length, Tm(°C) - 81.5 +
16.6(log,o[Na*~ + 0.41(%G+C) - (600/N), where N is the number of bases in the hybrid, and [Na*] is the concentration of sodium ions in the hybridization buffer 3S QNa*] for lxSSC - 0.165 M).
Additional examples of stringency conditions for polynucleotide hybridization are provided in Sambrook, J., E.F. Fritsch, and T. Maniatis, 1989, Molecular Cloning: A
Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, chapters 9 and 11, and Current Protocols in Molecular Biology, 1995, F.M.
Ausubel et al., eds., John Wiley & Sons, Inc., sections 2.10 and 6.3-6.4, incorporated herein by reference.
Preferably, each such hybridizing polynucleotide has a length that is at least 25%(more preferably at least 50%, and most preferably at least 75%) of the length of the polynucleotide of the present invention to which it hybridizes, and has at least 60%
sequence identity (more preferably, at least 75% identity; most preferably at least 90%
or 95% identity) with the polynucleotide of the present invention to which it hybridizes, where sequence identity is determined by comparing the sequences of the hybridizing polynucleotides when aligned so as to maximize overlap and identity while minimizing sequence gaps.
The isolated polynucleotide of the invention may be operably linked to an expression control sequence such as the pMT2 or pED expression vectors disclosed in Kaufman et al., Nucleic Acids Res. ,~, 4485-4490 (1991), in order to produce the protein recombinantly. Many suitable expression control sequences are known in the art.
General methods of expressing recombinant proteins are also known and are exemplified in R. Kaufman, Methods in Enzymology ~$5, 537-566 (1990). As defined herein "operably linked" means that the isolated polynucleotide of the invention and an expression control sequence are situated within a vector or cell in such a way that the protein is expressed by a host cell which has been transformed (transfected) with the ligated polynucleotide/expression control sequence.
A number of types of cells may act as suitable host cells for expression of the protein. Mammalian host cells include, for example, monkey COS cells, Chinese Hamster Ovary (CHO) cells, human kidney 293 cells, human epidermal A431 cells, human Co1o205 cells, 3T3 cells, CV-1 cells, other transformed primate cell lines, normal diploid cells, cell strains derived from its vitro culture of primary tissue, primary explants, HeLa cells, mouse L cells, BHK, HL-60, U937, HaK or Jurkat cells.
Alternatively, it may be possible to produce the protein in lower eukaryotes such as yeast or in prokaryotes such as bacteria. Potentially suitable yeast strains include Saccharomyces cerevisiae, Schizosaccharomyces pombe, Kluyveromyces strains, Candida, or any yeast strain capable of expressing heterologous proteins. Potentially suitable bacterial strains include Escherichia coli, Bacillus subtilis, Salmonella typhimurium, or any bacterial strain capable of expressing heterologous proteins. If the protein is made in yeast or bacteria, it may be necessary to modify the protein produced therein, for example by phosphorylation or glycosylation of the appropriate sites, in order to obtain the functional protein. Such covalent attachments may be accomplished using known chemical or enzymatic methods.
The protein may also be produced by operably linking the isolated polynucleotide of the invention to suitable control sequences in one or more insect expression vectors, and employing an insect expression system. Materials and methods for baculovirus/insect cell expression systems are commercially available in kit form from, e.g., Invitrogen, San Diego, California, U.S.A. (the MaxBac~ kit), and such methods are well known in the art, as described in Summers and Smith, Texas Avric.~~lrwral Fx~erimPnt Srarion ~~llersn No~ 1555 ~(1~, incorporated herein by reference. As used herein, an insect cell capable of expressing a polynucleotide of the present invention is "transformed."
The protein of the invention may be prepared by culturing transformed host cells under culture conditions suitable to express the recombinant protein.
The resulting expressed protein may then be purified from such culture (i.e., from culture medium or cell extracts) using known purification processes, such as gel filtration and ion exchange chromatography. The purification of the protein may also include an affinity column containing agents which will bind to the protein; one or more column steps over such affinity resins as concanavalin A-agarose, heparin-toyopearl~ or Cibacrom blue Sepharose~; one or more steps involving hydrophobic interaction chromatography using such resins as phenyl ether, butyl ether, or propyl ether; or immunoaffinity chromatography.
Alternatively, the protein of the invention may also be expressed in a form which will facilitate purification. For example, it may be expressed as a fusion protein, such as those of maltose binding protein (MBP), glutathione-S-transferase (GST) or thioredoxin (TRX). Kits for expression and purification of such fusion proteins are commercially available from New England BioLab (Beverly, MA), Pharmacia (Piscataway, N~ and InVitrogen, respectively. The protein can also be tagged with an epitope and subsequently purified by using a specific antibody directed to such epitope.
S One such epitope ("Flag") is commercially available from Kodak (New Haven, CT).
Finally, one or more reverse-phase high performance liquid chromatography (RP-HPLC) steps employing hydrophobic RP-HPLC media, e.g., silica gel having pendant methyl or other aliphatic groups, can be employed to further purify the protein. Some or all of the foregoing purification steps, in various combinations, can also be employed to provide a substantially homogeneous isolated recombinant protein.
The protein thus purified is substantially free of other mammalian proteins and is defined in accordance with the present invention as an "isolated protein."
The protein of the invention may also be expressed as a product of transgenic animals, e.g., as a component of the milk of transgenic cows, goats, pigs, or sheep which 1 S are characterized by somatic or germ cells containing a nucleotide sequence encoding the protein.
The protein may also be produced by known conventional chemical synthesis.
Methods for constructing the proteins of the present invention by synthetic means are known to those skilled in the art. The synthetically-constructed protein sequences, by virtue of sharing primary, secondary or tertiary structural and/or conformational characteristics with proteins may possess biological properties in common therewith, including protein activity. Thus, they may be employed as biologically active or immunological substitutes for natural, purified proteins in screening of therapeutic compounds and in immunological processes for the development of antibodies.
2S The proteins provided herein also include proteins characterized by amino acid sequences similar to those of purified proteins but into which modification are naturally provided or deliberately engineered. For example, modifications in the peptide or DNA
sequences can be made by those skilled in the art using known techniques.
Modifications of interest in the protein sequences may include the alteration, substitution, replacement, insertion or deletion of a selected amino acid residue in the coding sequence. For example, one or more of the cysteine residues may be deleted or ~rp 99/2p~ PCT/US98/Z2034 replaced with another amino acid to alter the conformation of the molecule.
Techniques for such alteration, substitution, replacement, insertion or deletion are well known to those skilled in the art (see, e.g., U.S. Patent No. 4,518,584).
Preferably, such alteration, substitution, replacement, insertion or deletion retains the desired activity of the protein.
Other fragments and derivatives of the sequences of proteins which would be expected to retain protein activity in whole or in part and may thus be useful for screening or other immunological methodologies may also be easily made by those skilled in the art given the disclosures herein. Such modifications are believed to be encompassed by the present invention.
i.JS S AND BIOLOGICAL ACTIVITY
The polynucleotides and proteins of the present invention are expected to exhibit one or more of the uses or biological activities (including those associated with assays 1 S cited herein) identified below. Uses or activities described for proteins of the present invention may be provided by administration or use of such proteins or by administration or use of polynucleotides encoding such proteins (such as, for example, in gene therapies or vectors suitable for introduction of DNA).
RPSParch Uses and Utilities The polynucleotides provided by the present invention can be used by the research community for various purposes. The polynucleotides can be used to express recombinant protein for analysis, characterization or therapeutic use; as markers for tissues in which the corresponding protein is preferentially expressed (either constitutively or at a particular stage of tissue differentiation or development or in disease states); as molecular weight markers on Southern gels; as chromosome markers or tags (when labeled) to identify chromosomes or to map related gene positions; to compare with endogenous DNA sequences in patients to identify potential genetic disorders; as probes to hybridize and thus discover novel, related DNA
sequences; as a source of information to derive PCR primers for genetic fingerprinting; as a probe to "subtract-out" known sequences in the process of discovering other novel polynucleotides; for selecting and making oligomers for attachment to a "gene chip" or other support, including for examination of expression patterns; to raise anti-protein antibodies using DNA immunization techniques; and as an antigen to raise anti-DNA
antibodies or elicit another immune response. Where the polynucleotide encodes a S protein which binds or potentially binds to another protein (such as, for example, in a receptor-ligand interaction), the polynucleotide can also be used in interaction trap assays (such as, for example, that described in Gyuris et al., Cell 75:791-803 (1993)) to identify polynucleotides encoding the other protein with which binding occurs or to identify inhibitors of the binding interaction.
The proteins provided by the present invention can similarly be used in assay to determine biological activity, including in a panel of multiple proteins for high-throughput screening; to raise antibodies or to elicit another immune response; as a reagent (including the labeled reagent) in assays designed to quantitatively determine levels of the protein (or its receptor) in biological fluids; as markers for tissues in which the corresponding protein is preferentially expressed (either constitutively or at a particular stage of tissue differentiation or development or in a disease state); and, of course, to isolate correlative receptors or ligands. Where the protein binds or potentially binds to another protein (such as, for example, in a receptor-ligand interaction), the protein can be used to identify the other protein with which binding occurs or to identify inhibitors of the binding interaction. Proteins involved in these binding interactions can also be used to screen for peptide or small molecule inhibitors or agonists of the binding interaction.
Any or all of these research utilities are capable of being developed into reagent grade or kit format for commercialization as research products.
Methods for performing the uses listed above are well known to those skilled in the art. References disclosing such methods include without limitation "Molecular Cloning: A Laboratory Manual", 2d ed., Cold Spring Harbor Laboratory Press, Sambrook, J., E.F. Fritsch and T. Maniatis eds., 1989, and "Methods in Enzymology:
Guide to Molecular Cloning Techniques", Academic Press, Berger, S.L. and A.R.
Kimmel eds., 1987.
Polynucleotides and proteins of the present invention can also be used as nutritional sources or supplements. Such uses include without limitation use as a protein or amino acid supplement, use as a carbon source, use as a nitrogen source and use as a source of carbohydrate. In such cases the protein or polynucleotide of the invention can be added to the feed of a particular organism or can be administered as a separate solid or liquid preparation, such as in the form of powder, pills, solutions, suspensions or capsules. In the case of microorganisms, the protein or polynucleotide of the invention can be added to the medium in or on which the microorganism is cultured.
A protein of the present invention may exhibit cytokine, cell proliferation (either inducing or inhibiting' or cell differentiation (either inducing or inhibiting) activity or may induce production of other cytokines in certain cell populations. Many protein factors discovered to date, including all known cytokines, have exhibited activity in one or more factor dependent cell proliferation assays, and hence the assays serve as a convenient confirmation of cytokine activity. The activity of a protein of the present invention is evidenced by any one of a number of routine factor dependent cell proliferation assays for cell lines including, without limitation, 32D, DA2, DA1G, T10, B9, B9/11, BaF3, MC9/G, M+ (preB M+), 2E8, RBS, DAl, 123, T1165, HT2, CTLL2, TF-1, Mo7e and CMK.
The activity of a protein of the invention may, among other means, be measured by the following methods:
Assays for T-cell or thymocyte proliferation include without limitation those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A.M.
Kruisbeek, D.H. Margulies, E.M. Shevach, W Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, In Vitro assays for Mouse Lymphocyte Function 3.1-3.19; Chapter 7, Immunologic studies in Humans); Takai et al., J. Immunol.
137:3494-3500, 1986; Bertagnolli et al., J. Immunol. 145:1706-1712, 1990;
Bertagnolli et al., Cellular Immunology 133:327-341, 1991; Bertagnolli, et al., J. Immunol.
149:3778-WO 99~Z0644 PCTNS98/22034 3783, 1992; Bowman et al., J. Immunol. 152: 1756-1761, 1994.
Assays for cytokine production and/or proliferation of spleen cells, lymph node cells or thymocytes include, without limitation, those described in:
Polyclonal T cell stimulation, Kruisbeek, A.M. and Shevach, E.M. In Current Protocols in Immunology.
J.E.e.a. Coligan eds. Vol 1 pp. 3.12.1-3.12.14, John Wiley and Sons, Toronto.
1994; and Measurement of mouse and human Interferon y, Schreiber, R.D. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 6.8.1-6.8.8, John Wiley and Sons, Toronto. 1994.
Assays for proliferation and differentiation of hematopoietic and lymphopoietic cells include, without limitation, those described in: Measurement of Human and Murine Interleukin 2 and Interleukin 4, Bottomly, K., Davis, L.S. and Lipsky, P.E. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 6.3.1-6.3.12, John Wiley and Sons, Toronto. 1991; deVries et al., J. Exp. Med. 173:1205-1211, 1991;
Moreau et al., Nature 336:690-692, 1988; Greenberger et al., Proc. Natl. Acad. Sci. U.S.A.
80:2931-2938, 1983; Measurement of mouse and human interleukin 6 - Nordan, R.
In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 6.6.1-6.6.5, John Wiley and Sons, Toronto. 1991; Smith et al., Proc. Natl. Acad. Sci. U.S.A. 83:1857-1861, 1986;
Measurement of human Interleukin 11 - Bennett, F., Giannotti, J., Clark, S.C.
and Turner, K. J. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 6.15.1 John Wiley and Sons, Toronto. 1991; Measurement of mouse and human Interleukin 9 - Ciarletta, A., Giannotti, J., Clark, S.C. and Turner, K.J. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 6.13.1, John Wiley and Sons, Toronto. 1991.
Assays for T-cell clone responses to antigens (which will identify, among others, proteins that affect APC-T cell interactions as well as direct T-cell effects by measuring proliferation and cytokine production) include, without limitation, those described in:
Current Protocols in Immunology, Ed by J. E. Coligan, A.M. Kruisbeek, D.H.
Margulies, E.M. Shevach, W Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, In Vitro assays for Mouse Lymphocyte Function;
Chapter 6, Cytokines and their cellular receptors; Chapter 7, Immunologic studies in Humans);
Weinberger et al., Proc. Natl. Acad. Sci. USA 77:6091-6095, 1980; Weinberger et al., Eur. J. Immun. 11:405-411, 1981; Takai et al., J. Immunol. 137:3494-3500, 1986; Takai et al., J. Immunol. 140:508-512, 1988.
~ m'n Ii~~~ing ~pl?r.~g A
A protein of the present invention may also exhibit immune stimulating or immune suppressing activity, including without limitation the activities for which assays are described herein. A protein may be useful in the treatment of various immune deficiencies and disorders (including severe combined immunodeficiency (SCID)), e.g., in regulating (up or down) growth and proliferation of T and/or B lymphocytes, as well as effecting the cytolytic activity of 1VK cells and other cell populations.
These immune deficiencies may be genetic or be caused by viral (e.g., HIV) as well as bacterial or fungal infections, or may result from autoimmune disorders. More specifically, infectious diseases causes by viral, bacterial, fungal or other infection may be treatable using a protein of the present invention, including infections by HIV, hepatitis viruses, herpesviruses, mycobacteria, Leishmania spp., malaria spp. and various fungal infections such as candidiasis. Of course, in this regard, a protein of the present invention may also be useful where a boost to the immune system generally may be desirable, i.e., in the treatment of cancer.
Autoimmune disorders which may be treated using a protein of the present invention include, for example, connective tissue disease, multiple sclerosis, systemic lupus erythematosus, rheumatoid arthritis, autoimmune pulmonary inflammation, Guillain-Barre syndrome, autoimmune thyroiditis, insulin dependent diabetes mellitis, myasthenia gravis, graft-versus-host disease and autoimmune inflammatory eye disease.
Such a protein of the present invention may also to be useful in the treatment of allergic reactions and conditions, such as asthma (particularly allergic asthma) or other respiratory problems. Other conditions, in which immune suppression is desired (including, for example, organ transplantation), may also be treatable using a protein of the present invention.
Using the proteins of the invention it may also be possible to immune responses, in a number of ways. Down regulation may be in the form of inhibiting or blocking an immune response already in progress or may involve preventing the induction of an immune response. The functions of activated T cells may be inhibited by suppressing T cell responses or by inducing specific tolerance in T cells, or both.
Immunosuppression of T cell responses is generally an active, non-antigen-specific, process which requires continuous exposure of the T cells to the suppressive agent.
Tolerance, which involves inducing non-responsiveness or anergy in T cells, is distinguishable from immunosuppression in that it is generally antigen-specific and persists after exposure to the tolerizing agent has ceased. Operationally, tolerance can be demonstrated by the lack of a T cell response upon reexposure to specific antigen in the absence of the tolerizing agent.
Down regulating or preventing one or more antigen functions (including without limitation B lymphocyte antigen functions (such as , for example, B7)), eg, preventing high level lymphokine synthesis by activated T cells, will be useful in situations of tissue, skin and organ transplantation and in graft-versus-host disease (GVHD). For example, blockage of T cell function should result in reduced tissue destruction in tissue transplantation. Typically, in tissue transplants, rejection of the transplant is initiated through its recognition as foreign by T cells, followed by an immune reaction that destroys the transplant. The administration of a molecule which inhibits or blocks interaction of a B7 lymphocyte antigen with its natural ligand(s) on immune cells (such as a soluble, monomeric form of a peptide having B7-2 activity alone or in conjunction with a monomeric form of a peptide having an activity of another B lymphocyte antigen (e.g , B7-1, B7-3) or blocking antibody), prior to transplantation can lead to the binding of the molecule to the natural ligand(s) on the immune cells without transmitting the corresponding costimulatory signal.
Blocking B lymphocyte antigen function in this matter prevents cytokine synthesis by immune cells, such as T cells, and thus acts as an immunosuppressant. Moreover, the lack of costimulation may also be sufficient to anergize the T cells, thereby inducing tolerance in a subject. Induction of long-term tolerance by B lymphocyte antigen-blocking reagents may avoid the necessity of repeated administration of these blocking reagents.
To achieve sufficient immunosuppression or tolerance in a subject, it may also be necessary to block the function of a combination of B lymphocyte antigens.
The efficacy of particular blocking reagents in preventing organ transplant rejection or GVHD can be assessed using animal models that are predictive of efficacy ~rp gg/20~4 PCT/US98/22034 in humans. Examples of appropriate systems which can be used include allogeneic cardiac grafts in rats and xenogeneic pancreatic islet cell grafts in mice, both of which have been used to examine the immunosuppressive effects of CTLA4Ig fusion proteins in vivo as described in Lenschow et al., Science 257:789-792 (1992) and Turka et al., Proc.
Natl. Acad. Sci USA, 89:11102-11105 (1992). In addition, marine models of GVHD
(see Paul ed., Fundamental Immunology, Raven Press, New York, 1989, pp. 846-847) can be used to determine the effect of blocking B lymphocyte antigen function in vivo on the development of that disease.
Blocking antigen function may also be therapeutically useful for treating autoimmune diseases. Many autoimmune disorders are the result of inappropriate activation of T cells that are reactive against self tissue and which promote the production of cytokines and autoantibodies involved in the pathology of the diseases.
Preventing the activation of autoreactive T cells may reduce or eliminate disease symptoms. Administration of reagents which block costimulation of T cells by disrupting receptor:ligand interactions of B lymphocyte antigens can be used to inhibit T cell activation and prevent production of autoantibodies or T cell-derived cytokines which may be involved in the disease process. Additionally, blocking reagents may induce antigen-specific tolerance of autoreactive T cells which could lead to long-term relief from the disease. The efficacy of blocking reagents in preventing or alleviating autoimmune disorders can be determined using a number of well-characterized animal models of human autoimmune diseases. Examples include marine experimental autoimmune encephalitis, systemic lupus erythmatosis in MRLllpr/lpr mice or NZB
hybrid mice, marine autoimmune collagen arthritis, diabetes mellitus in NOD
mice and BB rats, and marine experimental myasthenia gravis (see Paul ed., Fundamental Immunology, Raven Press, New York, 1989, pp. 840-856).
Upregulation of an antigen function (preferably a B lymphocyte antigen function), as a means of up regulating immune responses, may also be useful in therapy.
Upregulation of immune responses may be in the form of enhancing an existing immune response or eliciting an initial immune response. For example, enhancing an immune response through stimulating B lymphocyte antigen function may be useful in cases of viral infection. In addition, systemic viral diseases such as influenza, the common cold, and encephalitis might be alleviated by the administration of stimulatory forms of B lymphocyte antigens systemically.
Alternatively, anti-viral immune responses may be enhanced in an infected patient by removing T cells from the patient, costimulating the T cells in vitro with viral antigen-pulsed APCs either expressing a peptide of the present invention or together with a stimulatory form of a soluble peptide of the present invention and reintroducing the in vitro activated T cells into the patient. Another method of enhancing anti-viral immune responses would be to isolate infected cells from a patient, transfect them with a nucleic acid encoding a protein of the present invention as described herein such that the cells express all or a portion of the protein on their surface, and reintroduce the transfected cells into the patient. The infected cells would now be capable of delivering a costimulatory signal to, and thereby activate, T cells in vivo.
In another application, up regulation or enhancement of antigen function 1 S (preferably B lymphocyte antigen function) may be useful in the induction of tumor immunity. Tumor cells (e.g , sarcoma, melanoma, lymphoma, leukemia, neuroblastoma, carcinoma) transfected with a nucleic acid encoding at least one peptide of the present invention can be administered to a subject to overcome tumor-specific tolerance in the subject. If desired, the tumor cell can be transfected to express a combination of peptides. For example, tumor cells obtained from a patient can be transfected ex vivo with an expression vector directing the expression of a peptide having B7-2-like activity alone, or in conjunction with a peptide having B7-1-like activity and/or B7-3-like activity. The transfected tumor cells are returned to the patient to result in expression of the peptides on the surface of the transfected cell. Alternatively, gene therapy techniques can be used to target a tumor cell for transfection in vivo.
The presence of the peptide of the present invention having the activity of a B
lymphocyte antigens) on the surface of the tumor cell provides the necessary costimulation signal to T cells to induce a T cell mediated immune response against the transfected tumor cells. In addition, tumor cells which lack MHC class I or MHC class II molecules, or which fail to reexpress sufficient amounts of MHC class I or MHC class II molecules, can be transfected with nucleic acid encoding all or a portion of (e.g , a cytoplasmic-domain truncated portion) of an MHC class I a chain protein and ~i2 microglobulin protein or an MHC class II a chain protein and an MHC class II
(3 chain protein to thereby express MHC class I or MHC class II proteins on the cell surface.
Expression of the appropriate class I or class II MHC in conjunction with a peptide having the activity of a B lymphocyte antigen (e.g, B7-1, B7-2, B7-3) induces a T cell mediated immune response against the transfected tumor cell. Optionally, a gene encoding an antisense construct which blocks expression of an MHC class II
associated protein, such as the invariant chain, can also be cotransfected with a DNA
encoding a peptide having the activity of a B lymphocyte antigen to promote presentation of tumor associated antigens and induce tumor specific immunity. Thus, the induction of a T cell mediated immune response in a human subject may be sufficient to overcome tumor-specific tolerance in the subject.
The activity of a protein of the invention may, among other means, be measured by the following methods:
Suitable assays for thymocyte or splenocyte cytotoxicity include, without limitation, those described in: Current Protocols in Immunology, Ed by J. E.
Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, In Vitro assays for Mouse Lymphocyte Function 3.1-3.19; Chapter 7, Immunologic studies in Humans); Herrmann et al., Proc.
Natl. Acad. Sci. USA 78:2488-2492, 1981; Herrmann et al., J. Immunol. 128:1968-1974, 1982; Handa et al., J. Immunol. 135:1564-1572, 1985; Takai et al., J. Immunol.
137:3494-3500,1986; Takai et al., J. Immunol. 140:508-512, 1988; Herrmann et al., Proc.
Natl. Acad. Sci. USA 78:2488-2492,1981; Herrmann et al., J. Immunol. 128:1968-1974, 1982; Handa et al., J. Immunol. 135:1564-1572, 1985; Takai et al., J. Immunol.
137:3494-3500, 1986; Bowmanet al., J. Virology 61:1992-1998; Takai et al., J.
Immunol.
140:508-512, 1988; Bertagnolli et al., Cellular Immunology 133:327-341, 1991;
Brown et al., J. Immunol. 153:3079-3092, 1994.
Assays for T-cell-dependent immunoglobulin responses and isotype switching (which will identify, among others, proteins that modulate T-cell dependent antibody responses and that affect Th1/Th2 profiles) include, without limitation, those described in: Maliszewski, J. Immunol. 144:3028-3033, 1990; and Assays for B cell function: In vitro antibody production, Mond, J.J. and Brunswick, M. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 3.8.1-3.8.16, John Wiley and Sons, Toronto.
1994.
Mixed lymphocyte reaction (MLR) assays (which will identify, among others, proteins that generate predominantly Thl and CTL responses) include, without limitation, those described in: Current Protocols in Immunology, Ed by J. E.
Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, In Vitro assays for Mouse Lymphocyte Function 3.1-3.19; Chapter 7, Immunologic studies in Humans); Takai et al., J.
Immunol. 137:3494-3500, 1986; Takai et al., J. Immunol. 140:508-512, 1988;
Bertagnolli et al., J. Immunol. 149:3778-3783, 1992.
Dendritic cell-dependent assays (which will identify, among others, proteins expressed by dendritic cells that activate naive T-cells) include, without limitation, those described in: Guery et al., J. Immunol. 134:536-544, 1995; Inaba et al., Journal of Experimental Medicine 173:549-559, 1991; Macatonia et al., Journal of Immunology 154:5071-5079, 1995; Porgador et al., Journal of Experimental Medicine 182:255-260, 1995; Nair et al., Journal of Virology 67:4062-4069,1993; Huang et al., Science 264:961-965, 1994; Macatonia et al., Journal of Experimental Medicine 169:1255-1264, 1989;
Bhardwaj et al., Journal of Clinical Investigation 94:797-807, 1994; and Inaba et al., Journal of Experimental Medicine 172:631-640, 1990.
Assays for lymphocyte survival/apoptosis (which will identify, among others, proteins that prevent apoptosis after superantigen induction and proteins that regulate lymphocyte homeostasis) include, without limitation, those described in:
Darzynkiewicz et al., Cytometry 13:795-808, 1992; Gorczyca et al., Leukemia 7:659-670, 1993; Gorczyca et al., Cancer Research 53:1945-1951, 1993; Itoh et al., Cell 66:233-243, 1991; Zacharchuk, Journal of Immunology 145:4037-4045, 1990; Zamai et al., Cytometry 14:891-897, 1993; Gorczyca et al., International Journal of Oncology 1:639-648, 1992.
Assays for proteins that influence early steps of T-cell commitment and development include, without limitation, those described in: Antica et al., Blood 84:111-117, 1994; Fine et al., Cellular Immunology 155:111-122, 1994; Galy et al., Blood 85:27?0-2778, 1995; Toki et al., Proc. Nat. Acad Sci. USA 88:7548-7551, 1991.
Hemato~oiesis Re lating A
A protein of the present invention may be useful in regulation of hematopoiesis and, consequently, in the treatment of myeloid or lymphoid cell deficiencies.
Even marginal biological activity in support of colony forming cells or of factor-dependent cell lines indicates involvement in regulating hematopoiesis, e.g. in supporting the growth and proliferation of erythroid progenitor cells alone or in combination with other cytokines, thereby indicating utility, for example, in treating various anemias or for use in conjunction with irradiation/chemotherapy to stimulate the production of erythroid precursors and/or erythroid cells; in supporting the growth and proliferation of myeloid cells such as granulocytes and monocytes/macrophages (i.e., traditional CSF
activity) useful, for example, in conjunction with chemotherapy to prevent or treat consequent myelo-suppression; in supporting the growth and proliferation of megakaryocytes and consequently of platelets thereby allowing prevention or treatment of various platelet disorders such as thrombocytopenia, and generally for use in place of or complimentary to platelet transfusions; and/or in supporting the growth and proliferation of hematopoietic stem cells which are capable of maturing to any and all of the above-mentioned hematopoietic cells and therefore find therapeutic utility in various stem cell disorders (such as those usually treated with transplantation, including, without limitation, aplastic anemia and paroxysmal nocturnal hemoglobinuria), as well as in repopulating the stem cell compartment post irradiation/chemotherapy, either in-vivo or ex-vivo (i.e., in conjunction with bone marrow transplantation or with peripheral progenitor cell transplantation (homologous or heterologous)) as normal cells or genetically manipulated for gene therapy.
The activity of a protein of the invention may, among other means, be measured by the following methods:
Suitable assays for proliferation and differentiation of various hematopoietic lines are cited above.
Assays for embryonic stem cell differentiation (which will identify, among others, proteins that influence embryonic differentiation hematopoiesis) include, without limitation, those described in: Johansson et al. Cellular Biology 15:141-151, 1995; Keller et al., Molecular and Cellular Biology 13:473-486, 1993;
McClanahan et al., Blood 81:2903-2915, 1993.
Assays for stem cell survival and differentiation (which will identify, among S others, proteins that regulate lympho-hematopoiesis) include, without limitation, those described in: Methylcellulose colony forming assays, Freshney, M.G. In Culture of Hematopoietic Cells. R.I. Freshney, et al. eds. Vol pp. 265-268, Wiley-Liss, Inc., New York, NY. 1994; Hirayama et al., Proc. Natl. Acad. Sci. USA 89:5907-5911, 1992;
Primitive hematopoietic colony forming cells with high proliferative potential, McNiece, LK. and Briddell, R.A. In Culture of Hematopoietic Cells. R.I.
Freshney, et al.
eds. Vol pp. 23-39, Wiley-Liss, Inc., New York, NY. 1994; Neben et al., Experimental Hematology 22:353-359, 1994; Cobblestone area forming cell assay, Ploemacher, R.E.
In Culture of Hematopoietic Cells. R.I. Freshney, et al. eds. Vol pp. 1-21, Wiley-Liss, Inc.., New York, NY. 1994; Long term bone marrow cultures in the presence of stromal cells, Spooncer, E., Dexter, M. and Allen, T. In Culture of Hematopoietic Cells. R.I.
Freshney, et al. eds. Vol pp. 163-179, Wiley-Liss, Inc., New York, NY.1994;
Long term culture initiating cell assay, Sutherland, H.J. In Culture of Hematopoietic Cells. R.I.
Freshney, et al. eds. Vol pp. 139-162, Wiley-Liss, Inc., New York, NY. 1994.
Tissue Grgwth Activity A protein of the present invention also may have utility in compositions used for bone, cartilage, tendon, ligament and/or nerve tissue growth or regeneration, as well as for wound healing and tissue repair and replacement, and in the treatment of burns, incisions and ulcers.
A protein of the present invention, which induces cartilage and/or bone growth in circumstances where bone is not normally formed, has application in the healing of bone fractures and cartilage damage or defects in humans and other animals.
Such a preparation employing a protein of the invention may have prophylactic use in closed as well as open fracture reduction and also in the improved fixation of artificial joints.
De novo bone formation induced by an osteogenic agent contributes to the repair of congenital, trauma induced, or oncologic resection induced craniofacial defects, and also WO 99/20644 PCT/US9$/22034 is useful in cosmetic plastic surgery.
A protein of this invention may also be used in the treatment of periodontal disease, and in other tooth repair processes. Such agents may provide an environment to attract bone-forming cells, stimulate growth of bone-forming cells or induce differentiation of progenitors of bone-forming cells. A protein of the invention may also be useful in the treatment of osteoporosis or osteoarthritis, such as through stimulation of bone and/or cartilage repair or by blocking inflammation or processes of tissue destruction (collagenase activity, osteoclast activity, etc.) mediated by inflammatory processes.
Another category of tissue regeneration activity that may be attributable to the protein of the present invention is tendon/ligament formation. A protein of the present invention, which induces tendon/ligament-like tissue or other tissue formation in circumstances where such tissue is not normally formed, has application in the healing of tendon or ligament tears, deformities and other tendon or ligament defects in humans and other animals. Such a preparation employing a tendon/ligament-like tissue inducing protein may have prophylactic use in preventing damage to tendon or ligament tissue, as well as use in the improved fixation of tendon or ligament to bone or other tissues, and in repairing defects to tendon or ligament tissue. De novo tendon/ligament-like tissue formation induced by a composition of the present invention contributes to the repair of congenital, trauma induced, or other tendon or ligament defects of other origin, and is also useful in cosmetic plastic surgery for attachment or repair of tendons or ligaments. The compositions of the present invention may provide an environment to attract tendon- or ligament-forming cells, stimulate growth of tendon- or ligament-forming cells, induce differentiation of progenitors of tendon- or ligament-forming cells, or induce growth of tendon/ligament cells or progenitors ex vivo for return in vivo to effect tissue repair. The compositions of the invention may also be useful in the treatment of tendinitis, carpal tunnel syndrome and other tendon or ligament defects.
The compositions may also include an appropriate matrix and/or sequestering agent as a carrier as is well known in the art.
The protein of the present invention may also be useful for proliferation of neural cells and for regeneration of nerve and brain tissue, i.e. for the treatment of central and peripheral nervous system diseases and neuropathies, as well as mechanical and traumatic disorders, which involve degeneration, death or trauma to neural cells or nerve tissue. More specifically, a protein may be used in the treatment of diseases of the peripheral nervous system, such as peripheral nerve injuries, peripheral neuropathy and localized neuropathies, and central nervous system diseases, such as Alzheimer's, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and Shy-Drager syndrome. Further conditions which may be treated in accordance with the present invention include mechanical and traumatic disorders, such as spinal cord disorders, head trauma and cerebrovascular diseases such as stroke. Peripheral neuropathies resulting from chemotherapy or other medical therapies may also be treatable using a protein of the invention.
Proteins of the invention may also be useful to promote better or faster closure of non-healing wounds, including without limitation pressure ulcers, ulcers associated with vascular insufficiency, surgical and traumatic wounds, and the like.
1 S It is expected that a protein of the present invention may also exhibit activity for generation or regeneration of other tissues, such as organs (including, for example, pancreas, liver, intestine, kidney, skin, endothelium), muscle (smooth, skeletal or cardiac) and vascular (including vascular endothelium) tissue, or for promoting the growth of cells comprising such tissues. Part of the desired effects may be by inhibition or modulation of fibrotic scarring to allow normal tissue to regenerate. A
protein of the invention may also exhibit angiogenic activity.
A protein of the present invention may also be useful for gut protection or regeneration and treatment of lung or liver fibrosis, reperfusion injury in various tissues, and conditions resulting from systemic cytokine damage.
A protein of the present invention may also be useful for promoting or inhibiting differentiation of tissues described above from precursor tissues or cells; or for inhibiting the growth of tissues described above.
The activity of a protein of the invention may, among other means, be measured by the following methods:
Assays for tissue generation activity include, without limitation, those described in: International Patent Publication No. W095/16035 (bone, cartilage, tendon);
International Patent Publication No. W095/05846 (nerve, neuronal);
International Patent Publication No. W091/07491 (skin, endothelium ).
Assays for wound healing activity include, without limitation, those described in: Winter, Fnaermal Wound Healing, pps. 71-112 (Maibach, HI and Rovee, DT, eds.), Year Book Medical Publishers, Inc., Chicago, as modified by Eaglstein and Mertz, J.
Invest. Dermatol 71:382-84 (1978).
~~ivin/Inhibin Activit,X
A protein of the present invention may also exhibit activin- or inhibin-related activities. Inhibins are characterized by their ability to inhibit the release of follicle stimulating hormone (FSH), while activins and are characterized by their ability to stimulate the release of follicle stimulating hormone (FSH). Thus, a protein of the present invention, alone or in heterodimers with a member of the inhibin a family, may be useful as a contraceptive based on the ability of inhibins to decrease fertility in female mammals and decrease spermatogenesis in male mammals. Administration of sufficient amounts of other inhibins can induce infertility in these mammals.
Alternatively, the protein of the invention, as a homodimer or as a heterodimer with other protein subunits of the inhibin-(3 group, may be useful as a fertility inducing therapeutic, based upon the ability of activin molecules in stimulating FSH release from cells of the anterior pituitary. See, for example, United States Patent 4,798,885. A
protein of the invention may also be useful for advancement of the onset of fertility in sexually immature mammals, so as to increase the lifetime reproductive performance of domestic animals such as cows, sheep and pigs.
The activity of a protein of the invention may, among other means, be measured by the following methods:
Assays for activin/inhibin activity include, without limitation, those described in: Vale et al., Endocrinology 91:562-572, 1972; Ling et al., Nature 321:779-782, 1986;
Vale et al., Nature 321:776-779, 1986; Mason et al., Nature 318:659-663, 1985;
Forage et al., Proc. Natl. Acad. Sci. USA 83:3091-3095, 1986.
A protein of the present invention may have chemotactic or chemokinetic activity (e.g., act as a chemokine) for mammalian cells, including, for example, monocytes, fibroblasts, neutrophils, T-cells, mast cells, eosinophils, epithelial and/or endothelial cells. Chemotactic and chemokinetic proteins can be used to mobilize or attract a desired cell population to a desired site of action. Chemotactic or chemokinetic proteins provide particular advantages in treatment of wounds and other trauma to tissues, as well as in treatment of localized infections. For example, attraction of lymphocytes, monocytes or neutrophils to tumors or sites of infection may result in improved immune responses against the tumor or infecting agent.
A protein or peptide has chemotactic activity for a particular cell population if it can stimulate, directly or indirectly, the directed orientation or movement of such cell population. Preferably, the protein or peptide has the ability to directly stimulate directed movement of cells. Whether a particular protein has chemotactic activity for a population of cells can be readily determined by employing such protein or peptide in any known assay for cell chemotaxis.
The activity of a protein of the invention may, among other means, be measured by the following methods:
Assays for chemotactic activity (which will identify proteins that induce or prevent chemotaxis) consist of assays that measure the ability of a protein to induce the migration of cells across a membrane as well as the ability of a protein to induce the adhesion of one cell population to another cell population. Suitable assays for movement and adhesion include, without limitation, those described in: Current Protocols in Immunology, Ed by J.E. Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W.Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 6.12, Measurement of alpha and beta Chemokines 6.12.1-6.12.28; Taub et al. J. Clin.
Invest.
95:1370-1376, 1995; Lind et al. APMIS 103:140-146, 1995; Muller et al Eur. J.
Immunol.
25: 1744-1748; Gruber et al. J. of Immunol. 152:5860-5867, 1994; Johnston et al. J. of Immunol. 153: 1762-1768, 1994.
Hemostatic and Thrombol3r~i~ Activity A protein of the invention may also exhibit hemostatic or thrombolytic activity.
As a result, such a protein is expected to be useful in treatment of various coagulation disorders (including hereditary disorders, such as hemophiliac) or to enhance coagulation and other hemostatic events in treating wounds resulting from trauma, surgery or other causes. A protein of the invention may also be useful for dissolving or inhibiting formation of thromboses and for treatment and prevention of conditions resulting therefrom (such as, for example, infarction of cardiac and central nervous system vessels (e.g., stroke).
The activity of a protein of the invention may, among other means, be measured by the following methods:
Assay for hemostatic and thrombolytic activity include, without limitation, those described in: Linet et al., J. Clin. Pharmacol. 26:131-140, 1986;
Burdick et al., Thrombosis Res. 45:413-419,1987; Humphrey et al., Fibrinolysis 5:71-79 (1991);
Schaub, Prostaglandins 35:467-474, 1988.
Rece~:or/ ,jgand Activity A protein of the present invention may also demonstrate activity as receptors, receptor ligands or inhibitors or agonists of receptor/ligand interactions.
Examples of such receptors and ligands include, without limitation, cytokine receptors and their ligands, receptor kinases and their ligands, receptor phosphatases and their ligands, receptors involved in cell-cell interactions and their ligands (including without limitation, cellular adhesion molecules (such as selectins, integrins and their ligands) and receptor/ligand pairs involved in antigen presentation, antigen recognition and development of cellular and humoral immune responses). Receptors and ligands are also useful for screening of potential peptide or small molecule inhibitors of the relevant receptor/ligand interaction. A protein of the present invention (including, without limitation, fragments of receptors and ligands) may themselves be useful as inhibitors of receptor/ligand interactions.
The activity of a protein of the invention may, among other means, be measured by the following methods:
Suitable assays for receptor-ligand activity include without limitation those described in:Current Protocols in Immunology, Ed by J.E. Coligan, A.M.
Kruisbeek, D.H. Margulies, E.M. Shevach, W.Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 7.28, Measurement of Cellular Adhesion under static conditions 7.28.1-7.28.22), Takai et al., Proc. Natl. Acad. Sci. USA 84:6864-6868, 1987;
Bierer et al., J. Exp. Med. 168:1145-1156, 1988; Rosenstein et al., J. Exp.
Med.
169:149-160 1989; Stoltenborg et al., J. Immunol. Methods 175:59-68, 1994;
Stitt et al., Cell 80:661-670, 1995.
Proteins of the present invention may also exhibit anti-inflammatory activity.
The anti-inflammatory activity may be achieved by providing a stimulus to cells involved in the inflammatory response, by inhibiting or promoting cell-cell interactions (such as, for example, cell adhesion), by inhibiting or promoting chemotaxis of cells involved in the inflammatory process, inhibiting or promoting cell extravasation, or by stimulating or suppressing production of other factors which more directly inhibit or promote an inflammatory response. Proteins exhibiting such activities can be used to treat inflammatory conditions including chronic or acute conditions), including without limitation inflammation associated with infection (such as septic shock, sepsis or systemic inflammatory response syndrome (SIRS)), ischemia-reperfusion injury, endotoxin lethality, arthritis, complement-mediated hyperacute rejection, nephritis, cytokine or chemokine-induced lung injury, inflammatory bowel disease, Crohn's disease or resulting from over production of cytokines such as TNF or IL-1.
Proteins of the invention may also be useful to treat anaphylaxis and hypersensitivity to an antigenic substance or material.
Cadherin/Tumor Invasion Su~ressor Activity Cadherins are calcium-dependent adhesion molecules that appear to play major roles during development, particularly in defining specific cell types. Loss or alteration of normal cadherin expression can lead to changes in cell adhesion properties linked to tumor growth and metastasis. Cadherin malfunction is also implicated in other human diseases, such as pemphigus vulgaris and pemphigus foliaceus (auto-immune blistering skin diseases), Crohn's disease, and some developmental abnormalities.
The cadherin superfamily includes well over forty members, each with a distinct pattern of expression. All members of the superfamily have in common conserved extracellular repeats (cadherin domains), but structural differences are found in other parts of the molecule. The cadherin domains bind calcium to form their tertiary structure and thus calcium is required to mediate their adhesion. Only a few amino acids in the first cadherin domain provide the basis for homophilic adhesion;
modification of this recognition site can change the specificity of a cadherin so that instead of recognizing only itself, the mutant molecule can now also bind to a different cadherin. In addition, some cadherins engage in heterophilic adhesion with other cadherins.
E-cadherin, one member of the cadherin superfamily, is expressed in epithelial cell types. Pathologically, if E-cadherin expression is lost in a tumor, the malignant cells become invasive and the cancer metastasizes. Transfection of cancer cell lines with polynucleotides expressing E-cadherin has reversed cancer-associated changes by returning altered cell shapes to normal, restoring cells' adhesiveness to each other and to their substrate, decreasing the cell growth rate, and drastically reducing anchorage-independent cell growth. Thus, reintroducing E-cadherin expression reverts carcinomas to a less advanced stage. It is likely that other cadherins have the same invasion suppressor role in carcinomas derived from other tissue types. Therefore, proteins of the present invention with cadherin activity, and polynucleotides of the present invention encoding such proteins, can be used to treat cancer. Introducing such proteins or polynucleotides into cancer cells can reduce or eliminate the cancerous changes observed in these cells by providing normal cadherin expression.
Cancer cells have also been shown to express cadherins of a different tissue type than their origin, thus allowing these cells to invade and metastasize in a different tissue in the body. Proteins of the present invention with cadherin activity, and polynucleotides of the present invention encoding such proteins, can be substituted in these cells for the inappropriately expressed cadherins, restoring normal cell adhesive properties and reducing or eliminating the tendency of the cells to metastasize.
Additionally, proteins of the present invention with cadherin activity, and polynucleotides of the present invention encoding such proteins, can used to generate antibodies recognizing and binding to cadherins. Such antibodies can be used to block the adhesion of inappropriately expressed tumor-cell cadherins, preventing the cells from forming a tumor elsewhere. Such an anti-cadherin antibody can also be used as a marker for the grade, pathological type, and prognosis of a cancer, i.e. the more progressed the cancer, the less cadherin expression there will be, and this decrease in cadherin expression can be detected by the use of a cadherin-binding antibody.
Fragments of proteins of the present invention with cadherin activity, preferably a polypeptide comprising a decapeptide of the cadherin recognition site, and poly-nucleotides of the present invention encoding such protein fragments; can also be used to block cadherin function by binding to cadherins and preventing them from binding in ways that produce undesirable effects. Additionally, fragments of proteins of the present invention with cadherin activity, preferably truncated soluble cadherin fragments which have been found to be stable in the circulation of cancer patients, and polynucleotides encoding such protein fragments, can be used to disturb proper cell-cell adhesion.
Assays for cadherin adhesive and invasive suppressor activity include, without limitation, those described in: Hortsch et al. J Biol Chem 270 (32): 18809-18817, 1995;
Miyaki et al. Oncogene 11: 2547-2552, 1995; Ozawa et al. Cell 63: 1033-1038, 1990.
Tumor Inhibition Activitv In addition to the activities described above for immunological treatment or prevention of tumors, a protein of the invention may exhibit other anti-tumor activities.
A protein may inhibit tumor growth directly or indirectly (such as, for example, via ADCC). A protein may exhibit its tumor inhibitory activity by acting on tumor tissue or tumor precursor tissue, by inhibiting formation of tissues necessary to support tumor growth (such as, for example, by inhibiting angiogenesis), by causing production of other factors, agents or cell types which inhibit tumor growth, or by suppressing, eliminating or inhibiting factors, agents or cell types which promote tumor growth.
Other Activities A protein of the invention may also exhibit one or more of the following additional activities or effects: inhibiting the growth, infection or function of, or killing, infectious agents, including, without limitation, bacteria, viruses, fungi and other parasites; effecting (suppressing or enhancing bodily characteristics, including, without limitation, height, weight; hair color, eye color, skin, fat to lean ratio or other tissue S pigmentation, or organ or body part size or shape (such as, for example, breast augmentation or diminution, change in bone form or shape); effecting biorhythms or caricadic cycles or rhythms; effecting the fertility of male or female subjects; effecting the metabolism, catabolism, anabolism, processing, utilization, storage or elimination of dietary fat, lipid, protein, carbohydrate, vitamins, minerals, cofactors or other nutritional factors or component(s); effecting behavioral characteristics, including, without limitation, appetite, libido, stress, cognition (including cognitive disorders), depression (including depressive disorders) and violent behaviors; providing analgesic effects or other pain reducing effects; promoting differentiation and growth of embryonic stem cells in lineages other than hematopoietic lineages; hormonal or endocrine activity; in the case of enzymes, correcting deficiencies of the enzyme and treating deficiency-related diseases; treatment of hyperproliferative disorders (such as, for example, psoriasis); immunoglobulin-like activity (such as, for example, the ability to bind antigens or complement); and the ability to act as an antigen in a vaccine composition to raise an immune response against such protein or another material or entity which is cross-reactive with such protein.
NISTRATION AND DOSING
A protein of the present invention (from whatever source derived, including without limitation from recombinant and non-recombinant sources) may be used in a pharmaceutical composition when combined with a pharmaceutically acceptable carrier.
Such a composition may also contain (in addition to protein and a carrier) diluents, fillers, salts, buffers, stabilizers, solubilizers, and other materials well known in the art.
The term "pharmaceutically acceptable" means a non-toxic material that does not interfere with the effectiveness of the biological activity of the active ingredient(s). The characteristics of the carrier will depend on the route of administration. The pharmaceutical composition of the invention may also contain cytokines, lymphokines, or other hematopoietic factors such as M-CSF, GM-CSF, TNF, IL-1, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-11, IL-12, IL-13, IL-14, IL-15, IFN, TNFO, TNF1, TNF2, G-CSF, Meg-CSF, thrombopoietin, stem cell factor, and erythropoietin.
The pharmaceutical composition may further contain other agents which either enhance the activity of the protein or compliment its activity or use in treatment. Such additional factors and/or agents may be included in the pharmaceutical composition to produce a synergistic effect with protein of the invention, or to minimize side effects.
Conversely, protein of the present invention may be included in formulations of the particular cytokine, lymphokine, other hematopoietic factor, thrombolytic or anti-thrombotic factor, or anti-inflammatory agent to minimize side effects of the cytokine, lymphokine, other hematopoietic factor, thrombolytic or anti-thrombotic factor, or anti-inflammatory agent.
A protein of the present invention may be active in multimers (e.g., heterodimers or homodimers) or complexes with itself or other proteins. As a result, pharmaceutical compositions of the invention may comprise a protein of the invention in such multimeric or complexed form.
The pharmaceutical composition of the invention may be in the form of a complex of the proteins) of present invention along with protein or peptide antigens.
The protein and/or peptide antigen will deliver a stimulatory signal to both B
and T
lymphocytes. B lymphocytes will respond to antigen through their surface immunoglobulin receptor. T lymphocytes will respond to antigen through the T
cell receptor (TCR) following presentation of the antigen by MHC proteins. MHC and structurally related proteins including those encoded by class I and class II
MHC genes on host cells will serve to present the peptide antigens) to T lymphocytes.
The antigen components could also be supplied as purified MHC-peptide complexes alone or with co-stimulatory molecules that can directly signal T cells. Alternatively antibodies able to bind surface immunolgobulin and other molecules on B cells as well as antibodies able to bind the TCR and other molecules on T cells can be combined with the pharmaceutical composition of the invention.
The pharmaceutical composition of the invention may be in the form of a liposome in which protein of the present invention is combined, in addition to other pharmaceutically acceptable carriers, with amphipathic agents such as lipids which exist in aggregated form as micelles, insoluble monolayers, liquid crystals, or lamellar layers in aqueous solution. Suitable lipids for liposomal formulation include, without limitation, monoglycerides, diglycerides, sulfatides, lysolecithin, phospholipids, saponin, bile acids, and the like. Preparation of such liposomal formulations is within the level of skill in the art, as disclosed, for example, in U.S. Patent No. 4,235,871;
U.S. Patent No. 4,501,728; U.S. Patent No. 4,837,028; and U.S. Patent No. 4,737,323, all of which are incorporated herein by reference.
As used herein, the term "therapeutically effective amount" means the total amount of each active component of the pharmaceutical composition or method that is sufficient to show a meaningful patient benefit, i.e., treatment, healing, prevention or amelioration of the relevant medical condition, or an increase in rate of treatment, healing, prevention or amelioration of such conditions. When applied to an individual active ingredient, administered alone, the term refers to that ingredient alone. When applied to a combination, the term refers to combined amounts of the active ingredients that result in the therapeutic effect, whether administered in combination, serially or simultaneously.
In practicing the method of treatment or use of the present invention, a therapeutically effective amount of protein of the present invention is administered to a mammal having a condition to be treated. Protein of the present invention may be administered in accordance with the method of the invention either alone or in combination with other therapies such as treatments employing cytokines, lymphokines or other hematopoietic factors. When co-administered with one or more cytokines, lymphokines or other hematopoietic factors, protein of the present invention may be administered either simultaneously with the cytokine(s), lymphokine(s), other hematopoietic factor(s), thrombolytic or anti-thrombotic factors, or sequentially. If administered sequentially, the attending physician will decide on the appropriate sequence of administering protein of the present invention in combination with cytokine(s), lymphokine(s), other hematopoietic factor(s), thrombolytic or anti-thrombotic factors.
Administration of protein of the present invention used in the pharmaceutical composition or to practice the method of the present invention can be carried out in a variety of conventional ways, such as oral ingestion, inhalation, topical application or cutaneous, subcutaneous, intraperitoneal, parenteral or intravenous injection.
Intravenous administration to the patient is preferred.
When a therapeutically effective amount of protein of the present invention is administered orally, protein of the present invention will be in the form of a tablet, capsule, powder, solution or elixir. When administered in tablet form, the pharmaceutical composition of the invention may additionally contain a solid carrier such as a gelatin or an adjuvant. The tablet, capsule, and powder contain from about 5 to 95% protein of the present invention, and preferably from about 25 to 90%
protein of the present invention. When administered in liquid form, a liquid carrier such as water, petroleum, oils of animal or plant origin such as peanut oil, mineral oil, soybean oil, or sesame oil, or synthetic oils may be added. The liquid form of the pharmaceutical composition may further contain physiological saline solution, dextrose or other saccharide solution, or glycols such as ethylene glycol, propylene glycol or polyethylene glycol. When administered in liquid form, the pharmaceutical composition contains from about 0.5 to 90% by weight of protein of the present invention, and preferably from about 1 to 50% protein of the present invention.
When a therapeutically effective amount of protein of the present invention is administered by intravenous, cutaneous or subcutaneous injection, protein of the present invention will be in the form of a pyrogen-free, parenterally acceptable aqueous solution. The preparation of such parenterally acceptable protein solutions, having due regard to pH, isotonicity, stability, and the like, is within the skill in the art. A
preferred pharmaceutical composition for intravenous, cutaneous, or subcutaneous injection should contain, in addition to protein of the present invention, an isotonic vehicle such as Sodium Chloride Injection, Ringer's Injection, Dextrose Injection, Dextrose and Sodium Chloride Injection, Lactated Ringer's Injection, or other vehicle as known in the art. The pharmaceutical composition of the present invention may also contain stabilizers, preservatives, buffers, antioxidants, or other additives known to those of skill in the art.
The amount of protein of the present invention in the pharmaceutical composition of the present invention will depend upon the nature and severity of the condition being treated, and on the nature of prior treatments which the patient has undergone. Ultimately, the attending physician will decide the amount of protein of the present invention with which to treat each individual patient. Initially, the attending physician will administer low doses of protein of the present invention and observe the patient's response. Larger doses of protein of the present invention may be administered until the optimal therapeutic effect is obtained for the patient, and at that point the dosage is not increased further. It is contemplated that the various pharmaceutical compositions used to practice the method of the present invention should contain about 0.01 ~.g to about 100 mg (preferably about O.lng to about 10 mg, more preferably about 0.1 ~,g to about 1 mg) of protein of the present invention per kg body weight.
The duration of intravenous therapy using the pharmaceutical composition of the present invention will vary, depending on the severity of the disease being treated and the condition and potential idiosyncratic response of each individual patient. It is contemplated that the duration of each application of the protein of the present invention will be in the range of 12 to 24 hours of continuous intravenous administration. Ultimately the attending physician will decide on the appropriate duration of intravenous therapy using the pharmaceutical composition of the present invention.
Protein of the invention may also be used to immunize animals to obtain polyclonal and monoclonal antibodies which specifically react with the protein. Such antibodies may be obtained using either the entire protein or fragments thereof as an immunogen. The peptide immunogens additionally may contain a cysteine residue at the carboxyl terminus, and are conjugated to a hapten such as keyhole limpet hemocyanin (KLI~. Methods for synthesizing such peptides are known in the an, for example, as in R.P. Merrifield, J. Amer.Chem.Soc. $,~, 2149-2154 (1963); J.L.
Krstenansky, et al., FEBS Lett. ~, 10 (198. Monoclonal antibodies binding to the protein of the invention may be useful diagnostic agents for the immunodetection of the protein. Neutralizing monoclonal antibodies binding to the protein may also be useful therapeutics for both conditions associated with the protein and also in the treatment of some forms of cancer where abnormal expression of the protein is involved.
In the case of cancerous cells or leukemic cells, neutralizing monoclonal antibodies against the protein may be useful in detecting and preventing the metastatic spread of the cancerous cells, which may be mediated by the protein.
For compositions of the present invention which are useful for bone, cartilage, tendon or ligament regeneration, the therapeutic method includes administering the composition topically, systematically, or locally as an implant or device.
When administered, the therapeutic composition for use in this invention is, of course, in a pyrogen-free, physiologically acceptable form. Further, the composition may desirably be encapsulated or injected in a viscous form for delivery to the site of bone, cartilage or tissue damage. Topical administration may be suitable for wound healing and tissue repair. Therapeutically useful agents other than a protein of the invention which may also optionally be included in the composition as described above, may alternatively or additionally, be administered simultaneously or sequentially with the composition in the methods of the invention. Preferably for bone and/or cartilage formation, the composition would include a matrix capable of delivering the protein-containing composition to the site of bone and/or cartilage damage, providing a structure for the developing bone and cartilage and optimally capable of being resorbed into the body.
Such matrices may be formed of materials presently in use for other implanted medical applications.
The choice of matrix material is based on biocompatibility, biodegradability, mechanical properties, cosmetic appearance and interface properties. The particular application of the compositions will define the appropriate formulation.
Potential matrices for the compositions may be biodegradable and chemically defined calcium sulfate, tricalciumphosphate, hydroxyapatite, polylactic acid, polyglycolic acid and polyanhydrides. Other potential materials are biodegradable and biologically well-defined, such as bone or dermal collagen. Further matrices are comprised of pure proteins or extracellular matrix components. Other potential matrices are nonbiodegradable and chemically defined, such as sintered hydroxapatite, bioglass, aluminates, or other ceramics. Matrices may be comprised of combinations of any of the above mentioned types of material, such as polylactic acid and hydroxyapatite or collagen and tricalciumphosphate. The bioceramics may be altered in composition, such as in calcium-aluminate-phosphate and processing to alter pore size, particle size, particle shape, and biodegradability.
Presently preferred is a 50:50 (mole weight) copolymer of lactic acid and glycolic acid in the form of porous particles having diameters ranging from 150 to 800 microns.
In some applications, it will be useful to utilize a sequestering agent, such as carboxymethyl cellulose or autologous blood clot, to prevent the protein compositions from disassociating from the matrix.
A preferred family of sequestering agents is cellulosic materials such as alkylcelluloses (including hydroxyalkylcelluloses), including methylcellulose, ethylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, hydroxypropyl-methylcellulose, and carboxymethylcellulose, the most preferred being cationic salts of carboxymethylcellulose (CMC). Other preferred sequestering agents include hyaluronic acid, sodium alginate, polyethylene glycol), polyoxyethylene oxide, carboxyvinyl polymer and polyvinyl alcohol). The amount of sequestering agent useful herein is 0.5-wt%, preferably 1-10 wt% based on total formulation weight, which represents the amount necessary to prevent desorbtion of the protein from the polymer matrix and to provide appropriate handling of the composition, yet not so much that the progenitor 20 cells are prevented from infiltrating the matrix, thereby providing the protein the opportunity to assist the osteogenic activity of the progenitor cells.
In further compositions, proteins of the invention may be combined with other agents beneficial to the treatment of the bone and/or cartilage defect, wound, or tissue in question. These agents include various growth factors such as epidermal growth factor (EGF), platelet derived growth factor (PDGF), transforming growth factors (TGF-a and TGF-(3), and insulin-like growth factor (IGF).
The therapeutic compositions are also presently valuable for veterinary applications. Particularly domestic animals and thoroughbred horses, in addition to humans, are desired patients for such treatment with proteins of the present invention.
The dosage regimen of a protein-containing pharmaceutical composition to be used in tissue regeneration will be determined by the attending physician considering various factors which modify the action of the proteins, e.g., amount of tissue weight desired to be formed, the site of damage, the condition of the damaged tissue, the size of a wound, type of damaged tissue (e.g., bone), the patient's age, sex, and diet, the severity of any infection, time of administration and other clinical factors.
The dosage may vary with the type of matrix used in the reconstitution and with inclusion of other proteins in the pharmaceutical composition. For example, the addition of other known growth factors, such as IGF I (insulin like growth factor I), to the final composition, may also effect the dosage. Progress can be monitored by periodic assessment of tissue/bone growth and/or repair, for example, X-rays, histomorphometric determinations and tetracycline labeling.
Polynucleotides of the present invention can also be used for gene therapy.
Such polynucleotides can be introduced either in vivo or ex vivo into cells for expression in a mammalian subject. Polynucleotides of the invention may also be administered by other known methods for introduction of nucleic acid into a cell or organism (including, without limitation, in the form of viral vectors or naked DNA).
Cells may also be cultured ex vivo in the presence of proteins of the present invention in order to proliferate or to produce a desired effect on or activity in such cells. Treated cells can then be introduced in vivo for therapeutic purposes.
Patent and literature references cited herein are incorporated by reference as if fully set forth.
SEQUENCE LISTING
(1) GENERAL INFORMATION:
(i) APPLICANT: Jacobs, Kenneth McCoy, John M.
LaVallie, Edward R.
Racie, Lisa A.
Merberg, David Treacy, Maurice Evans, Cheryl Spaulding, Vikki Bowman, Michael Agostino, Michael J.
(ii) TITLE OF INVENTION: SECRETED PROTEINS AND POLYNUCLEOTIDES
ENCODING THEM
(iii) NUMBER OF SEQUENCES: 41 (iv) CORRESPONDENCE ADDRESS:
(A) ADDRESSEE: Genetics Institute, Inc.
(B) STREET: 87 CambridgePark Drive (C) CITY: Cambridge (D) STATE: MA
(E) COUNTRY: U.S.A.
(F) ZIP: 02140 (v) COMPUTER READABLE FORM:
(A) MEDIUM TYPE: Floppy disk (B) COMPUTER: IBM PC compatible (C) OPERATING SYSTEM: PC-DOS/MS-DOS
(D) SOFTWARE: PatentIn Release #1.0, Version #1.30 (vi) CURRENT APPLICATION DATA:
(A) APPLICATION NUMBER:
(B) FILING DATE:
(C) CLASSIFICATION:
(viii) ATTORNEY/AGENT INFORMATION:
(A) NAME: Sprunger, Suzanne A.
(B) REGISTRATION NUMBER: 41,323 (ix) TELECOMMUNICATION INFORMATION:
(A) TELEPHONE: (617) 498-8284 (B) TELEFAX: (617) 876-5851 (2) INFORMATION FOR SEQ ID NO: l:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 1032 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (ii) MOLECULE TYPE: CDNA
(xi) SEQUENCE DESCRIPTION:
SEQ ID NO:1:
AAAAAAAAAp, AA 1032 (2) INFORMATION FOR SEQ
ID N0:2:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 210 amino acids (B) TYPE: amino acid (C) STRANDEDNESS:
(D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein (xi) SEQUENCE DESCRIPTION: SEQ ID N0:2:
Met Ser Ala Gln Cys Cys Ala Gly His Leu Ala Cys Cys Cys Gly Ser Ala Gly Cys Ser Leu Cys Cys Asp Cys Cys Pro Arg Ile Arg Gln Ser Leu Ser Thr Arg Phe Met Tyr Ala Leu Tyr Phe Ile Leu Val Val Val Leu Cys Cys Ile Met Met Ser Thr Thr Val Ala His Lys Met Lys Glu His Ile Pro Phe Phe Glu Asp Met Cys Lys Gly Ile Lys Ala Gly Asp Thr Cys Glu Lys Leu Val Gly Tyr Ser Ala Val Tyr Arg Val Cys Phe Gly Met Ala Cys Phe Phe Phe Ile Phe Cys Leu Leu Thr Leu Lys Ile Asn Asn Ser Lys Ser Cys Arg Ala His Ile His Asn Gly Phe Trp Phe Phe Lys Leu Leu Leu Leu Gly Ala Met Cys Ser Gly Ala Phe Phe Ile Pro Asp Gln Asp Thr Phe Leu Asn Ala Trp Arg Tyr Val Gly Ala Val Gly Gly Phe Leu Phe Ile Gly Ile Gln Ser Ser Cys Ser Trp Ser Leu His Ile Ser Gly Thr Arg Thr Gly Val Cys Leu Tyr Gly Lys Leu Pro Ile Asp Ser Gln Lys Leu Pro Ser Phe Asp Gln Gly Cys Thr Gln Leu His Cys (2) INFORMATION FOR SEQ ID N0:3:
(i) SEQUENCE CHARACTERISTICS:
{A) LENGTH: 1626 base pairs {B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA
(xi) SEQUENCE DESCRIPTION: SEQ ID N0:3:
GGAAATAACA
TTAGAATTGC
TAGCAGGACT
AGTCCATCAA
ACAACTATGA
CAGGGAACAG
AGGAGGAGGA
CAGGGGTTCT
TAAGTACCAC
ACACCGCTTA
CAAGCCTAAG
AAGATGCATT
GGCAGCTCCC
GAAGGAAAGG
TCACTGATAA
ACCTCCAGAA
TGACTTATAT
GCAAAACTCC
TTCAGATAAT
CCAAAACAAA
AAAATACAAT
TGAGTTAGGA
TTCACACATG
TCATTTCAAA
GCCAAGATTT
TAATCCATTA AAGAGCATGA AAAAAAGAAT AAATGTATTT GAAAATTAAA p~~7~.P~Pu~AAAA 1620 pppppp 1626 (2) INFORMATION FOR SEQ ID N0:4:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 322 amino acids (B) TYPE: amino acid (C) STRANDEDNESS:
(D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein (xi) SEQUENCE DESCRIPTION: SEQ ID N0:4:
Met Lys Thr Leu Ala Gly Leu Val Leu Gly Leu Val Ile Phe Asp Ala Ala Val Thr Ala Pro Thr Leu Glu Ser Ile Asn Tyr Asp Ser Glu Thr Tyr Asp Ala Thr Leu Glu Asp Leu Asp Asn Leu Tyr Asn Tyr Glu Asn Ile Pro Val Asp Lys Val Glu Ile Glu Ile Ala Thr Val Met Pro Ser Gly Asn Arg Glu Leu Leu Thr Pro Pro Pro Gln Pro Glu Lys Ala Gln Glu Glu Glu Glu Glu Glu Glu Ser Thr Pro Arg Leu Ile Asp Gly Ser Ser Pro Gln Glu Pro Glu Phe Thr Gly Val Leu Gly Pro His Thr Asn Glu Asp Phe Pro Thr Cys Leu Leu Cys Thr Cys Ile Ser Thr Thr Val Tyr Cys Asp Asp His Glu Leu Asp Ala Ile Pro Pro Leu Pro Lys Asn Thr Ala Tyr Phe Tyr Ser Arg Phe Asn Arg Ile Lys Lys Ile Asn Lys Asn Asp Phe Ala Ser Leu Ser Asp Leu Lys Arg Ile Asp Leu Thr Ser Asn Leu Ile Ser Glu Ile Asp Glu Asp Ala Phe Arg Lys Leu Pro Gln Leu Arg Glu Leu Val Leu Arg Asp Asn Lys Ile Arg Gln Leu Pro Glu Leu Pro Thr Thr Leu Thr Phe Ile Asp Ile Ser Asn Asn Arg Leu Gly Arg Lys Gly Ile Lys Gln Glu Ala Phe Lys Asp Met Tyr Asp Leu His His Leu Tyr Leu Thr Asp Asn Asn Leu Asp His Ile Pro Leu Pro Leu Pro Glu Asn Leu Arg Ala Leu His Leu Gln Asn Asn Asn Ile Leu Glu Met His Glu Asp Thr Phe Cys Asn Val Lys Asn Leu Thr Tyr Ile Arg Lys Ala Leu Glu Asp Ile Arg Leu Asp Gly Asn Pro Ile Asn Leu Ser Lys Thr Pro Gln Ala Tyr Met Cys Leu Pro Arg Leu Pro Val Gly Ser Leu Val (2) INFORMATION FOR SEQ ID N0:5:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 1083 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA
(xi) SEQUENCE DESCRIPTION: SEQ ID N0:5:
TWAACAGCGG
GTCCCCCGCT
GGAATTTACA
CGAACTGAGA
ATTTTTGGAA
GAGAGTTGTA
TCTTCCGCYT
TTCTTCTCAA
CGTCAACCAA
AGGGAAAAAA
AGYTCCTAAA
GGAGCCAAAA AANANAAANA p~~AAAAAAAA AANAAGANAA GNNNNNAAAA1080 AAANAAAAAA
pip, 1083 (2) INFORMATION FOR SEQ ID N0:6:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 56 amino acids (B) TYPE: amino acid (C) STRANDEDNESS:
(D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein (xi) SEQUENCE DESCRIPTION: SEQ ID N0:6:
Met Ile Leu Leu Lys Val Cys Ser Ala Ala Ser Leu Leu Gly Glu Gly Phe Met Asn Gln Val Thr Ser Thr Asn Lys Ala Ser Leu Ser Leu Leu Ser Leu Thr Met Lys Val Ala Val Asn Lys Gly Lys Lys Glu Arg Glu Leu Phe Ile Pro Phe Gln Phe Gln (2) INFORMATION FOR SEQ ID N0:7:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 643 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (ii) MOLECULE TYPE: CDNA
(xi) SEQUENCE DESCRIPTION: SEQ ID N0:7:
ATAAAGCAGG AGGTAGAGAG CCAP.AAAAAA AAAAAAAAAA AAA 643 (2) INFORMATION FOR SEQ ID N0:8:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 38 amino acids (B) TYPE: amino acid (C) STRANDEDNESS:
(D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein (xi) SEQUENCE DESCRIPTION: SEQ ID N0:8:
Met Leu Pro Val Pro Lys Arg Leu His Ser Phe Asn Ile Tyr Val Thr Ala Cys Tyr Val Pro Gly Val Gly Gln Val Leu Gly Thr Lys Glu Arg Pro Pro His Pro Thr Pro (2) INFORMATION FOR SEQ ID N0:9:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 1047 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA
(xi) SEQUENCE DESCRIPTION: SEQ ID N0:9:
AAAGGGCAGA
TGTCATTCTT
AAGTCCTGGG
TAGTCAATCT
CATTGGGGGG
AACCCCACCT
AATGTGTCTT
GAAACTTCGA
TGCTCCCTGT
TGGAGCTACT
CTTCTTGCCT
GAGGCCTAGT
TGGGGACAGG
CAGTGCCACC
GACATCCCTT
TCTGGTGGCT
GGGAAGACCC
CAAAAAGCAA AAAAA7~AAAA AAAAAAA 1047 (2) INFORMATION FOR SEQ ID NO:10:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 57 amino acids (B) TYPE: amino acid (C) STRANDEDNESS:
(D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein (xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:
Met Arg Val Ser Phe Gly Ala Asp Val Gly Phe Gly Thr Ile Ala Cys Asp Cys His Ser Leu Ala Val Cys Ile Pro Gln Lys Leu Phe Ser Glu Ser Ser Ser Trp Pro Lys Ser Trp Val Ser Phe Thr Val Leu Val Ala Asp Tyr Ser Arg Gln Met Arg Asn Ser (2) INFORMATION FOR SEQ ID NO:11:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 2851 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:
ACCTCCTTGC
TTTGGCGGAG
TTGAAAACTG
ATAGAGTAGT
GGAAACATCC
CAGAGAAACG
AGCACTTATT
ATTAAGATTG
CTGTTTGAAT
TACATCCACA
TTGTGGTGCT
GCCCTTCTGT
TGCGTGAGGT
AAATCCAGAT
TGAGTAGGAA
ACACTCTGGA
TGTCTAAACT
CTTTTAACAG
ACATCTCAGA
GCAACCTTCG
CTGGGAATCA
AACTGTGGAT
AGTCACTAGT
TCACTCCCTT
GTGACATACT
GTGCCCGGTG
ATTACTTCAC
AAGGCATGGC
TTACTCCAAA
GTGATGGTAC
TGGTGAGTAA
CCACTACTCC
In other embodiments, the present invention provides a composition comprising a protein, wherein said protein comprises an amino acid sequence selected from the group consisting of:
(a) the amino acid sequence of SEQ ID NO:10;
(b) fragments of the amino acid sequence of SEQ ID N0:10; and (c) the amino acid sequence encoded by the cDNA insert of clone AK684_1 deposited under accession number ATCC 98101;
the protein being substantially free from other mammalian proteins. Preferably such protein comprises the amino acid sequence of SEQ ID NO:10.
In one embodiment, the present invention provides a composition comprising an isolated polynucleotide selected from the group consisting of:
(a) a polynucleotide comprising the nucleotide sequence of SEQ ID
N0:11;
(b) a polynucleotide comprising the nucleotide sequence of SEQ ID
NO:11 from nucleotide 812 to nucleotide 2731;
(c) a polynucleotide comprising the nucleotide sequence of SEQ ID
NO:11 from nucleotide 944 to nucleotide 2731;
(d) a polynucleotide comprising the nucleotide sequence of SEQ ID
N0:11 from nucleotide 855 to nucleotide 1186;
(e) a polynucleotide comprising the nucleotide sequence of the full-length protein coding sequence of clone AS209-1 deposited under accession number ATCC 98101;
(f) a polynucleotide encoding the full-length protein encoded by the cDNA insert of clone AS209_1 deposited under accession number ATCC 98101;
(g) a polynucleotide comprising the nucleotide sequence of the mature protein coding sequence of clone AS209_1 deposited under accession number ATCC 98101;
(h) a polynucleotide encoding the mature protein encoded by the cDNA insert of clone AS209-1 deposited under accession number ATCC 98101;
WO 99120644 PCT/US98n2034 (i) a polynucleotide encoding a protein comprising the amino acid sequence of SEQ ID N0:12;
G) a polynucleotide encoding a protein comprising a fragment of the amino acid sequence of SEQ ID N0:12 having biological activity;
S (k) a polynucleotide which is an allelic variant of a polynucleotide of (a)-(h) above;
(1) a polynucleotide which encodes a species homologue of the protein of (i) or (j) above ; and (m) a polynucleotide capable of hybridizing under stringent conditions to any one of the polynucleotides specified in (a)-(j).
Preferably, such polynucleotide comprises the nucleotide sequence of SEQ ID
N0:11 from nucleotide 812 to nucleotide 2731; the nucleotide sequence of SEQ
ID
N0:11 from nucleotide 944 to nucleotide 2731; the nucleotide sequence of SEQ
ID
NO:11 from nucleotide 855 to nucleotide 1186; the nucleotide sequence of the full-length protein coding sequence of clone AS209_1 deposited under accession number ATCC 98101; or the nucleotide sequence of the mature protein coding sequence of clone AS209-1 deposited under accession number ATCC 98101. In other preferred embodiments, the polynucleotide encodes the full-length or mature protein encoded by the cDNA insert of clone AS209_1 deposited under accession number ATCC 98101.
In yet other preferred embodiments, the present invention provides a polynucleotide encoding a protein comprising the amino acid sequence of SEQ ID N0:12 from amino acid 1 to amino acid 125.
Other embodiments provide the gene corresponding to the cDNA sequence of SEQ ID N0:11.
In other embodiments, the present invention provides a composition comprising a protein, wherein said protein comprises an amino acid sequence selected from the group consisting of:
(a) the amino acid sequence of SEQ ID N0:12;
(b) the amino acid sequence of SEQ ID N0:12 from amino acid 1 to amino acid 125;
(c) fragments of the amino acid sequence of SEQ ID N0:12; and (d) the amino acid sequence encoded by the cDNA insert of clone AS209_1 deposited under accession number ATCC 98101;
the protein being substantially free from other mammalian proteins. Preferably such protein comprises the amino acid sequence of SEQ ID N0:12 or the amino acid sequence of SEQ ID N0:12 from amino acid 1 to amino acid 125.
In one embodiment, the present invention provides a composition comprising an isolated polynucleotide selected from the group consisting of:
(a) a polynucleotide comprising the nucleotide sequence of SEQ ID
N0:13;
(b) a polynucleotide comprising the nucleotide sequence of SEQ ID
N0:13 from nucleotide 2196 to nucleotide 2708;
(c) a polynucleotide comprising the nucleotide sequence of SEQ ID
N0:13 from nucleotide 489 to nucleotide 890;
(d) a polynucleotide comprising the nucleotide sequence of the full-length protein coding sequence of clone AX56 28 deposited under accession number ATCC 98180;
(e) a polynucleotide encoding the full-length protein encoded by the cDNA insert of clone AX56 28 deposited under accession number ATCC
98180;
(f) a polynucleotide comprising the nucleotide sequence of the mature protein coding sequence of clone AX56 28 deposited under accession number ATCC 98180;
(g) a polynucleotide encoding the mature protein encoded by the cDNA insert of clone AX56 28 deposited under accession number ATCC
98180;
(h) a polynucleotide encoding a protein comprising the amino acid sequence of SEQ ID N0:14;
(i) a polynucleotide encoding a protein comprising a fragment of the amino acid sequence of SEQ ID N0:14 having biological activity;
(j) a polynucleotide which is an allelic variant of a polynucleotide of (a)-(g) above;
Nrp 99/204 PCT/US98/22034 (k) a polynucleotide which encodes a species homologue of the protein of (h) or {i) above ; and (1) a polynucleotide capable of hybridizing under stringent conditions to any one of the polynucleotides specified in (a)-(i).
Preferably, such polynucleotide comprises the nucleotide sequence of SEQ ID
N0:13 from nucleotide 2196 to nucleotide 2708; the nucleotide sequence of SEQ
ID
N0:13 from nucleotide 489 to nucleotide 890; the nucleotide sequence of the full-length protein coding sequence of clone AX56 28 deposited under accession number ATCC
98180; or the nucleotide sequence of the mature protein coding sequence of clone AX56 28 deposited under accession number ATCC 98180. In other preferred embodiments, the polynucleotide encodes the full-length or mature protein encoded by the cDNA insert of clone AX56 28 deposited under accession number ATCC 98180.
Other embodiments provide the gene corresponding to the cDNA sequence of SEQ ID N0:13.
In other embodiments, the present invention provides a composition comprising a protein, wherein said protein comprises an amino acid sequence selected from the group consisting of:
(a) the amino acid sequence of SEQ ID N0:14;
(b) fragments of the amino acid sequence of SEQ ID N0:14; and (c) the amino acid sequence encoded by the cDNA insert of clone AX56 28 deposited under accession number ATCC 98180;
the protein being substantially free from other mammalian proteins. Preferably such protein comprises the amino acid sequence of SEQ ID N0:14.
In one embodiment, the present invention provides a composition comprising an isolated polynucleotide selected from the group consisting of:
(a) a polynucleotide comprising the nucleotide sequence of SEQ ID
N0:15;
(b) a polynucleotide comprising the nucleotide sequence of SEQ ID
N0:15 from nucleotide 51 to nucleotide 1319;
(c) a polynucleotide comprising the nucleotide sequence of SEQ ID
N0:15 from nucleotide 126 to nucleotide 1319;
(d) a polynucleotide comprising the nucleotide sequence of SEQ ID
N0:15 from nucleotide 409 to nucleotide 495;
(e) a polynucleotide comprising the nucleotide sequence of the full-S length protein coding sequence of clone AX92 3 deposited under accession number ATCC 98101;
(f) a polynucleotide encoding the full-length protein encoded by the cDNA insert of clone AX92 3 deposited under accession number ATCC 98101;
(g) a polynucleotide comprising the nucleotide sequence of the mature protein coding sequence of clone AX92 3 deposited under accession number ATCC 98101;
(h) a polynucleotide encoding the mature protein encoded by the cDNA insert of clone AX92 3 deposited under accession number ATCC 98101;
(i) a polynucleotide encoding a protein comprising the amino acid sequence of SEQ ID N0:16;
(j) a polynucleotide encoding a protein comprising a fragment of the amino acid sequence of SEQ ID N0:16 having biological activity;
(k) a polynucleotide which is an allelic variant of a polynucleotide of (a)-(h) above;
(1) a polynucleotide which encodes a species homologue of the protein of (i) or (j) above ; and (m) a polynucleotide capable of hybridizing under stringent conditions to any one of the polynucleotides specified in (a)-(j).
Preferably, such polynucleotide comprises the nucleotide sequence of SEQ ID
N0:15 from nucleotide 51 to nucleotide 1319; the nucleotide sequence of SEQ ID
N0:15 from nucleotide 126 to nucleotide 1319; the nucleotide sequence of SEQ
ID
N0:15 from nucleotide 409 to nucleotide 495; the nucleotide sequence of the full-length protein coding sequence of clone AX92 3 deposited under accession number ATCC
98101; or the nucleotide sequence of the mature protein coding sequence of clone AX92 3 deposited under accession number ATCC 98101. In other preferred embodiments, the polynucleotide encodes the full-length or mature protein encoded by the cDNA insert of clone AX92 3 deposited under accession number ATCC 98101.
Other embodiments provide the gene corresponding to the cDNA sequence of SEQ ID N0:15.
In other embodiments, the present invention provides a composition comprising a protein, wherein said protein comprises an amino acid sequence selected from the group consisting of:
(a) the amino acid sequence of SEQ ID N0:16;
(b) fragments of the amino acid sequence of SEQ ID N0:16; and (c) the amino acid sequence encoded by the cDNA insert of clone AX92 3 deposited under accession number ATCC 98101;
the protein being substantially free from other mammalian proteins. Preferably such protein comprises the amino acid sequence of SEQ ID N0:16.
In one embodiment, the present invention provides a composition comprising an isolated polynucleotide selected from the group consisting of:
(a) a polynucleotide comprising the nucleotide sequence of SEQ ID
N0:18;
(b) a polynucleotide comprising the nucleotide sequence of SEQ ID
N0:18 from nucleotide 210 to nucleotide 350;
(c) a polynucleotide comprising the nucleotide sequence of SEQ ID
N0:18 from nucleotide 300 to nucleotide 350;
(d) a polynucleotide comprising the nucleotide sequence of the full-length protein coding sequence of clone BF245-1 deposited under accession number ATCC 98101;
(e) a polynucleotide encoding the full-length protein encoded by the cDNA insert of clone BF245_1 deposited under accession number ATCC 98101;
(f) a polynucleotide comprising the nucleotide sequence of the mature protein coding sequence of clone BF245~1 deposited under accession number ATCC 98101;
(g) a polynucleotide encoding the mature protein encoded by the cDNA insert of clone BF245-1 deposited under accession number ATCC 98101;
(h) a polynucleotide encoding a protein comprising the amino acid sequence of SEQ ID N0:19;
(i) a polynucleotide encoding a protein comprising a fragment of the amino acid sequence of SEQ ID N0:19 having biological activity;
(j) a polynucleotide which is an allelic variant of a polynucleotide of (a)-(g) above;
(k) a polynucleotide which encodes a species homologue of the protein of (h) or (i) above ; and (1) a polynucleotide capable of hybridizing under stringent conditions to any one of the polynucleotides specified in (a)-(i).
Preferably, such polynucleotide comprises the nucleotide sequence of SEQ ID
N0:18 from nucleotide 210 to nucleotide 350; the nucleotide sequence of SEQ ID
N0:18 from nucleotide 300 to nucleotide 350; the nucleotide sequence of the full-length protein coding sequence of clone BF245_1 deposited under accession number ATCC
98101; or the nucleotide sequence of the mature protein coding sequence of clone BF245_1 deposited under accession number ATCC 98101. In other preferred embodiments, the polynucleotide encodes the full-length or mature protein encoded by the cDNA insert of clone BF245-1 deposited under accession number ATCC 98101.
Other embodiments provide the gene corresponding to the cDNA sequence of SEQ ID N0:18, SEQ ID N0:17 or SEQ ID N0:20.
In other embodiments, the present invention provides a composition comprising a protein, wherein said protein comprises an amino acid sequence selected from the group consisting of:
(a) the amino acid sequence of SEQ ID N0:19;
(b) fragments of the amino acid sequence of SEQ ID N0:19; and (c) the amino acid sequence encoded by the cDNA insert of clone BF245_1 deposited under accession number ATCC 98101;
the protein being substantially free from other mammalian proteins. Preferably such protein comprises the amino acid sequence of SEQ ID N0:19.
In one embodiment, the present invention provides a composition comprising an isolated polynucleotide selected from the group consisting of:
(a) a polynucleotide comprising the nucleotide sequence of SEQ ID
N0:21;
(b) a polynucleotide comprising the nucleotide sequence of SEQ ID
N0:21 from nucleotide 322 to nucleotide 774;
(c) a polynucleotide comprising the nucleotide sequence of SEQ ID
N0:21 from nucleotide 149 to nucleotide 477;
(d) a polynucleotide comprising the nucleotide sequence of the full-length protein coding sequence of clone BG33 7 deposited under accession number ATCC 98101;
(e) a polynucleotide encoding the full-length protein encoded by the cDNA insert of clone BG33 7 deposited under accession number ATCC 98101;
(f) a polynucleotide comprising the nucleotide sequence of the mature protein coding sequence of clone BG33 7 deposited under accession number ATCC 98101;
(g) a polynucleotide encoding the mature protein encoded by the cDNA insert of clone BG33 7 deposited under accession number ATCC 98101;
(h) a polynucleotide encoding a protein comprising the amino acid sequence of SEQ ID N0:22;
(i) a polynucleotide encoding a protein comprising a fragment of the amino acid sequence of SEQ ID N0:22 having biological activity;
(j) a polynucleotide which is an allelic variant of a poiynucleotide of (a)-(g) above;
(k) a polynucleotide which encodes a species homologue of the protein of (h) or (i) above ; and (1) a polynucleotide capable of hybridizing under stringent conditions to any one of the polynucleotides specified in (a)-(i).
Preferably, such polynucleotide comprises the nucleotide sequence of SEQ ID
N0:21 from nucleotide 322 to nucleotide 774; the nucleotide sequence of SEQ ID
N0:21 from nucleotide 149 to nucleotide 477; the nucleotide sequence of the full-length protein coding sequence of clone BG33 7 deposited under accession number ATCC
98101; or the nucleotide sequence of the mature protein coding sequence of clone BG33 7 deposited under accession number ATCC 98101. In other preferred embodiments, the polynucleotide encodes the full-length or mature protein encoded by the cDNA insert of clone BG33 7 deposited under accession number ATCC 98101.
In yet other preferred embodiments, the present invention provides a polynucleotide encoding a protein comprising the amino acid sequence of SEQ ID N0:22 from amino acid 1 to amino acid 121.
Other embodiments provide the gene corresponding to the cDNA sequence of SEQ ID N0:21.
In other embodiments, the present invention provides a composition comprising a protein, wherein said protein comprises an amino acid sequence selected from the group consisting of:
(a) the amino acid sequence of SEQ ID N0:22;
{b) the amino acid sequence of SEQ ID N0:22 from amino acid 1 to amino acid 121;
(c) fragments of the amino acid sequence of SEQ ID N0:22; and (d) the amino acid sequence encoded by the cDNA insert of clone BG33 7 deposited under accession number ATCC 98101;
the protein being substantially free from other mammalian proteins. Preferably such protein comprises the amino acid sequence of SEQ ID N0:22 or the amino acid sequence of SEQ ID N0:22 from amino acid 1 to amino acid 121.
In one embodiment, the present invention provides a composition comprising an isolated polynucleotide selected from the group consisting of:
(a) a polynucleotide comprising the nucleotide sequence of SEQ ID
N0:23;
(b) a polynucleotide comprising the nucleotide sequence of SEQ ID
N0:23 from nucleotide 80 to nucleotide 1801;
(c) a polynucleotide comprising the nucleotide sequence of SEQ ID
N0:23 from nucleotide 1 to nucleotide 421;
(d) a polynucleotide comprising the nucleotide sequence of the full-length protein coding sequence of clone BM46_10 deposited under accession number ATCC 98152;
(e) a polynucleotide encoding the full-length protein encoded by the cDNA insert of clone BM46_10 deposited under accession number ATCC
98152;
(f) a polynucleotide comprising the nucleotide sequence of the mature protein coding sequence of clone BM46-10 deposited under accession S number ATCC 98152;
(g) a polynucleotide encoding the mature protein encoded by the cDNA insert of clone BM46_10 deposited under accession number ATCC
98152;
(h) a polynucleotide encoding a protein comprising the amino acid sequence of SEQ TD N0:24;
(i) a polynucleotide encoding a protein comprising a fragment of the amino acid sequence of SEQ ID N0:24 having biological activity;
(j) a polynucleotide which is an allelic variant of a polynucleotide of (a)-(g) above;
(k) a polynucleotide which encodes a species homologue of the protein of (h) or (i) above ; and (1) a polynucleotide capable of hybridizing under stringent conditions to any one of the polynucleotides specified in (a)-(i).
Preferably, such polynucleotide comprises the nucleotide sequence of SEQ ID
N0:23 from nucleotide 80 to nucleotide 1801; the nucleotide sequence of SEQ ID
N0:23 from nucleotide 1 to nucleotide 421; the nucleotide sequence of the full-length protein coding sequence of clone BM46_10 deposited under accession number ATCC
98152; or the nucleotide sequence of the mature protein coding sequence of clone BM46_10 deposited under accession number ATCC 98152. In other preferred embodiments, the polynucleotide encodes the full-length or mature protein encoded by the cDNA insert of clone BM46_10 deposited under accession number ATCC 98152.
In yet other preferred embodiments, the present invention provides a polynucleotide encoding a protein comprising the amino acid sequence of SEQ ID N0:24 from amino acid 1 to amino acid 112.
Other embodiments provide the gene corresponding to the cDNA sequence of SEQ ID N0:23.
Wp 99/20(44 PCT/US98/22034 In other embodiments, the present invention provides a composition comprising a protein, wherein said protein comprises an amino acid sequence selected from the group consisting of:
(a) the amino acid sequence of SEQ ID N0:24;
(b) the amino acid sequence of SEQ TD N0:24 from amino acid 1 to amino acid 112;
(c) fragments of the amino acid sequence of SEQ ID N0:24; and {d) the amino acid sequence encoded by the cDNA insert of clone BM46-10 deposited under accession number ATCC 98152;
the protein being substantially free from other mammalian proteins. Preferably such protein comprises the amino acid sequence of SEQ ID N0:24 or the amino acid sequence of SEQ ID N0:24 from amino acid 1 to amino acid 112.
In one embodiment, the present invention provides a composition comprising an isolated polynucleotide selected from the group consisting of:
(a) a polynucleotide comprising the nucleotide sequence of SEQ ID
N0:25;
{b) a polynucleotide comprising the nucleotide sequence of SEQ ID
N0:25 from nucleotide 719 to nucleotide 886;
(c) a polynucleotide comprising the nucleotide sequence of SEQ ID
N0:25 from nucleotide 812 to nucleotide 886;
(d) a polynucleotide comprising the nucleotide sequence of SEQ ID
N0:25 from nucleotide 1 to nucleotide 853;
(e) a polynucleotide comprising the nucleotide sequence of the full-length protein coding sequence of clone J317_1 deposited under accession number ATCC 98101;
(f) a polynucleotide encoding the full-length protein encoded by the cDNA.insert of clone J317_1 deposited under accession number ATCC 98101;
(g) a polynucleotide comprising the nucleotide sequence of the mature protein coding sequence of clone J317 1 deposited under accession number ATCC 98101;
(h) a polynucleotide encoding the mature protein encoded by the cDNA insert of clone J317-1 deposited under accession number ATCC 98101;
(i) a polynucleotide encoding a protein comprising the amino acid sequence of SEQ ID N0:26;
(j) a polynucleotide encoding a protein comprising a fragment of the amino acid sequence of SEQ ID N0:26 having biological activity;
(k) a polynucleotide which is an allelic variant of a polynucleotide of (a)-(h) above;
(1) a polynucleotide which encodes a species homologue of the protein of (i) or (j) above ; and (m) a polynucleotide capable of hybridizing under stringent conditions to any one of the polynucleotides specified in (a)-(j).
Preferably, such polynucleotide comprises the nucleotide sequence of SEQ ID
N0:25 from nucleotide 719 to nucleotide 886; the nucleotide sequence of SEQ ID
N0:25 from nucleotide 812 to nucleotide 886; the nucleotide sequence of SEQ ID
N0:25 from nucleotide 1 to nucleotide 853; the nucleotide sequence of the full-length protein coding sequence of clone J317-1 deposited under accession number ATCC
98101; or the nucleotide sequence of the mature protein coding sequence of clone J317_1 deposited under accession number ATCC 98101. In other preferred embodiments, the polynucleotide encodes the full-length or mature protein encoded by the cDNA
insert of clone J317_1 deposited under accession number ATCC 98101.
Other embodiments provide the gene corresponding to the cDNA sequence of SEQ ID N0:25.
In other embodiments, the present invention provides a composition comprising a protein, wherein said protein comprises an amino acid sequence selected from the group consisting of:
(a) the amino acid sequence of SEQ ID N0:26;
(b) fragments of the amino acid sequence of SEQ ID N0:26; and (c) the amino acid sequence encoded by the cDNA insert of clone J317_1 deposited under accession number ATCC 98101;
the protein being substantially free from other mammalian proteins. Preferably such protein comprises the amino acid sequence of SEQ ID N0:26.
In one embodiment, the present invention provides a composition comprising an isolated polynucleotide selected from the group consisting of:
(a) a polynucleotide comprising the nucleotide sequence of SEQ ID
N0:27;
(b) a polynucleotide comprising the nucleotide sequence of SEQ ID
N0:27 from nucleotide 442 to nucleotide 609;
{c) a polynucleotide comprising the nucleotide sequence of SEQ ID
N0:27 from nucleotide 1 to nucleotide 483;
(d) a polynucleotide comprising the nucleotide sequence of the full-length protein coding sequence of clone 0289_1 deposited under accession number ATCC 98101;
(e) a polynucleotide encoding the full-length protein encoded by the cDNA insert of clone 0289_1 deposited under accession number ATCC 98101;
(f) a polynucleotide comprising the nucleotide sequence of the mature protein coding sequence of clone 0289_1 deposited under accession number ATCC 98101;
(g) a polynucleotide encoding the mature protein encoded by the cDNA insert of clone 0289_1 deposited under accession number ATCC 98101;
(h) a polynucleotide encoding a protein comprising the amino acid sequence of SEQ ID N0:28;
(i) a polynucleotide encoding a protein comprising a fragment of the amino acid sequence of SEQ ID N0:28 having biological activity;
(j) a polynucleotide which is an allelic variant o~ a polynucleotide of (a)-(g) above;
(k) a polynucleotide which encodes a species homologue of the protein of (h) or (i) above ; and (1) a polynucleotide capable of hybridizing under stringent conditions to any one of the polynucleotides specified in (a)-{i).
Preferably, such polynucleotide comprises the nucleotide sequence of SEQ ID
N0:27 from nucleotide 442 to nucleotide 609; the nucleotide sequence of SEQ ID
N0:27 from nucleotide 1 to nucleotide 483; the nucleotide sequence of the full-length protein coding sequence of clone 0289_1 deposited under accession number ATCC
98101; or the nucleotide sequence of the mature protein coding sequence of clone 0289_1 deposited under accession number ATCC 98101. In other preferred embodiments, the polynucleotide encodes the full-length or mature protein encoded by the cDNA insert of clone 0289_1 deposited under accession number ATCC 98101.
Other embodiments provide the gene corresponding to the cDNA sequence of SEQ ID N0:27.
In other embodiments, the present invention provides a.composition comprising a protein, wherein said protein comprises an amino acid sequence selected from the group consisting of:
(a) the amino acid sequence of SEQ ID N0:28;
(b) fragments of the amino acid sequence of SEQ ID N0:28; and (c) the amino acid sequence encoded by the cDNA insert of clone 0289_1 deposited under accession number ATCC 98101;
the protein being substantially free from other mammalian proteins. Preferably such protein comprises the amino acid sequence of SEQ ID N0:28.
In certain preferred embodiments, the polynucleotide is operably linked to an expression control sequence. The invention also provides a host cell, including bacterial, yeast, insect and mammalian cells, transformed with such polynucleotide compositions.
Processes are also provided for producing a protein, which comprise:
(a) growing a culture of the host cell transformed with such polynucleotide compositions in a suitable culture medium; and (b) purifying the protein from the culture.
The protein produced according to such methods is also provided by the present invention. Preferred embodiments include those in which the protein produced by such process is a mature form of the protein.
Protein compositions of the present invention may further comprise a pharmaceutically acceptable carrier. Compositions comprising an antibody which specifically reacts with such protein are also provided by the present invention.
Methods are also provided for preventing, treating or ameliorating a medical condition which comprises administering to a mammalian subject a therapeutically effective amount of a composition comprising a protein of the present invention and a pharmaceutically acceptable carrier.
BRIEF DESCRIPTION OF DRAWINGS
Fig. 1A and Fig.1B are schematic representations of the pED6 and pNOTs vectors, respectively, used for deposit of clones disclosed herein.
Fig. 2 is an autoradiograph evidencing the expression of the following clone disclosed herein, BG33_7.
DETAILED DESCRIPTION
ISOLATED PROTEINS AND POLYNUCLEOTIDES
Nucleotide and amino acid sequences, as presently determined, are reported below for each clone and protein disclosed in the present application. The nucleotide sequence of each clone can readily be determined by sequencing of the deposited clone in accordance with known methods. The predicted amino acid sequence (both full-length and mature) can then be determined from such nucleotide sequence. The amino acid sequence of the protein encoded by a particular clone can also be determined by expression of the clone in a suitable host cell, collecting the protein and determining its sequence. For each disclosed protein applicants have identified what they have determined to be the reading frame best identifiable with sequence information available at the time of filing.
As used herein a "secreted" protein is one which, when expressed in a suitable host cell, is transported across or through a membrane, including transport as a result of signal sequences in its amino acid sequence. "Secreted" proteins include without limitation proteins secreted wholly (e.g., soluble proteins) or partially (e.g. , receptors) from the cell in which they are expressed. "Secreted" proteins also include without limitation proteins which are transported across the membrane of the endoplasmic reticulum.
Clone "AC41 1"
A polynucleotide of the present invention has been identified as clone "AC41 1".
RECTIFIED SHEET (RULE 91) AC41 1 was isolated from a human adult placenta cDNA library using methods which are selective for cDNAs encoding secreted proteins (see U.S. Pat. No.
5,536,63, or was identified as encoding a secreted or transmembrane protein on the basis of computer analysis of the amino acid sequence of the encoded protein. AC41-1 is a full-length clone, including the entire coding sequence of a secreted protein (also referred to herein as "AC41-1 protein").
The nucleotide sequence of AC41_1 as presently determined is reported in SEQ
ID NO:1. What applicants presently believe to be the proper reading frame and the predicted amino acid sequence of the AC41-1 protein corresponding to the foregoing nucleotide sequence is reported in SEQ ID N0:2. Amino acids 10 to 22 are a predicted leader/signal sequence, with the predicted mature amino acid sequence beginning at amino acid 23, or are a transmembrane domain.
The EcoRI/NotI restriction fragment obtainable from the deposit containing clone AC41_1 should be approximately 1000 bp.
The nucleotide sequence disclosed herein for AC41_1 was searched against the GenBank and GeneSeq nucleotide sequence databases using BLASTN/BLASTX and FASTA search protocols. AC41-1 demonstrated at least some homology with sequences identified as L20319 (Rattus norvegicus developmentally regulated protein mRNA, complete cds), U46493 (Cloning vector pFlp recombinase gene, complete cds), and 222650 (H.sapiens insertion polymorphism DNA). The predicted amino acid sequence disclosed herein for AC41-1 was searched against the GenPept and GeneSeq amino acid sequence databases using the BLASTX search protocol. The predicted AC41_1 protein demonstrated at least some identity with sequences identified as L20319 (developmentally regulated protein [Rattus norvegicus]) and X12544 (3 HLA-DR B
protein precursor (AA -29 to 267) [Homo Sapiens]). Based upon homology, AC41-1 proteins and each homologous protein or peptide may share at least some activity.
Clone "AC222 1"
A polynucleotide of the present invention has been identified as clone "AC222 1". AC222 1 was isolated from a human adult placenta cDNA library using methods which are selective for cDNAs encoding secreted proteins (see U.S.
Pat. No.
5,536,637), or was identified as encoding a secreted or transmembrane protein on the basis of computer analysis of the amino acid sequence of the encoded protein.
is a full-length clone, including the entire coding sequence of a secreted protein (also referred to herein as "AC222-1 protein").
The nucleotide sequence of AC222-1 as presently determined is reported in SEQ
ID N0:3. What applicants presently believe to be the proper reading frame and the predicted amino acid sequence of the AC222-1 protein corresponding to the foregoing nucleotide sequence is reported in SEQ ID N0:4. Amino acids 7 to 19 are a predicted leader/signal sequence, with the predicted mature amino acid sequence beginning at amino acid 20, or are a transmembrane domain.
The EcoRI/Noti restriction fragment obtainable from the deposit containing clone AC222-1 should be approximately 1400 bp.
The nucleotide sequence disclosed herein for AC222_1 was searched against the GenBank and GeneSeq nucleotide sequence databases using BLASTN/BLASTX and FASTA search protocols. AC222-1 demonstrated at least some homology with sequences identified as D10485 (Chicken mRNA for proteoglycan (PG-Lb) core protein, complete cds), D78274 (Mouse mRNA for proteoglycan, complete cds), N22463 (yw34c10.s1 Homo Sapiens cDNA clone 254130 3'), U59111 (Human dermatan sulfate proteogiycan 3 (DSPG3) mRNA, complete cds), U77127 (Bos taurus epiphycan mRNA, complete cds), and 232693 (E.coli pT7hGH~1 DNA, 6160bp). The predicted amino acid sequence disclosed herein for AC222_1 was searched against the GenPept and GeneSeq amino acid sequence databases using the BLASTX search protocol. The predicted AC222l1 protein demonstrated at least some identity with sequences identified as D10485 (proteoglycan core protein [Gallus gallus]), D78274 (proteoglycan [Mus musculus]), U77127 (epiphycan [Bos taurus]), and U59111 (dermatan sulfate proteoglycan 3 [Homo sapiens]). Based upon homology, AC222-1 proteins and each homologous protein or peptide may share at least some activity.
Clone" ,143_1"
A polynucleotide of the present invention has been identified as clone "AJ143_1". AJ143-1 was isolated from a human adult testes cDNA library using methods which are selective for cDNAs encoding secreted proteins (see U.S.
Pat. No.
5,536,637), or was identified as encoding a secreted or transmembrane protein on the basis of computer analysis of the amino acid sequence of the encoded protein.
is a full-length clone, including the entire coding sequence of a secreted protein (also referred to herein as "AJ143l1 protein").
The nucleotide sequence of AJ143_1 as presently determined is reported in SEQ
ID N0:5. What applicants presently believe to be the proper reading frame and the predicted amino acid sequence of the AJ143_1 protein corresponding to the foregoing nucleotide sequence is reported in SEQ ID N0:6. Amino acids 2 to 14 are a predicted leader/signal sequence, with the predicted mature amino acid sequence beginning at amino acid 15, or are a transmembrane domain.
The EcoRI/NotI restriction fragment obtainable from the deposit containing clone AJ143_1 should be approximately 1000 bp.
The nucleotide sequence disclosed herein for AJ143_1 was searched against the GenBank and GeneSeq nucleotide sequence databases using BLASTN/BLASTX and FASTA search protocols. AJ143_1 demonstrated at least some homology with sequences identified as T19431 (d08002s Homo sapiens cDNA clone d08002 5' end) and 71997 (H. sapiens partial cDNA sequence; clone c-OSc07); it may also show some similarity to phosphoenolpyruvate phosphomutase. Based upon homology, AJ143-1 proteins and each homologous protein or peptide may share at least some activity.
done J 168 4"
A polynucleotide of the present invention has been identified as clone "AJ168 4". AJ168 4 was isolated from a human adult testes cDNA library using methods which are selective for cDNAs encoding secreted proteins (see U.S.
Pat. No.
5,536,637), or was identified as encoding a secreted or transmembrane protein on the basis of computer analysis of the amino acid sequence of the encoded protein.
is a full-length clone, including the entire coding sequence of a secreted protein (also referred to herein as "AJ168 4 protein").
The nucleotide sequence of AJ168 4 as presently determined is reported in SEQ
ID N0:7. What applicants presently believe to be the proper reading frame and the predicted amino acid sequence of the AJ168 4 protein corresponding to the foregoing nucleotide sequence is reported in SEQ ID N0:8.
The EcoRI/NotI restriction fragment obtainable from the deposit containing clone AJ168 4 should be approximately 700 bp.
The nucleotide sequence disclosed herein for AJ168 4 was searched against the GenBank and GeneSeq nucleotide sequence databases using BLASTN/BLASTX and FASTA search protocols. AJ168 4 demonstrated at least some homology with sequences identified as T65223 (yc79c02.s1 Homo Sapiens cDNA clone 22106 3').
Based upon homology, AJ168 4 proteins and each homologous protein or peptide may share at least some activity. The TopPredII computer program predicts a potential transmembrane domain within the AJ168 4 protein sequence (SEQ ID N0:8).
Clone "AK684 1"
A polynucleotide of the present invention has been identified as clone "AK684 1". AK684 1 was isolated from a human fetal kidney cDNA library using methods which are selective for cDNAs encoding secreted proteins (see U.S.
Pat. No.
5,536,637), or was identified as encoding a secreted or transmembrane protein on the basis of computer analysis of the amino acid sequence of the encoded protein.
AK684_1 is a full-length clone, including the entire coding sequence of a secreted protein (also referred to herein as "AK684_1 protein") The nucleotide sequence of AK684_1 as presently determined is reported in SEQ
ID N0:9. What applicants presently believe to be the proper reading frame and the predicted amino acid sequence of the AK684 1 protein corresponding to the foregoing nucleotide sequence is reported in SEQ ID NO:10.
The EcoRI/NotI restriction fragment obtainable from the deposit containing clone AK684 1 should be approximately 1000 bp.
The nucleotide sequence disclosed herein for AK684-1 was searched against the GenBank and GeneSeq nucleotide sequence databases using BLASTN/BLASTX and FASTA search protocols. AK684_1 demonstrated at least some homology with sequences identified as AA226405 (nc20cO5.r1 NCI CGAP Prl Homo sapiens cDNA
clone 2817), 615531 (human STS SHGC-17023), and T68858 (yc30d08.s1 Homo sapiens cDNA clone 82191 3' similar to contains MSR1 repetitive element). Based upon homology, AK684_1 proteins and each homologous protein or peptide may share at least some activity. The TopPredII computer program predicts a potential transmembrane domain within the AK684_i protein sequence centered around amino acid 20 of SEQ ID N0:10.
Clone "AS209 1"
A polynucleotide of the present invention has been identified as clone "AS209_1". AS209-1 was isolated from a human fetal brain cDNA library using methods which are selective for cDNAs encoding secreted proteins (see U.S.
Pat. No.
5,536,637), or was identified as encoding a secreted or transmembrane protein on the basis of computer analysis of the amino acid sequence of the encoded protein.
AS209_1 is a full-length clone, including the entire coding sequence of a secreted protein (also referred to herein as "AS209-1 protein").
The nucleotide sequence of AS209-1 as presently determined is reported in SEQ
ID N0:11. What applicants presently believe to be the proper reading frame and the predicted amino acid sequence of the AS209_1 protein corresponding to the foregoing nucleotide sequence is reported in SEQ ID N0:12. Amino acids 32 to 44 are a predicted leader/signal sequence, with the predicted mature amino acid sequence beginning at amino acid 45, or are a transmembrane domain.
The EcoRI/Notl restriction fragment obtainable from the deposit containing clone AS209_1 should be approximately 2882 bp.
The nucleotide sequence disclosed herein for AS209_1 was searched against the GenBank and GeneSeq nucleotide sequence databases using BLASTN/BLASTX and FASTA search protocols. AS209_1 demonstrated at least some homology with sequences identified as AA055217 (zf17h02.s1 Soares fetal heart NbHHI9W Homo Sapiens cDNA clone 377235 3') and H29533 (ym60h1 l.rl Homo sapiens cDNA clone 52955 5' similar to SP:A60164 534329; PLATELET MEMBRANE GLYCOPROTEIN
V PRECURSOR). The predicted amino acid sequence disclosed herein for AS209-1 was searched against the GenPept and GeneSeq amino acid sequence databases using the BLASTX search protocol. The predicted AS209-1 protein demonstrated at least some WO 99/20644 PCT/US98l22034 identity with sequences identified as D63875 (ORF [Homo Sapiens]) and X53959 (slit protein [Drosophila melanogaster]). Based upon homology, AS209-1 proteins and each homologous protein or peptide may share at least some activity. The TopPredII
computer program predicts four potential transmembrane domains within the protein sequence, centered around amino acids 32, 387, 449, and 538 of SEQ ID
N0:12.
Clone "AX56 28"
A polynucleotide of the present invention has been identified as clone "AX56 28". AX56 28 was isolated from a human adult testes cDNA library using methods which are selective for cDNAs encoding secreted proteins (see U.S.
Pat. No.
5,536,637), or was identified as encoding a secreted or transmembrane protein on the basis of computer analysis of the amino acid sequence of the encoded protein.
is a full-length clone, including the entire coding sequence of a secreted protein (also referred to herein as "AX56 28 protein").
The nucleotide sequence of AX56 28 as presently determined is reported in SEQ
ID N0:13. What applicants presently believe to be the proper reading frame and the predicted amino acid sequence of the AX56 28 protein corresponding to the foregoing nucleotide sequence is reported in SEQ ID N0:14.
The EcoRI/NotI restriction fragment obtainable from the deposit containing clone AX56 28 should be approximately 4500 bp.
The nucleotide sequence disclosed herein for AX56 28 was searched against the GenBank and GeneSeq nucleotide sequence databases using BLASTN/BLASTX and FASTA search protocols. AX56 28 demonstrated at least some homology with sequences identified as M20816 (Chicken cytotactin mRNA, partial cds, clone pEC803 [Gallus gallus]), N67571 (yz42a06.s1 Homo Sapiens cDNA clone 285682 3'), and (e05023t Testis 1 Homo sapiens cDNA clone e05023 5' end). The predicted amino acid sequence disclosed herein for AX56 28 was searched against the GenPept and GeneSeq amino acid sequence databases using the BLASTX search protocol. The predicted AX56 28 protein demonstrated at least some identity with sequences identified as L12018 (putative protein [Caenorhabditis elegans]). Based upon homology, AX56 proteins and each homologous protein or peptide may share at least some activity. The TopPredII computer program predicts a potential transmembrane domain within the AX56 28 protein sequence (SEQ ID N0:14).
Clone "AX92 3"
A polynucleotide of the present invention has been identified as clone "AX92 3".
AX92 3 was isolated from a human adult testes cDNA library using methods which are selective for cDNAs encoding secreted proteins (see U.S. Pat. No. 5,536,637, or was identified as encoding a secreted or transmembrane protein on the basis of computer analysis of the amino acid sequence of the encoded protein. AX92 3 is a full-length clone, including the entire coding sequence of a secreted protein {also referred to herein as "AX92 3 protein").
The nucleotide sequence of AX92 3 as presently determined is reported in SEQ
TD N0:15. What applicants presently believe to be the proper reading frame and the predicted amino acid sequence of the AX92 3 protein corresponding to the foregoing 1 S nucleotide sequence is reported in SEQ ID N0:16. Amino acids 13 to 25 are a predicted leader/signal sequence, with the predicted mature amino acid sequence beginning at amino acid 26, or are a transmembrane domain.
The EcoRI/NotI restriction fragment obtainable from the deposit containing clone AX92 3 should be approximately 1800 bp.
The nucleotide sequence disclosed herein for AX92 3 was searched against the GenBank and GeneSeq nucleotide sequence databases using BLASTN/BLASTX and FASTA search protocols. AX92 3 demonstrated at least some homology with sequences identified as AA003356 (mg49gOl.rl Soares mouse embryo NbME13.5 14.5 Mus musculus cDNA clone 427152 S'), AA036247 (mi74a03.r1 Soares mouse p3NMF19.5 Mus musculus cDNA clone 472300 5'), F19608 (H.sapiens mitochondria) EST sequence (009-X4-35) from skeletal muscle), M10546 (Human mitochondria) DNA, fragment M1, encoding transfer ltNAs, cytochrome oxidase I, and 2 UltFs [Mitochondrion Homo sapiens]), and U46493 (Cloning vector pFlp recombinase gene, complete cds).
Based upon homology, AX92 3 proteins and each homologous protein or peptide may share at least some activity. The TopPredII computer program predicts four potential transmembrane domains within the AX92 3 protein sequence, centered around amino acids 20, 183, 269, and 295 of SEQ ID N0:16.
Clone "BF245 1"
A polynucleotide of the present invention has been identified as clone "BF245-1". BF245-1 was isolated from a human fetal brain cDNA library using methods which are selective for cDNAs encoding secreted proteins (see U.S.
Pat. No.
5,536,637), or was identified as encoding a secreted or transmembrane protein on the basis of computer analysis of the amino acid sequence of the encoded protein.
is a full-length clone, including the entire coding sequence of a secreted protein (also referred to herein as "BF245_1 protein").
The nucleotide sequence of the 5' portion of BF245~1 as presently determined is reported in SEQ ID N0:17. An additional internal nucleotide sequence from BF245_1 as presently determined is reported in SEQ ID N0:18. What applicants believe is the proper reading frame and the predicted amino acid sequence encoded by such internal sequence is reported in SEQ ID N0:19. Amino acids 18 to 30 of SEQ ID
N0:19 are a predicted leader/signal sequence, with the predicted mature amino acid sequence beginning at amino acid 31, or are a transmembrane domain. Additional nucleotide sequence from the 3' portion of BF245-1, including the polyA tail, is reported in SEQ ID N0:20.
The EcoRI/NotI restriction fragment obtainable from the deposit containing clone BF245_1 should be approximately 2300 bp.
The nucleotide sequence disclosed herein for BF245-1 was searched against the GenBank and GeneSeq nucleotide sequence databases using BLASTN/BLASTX and FASTA search protocols. BF245_1 demonstrated at least some homology with sequences identified as AA001743 (zh86h02.s1 Soares fetal liver spleen 1NFLS
S1 Homo Sapiens cDNA clone 428211 3' similar to SW YY02 HUMAN P42285 HYPOTHETICAL
MYELOID CELL LINE PROTEIN 2}, D29641 (Human mRNA for KIAA0052 gene, partial cds), Q92779 (Human thymopoietin continuous gene fragment), and 839256 (yc91h04.s1 Homo sapiens cDNA clone 23509 3'). The predicted amino acid sequence disclosed herein for BF245_1 was searched against the GenPept and GeneSeq amino acid sequence databases using the BLASTX search protocol. The predicted BF245_1 protein demonstrated at least some identity with sequences identified as 270271 (W08D2.7 [Caenorhabditis elegans]). Based upon homology, BF245-1 proteins and each homologous protein or peptide may share at least some activity.
Clone "BG33 7"
A polynucleotide of the present invention has been identified as clone "BG33 7".
BG33 7 was isolated from a human adult brain cDNA library using methods which are selective for cDNAs encoding secreted proteins (see U.S. Pat. No. 5,536,637), or was identified as encoding a secreted or transmembrane protein on the basis of computer analysis of the amino acid sequence of the encoded protein. BG33 7 is a full-length clone, including the entire coding sequence of a secreted protein (also referred to herein as "BG33 7 protein").
The nucleotide sequence of BG33 7 as presently determined is reported in SEQ
ID N0:21. What applicants presently believe to be the proper reading frame and the predicted amino acid sequence of the BG33 7 protein corresponding to the foregoing nucleotide sequence is reported in SEQ ID N0:22.
The EcoRI/NotI restriction fragment obtainable from the deposit containing clone BG33 7 should be approximately 900 bp.
The nucleotide sequence disclosed herein for BG33 7 was searched against the GenBank and GeneSeq nucleotide sequence databases using BLASTN/BLASTX and FASTA search protocols. BG33 7 demonstrated at least some homology with sequences identified as AA033818 (z~2c08.s1 Soares fetal heart NbHHI9W Homo Sapiens cDNA clone 375758 3') and AA462657 (vg68e04.r1 Soares mouse NbMH Mus musculus cDNA clone 871134 5'). Based upon homology, BG33 7 proteins and each homologous protein or peptide may share at least some activity.
Fig. 2 is an autoradiograph evidencing expression in COS cells of clone BG33 7 of the present invention.
Clone, "BM46 10"
A polynucleotide of the present invention has been identified as clone "BM46_10". BM46-10 was isolated from a human adult muscle cDNA library using methods which are selective for cDNAs encoding secreted proteins (see U.S.
Pat. No.
5,536,637), or was identified as encoding a secreted or transmembrane protein on the basis of computer analysis of the amino acid sequence of the encoded protein.
is a full-length clone, including the entire coding sequence of a secreted protein (also referred to herein as "BM46_10 protein").
The nucleotide sequence of BM46 10 as presently determined is reported in SEQ
ID N0:23. What applicants presently believe to be the proper reading frame and the predicted amino acid sequence of the BM46 10 protein corresponding to the foregoing nucleotide sequence is reported in SEQ ID N0:24.
The EcoRI/NotI restriction fragment obtainable from the deposit containing clone BM46-10 should be approximately 3600 bp.
The nucleotide sequence disclosed herein for BM46 10 was searched against the GenBank and GeneSeq nucleotide sequence databases using BLASTN/BLASTX and FASTA search protocols. BM46 10 demonstrated at least some homology with sequences identified as F19321 (H.sapiens EST sequence 008-X (391 nt)), N79027 (zb43c09.s1 Homo sapiens cDNA clone 306352 3'), U46493 (Cloning vector pFlp recombinase gene, complete cds), and W74198 (zd74dO5.s1 Soares fetal heart NbHHI9W
Homo Sapiens cDNA clone 346377 3'). Based upon homology, BM46-10 proteins and each homologous protein or peptide may share at least some activity.
Clone "J317-1"
A polynucleotide of the present invention has been identified as clone "J317-1".
J317_1 was isolated from a human peripheral blood mononuclear cells (treated with phytohemagglutinin and phorbol myristate acetate and mixed lymphocyte reaction) cDNA library using methods which are selective for cDNAs encoding secreted proteins (see U.S. Pat. No. 5,536,637), or was identified as encoding a secreted or transmembrane protein on the basis of computer analysis of the amino acid sequence of the encoded protein. J317_1 is a full-length clone, including the entire coding sequence of a secreted protein (also referred to herein as "J317 1 protein").
The nucleotide sequence of J317_1 as presently determined is reported in SEQ
ID N0:25. What applicants presently believe to be the proper reading frame and the predicted amino acid sequence of the J317-1 protein corresponding to the foregoing nucleotide sequence is reported in SEQ ID N0:26. Amino acids 19 to 31 are a predicted leader/signal sequence, with the predicted mature amino acid sequence beginning at amino acid 32, or are a transmembrane domain.
The EcoRI/NotI restriction fragment obtainable from the deposit containing clone J317_1 should be approximately 1300 bp.
The nucleotide sequence disclosed herein for J317 1 was searched against the GenBank and GeneSeq nucleotide sequence databases using BLASTN/BLASTX and FASTA search protocols. J317_1 demonstrated at least some homology with sequences identified as N21491 (yx58fb9.s1 Homo sapiens cDNA clone 265961 3'), 839024 (yd08h03.s1 Homo sapiens cDNA clone 25214 3'), T93953 (ye06h06.r1 Homo sapiens cDNA clone 116987 5' similar to contains HGR repetitive element), and 225379 (H.
sapiens partial cDNA sequence; clone C6F07; version l; strand(+), single read). Based upon homology, J317_1 proteins and each homologous protein or peptide may share at least some activity.
Clone "0289 1"
A polynucleotide of the present invention has been identified as clone "0289-1".
0289 1 was isolated from a human adult blood (dendritic cells) cDNA library using methods which are selective for cDNAs encoding secreted proteins (see U.S.
Pat. No.
5,536,637), or was identified as encoding a secreted or transmembrane protein on the basis of computer analysis of the amino acid sequence of the encoded protein.
is a full-length clone, including the entire coding sequence of a secreted protein (also referred to herein as "0289_1 protein") The nucleotide sequence of 0289_1 as presently determined is reported in SEQ
ID N0:27. What applicants presently believe to be the proper reading frame and the predicted amino acid sequence of the 0289-1 protein ,corresponding to the foregoing nucleotide sequence is reported in SEQ ID N0:28.
The EcoRI/Notl restriction fragment obtainable from the deposit containing clone 0289-1 should be approximately 700 bp.
The nucleotide sequence disclosed herein for 0289_1 was searched against the GenBank and GeneSeq nucleotide sequence databases using BLASTN/BLASTX and FASTA search protocols. 0289_1 demonstrated at least some homology with sequences identified as H59298 (yrll4c07.r1 Homo Sapiens cDNA clone 204300 5' similar to contains MER22 repetitive element). Based upon homology, 0289_1 proteins and each homologous S protein or peptide may share at least some activity. The TopPredII computer program predicts a large potential transmembrane domain within the 0289_1 protein sequence, centered around amino acid 35 of SEQ ID N0:28. The nucleotide/amino acid sequence of 0289_1 indicates that it may contain MER transposon repetitive elements.
Deposit of Clones Clones AC41 1, AC222_1, AJ143_1, AJ168 4, AK684_1, AS209_l, AX92_3, BF245_1, BG33_7, J317 1 and 0289_1, along with AX56_8 and BM46 3 (additional isolates of clones AX56_28 and BM46_10, respectively), were deposited on July 9, 1996 with the American Type Culture Collection as an original deposit under the Budapest Treaty and were given the accession number ATCC 98101, from which each clone comprising a particular polynucleotide is obtainable. AX56_28 was deposited on September 26, 1996 with the American Type Culture Collection as an original deposit under the Budapest Treaty and was given the accession number ATCC 98180;
BM46_10 was deposited on August 23, 1996 with the American Type Culture Collection as an original deposit under the Budapest Treaty and was given the accession number ATCC
98152. All restrictions on the availability to the public of the deposited material will be irrevocably removed upon the granting of the patent, except for the requirements specified in 37 C.F.R. ~ 1.808(b).
Each clone has been transfected into separate bacterial cells (E. coli) in this composite deposit. Each clone can be removed from the vector in which it was deposited by performing an EcoRI/NotI digestion (5' site, EcoRI; 3' site, NotI) to produce the appropriate fragment for such clone. Each clone was deposited in either the pED6 or pNOTs vector depicted in Fig.1A or Fig.1B, respectively. The pED6dpc2 vector ("pED6") was derived from pED6dpc1 by insertion of a new polylinker to facilitate cDNA
cloning (Kaufman et aL, 1991, Nucleic Acids Res. 19: 4485-4490); the pNOTs vector was derived from RECTIFIED SHEET (RULE 91) pMT2 (Kaufman et al., 1989, Mol. Cell. Biol. 9: 946-958) by deletion of the DHFR
sequences, insertion of a new polylinker, and insertion of the M13 origin of replication in the CIaI site. In some instances, the deposited clone can become "flipped"
(i.e., in the reverse orientation) in the deposited isolate. In such instances, the cDNA
insert can still be isolated by digestion with EcoRI and NotI. However, NotI will then produce the 5' site and EcoRI will produce the 3' site for placement of the cDNA in proper orientation for expression in a suitable vector. The cDNA may also be expressed from the vectors in which they were deposited.
Bacterial cells containing a particular clone can be obtained from the composite deposit as follows:
An oligonucleotide probe or probes should be designed to the sequence that is known for that particular clone. This sequence can be derived from the sequences provided herein, or from a combination of those sequences. The sequence of the oligonucleotide probe that was used to isolate each full-length clone is identified below, and should be most reliable in isolating the clone of interest.
Clone Probe Seguence AC41 1 SEQ ID N0:29 AC222 1 SEQ ID N0:30 AJ 143_ 1 SEQ ID N0:31 AJ 168 4 SEQ ID N0:32 AK684 1 SEQ ID N0:33 AS209 1 SEQ ID N0:34 AX56 28 SEQ ID N0:35 AX92 3 SEQ ID N0:36 BF245 1 SEQ ID N0:37 BG33 7 SEQ ID N0:38 BM46 10 SEQ ID N0:39 J317_i SEQ ID N0:40 0289 1 SEQ ID N0:41 In the sequences listed above which include an N at position 2, that position is occupied in preferred probes/primers by a biotinylated phosphoaramidite residue rather than a nucleotide (such as , for example, that produced by use of biotin phosphoramidite (1-dirnethoxytrityloxy-2-(N-biotinyl-4-aminobutyl)-propyl-3-O-(2-cyanoethyl)-(N,N-diisopropyl)-phosphoramadite) (Glen Research, cat. no. 10-1953)).
The design of the oligonucleotide probe should preferably follow these parameters:
(a) It should be designed to an area of the sequence which has the fewest ambiguous bases ("N~S~~), if any;
(b) It should be designed to have a Tm of approx. 80 ° C (assuming 2° for each A or T and 4 degrees for each G or C).
The oligonucleotide should preferably be labeled with g-'ZP ATP (specific activity 6000 Ci/mmole) and T4 polynucleotide kinase using commonly employed techniques for labeling oligonucleotides. Other labeling techniques can also be used.
Unincorporated label should preferably be removed by gel filtration chromatography or other established methods. The amount of radioactivity incorporated into the probe should be quantitated by measurement in a scintillation counter. Preferably, specific activity of the resulting probe should be approximately 4e+6 dpm/pmole.
The bacterial culture containing the pool of full-length clones should preferably be thawed and 100 ~.rl of the stock used to inoculate a sterile culture flask containing 25 ml of sterile L-broth containing ampicillin at 100 ~cg/ml. The culture should preferably be grown to saturation at 37°C, and the saturated culture should preferably be diluted in fresh L-broth. Aliquots of these dilutions should preferably be plated to determine the dilution and volume which will yield approximately 5000 distinct and well-separated colonies on solid bacteriological media containing L-broth containing ampicillin at 100 ~,g/ml and agar at 1.5% in a 150 mm petri dish when grown overnight at 37°C. Other known methods of obtaining distinct, well-separated colonies can also be employed.
Standard colony hybridization procedures should then be used to transfer the colonies to nitrocellulose filters and lyse, denature and bake them.
The filter is then preferably incubated at 65°C for 1 hour with gentle agitation in 6X SSC (20X stock is 175.3 g NaCI/liter, 88.2 g Na citrate/liter, adjusted to pH 7.0 with NaOI~ containing 0.5% SDS, 100 ~g/ml of yeast RNA, and 10 mM EDTA
(approximately 10 mL per 150 mm filter). Preferably, the probe is then added to the hybridization mix at a concentration greater than or equal to le+6 dpm/mL. The filter is then preferably incubated at 65°C with gentle agitation overnight.
The filter is then preferably washed in 500 mL of 2X SSC/0.5% SDS at room temperature without agitation, preferably followed by 500 mL of ZX SSC/0.1% SDS at room temperature with gentle shaking for 15 minutes. A third wash with O.1X SSC/0.5% SDS at 65°C for 30 minutes to 1 hour is optional. The filter is then preferably dried and subjected to autoradiography for sufficient time to visualize the positives on the X-ray film. Other known hybridization methods can also be employed.
The positive colonies are picked, grown in culture, and plasmid DNA isolated using standard procedures. The clones can then be verified by restriction analysis, hybridization analysis, or DNA sequencing.
Fragments of the proteins of the present invention which are capable of exhibiting biological activity are also encompassed by the present invention.
Fragments of the protein may be in linear form or they may be cyclized using known methods, for example, as described in H.U. Saragovi, et al., Bio/Technology ~Q, 773-778 (1992) and in R.S. McDowell, et al., J. Amer. Chem. Soc. ~, 9245-9253 (1992), both of which are incorporated herein by reference. Such fragments may be fused to carrier molecules such as immunoglobulins for many purposes, including increasing the valency of protein binding sites. For example,. fragments of the protein may be fused through "linker"
sequences to the Fc portion of an immunoglobulin. For a bivalent form of the protein, such a fusion could be to the Fc portion of an IgG molecule. Other immunoglobulin isotypes may also be used to generate such fusions. For example, a protein -IgM fusion would generate a decavalent form of the protein of the invention.
The present invention also provides both full-length and mature forms of the disclosed proteins. The full-length form of the such proteins is identified in the sequence listing by translation of the nucleotide sequence of each disclosed clone. The mature form of such protein may be obtained by expression of the disclosed full-length polynucleotide (preferably those deposited with ATCC) in a suitable mammalian cell or other host cell. The sequence of the mature form of the protein may also be determinable from the amino acid sequence of the full-length form.
The present invention also provides genes corresponding to the cDNA sequences disclosed herein. "Corresponding genes" are the regions of the genome that are transcribed to produce the mRNAs from which the cDNA sequences are derived and any contiguous regions of the genome necessary for the regulated expression of such genes, including but not limited to coding sequences, 5' and 3' untranslated regions, alternatively spliced exons, introns, promoters, enhancers, and silencer or suppressor elements. The corresponding genes can be isolated in accordance with known methods using the sequence information disclosed herein. Such methods include the preparation of probes or primers from the disclosed sequence information for identification and/or amplification of genes in appropriate genomic libraries or other sources of genomic materials.
Where the protein of the present invention is membrane-bound (e.g., is a receptor), the present invention also provides for soluble forms of such protein. In such forms part or all of the intracellular and transmembrane domains of the protein are deleted such that the protein is fully secreted from the cell in which it is expressed. The intracellular and transmembrane domains of proteins of the invention can be identified in accordance with known techniques for determination of such domains from sequence information.
Proteins and protein fragments of the present invention include proteins with amino acid sequence lengths that are at Least 25%(more preferably at least 50%, and most preferably at least 75%) of the Length of a disclosed protein and have at least 60%
sequence identity (more preferably, at least 75% identity; most preferably at least 90%
or 95% identity) with that disclosed protein, where sequence identity is determined by comparing the amino acid sequences of the proteins when aligned so as to maximize overlap and identity while minimizing sequence gaps. Also included in the present invention are proteins and protein fragments that contain a segment preferably comprising 8 or more (more preferably 20 or more, most preferably 30 or more) contiguous amino acids that shares at least 75% sequence identity (more preferably, at least 85% identity; most preferably at least 95% identity) with any such segment of any of the disclosed proteins.
Species homologs of the disclosed polynucleotides and proteins are also provided by the present invention. Species homologs may be isolated and identified by making suitable probes or primers from the sequences provided herein and screening a suitable nucleic acid source from the desired species.
The invention also encompasses allelic variants of the disclosed polynucleotides or proteins; that is, naturally-occurring alternative forms of the isolated polynucleotide which also encode proteins which are identical, homologous or related to that encoded by the polynucleotides .
The invention also includes polynucleotides with sequences complementary to those of the polynucleotides disclosed herein.
The present invention also includes polynucleotides capable of hybridizing under reduced stringency conditions, more preferably stringent conditions, and most preferably highly stringent conditions, to polynucleotides described herein.
Examples of stringency conditions are shown in the table below: highly stringent conditions are those that are at least as stringent as, for example, conditions A-F;
stringent conditions are at least as stringent as, for example, conditions G-L; and reduced stringency conditions are at least as stringent as, for example, conditions M-R.
StringencyPolynudeotideHybridHybridization TemperatureWash ConditionHybrid Lengthand Temperature ~P)s Buffer' and Buffer' A DNA:DNA z 50 65 C; lxSSC -or- 65 C; 0.3xSSC
42C; lxSSC> 509'o formamide B DNA:DNA < 50 T$*; lxSSC TB*; lxSSC
C DNA:RNA z 50 67C; IxSSC-or- 67C; 0.3xSSC
45C; lxSSC, 5096 formamide D DNA:RNA < 50 TD*; lxSSC TD*; lxSSC
E RNA:RNA 2 50 70C; lxSSC-or- 70C;0.3xSSC
50C; lxSSC, 5090 formamide F RNA:RNA < 50 TF*; lxSSC TP"; lxSSC
G DNA:DNA 2 50 65C;4xSSC-or- 65C; lxSSC
42C; 4xSSC, 5096 formamide 1 O H DNA:DNA < 50 TH*~ 4xSSC TH"; 4xSSC
I DNA:RNA z 50 67C; 4xSSC -or- 67C; IxSSC
45C; 4xSSC, 50% formamide J DNA:RNA < 50 T~'"; 4xSSC TJ*; 4xSSC
IC RNA:RNA 2 50 70C; 4xSSC -or- 67C; lxSSC
50C; 4xSSC, 5096 formamide L RNA:RN < 50 T, "; 2xSSC T, *; 2xSSC
A
1$ M DNA:DNA Z 50 50C;4xSSC-or- 50C;2xSSC
40C; 6xSSC, 50% formamide N DNA:DNA < 50 TN*; 6xSSC TN*; 6xSSC
O DNA:RNA s 50 55C; 4xSSC-or- 55C; 2xSSC
42C; 6xSSC, 5096 formamide p DNA:RNA < 50 TP*; 6xSSC T,,*; 6xSSC
Q RNA:RNA z 50 60C; 4xSSC -or- 60C; 2xSSC
45C; 6xSSC, 509'o formamide 20 R RNA:RNA < 50 TR*; 4xSSC TR"; 4xSSC
;: The hybrid length is that anticipated for the hybridized regions) of the hybridizing polynucleotides. When hybridizing a polynucleotide to a target polynucleotide of unknown sequence, the hybrid length is assumed to be that of the hybridizing polynudeotide. When polynucleotides of known sequence are hybridized, the hybrid length 25 can be determined by aligning the sequences of the polynucleotides and identifying the region or regions of optimal sequence complementarity.
': SSPE (IxSSPE is 0.15M NaCI, lOmM NaHiI'04, and 1.25mM EDTA, pH 7.4) can be substituted for SSC (lxSSC
is 0.15M NaCI and lSmM sodium ciuate) in the hybridization and wash buffers;
washes are performed for 15 minutes after hybridization is complete.
3O *TB - TR: The hybridization temperature for hybrids anticipated to be less than 50 base pairs in length should be 5 10°C less than the melting temperature (T"J of the hybrid, where Tm is determined according to the following equations. For hybrids less than 18 base pairs in length, Tm(°C) ~ 2(#
of A + T bases) + 4(# of G + C bases). For hybrids between 18 and 49 base pairs in length, Tm(°C) - 81.5 +
16.6(log,o[Na*~ + 0.41(%G+C) - (600/N), where N is the number of bases in the hybrid, and [Na*] is the concentration of sodium ions in the hybridization buffer 3S QNa*] for lxSSC - 0.165 M).
Additional examples of stringency conditions for polynucleotide hybridization are provided in Sambrook, J., E.F. Fritsch, and T. Maniatis, 1989, Molecular Cloning: A
Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, chapters 9 and 11, and Current Protocols in Molecular Biology, 1995, F.M.
Ausubel et al., eds., John Wiley & Sons, Inc., sections 2.10 and 6.3-6.4, incorporated herein by reference.
Preferably, each such hybridizing polynucleotide has a length that is at least 25%(more preferably at least 50%, and most preferably at least 75%) of the length of the polynucleotide of the present invention to which it hybridizes, and has at least 60%
sequence identity (more preferably, at least 75% identity; most preferably at least 90%
or 95% identity) with the polynucleotide of the present invention to which it hybridizes, where sequence identity is determined by comparing the sequences of the hybridizing polynucleotides when aligned so as to maximize overlap and identity while minimizing sequence gaps.
The isolated polynucleotide of the invention may be operably linked to an expression control sequence such as the pMT2 or pED expression vectors disclosed in Kaufman et al., Nucleic Acids Res. ,~, 4485-4490 (1991), in order to produce the protein recombinantly. Many suitable expression control sequences are known in the art.
General methods of expressing recombinant proteins are also known and are exemplified in R. Kaufman, Methods in Enzymology ~$5, 537-566 (1990). As defined herein "operably linked" means that the isolated polynucleotide of the invention and an expression control sequence are situated within a vector or cell in such a way that the protein is expressed by a host cell which has been transformed (transfected) with the ligated polynucleotide/expression control sequence.
A number of types of cells may act as suitable host cells for expression of the protein. Mammalian host cells include, for example, monkey COS cells, Chinese Hamster Ovary (CHO) cells, human kidney 293 cells, human epidermal A431 cells, human Co1o205 cells, 3T3 cells, CV-1 cells, other transformed primate cell lines, normal diploid cells, cell strains derived from its vitro culture of primary tissue, primary explants, HeLa cells, mouse L cells, BHK, HL-60, U937, HaK or Jurkat cells.
Alternatively, it may be possible to produce the protein in lower eukaryotes such as yeast or in prokaryotes such as bacteria. Potentially suitable yeast strains include Saccharomyces cerevisiae, Schizosaccharomyces pombe, Kluyveromyces strains, Candida, or any yeast strain capable of expressing heterologous proteins. Potentially suitable bacterial strains include Escherichia coli, Bacillus subtilis, Salmonella typhimurium, or any bacterial strain capable of expressing heterologous proteins. If the protein is made in yeast or bacteria, it may be necessary to modify the protein produced therein, for example by phosphorylation or glycosylation of the appropriate sites, in order to obtain the functional protein. Such covalent attachments may be accomplished using known chemical or enzymatic methods.
The protein may also be produced by operably linking the isolated polynucleotide of the invention to suitable control sequences in one or more insect expression vectors, and employing an insect expression system. Materials and methods for baculovirus/insect cell expression systems are commercially available in kit form from, e.g., Invitrogen, San Diego, California, U.S.A. (the MaxBac~ kit), and such methods are well known in the art, as described in Summers and Smith, Texas Avric.~~lrwral Fx~erimPnt Srarion ~~llersn No~ 1555 ~(1~, incorporated herein by reference. As used herein, an insect cell capable of expressing a polynucleotide of the present invention is "transformed."
The protein of the invention may be prepared by culturing transformed host cells under culture conditions suitable to express the recombinant protein.
The resulting expressed protein may then be purified from such culture (i.e., from culture medium or cell extracts) using known purification processes, such as gel filtration and ion exchange chromatography. The purification of the protein may also include an affinity column containing agents which will bind to the protein; one or more column steps over such affinity resins as concanavalin A-agarose, heparin-toyopearl~ or Cibacrom blue Sepharose~; one or more steps involving hydrophobic interaction chromatography using such resins as phenyl ether, butyl ether, or propyl ether; or immunoaffinity chromatography.
Alternatively, the protein of the invention may also be expressed in a form which will facilitate purification. For example, it may be expressed as a fusion protein, such as those of maltose binding protein (MBP), glutathione-S-transferase (GST) or thioredoxin (TRX). Kits for expression and purification of such fusion proteins are commercially available from New England BioLab (Beverly, MA), Pharmacia (Piscataway, N~ and InVitrogen, respectively. The protein can also be tagged with an epitope and subsequently purified by using a specific antibody directed to such epitope.
S One such epitope ("Flag") is commercially available from Kodak (New Haven, CT).
Finally, one or more reverse-phase high performance liquid chromatography (RP-HPLC) steps employing hydrophobic RP-HPLC media, e.g., silica gel having pendant methyl or other aliphatic groups, can be employed to further purify the protein. Some or all of the foregoing purification steps, in various combinations, can also be employed to provide a substantially homogeneous isolated recombinant protein.
The protein thus purified is substantially free of other mammalian proteins and is defined in accordance with the present invention as an "isolated protein."
The protein of the invention may also be expressed as a product of transgenic animals, e.g., as a component of the milk of transgenic cows, goats, pigs, or sheep which 1 S are characterized by somatic or germ cells containing a nucleotide sequence encoding the protein.
The protein may also be produced by known conventional chemical synthesis.
Methods for constructing the proteins of the present invention by synthetic means are known to those skilled in the art. The synthetically-constructed protein sequences, by virtue of sharing primary, secondary or tertiary structural and/or conformational characteristics with proteins may possess biological properties in common therewith, including protein activity. Thus, they may be employed as biologically active or immunological substitutes for natural, purified proteins in screening of therapeutic compounds and in immunological processes for the development of antibodies.
2S The proteins provided herein also include proteins characterized by amino acid sequences similar to those of purified proteins but into which modification are naturally provided or deliberately engineered. For example, modifications in the peptide or DNA
sequences can be made by those skilled in the art using known techniques.
Modifications of interest in the protein sequences may include the alteration, substitution, replacement, insertion or deletion of a selected amino acid residue in the coding sequence. For example, one or more of the cysteine residues may be deleted or ~rp 99/2p~ PCT/US98/Z2034 replaced with another amino acid to alter the conformation of the molecule.
Techniques for such alteration, substitution, replacement, insertion or deletion are well known to those skilled in the art (see, e.g., U.S. Patent No. 4,518,584).
Preferably, such alteration, substitution, replacement, insertion or deletion retains the desired activity of the protein.
Other fragments and derivatives of the sequences of proteins which would be expected to retain protein activity in whole or in part and may thus be useful for screening or other immunological methodologies may also be easily made by those skilled in the art given the disclosures herein. Such modifications are believed to be encompassed by the present invention.
i.JS S AND BIOLOGICAL ACTIVITY
The polynucleotides and proteins of the present invention are expected to exhibit one or more of the uses or biological activities (including those associated with assays 1 S cited herein) identified below. Uses or activities described for proteins of the present invention may be provided by administration or use of such proteins or by administration or use of polynucleotides encoding such proteins (such as, for example, in gene therapies or vectors suitable for introduction of DNA).
RPSParch Uses and Utilities The polynucleotides provided by the present invention can be used by the research community for various purposes. The polynucleotides can be used to express recombinant protein for analysis, characterization or therapeutic use; as markers for tissues in which the corresponding protein is preferentially expressed (either constitutively or at a particular stage of tissue differentiation or development or in disease states); as molecular weight markers on Southern gels; as chromosome markers or tags (when labeled) to identify chromosomes or to map related gene positions; to compare with endogenous DNA sequences in patients to identify potential genetic disorders; as probes to hybridize and thus discover novel, related DNA
sequences; as a source of information to derive PCR primers for genetic fingerprinting; as a probe to "subtract-out" known sequences in the process of discovering other novel polynucleotides; for selecting and making oligomers for attachment to a "gene chip" or other support, including for examination of expression patterns; to raise anti-protein antibodies using DNA immunization techniques; and as an antigen to raise anti-DNA
antibodies or elicit another immune response. Where the polynucleotide encodes a S protein which binds or potentially binds to another protein (such as, for example, in a receptor-ligand interaction), the polynucleotide can also be used in interaction trap assays (such as, for example, that described in Gyuris et al., Cell 75:791-803 (1993)) to identify polynucleotides encoding the other protein with which binding occurs or to identify inhibitors of the binding interaction.
The proteins provided by the present invention can similarly be used in assay to determine biological activity, including in a panel of multiple proteins for high-throughput screening; to raise antibodies or to elicit another immune response; as a reagent (including the labeled reagent) in assays designed to quantitatively determine levels of the protein (or its receptor) in biological fluids; as markers for tissues in which the corresponding protein is preferentially expressed (either constitutively or at a particular stage of tissue differentiation or development or in a disease state); and, of course, to isolate correlative receptors or ligands. Where the protein binds or potentially binds to another protein (such as, for example, in a receptor-ligand interaction), the protein can be used to identify the other protein with which binding occurs or to identify inhibitors of the binding interaction. Proteins involved in these binding interactions can also be used to screen for peptide or small molecule inhibitors or agonists of the binding interaction.
Any or all of these research utilities are capable of being developed into reagent grade or kit format for commercialization as research products.
Methods for performing the uses listed above are well known to those skilled in the art. References disclosing such methods include without limitation "Molecular Cloning: A Laboratory Manual", 2d ed., Cold Spring Harbor Laboratory Press, Sambrook, J., E.F. Fritsch and T. Maniatis eds., 1989, and "Methods in Enzymology:
Guide to Molecular Cloning Techniques", Academic Press, Berger, S.L. and A.R.
Kimmel eds., 1987.
Polynucleotides and proteins of the present invention can also be used as nutritional sources or supplements. Such uses include without limitation use as a protein or amino acid supplement, use as a carbon source, use as a nitrogen source and use as a source of carbohydrate. In such cases the protein or polynucleotide of the invention can be added to the feed of a particular organism or can be administered as a separate solid or liquid preparation, such as in the form of powder, pills, solutions, suspensions or capsules. In the case of microorganisms, the protein or polynucleotide of the invention can be added to the medium in or on which the microorganism is cultured.
A protein of the present invention may exhibit cytokine, cell proliferation (either inducing or inhibiting' or cell differentiation (either inducing or inhibiting) activity or may induce production of other cytokines in certain cell populations. Many protein factors discovered to date, including all known cytokines, have exhibited activity in one or more factor dependent cell proliferation assays, and hence the assays serve as a convenient confirmation of cytokine activity. The activity of a protein of the present invention is evidenced by any one of a number of routine factor dependent cell proliferation assays for cell lines including, without limitation, 32D, DA2, DA1G, T10, B9, B9/11, BaF3, MC9/G, M+ (preB M+), 2E8, RBS, DAl, 123, T1165, HT2, CTLL2, TF-1, Mo7e and CMK.
The activity of a protein of the invention may, among other means, be measured by the following methods:
Assays for T-cell or thymocyte proliferation include without limitation those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A.M.
Kruisbeek, D.H. Margulies, E.M. Shevach, W Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, In Vitro assays for Mouse Lymphocyte Function 3.1-3.19; Chapter 7, Immunologic studies in Humans); Takai et al., J. Immunol.
137:3494-3500, 1986; Bertagnolli et al., J. Immunol. 145:1706-1712, 1990;
Bertagnolli et al., Cellular Immunology 133:327-341, 1991; Bertagnolli, et al., J. Immunol.
149:3778-WO 99~Z0644 PCTNS98/22034 3783, 1992; Bowman et al., J. Immunol. 152: 1756-1761, 1994.
Assays for cytokine production and/or proliferation of spleen cells, lymph node cells or thymocytes include, without limitation, those described in:
Polyclonal T cell stimulation, Kruisbeek, A.M. and Shevach, E.M. In Current Protocols in Immunology.
J.E.e.a. Coligan eds. Vol 1 pp. 3.12.1-3.12.14, John Wiley and Sons, Toronto.
1994; and Measurement of mouse and human Interferon y, Schreiber, R.D. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 6.8.1-6.8.8, John Wiley and Sons, Toronto. 1994.
Assays for proliferation and differentiation of hematopoietic and lymphopoietic cells include, without limitation, those described in: Measurement of Human and Murine Interleukin 2 and Interleukin 4, Bottomly, K., Davis, L.S. and Lipsky, P.E. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 6.3.1-6.3.12, John Wiley and Sons, Toronto. 1991; deVries et al., J. Exp. Med. 173:1205-1211, 1991;
Moreau et al., Nature 336:690-692, 1988; Greenberger et al., Proc. Natl. Acad. Sci. U.S.A.
80:2931-2938, 1983; Measurement of mouse and human interleukin 6 - Nordan, R.
In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 6.6.1-6.6.5, John Wiley and Sons, Toronto. 1991; Smith et al., Proc. Natl. Acad. Sci. U.S.A. 83:1857-1861, 1986;
Measurement of human Interleukin 11 - Bennett, F., Giannotti, J., Clark, S.C.
and Turner, K. J. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 6.15.1 John Wiley and Sons, Toronto. 1991; Measurement of mouse and human Interleukin 9 - Ciarletta, A., Giannotti, J., Clark, S.C. and Turner, K.J. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 6.13.1, John Wiley and Sons, Toronto. 1991.
Assays for T-cell clone responses to antigens (which will identify, among others, proteins that affect APC-T cell interactions as well as direct T-cell effects by measuring proliferation and cytokine production) include, without limitation, those described in:
Current Protocols in Immunology, Ed by J. E. Coligan, A.M. Kruisbeek, D.H.
Margulies, E.M. Shevach, W Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, In Vitro assays for Mouse Lymphocyte Function;
Chapter 6, Cytokines and their cellular receptors; Chapter 7, Immunologic studies in Humans);
Weinberger et al., Proc. Natl. Acad. Sci. USA 77:6091-6095, 1980; Weinberger et al., Eur. J. Immun. 11:405-411, 1981; Takai et al., J. Immunol. 137:3494-3500, 1986; Takai et al., J. Immunol. 140:508-512, 1988.
~ m'n Ii~~~ing ~pl?r.~g A
A protein of the present invention may also exhibit immune stimulating or immune suppressing activity, including without limitation the activities for which assays are described herein. A protein may be useful in the treatment of various immune deficiencies and disorders (including severe combined immunodeficiency (SCID)), e.g., in regulating (up or down) growth and proliferation of T and/or B lymphocytes, as well as effecting the cytolytic activity of 1VK cells and other cell populations.
These immune deficiencies may be genetic or be caused by viral (e.g., HIV) as well as bacterial or fungal infections, or may result from autoimmune disorders. More specifically, infectious diseases causes by viral, bacterial, fungal or other infection may be treatable using a protein of the present invention, including infections by HIV, hepatitis viruses, herpesviruses, mycobacteria, Leishmania spp., malaria spp. and various fungal infections such as candidiasis. Of course, in this regard, a protein of the present invention may also be useful where a boost to the immune system generally may be desirable, i.e., in the treatment of cancer.
Autoimmune disorders which may be treated using a protein of the present invention include, for example, connective tissue disease, multiple sclerosis, systemic lupus erythematosus, rheumatoid arthritis, autoimmune pulmonary inflammation, Guillain-Barre syndrome, autoimmune thyroiditis, insulin dependent diabetes mellitis, myasthenia gravis, graft-versus-host disease and autoimmune inflammatory eye disease.
Such a protein of the present invention may also to be useful in the treatment of allergic reactions and conditions, such as asthma (particularly allergic asthma) or other respiratory problems. Other conditions, in which immune suppression is desired (including, for example, organ transplantation), may also be treatable using a protein of the present invention.
Using the proteins of the invention it may also be possible to immune responses, in a number of ways. Down regulation may be in the form of inhibiting or blocking an immune response already in progress or may involve preventing the induction of an immune response. The functions of activated T cells may be inhibited by suppressing T cell responses or by inducing specific tolerance in T cells, or both.
Immunosuppression of T cell responses is generally an active, non-antigen-specific, process which requires continuous exposure of the T cells to the suppressive agent.
Tolerance, which involves inducing non-responsiveness or anergy in T cells, is distinguishable from immunosuppression in that it is generally antigen-specific and persists after exposure to the tolerizing agent has ceased. Operationally, tolerance can be demonstrated by the lack of a T cell response upon reexposure to specific antigen in the absence of the tolerizing agent.
Down regulating or preventing one or more antigen functions (including without limitation B lymphocyte antigen functions (such as , for example, B7)), eg, preventing high level lymphokine synthesis by activated T cells, will be useful in situations of tissue, skin and organ transplantation and in graft-versus-host disease (GVHD). For example, blockage of T cell function should result in reduced tissue destruction in tissue transplantation. Typically, in tissue transplants, rejection of the transplant is initiated through its recognition as foreign by T cells, followed by an immune reaction that destroys the transplant. The administration of a molecule which inhibits or blocks interaction of a B7 lymphocyte antigen with its natural ligand(s) on immune cells (such as a soluble, monomeric form of a peptide having B7-2 activity alone or in conjunction with a monomeric form of a peptide having an activity of another B lymphocyte antigen (e.g , B7-1, B7-3) or blocking antibody), prior to transplantation can lead to the binding of the molecule to the natural ligand(s) on the immune cells without transmitting the corresponding costimulatory signal.
Blocking B lymphocyte antigen function in this matter prevents cytokine synthesis by immune cells, such as T cells, and thus acts as an immunosuppressant. Moreover, the lack of costimulation may also be sufficient to anergize the T cells, thereby inducing tolerance in a subject. Induction of long-term tolerance by B lymphocyte antigen-blocking reagents may avoid the necessity of repeated administration of these blocking reagents.
To achieve sufficient immunosuppression or tolerance in a subject, it may also be necessary to block the function of a combination of B lymphocyte antigens.
The efficacy of particular blocking reagents in preventing organ transplant rejection or GVHD can be assessed using animal models that are predictive of efficacy ~rp gg/20~4 PCT/US98/22034 in humans. Examples of appropriate systems which can be used include allogeneic cardiac grafts in rats and xenogeneic pancreatic islet cell grafts in mice, both of which have been used to examine the immunosuppressive effects of CTLA4Ig fusion proteins in vivo as described in Lenschow et al., Science 257:789-792 (1992) and Turka et al., Proc.
Natl. Acad. Sci USA, 89:11102-11105 (1992). In addition, marine models of GVHD
(see Paul ed., Fundamental Immunology, Raven Press, New York, 1989, pp. 846-847) can be used to determine the effect of blocking B lymphocyte antigen function in vivo on the development of that disease.
Blocking antigen function may also be therapeutically useful for treating autoimmune diseases. Many autoimmune disorders are the result of inappropriate activation of T cells that are reactive against self tissue and which promote the production of cytokines and autoantibodies involved in the pathology of the diseases.
Preventing the activation of autoreactive T cells may reduce or eliminate disease symptoms. Administration of reagents which block costimulation of T cells by disrupting receptor:ligand interactions of B lymphocyte antigens can be used to inhibit T cell activation and prevent production of autoantibodies or T cell-derived cytokines which may be involved in the disease process. Additionally, blocking reagents may induce antigen-specific tolerance of autoreactive T cells which could lead to long-term relief from the disease. The efficacy of blocking reagents in preventing or alleviating autoimmune disorders can be determined using a number of well-characterized animal models of human autoimmune diseases. Examples include marine experimental autoimmune encephalitis, systemic lupus erythmatosis in MRLllpr/lpr mice or NZB
hybrid mice, marine autoimmune collagen arthritis, diabetes mellitus in NOD
mice and BB rats, and marine experimental myasthenia gravis (see Paul ed., Fundamental Immunology, Raven Press, New York, 1989, pp. 840-856).
Upregulation of an antigen function (preferably a B lymphocyte antigen function), as a means of up regulating immune responses, may also be useful in therapy.
Upregulation of immune responses may be in the form of enhancing an existing immune response or eliciting an initial immune response. For example, enhancing an immune response through stimulating B lymphocyte antigen function may be useful in cases of viral infection. In addition, systemic viral diseases such as influenza, the common cold, and encephalitis might be alleviated by the administration of stimulatory forms of B lymphocyte antigens systemically.
Alternatively, anti-viral immune responses may be enhanced in an infected patient by removing T cells from the patient, costimulating the T cells in vitro with viral antigen-pulsed APCs either expressing a peptide of the present invention or together with a stimulatory form of a soluble peptide of the present invention and reintroducing the in vitro activated T cells into the patient. Another method of enhancing anti-viral immune responses would be to isolate infected cells from a patient, transfect them with a nucleic acid encoding a protein of the present invention as described herein such that the cells express all or a portion of the protein on their surface, and reintroduce the transfected cells into the patient. The infected cells would now be capable of delivering a costimulatory signal to, and thereby activate, T cells in vivo.
In another application, up regulation or enhancement of antigen function 1 S (preferably B lymphocyte antigen function) may be useful in the induction of tumor immunity. Tumor cells (e.g , sarcoma, melanoma, lymphoma, leukemia, neuroblastoma, carcinoma) transfected with a nucleic acid encoding at least one peptide of the present invention can be administered to a subject to overcome tumor-specific tolerance in the subject. If desired, the tumor cell can be transfected to express a combination of peptides. For example, tumor cells obtained from a patient can be transfected ex vivo with an expression vector directing the expression of a peptide having B7-2-like activity alone, or in conjunction with a peptide having B7-1-like activity and/or B7-3-like activity. The transfected tumor cells are returned to the patient to result in expression of the peptides on the surface of the transfected cell. Alternatively, gene therapy techniques can be used to target a tumor cell for transfection in vivo.
The presence of the peptide of the present invention having the activity of a B
lymphocyte antigens) on the surface of the tumor cell provides the necessary costimulation signal to T cells to induce a T cell mediated immune response against the transfected tumor cells. In addition, tumor cells which lack MHC class I or MHC class II molecules, or which fail to reexpress sufficient amounts of MHC class I or MHC class II molecules, can be transfected with nucleic acid encoding all or a portion of (e.g , a cytoplasmic-domain truncated portion) of an MHC class I a chain protein and ~i2 microglobulin protein or an MHC class II a chain protein and an MHC class II
(3 chain protein to thereby express MHC class I or MHC class II proteins on the cell surface.
Expression of the appropriate class I or class II MHC in conjunction with a peptide having the activity of a B lymphocyte antigen (e.g, B7-1, B7-2, B7-3) induces a T cell mediated immune response against the transfected tumor cell. Optionally, a gene encoding an antisense construct which blocks expression of an MHC class II
associated protein, such as the invariant chain, can also be cotransfected with a DNA
encoding a peptide having the activity of a B lymphocyte antigen to promote presentation of tumor associated antigens and induce tumor specific immunity. Thus, the induction of a T cell mediated immune response in a human subject may be sufficient to overcome tumor-specific tolerance in the subject.
The activity of a protein of the invention may, among other means, be measured by the following methods:
Suitable assays for thymocyte or splenocyte cytotoxicity include, without limitation, those described in: Current Protocols in Immunology, Ed by J. E.
Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, In Vitro assays for Mouse Lymphocyte Function 3.1-3.19; Chapter 7, Immunologic studies in Humans); Herrmann et al., Proc.
Natl. Acad. Sci. USA 78:2488-2492, 1981; Herrmann et al., J. Immunol. 128:1968-1974, 1982; Handa et al., J. Immunol. 135:1564-1572, 1985; Takai et al., J. Immunol.
137:3494-3500,1986; Takai et al., J. Immunol. 140:508-512, 1988; Herrmann et al., Proc.
Natl. Acad. Sci. USA 78:2488-2492,1981; Herrmann et al., J. Immunol. 128:1968-1974, 1982; Handa et al., J. Immunol. 135:1564-1572, 1985; Takai et al., J. Immunol.
137:3494-3500, 1986; Bowmanet al., J. Virology 61:1992-1998; Takai et al., J.
Immunol.
140:508-512, 1988; Bertagnolli et al., Cellular Immunology 133:327-341, 1991;
Brown et al., J. Immunol. 153:3079-3092, 1994.
Assays for T-cell-dependent immunoglobulin responses and isotype switching (which will identify, among others, proteins that modulate T-cell dependent antibody responses and that affect Th1/Th2 profiles) include, without limitation, those described in: Maliszewski, J. Immunol. 144:3028-3033, 1990; and Assays for B cell function: In vitro antibody production, Mond, J.J. and Brunswick, M. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 3.8.1-3.8.16, John Wiley and Sons, Toronto.
1994.
Mixed lymphocyte reaction (MLR) assays (which will identify, among others, proteins that generate predominantly Thl and CTL responses) include, without limitation, those described in: Current Protocols in Immunology, Ed by J. E.
Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, In Vitro assays for Mouse Lymphocyte Function 3.1-3.19; Chapter 7, Immunologic studies in Humans); Takai et al., J.
Immunol. 137:3494-3500, 1986; Takai et al., J. Immunol. 140:508-512, 1988;
Bertagnolli et al., J. Immunol. 149:3778-3783, 1992.
Dendritic cell-dependent assays (which will identify, among others, proteins expressed by dendritic cells that activate naive T-cells) include, without limitation, those described in: Guery et al., J. Immunol. 134:536-544, 1995; Inaba et al., Journal of Experimental Medicine 173:549-559, 1991; Macatonia et al., Journal of Immunology 154:5071-5079, 1995; Porgador et al., Journal of Experimental Medicine 182:255-260, 1995; Nair et al., Journal of Virology 67:4062-4069,1993; Huang et al., Science 264:961-965, 1994; Macatonia et al., Journal of Experimental Medicine 169:1255-1264, 1989;
Bhardwaj et al., Journal of Clinical Investigation 94:797-807, 1994; and Inaba et al., Journal of Experimental Medicine 172:631-640, 1990.
Assays for lymphocyte survival/apoptosis (which will identify, among others, proteins that prevent apoptosis after superantigen induction and proteins that regulate lymphocyte homeostasis) include, without limitation, those described in:
Darzynkiewicz et al., Cytometry 13:795-808, 1992; Gorczyca et al., Leukemia 7:659-670, 1993; Gorczyca et al., Cancer Research 53:1945-1951, 1993; Itoh et al., Cell 66:233-243, 1991; Zacharchuk, Journal of Immunology 145:4037-4045, 1990; Zamai et al., Cytometry 14:891-897, 1993; Gorczyca et al., International Journal of Oncology 1:639-648, 1992.
Assays for proteins that influence early steps of T-cell commitment and development include, without limitation, those described in: Antica et al., Blood 84:111-117, 1994; Fine et al., Cellular Immunology 155:111-122, 1994; Galy et al., Blood 85:27?0-2778, 1995; Toki et al., Proc. Nat. Acad Sci. USA 88:7548-7551, 1991.
Hemato~oiesis Re lating A
A protein of the present invention may be useful in regulation of hematopoiesis and, consequently, in the treatment of myeloid or lymphoid cell deficiencies.
Even marginal biological activity in support of colony forming cells or of factor-dependent cell lines indicates involvement in regulating hematopoiesis, e.g. in supporting the growth and proliferation of erythroid progenitor cells alone or in combination with other cytokines, thereby indicating utility, for example, in treating various anemias or for use in conjunction with irradiation/chemotherapy to stimulate the production of erythroid precursors and/or erythroid cells; in supporting the growth and proliferation of myeloid cells such as granulocytes and monocytes/macrophages (i.e., traditional CSF
activity) useful, for example, in conjunction with chemotherapy to prevent or treat consequent myelo-suppression; in supporting the growth and proliferation of megakaryocytes and consequently of platelets thereby allowing prevention or treatment of various platelet disorders such as thrombocytopenia, and generally for use in place of or complimentary to platelet transfusions; and/or in supporting the growth and proliferation of hematopoietic stem cells which are capable of maturing to any and all of the above-mentioned hematopoietic cells and therefore find therapeutic utility in various stem cell disorders (such as those usually treated with transplantation, including, without limitation, aplastic anemia and paroxysmal nocturnal hemoglobinuria), as well as in repopulating the stem cell compartment post irradiation/chemotherapy, either in-vivo or ex-vivo (i.e., in conjunction with bone marrow transplantation or with peripheral progenitor cell transplantation (homologous or heterologous)) as normal cells or genetically manipulated for gene therapy.
The activity of a protein of the invention may, among other means, be measured by the following methods:
Suitable assays for proliferation and differentiation of various hematopoietic lines are cited above.
Assays for embryonic stem cell differentiation (which will identify, among others, proteins that influence embryonic differentiation hematopoiesis) include, without limitation, those described in: Johansson et al. Cellular Biology 15:141-151, 1995; Keller et al., Molecular and Cellular Biology 13:473-486, 1993;
McClanahan et al., Blood 81:2903-2915, 1993.
Assays for stem cell survival and differentiation (which will identify, among S others, proteins that regulate lympho-hematopoiesis) include, without limitation, those described in: Methylcellulose colony forming assays, Freshney, M.G. In Culture of Hematopoietic Cells. R.I. Freshney, et al. eds. Vol pp. 265-268, Wiley-Liss, Inc., New York, NY. 1994; Hirayama et al., Proc. Natl. Acad. Sci. USA 89:5907-5911, 1992;
Primitive hematopoietic colony forming cells with high proliferative potential, McNiece, LK. and Briddell, R.A. In Culture of Hematopoietic Cells. R.I.
Freshney, et al.
eds. Vol pp. 23-39, Wiley-Liss, Inc., New York, NY. 1994; Neben et al., Experimental Hematology 22:353-359, 1994; Cobblestone area forming cell assay, Ploemacher, R.E.
In Culture of Hematopoietic Cells. R.I. Freshney, et al. eds. Vol pp. 1-21, Wiley-Liss, Inc.., New York, NY. 1994; Long term bone marrow cultures in the presence of stromal cells, Spooncer, E., Dexter, M. and Allen, T. In Culture of Hematopoietic Cells. R.I.
Freshney, et al. eds. Vol pp. 163-179, Wiley-Liss, Inc., New York, NY.1994;
Long term culture initiating cell assay, Sutherland, H.J. In Culture of Hematopoietic Cells. R.I.
Freshney, et al. eds. Vol pp. 139-162, Wiley-Liss, Inc., New York, NY. 1994.
Tissue Grgwth Activity A protein of the present invention also may have utility in compositions used for bone, cartilage, tendon, ligament and/or nerve tissue growth or regeneration, as well as for wound healing and tissue repair and replacement, and in the treatment of burns, incisions and ulcers.
A protein of the present invention, which induces cartilage and/or bone growth in circumstances where bone is not normally formed, has application in the healing of bone fractures and cartilage damage or defects in humans and other animals.
Such a preparation employing a protein of the invention may have prophylactic use in closed as well as open fracture reduction and also in the improved fixation of artificial joints.
De novo bone formation induced by an osteogenic agent contributes to the repair of congenital, trauma induced, or oncologic resection induced craniofacial defects, and also WO 99/20644 PCT/US9$/22034 is useful in cosmetic plastic surgery.
A protein of this invention may also be used in the treatment of periodontal disease, and in other tooth repair processes. Such agents may provide an environment to attract bone-forming cells, stimulate growth of bone-forming cells or induce differentiation of progenitors of bone-forming cells. A protein of the invention may also be useful in the treatment of osteoporosis or osteoarthritis, such as through stimulation of bone and/or cartilage repair or by blocking inflammation or processes of tissue destruction (collagenase activity, osteoclast activity, etc.) mediated by inflammatory processes.
Another category of tissue regeneration activity that may be attributable to the protein of the present invention is tendon/ligament formation. A protein of the present invention, which induces tendon/ligament-like tissue or other tissue formation in circumstances where such tissue is not normally formed, has application in the healing of tendon or ligament tears, deformities and other tendon or ligament defects in humans and other animals. Such a preparation employing a tendon/ligament-like tissue inducing protein may have prophylactic use in preventing damage to tendon or ligament tissue, as well as use in the improved fixation of tendon or ligament to bone or other tissues, and in repairing defects to tendon or ligament tissue. De novo tendon/ligament-like tissue formation induced by a composition of the present invention contributes to the repair of congenital, trauma induced, or other tendon or ligament defects of other origin, and is also useful in cosmetic plastic surgery for attachment or repair of tendons or ligaments. The compositions of the present invention may provide an environment to attract tendon- or ligament-forming cells, stimulate growth of tendon- or ligament-forming cells, induce differentiation of progenitors of tendon- or ligament-forming cells, or induce growth of tendon/ligament cells or progenitors ex vivo for return in vivo to effect tissue repair. The compositions of the invention may also be useful in the treatment of tendinitis, carpal tunnel syndrome and other tendon or ligament defects.
The compositions may also include an appropriate matrix and/or sequestering agent as a carrier as is well known in the art.
The protein of the present invention may also be useful for proliferation of neural cells and for regeneration of nerve and brain tissue, i.e. for the treatment of central and peripheral nervous system diseases and neuropathies, as well as mechanical and traumatic disorders, which involve degeneration, death or trauma to neural cells or nerve tissue. More specifically, a protein may be used in the treatment of diseases of the peripheral nervous system, such as peripheral nerve injuries, peripheral neuropathy and localized neuropathies, and central nervous system diseases, such as Alzheimer's, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and Shy-Drager syndrome. Further conditions which may be treated in accordance with the present invention include mechanical and traumatic disorders, such as spinal cord disorders, head trauma and cerebrovascular diseases such as stroke. Peripheral neuropathies resulting from chemotherapy or other medical therapies may also be treatable using a protein of the invention.
Proteins of the invention may also be useful to promote better or faster closure of non-healing wounds, including without limitation pressure ulcers, ulcers associated with vascular insufficiency, surgical and traumatic wounds, and the like.
1 S It is expected that a protein of the present invention may also exhibit activity for generation or regeneration of other tissues, such as organs (including, for example, pancreas, liver, intestine, kidney, skin, endothelium), muscle (smooth, skeletal or cardiac) and vascular (including vascular endothelium) tissue, or for promoting the growth of cells comprising such tissues. Part of the desired effects may be by inhibition or modulation of fibrotic scarring to allow normal tissue to regenerate. A
protein of the invention may also exhibit angiogenic activity.
A protein of the present invention may also be useful for gut protection or regeneration and treatment of lung or liver fibrosis, reperfusion injury in various tissues, and conditions resulting from systemic cytokine damage.
A protein of the present invention may also be useful for promoting or inhibiting differentiation of tissues described above from precursor tissues or cells; or for inhibiting the growth of tissues described above.
The activity of a protein of the invention may, among other means, be measured by the following methods:
Assays for tissue generation activity include, without limitation, those described in: International Patent Publication No. W095/16035 (bone, cartilage, tendon);
International Patent Publication No. W095/05846 (nerve, neuronal);
International Patent Publication No. W091/07491 (skin, endothelium ).
Assays for wound healing activity include, without limitation, those described in: Winter, Fnaermal Wound Healing, pps. 71-112 (Maibach, HI and Rovee, DT, eds.), Year Book Medical Publishers, Inc., Chicago, as modified by Eaglstein and Mertz, J.
Invest. Dermatol 71:382-84 (1978).
~~ivin/Inhibin Activit,X
A protein of the present invention may also exhibit activin- or inhibin-related activities. Inhibins are characterized by their ability to inhibit the release of follicle stimulating hormone (FSH), while activins and are characterized by their ability to stimulate the release of follicle stimulating hormone (FSH). Thus, a protein of the present invention, alone or in heterodimers with a member of the inhibin a family, may be useful as a contraceptive based on the ability of inhibins to decrease fertility in female mammals and decrease spermatogenesis in male mammals. Administration of sufficient amounts of other inhibins can induce infertility in these mammals.
Alternatively, the protein of the invention, as a homodimer or as a heterodimer with other protein subunits of the inhibin-(3 group, may be useful as a fertility inducing therapeutic, based upon the ability of activin molecules in stimulating FSH release from cells of the anterior pituitary. See, for example, United States Patent 4,798,885. A
protein of the invention may also be useful for advancement of the onset of fertility in sexually immature mammals, so as to increase the lifetime reproductive performance of domestic animals such as cows, sheep and pigs.
The activity of a protein of the invention may, among other means, be measured by the following methods:
Assays for activin/inhibin activity include, without limitation, those described in: Vale et al., Endocrinology 91:562-572, 1972; Ling et al., Nature 321:779-782, 1986;
Vale et al., Nature 321:776-779, 1986; Mason et al., Nature 318:659-663, 1985;
Forage et al., Proc. Natl. Acad. Sci. USA 83:3091-3095, 1986.
A protein of the present invention may have chemotactic or chemokinetic activity (e.g., act as a chemokine) for mammalian cells, including, for example, monocytes, fibroblasts, neutrophils, T-cells, mast cells, eosinophils, epithelial and/or endothelial cells. Chemotactic and chemokinetic proteins can be used to mobilize or attract a desired cell population to a desired site of action. Chemotactic or chemokinetic proteins provide particular advantages in treatment of wounds and other trauma to tissues, as well as in treatment of localized infections. For example, attraction of lymphocytes, monocytes or neutrophils to tumors or sites of infection may result in improved immune responses against the tumor or infecting agent.
A protein or peptide has chemotactic activity for a particular cell population if it can stimulate, directly or indirectly, the directed orientation or movement of such cell population. Preferably, the protein or peptide has the ability to directly stimulate directed movement of cells. Whether a particular protein has chemotactic activity for a population of cells can be readily determined by employing such protein or peptide in any known assay for cell chemotaxis.
The activity of a protein of the invention may, among other means, be measured by the following methods:
Assays for chemotactic activity (which will identify proteins that induce or prevent chemotaxis) consist of assays that measure the ability of a protein to induce the migration of cells across a membrane as well as the ability of a protein to induce the adhesion of one cell population to another cell population. Suitable assays for movement and adhesion include, without limitation, those described in: Current Protocols in Immunology, Ed by J.E. Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W.Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 6.12, Measurement of alpha and beta Chemokines 6.12.1-6.12.28; Taub et al. J. Clin.
Invest.
95:1370-1376, 1995; Lind et al. APMIS 103:140-146, 1995; Muller et al Eur. J.
Immunol.
25: 1744-1748; Gruber et al. J. of Immunol. 152:5860-5867, 1994; Johnston et al. J. of Immunol. 153: 1762-1768, 1994.
Hemostatic and Thrombol3r~i~ Activity A protein of the invention may also exhibit hemostatic or thrombolytic activity.
As a result, such a protein is expected to be useful in treatment of various coagulation disorders (including hereditary disorders, such as hemophiliac) or to enhance coagulation and other hemostatic events in treating wounds resulting from trauma, surgery or other causes. A protein of the invention may also be useful for dissolving or inhibiting formation of thromboses and for treatment and prevention of conditions resulting therefrom (such as, for example, infarction of cardiac and central nervous system vessels (e.g., stroke).
The activity of a protein of the invention may, among other means, be measured by the following methods:
Assay for hemostatic and thrombolytic activity include, without limitation, those described in: Linet et al., J. Clin. Pharmacol. 26:131-140, 1986;
Burdick et al., Thrombosis Res. 45:413-419,1987; Humphrey et al., Fibrinolysis 5:71-79 (1991);
Schaub, Prostaglandins 35:467-474, 1988.
Rece~:or/ ,jgand Activity A protein of the present invention may also demonstrate activity as receptors, receptor ligands or inhibitors or agonists of receptor/ligand interactions.
Examples of such receptors and ligands include, without limitation, cytokine receptors and their ligands, receptor kinases and their ligands, receptor phosphatases and their ligands, receptors involved in cell-cell interactions and their ligands (including without limitation, cellular adhesion molecules (such as selectins, integrins and their ligands) and receptor/ligand pairs involved in antigen presentation, antigen recognition and development of cellular and humoral immune responses). Receptors and ligands are also useful for screening of potential peptide or small molecule inhibitors of the relevant receptor/ligand interaction. A protein of the present invention (including, without limitation, fragments of receptors and ligands) may themselves be useful as inhibitors of receptor/ligand interactions.
The activity of a protein of the invention may, among other means, be measured by the following methods:
Suitable assays for receptor-ligand activity include without limitation those described in:Current Protocols in Immunology, Ed by J.E. Coligan, A.M.
Kruisbeek, D.H. Margulies, E.M. Shevach, W.Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 7.28, Measurement of Cellular Adhesion under static conditions 7.28.1-7.28.22), Takai et al., Proc. Natl. Acad. Sci. USA 84:6864-6868, 1987;
Bierer et al., J. Exp. Med. 168:1145-1156, 1988; Rosenstein et al., J. Exp.
Med.
169:149-160 1989; Stoltenborg et al., J. Immunol. Methods 175:59-68, 1994;
Stitt et al., Cell 80:661-670, 1995.
Proteins of the present invention may also exhibit anti-inflammatory activity.
The anti-inflammatory activity may be achieved by providing a stimulus to cells involved in the inflammatory response, by inhibiting or promoting cell-cell interactions (such as, for example, cell adhesion), by inhibiting or promoting chemotaxis of cells involved in the inflammatory process, inhibiting or promoting cell extravasation, or by stimulating or suppressing production of other factors which more directly inhibit or promote an inflammatory response. Proteins exhibiting such activities can be used to treat inflammatory conditions including chronic or acute conditions), including without limitation inflammation associated with infection (such as septic shock, sepsis or systemic inflammatory response syndrome (SIRS)), ischemia-reperfusion injury, endotoxin lethality, arthritis, complement-mediated hyperacute rejection, nephritis, cytokine or chemokine-induced lung injury, inflammatory bowel disease, Crohn's disease or resulting from over production of cytokines such as TNF or IL-1.
Proteins of the invention may also be useful to treat anaphylaxis and hypersensitivity to an antigenic substance or material.
Cadherin/Tumor Invasion Su~ressor Activity Cadherins are calcium-dependent adhesion molecules that appear to play major roles during development, particularly in defining specific cell types. Loss or alteration of normal cadherin expression can lead to changes in cell adhesion properties linked to tumor growth and metastasis. Cadherin malfunction is also implicated in other human diseases, such as pemphigus vulgaris and pemphigus foliaceus (auto-immune blistering skin diseases), Crohn's disease, and some developmental abnormalities.
The cadherin superfamily includes well over forty members, each with a distinct pattern of expression. All members of the superfamily have in common conserved extracellular repeats (cadherin domains), but structural differences are found in other parts of the molecule. The cadherin domains bind calcium to form their tertiary structure and thus calcium is required to mediate their adhesion. Only a few amino acids in the first cadherin domain provide the basis for homophilic adhesion;
modification of this recognition site can change the specificity of a cadherin so that instead of recognizing only itself, the mutant molecule can now also bind to a different cadherin. In addition, some cadherins engage in heterophilic adhesion with other cadherins.
E-cadherin, one member of the cadherin superfamily, is expressed in epithelial cell types. Pathologically, if E-cadherin expression is lost in a tumor, the malignant cells become invasive and the cancer metastasizes. Transfection of cancer cell lines with polynucleotides expressing E-cadherin has reversed cancer-associated changes by returning altered cell shapes to normal, restoring cells' adhesiveness to each other and to their substrate, decreasing the cell growth rate, and drastically reducing anchorage-independent cell growth. Thus, reintroducing E-cadherin expression reverts carcinomas to a less advanced stage. It is likely that other cadherins have the same invasion suppressor role in carcinomas derived from other tissue types. Therefore, proteins of the present invention with cadherin activity, and polynucleotides of the present invention encoding such proteins, can be used to treat cancer. Introducing such proteins or polynucleotides into cancer cells can reduce or eliminate the cancerous changes observed in these cells by providing normal cadherin expression.
Cancer cells have also been shown to express cadherins of a different tissue type than their origin, thus allowing these cells to invade and metastasize in a different tissue in the body. Proteins of the present invention with cadherin activity, and polynucleotides of the present invention encoding such proteins, can be substituted in these cells for the inappropriately expressed cadherins, restoring normal cell adhesive properties and reducing or eliminating the tendency of the cells to metastasize.
Additionally, proteins of the present invention with cadherin activity, and polynucleotides of the present invention encoding such proteins, can used to generate antibodies recognizing and binding to cadherins. Such antibodies can be used to block the adhesion of inappropriately expressed tumor-cell cadherins, preventing the cells from forming a tumor elsewhere. Such an anti-cadherin antibody can also be used as a marker for the grade, pathological type, and prognosis of a cancer, i.e. the more progressed the cancer, the less cadherin expression there will be, and this decrease in cadherin expression can be detected by the use of a cadherin-binding antibody.
Fragments of proteins of the present invention with cadherin activity, preferably a polypeptide comprising a decapeptide of the cadherin recognition site, and poly-nucleotides of the present invention encoding such protein fragments; can also be used to block cadherin function by binding to cadherins and preventing them from binding in ways that produce undesirable effects. Additionally, fragments of proteins of the present invention with cadherin activity, preferably truncated soluble cadherin fragments which have been found to be stable in the circulation of cancer patients, and polynucleotides encoding such protein fragments, can be used to disturb proper cell-cell adhesion.
Assays for cadherin adhesive and invasive suppressor activity include, without limitation, those described in: Hortsch et al. J Biol Chem 270 (32): 18809-18817, 1995;
Miyaki et al. Oncogene 11: 2547-2552, 1995; Ozawa et al. Cell 63: 1033-1038, 1990.
Tumor Inhibition Activitv In addition to the activities described above for immunological treatment or prevention of tumors, a protein of the invention may exhibit other anti-tumor activities.
A protein may inhibit tumor growth directly or indirectly (such as, for example, via ADCC). A protein may exhibit its tumor inhibitory activity by acting on tumor tissue or tumor precursor tissue, by inhibiting formation of tissues necessary to support tumor growth (such as, for example, by inhibiting angiogenesis), by causing production of other factors, agents or cell types which inhibit tumor growth, or by suppressing, eliminating or inhibiting factors, agents or cell types which promote tumor growth.
Other Activities A protein of the invention may also exhibit one or more of the following additional activities or effects: inhibiting the growth, infection or function of, or killing, infectious agents, including, without limitation, bacteria, viruses, fungi and other parasites; effecting (suppressing or enhancing bodily characteristics, including, without limitation, height, weight; hair color, eye color, skin, fat to lean ratio or other tissue S pigmentation, or organ or body part size or shape (such as, for example, breast augmentation or diminution, change in bone form or shape); effecting biorhythms or caricadic cycles or rhythms; effecting the fertility of male or female subjects; effecting the metabolism, catabolism, anabolism, processing, utilization, storage or elimination of dietary fat, lipid, protein, carbohydrate, vitamins, minerals, cofactors or other nutritional factors or component(s); effecting behavioral characteristics, including, without limitation, appetite, libido, stress, cognition (including cognitive disorders), depression (including depressive disorders) and violent behaviors; providing analgesic effects or other pain reducing effects; promoting differentiation and growth of embryonic stem cells in lineages other than hematopoietic lineages; hormonal or endocrine activity; in the case of enzymes, correcting deficiencies of the enzyme and treating deficiency-related diseases; treatment of hyperproliferative disorders (such as, for example, psoriasis); immunoglobulin-like activity (such as, for example, the ability to bind antigens or complement); and the ability to act as an antigen in a vaccine composition to raise an immune response against such protein or another material or entity which is cross-reactive with such protein.
NISTRATION AND DOSING
A protein of the present invention (from whatever source derived, including without limitation from recombinant and non-recombinant sources) may be used in a pharmaceutical composition when combined with a pharmaceutically acceptable carrier.
Such a composition may also contain (in addition to protein and a carrier) diluents, fillers, salts, buffers, stabilizers, solubilizers, and other materials well known in the art.
The term "pharmaceutically acceptable" means a non-toxic material that does not interfere with the effectiveness of the biological activity of the active ingredient(s). The characteristics of the carrier will depend on the route of administration. The pharmaceutical composition of the invention may also contain cytokines, lymphokines, or other hematopoietic factors such as M-CSF, GM-CSF, TNF, IL-1, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-11, IL-12, IL-13, IL-14, IL-15, IFN, TNFO, TNF1, TNF2, G-CSF, Meg-CSF, thrombopoietin, stem cell factor, and erythropoietin.
The pharmaceutical composition may further contain other agents which either enhance the activity of the protein or compliment its activity or use in treatment. Such additional factors and/or agents may be included in the pharmaceutical composition to produce a synergistic effect with protein of the invention, or to minimize side effects.
Conversely, protein of the present invention may be included in formulations of the particular cytokine, lymphokine, other hematopoietic factor, thrombolytic or anti-thrombotic factor, or anti-inflammatory agent to minimize side effects of the cytokine, lymphokine, other hematopoietic factor, thrombolytic or anti-thrombotic factor, or anti-inflammatory agent.
A protein of the present invention may be active in multimers (e.g., heterodimers or homodimers) or complexes with itself or other proteins. As a result, pharmaceutical compositions of the invention may comprise a protein of the invention in such multimeric or complexed form.
The pharmaceutical composition of the invention may be in the form of a complex of the proteins) of present invention along with protein or peptide antigens.
The protein and/or peptide antigen will deliver a stimulatory signal to both B
and T
lymphocytes. B lymphocytes will respond to antigen through their surface immunoglobulin receptor. T lymphocytes will respond to antigen through the T
cell receptor (TCR) following presentation of the antigen by MHC proteins. MHC and structurally related proteins including those encoded by class I and class II
MHC genes on host cells will serve to present the peptide antigens) to T lymphocytes.
The antigen components could also be supplied as purified MHC-peptide complexes alone or with co-stimulatory molecules that can directly signal T cells. Alternatively antibodies able to bind surface immunolgobulin and other molecules on B cells as well as antibodies able to bind the TCR and other molecules on T cells can be combined with the pharmaceutical composition of the invention.
The pharmaceutical composition of the invention may be in the form of a liposome in which protein of the present invention is combined, in addition to other pharmaceutically acceptable carriers, with amphipathic agents such as lipids which exist in aggregated form as micelles, insoluble monolayers, liquid crystals, or lamellar layers in aqueous solution. Suitable lipids for liposomal formulation include, without limitation, monoglycerides, diglycerides, sulfatides, lysolecithin, phospholipids, saponin, bile acids, and the like. Preparation of such liposomal formulations is within the level of skill in the art, as disclosed, for example, in U.S. Patent No. 4,235,871;
U.S. Patent No. 4,501,728; U.S. Patent No. 4,837,028; and U.S. Patent No. 4,737,323, all of which are incorporated herein by reference.
As used herein, the term "therapeutically effective amount" means the total amount of each active component of the pharmaceutical composition or method that is sufficient to show a meaningful patient benefit, i.e., treatment, healing, prevention or amelioration of the relevant medical condition, or an increase in rate of treatment, healing, prevention or amelioration of such conditions. When applied to an individual active ingredient, administered alone, the term refers to that ingredient alone. When applied to a combination, the term refers to combined amounts of the active ingredients that result in the therapeutic effect, whether administered in combination, serially or simultaneously.
In practicing the method of treatment or use of the present invention, a therapeutically effective amount of protein of the present invention is administered to a mammal having a condition to be treated. Protein of the present invention may be administered in accordance with the method of the invention either alone or in combination with other therapies such as treatments employing cytokines, lymphokines or other hematopoietic factors. When co-administered with one or more cytokines, lymphokines or other hematopoietic factors, protein of the present invention may be administered either simultaneously with the cytokine(s), lymphokine(s), other hematopoietic factor(s), thrombolytic or anti-thrombotic factors, or sequentially. If administered sequentially, the attending physician will decide on the appropriate sequence of administering protein of the present invention in combination with cytokine(s), lymphokine(s), other hematopoietic factor(s), thrombolytic or anti-thrombotic factors.
Administration of protein of the present invention used in the pharmaceutical composition or to practice the method of the present invention can be carried out in a variety of conventional ways, such as oral ingestion, inhalation, topical application or cutaneous, subcutaneous, intraperitoneal, parenteral or intravenous injection.
Intravenous administration to the patient is preferred.
When a therapeutically effective amount of protein of the present invention is administered orally, protein of the present invention will be in the form of a tablet, capsule, powder, solution or elixir. When administered in tablet form, the pharmaceutical composition of the invention may additionally contain a solid carrier such as a gelatin or an adjuvant. The tablet, capsule, and powder contain from about 5 to 95% protein of the present invention, and preferably from about 25 to 90%
protein of the present invention. When administered in liquid form, a liquid carrier such as water, petroleum, oils of animal or plant origin such as peanut oil, mineral oil, soybean oil, or sesame oil, or synthetic oils may be added. The liquid form of the pharmaceutical composition may further contain physiological saline solution, dextrose or other saccharide solution, or glycols such as ethylene glycol, propylene glycol or polyethylene glycol. When administered in liquid form, the pharmaceutical composition contains from about 0.5 to 90% by weight of protein of the present invention, and preferably from about 1 to 50% protein of the present invention.
When a therapeutically effective amount of protein of the present invention is administered by intravenous, cutaneous or subcutaneous injection, protein of the present invention will be in the form of a pyrogen-free, parenterally acceptable aqueous solution. The preparation of such parenterally acceptable protein solutions, having due regard to pH, isotonicity, stability, and the like, is within the skill in the art. A
preferred pharmaceutical composition for intravenous, cutaneous, or subcutaneous injection should contain, in addition to protein of the present invention, an isotonic vehicle such as Sodium Chloride Injection, Ringer's Injection, Dextrose Injection, Dextrose and Sodium Chloride Injection, Lactated Ringer's Injection, or other vehicle as known in the art. The pharmaceutical composition of the present invention may also contain stabilizers, preservatives, buffers, antioxidants, or other additives known to those of skill in the art.
The amount of protein of the present invention in the pharmaceutical composition of the present invention will depend upon the nature and severity of the condition being treated, and on the nature of prior treatments which the patient has undergone. Ultimately, the attending physician will decide the amount of protein of the present invention with which to treat each individual patient. Initially, the attending physician will administer low doses of protein of the present invention and observe the patient's response. Larger doses of protein of the present invention may be administered until the optimal therapeutic effect is obtained for the patient, and at that point the dosage is not increased further. It is contemplated that the various pharmaceutical compositions used to practice the method of the present invention should contain about 0.01 ~.g to about 100 mg (preferably about O.lng to about 10 mg, more preferably about 0.1 ~,g to about 1 mg) of protein of the present invention per kg body weight.
The duration of intravenous therapy using the pharmaceutical composition of the present invention will vary, depending on the severity of the disease being treated and the condition and potential idiosyncratic response of each individual patient. It is contemplated that the duration of each application of the protein of the present invention will be in the range of 12 to 24 hours of continuous intravenous administration. Ultimately the attending physician will decide on the appropriate duration of intravenous therapy using the pharmaceutical composition of the present invention.
Protein of the invention may also be used to immunize animals to obtain polyclonal and monoclonal antibodies which specifically react with the protein. Such antibodies may be obtained using either the entire protein or fragments thereof as an immunogen. The peptide immunogens additionally may contain a cysteine residue at the carboxyl terminus, and are conjugated to a hapten such as keyhole limpet hemocyanin (KLI~. Methods for synthesizing such peptides are known in the an, for example, as in R.P. Merrifield, J. Amer.Chem.Soc. $,~, 2149-2154 (1963); J.L.
Krstenansky, et al., FEBS Lett. ~, 10 (198. Monoclonal antibodies binding to the protein of the invention may be useful diagnostic agents for the immunodetection of the protein. Neutralizing monoclonal antibodies binding to the protein may also be useful therapeutics for both conditions associated with the protein and also in the treatment of some forms of cancer where abnormal expression of the protein is involved.
In the case of cancerous cells or leukemic cells, neutralizing monoclonal antibodies against the protein may be useful in detecting and preventing the metastatic spread of the cancerous cells, which may be mediated by the protein.
For compositions of the present invention which are useful for bone, cartilage, tendon or ligament regeneration, the therapeutic method includes administering the composition topically, systematically, or locally as an implant or device.
When administered, the therapeutic composition for use in this invention is, of course, in a pyrogen-free, physiologically acceptable form. Further, the composition may desirably be encapsulated or injected in a viscous form for delivery to the site of bone, cartilage or tissue damage. Topical administration may be suitable for wound healing and tissue repair. Therapeutically useful agents other than a protein of the invention which may also optionally be included in the composition as described above, may alternatively or additionally, be administered simultaneously or sequentially with the composition in the methods of the invention. Preferably for bone and/or cartilage formation, the composition would include a matrix capable of delivering the protein-containing composition to the site of bone and/or cartilage damage, providing a structure for the developing bone and cartilage and optimally capable of being resorbed into the body.
Such matrices may be formed of materials presently in use for other implanted medical applications.
The choice of matrix material is based on biocompatibility, biodegradability, mechanical properties, cosmetic appearance and interface properties. The particular application of the compositions will define the appropriate formulation.
Potential matrices for the compositions may be biodegradable and chemically defined calcium sulfate, tricalciumphosphate, hydroxyapatite, polylactic acid, polyglycolic acid and polyanhydrides. Other potential materials are biodegradable and biologically well-defined, such as bone or dermal collagen. Further matrices are comprised of pure proteins or extracellular matrix components. Other potential matrices are nonbiodegradable and chemically defined, such as sintered hydroxapatite, bioglass, aluminates, or other ceramics. Matrices may be comprised of combinations of any of the above mentioned types of material, such as polylactic acid and hydroxyapatite or collagen and tricalciumphosphate. The bioceramics may be altered in composition, such as in calcium-aluminate-phosphate and processing to alter pore size, particle size, particle shape, and biodegradability.
Presently preferred is a 50:50 (mole weight) copolymer of lactic acid and glycolic acid in the form of porous particles having diameters ranging from 150 to 800 microns.
In some applications, it will be useful to utilize a sequestering agent, such as carboxymethyl cellulose or autologous blood clot, to prevent the protein compositions from disassociating from the matrix.
A preferred family of sequestering agents is cellulosic materials such as alkylcelluloses (including hydroxyalkylcelluloses), including methylcellulose, ethylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, hydroxypropyl-methylcellulose, and carboxymethylcellulose, the most preferred being cationic salts of carboxymethylcellulose (CMC). Other preferred sequestering agents include hyaluronic acid, sodium alginate, polyethylene glycol), polyoxyethylene oxide, carboxyvinyl polymer and polyvinyl alcohol). The amount of sequestering agent useful herein is 0.5-wt%, preferably 1-10 wt% based on total formulation weight, which represents the amount necessary to prevent desorbtion of the protein from the polymer matrix and to provide appropriate handling of the composition, yet not so much that the progenitor 20 cells are prevented from infiltrating the matrix, thereby providing the protein the opportunity to assist the osteogenic activity of the progenitor cells.
In further compositions, proteins of the invention may be combined with other agents beneficial to the treatment of the bone and/or cartilage defect, wound, or tissue in question. These agents include various growth factors such as epidermal growth factor (EGF), platelet derived growth factor (PDGF), transforming growth factors (TGF-a and TGF-(3), and insulin-like growth factor (IGF).
The therapeutic compositions are also presently valuable for veterinary applications. Particularly domestic animals and thoroughbred horses, in addition to humans, are desired patients for such treatment with proteins of the present invention.
The dosage regimen of a protein-containing pharmaceutical composition to be used in tissue regeneration will be determined by the attending physician considering various factors which modify the action of the proteins, e.g., amount of tissue weight desired to be formed, the site of damage, the condition of the damaged tissue, the size of a wound, type of damaged tissue (e.g., bone), the patient's age, sex, and diet, the severity of any infection, time of administration and other clinical factors.
The dosage may vary with the type of matrix used in the reconstitution and with inclusion of other proteins in the pharmaceutical composition. For example, the addition of other known growth factors, such as IGF I (insulin like growth factor I), to the final composition, may also effect the dosage. Progress can be monitored by periodic assessment of tissue/bone growth and/or repair, for example, X-rays, histomorphometric determinations and tetracycline labeling.
Polynucleotides of the present invention can also be used for gene therapy.
Such polynucleotides can be introduced either in vivo or ex vivo into cells for expression in a mammalian subject. Polynucleotides of the invention may also be administered by other known methods for introduction of nucleic acid into a cell or organism (including, without limitation, in the form of viral vectors or naked DNA).
Cells may also be cultured ex vivo in the presence of proteins of the present invention in order to proliferate or to produce a desired effect on or activity in such cells. Treated cells can then be introduced in vivo for therapeutic purposes.
Patent and literature references cited herein are incorporated by reference as if fully set forth.
SEQUENCE LISTING
(1) GENERAL INFORMATION:
(i) APPLICANT: Jacobs, Kenneth McCoy, John M.
LaVallie, Edward R.
Racie, Lisa A.
Merberg, David Treacy, Maurice Evans, Cheryl Spaulding, Vikki Bowman, Michael Agostino, Michael J.
(ii) TITLE OF INVENTION: SECRETED PROTEINS AND POLYNUCLEOTIDES
ENCODING THEM
(iii) NUMBER OF SEQUENCES: 41 (iv) CORRESPONDENCE ADDRESS:
(A) ADDRESSEE: Genetics Institute, Inc.
(B) STREET: 87 CambridgePark Drive (C) CITY: Cambridge (D) STATE: MA
(E) COUNTRY: U.S.A.
(F) ZIP: 02140 (v) COMPUTER READABLE FORM:
(A) MEDIUM TYPE: Floppy disk (B) COMPUTER: IBM PC compatible (C) OPERATING SYSTEM: PC-DOS/MS-DOS
(D) SOFTWARE: PatentIn Release #1.0, Version #1.30 (vi) CURRENT APPLICATION DATA:
(A) APPLICATION NUMBER:
(B) FILING DATE:
(C) CLASSIFICATION:
(viii) ATTORNEY/AGENT INFORMATION:
(A) NAME: Sprunger, Suzanne A.
(B) REGISTRATION NUMBER: 41,323 (ix) TELECOMMUNICATION INFORMATION:
(A) TELEPHONE: (617) 498-8284 (B) TELEFAX: (617) 876-5851 (2) INFORMATION FOR SEQ ID NO: l:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 1032 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (ii) MOLECULE TYPE: CDNA
(xi) SEQUENCE DESCRIPTION:
SEQ ID NO:1:
AAAAAAAAAp, AA 1032 (2) INFORMATION FOR SEQ
ID N0:2:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 210 amino acids (B) TYPE: amino acid (C) STRANDEDNESS:
(D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein (xi) SEQUENCE DESCRIPTION: SEQ ID N0:2:
Met Ser Ala Gln Cys Cys Ala Gly His Leu Ala Cys Cys Cys Gly Ser Ala Gly Cys Ser Leu Cys Cys Asp Cys Cys Pro Arg Ile Arg Gln Ser Leu Ser Thr Arg Phe Met Tyr Ala Leu Tyr Phe Ile Leu Val Val Val Leu Cys Cys Ile Met Met Ser Thr Thr Val Ala His Lys Met Lys Glu His Ile Pro Phe Phe Glu Asp Met Cys Lys Gly Ile Lys Ala Gly Asp Thr Cys Glu Lys Leu Val Gly Tyr Ser Ala Val Tyr Arg Val Cys Phe Gly Met Ala Cys Phe Phe Phe Ile Phe Cys Leu Leu Thr Leu Lys Ile Asn Asn Ser Lys Ser Cys Arg Ala His Ile His Asn Gly Phe Trp Phe Phe Lys Leu Leu Leu Leu Gly Ala Met Cys Ser Gly Ala Phe Phe Ile Pro Asp Gln Asp Thr Phe Leu Asn Ala Trp Arg Tyr Val Gly Ala Val Gly Gly Phe Leu Phe Ile Gly Ile Gln Ser Ser Cys Ser Trp Ser Leu His Ile Ser Gly Thr Arg Thr Gly Val Cys Leu Tyr Gly Lys Leu Pro Ile Asp Ser Gln Lys Leu Pro Ser Phe Asp Gln Gly Cys Thr Gln Leu His Cys (2) INFORMATION FOR SEQ ID N0:3:
(i) SEQUENCE CHARACTERISTICS:
{A) LENGTH: 1626 base pairs {B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA
(xi) SEQUENCE DESCRIPTION: SEQ ID N0:3:
GGAAATAACA
TTAGAATTGC
TAGCAGGACT
AGTCCATCAA
ACAACTATGA
CAGGGAACAG
AGGAGGAGGA
CAGGGGTTCT
TAAGTACCAC
ACACCGCTTA
CAAGCCTAAG
AAGATGCATT
GGCAGCTCCC
GAAGGAAAGG
TCACTGATAA
ACCTCCAGAA
TGACTTATAT
GCAAAACTCC
TTCAGATAAT
CCAAAACAAA
AAAATACAAT
TGAGTTAGGA
TTCACACATG
TCATTTCAAA
GCCAAGATTT
TAATCCATTA AAGAGCATGA AAAAAAGAAT AAATGTATTT GAAAATTAAA p~~7~.P~Pu~AAAA 1620 pppppp 1626 (2) INFORMATION FOR SEQ ID N0:4:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 322 amino acids (B) TYPE: amino acid (C) STRANDEDNESS:
(D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein (xi) SEQUENCE DESCRIPTION: SEQ ID N0:4:
Met Lys Thr Leu Ala Gly Leu Val Leu Gly Leu Val Ile Phe Asp Ala Ala Val Thr Ala Pro Thr Leu Glu Ser Ile Asn Tyr Asp Ser Glu Thr Tyr Asp Ala Thr Leu Glu Asp Leu Asp Asn Leu Tyr Asn Tyr Glu Asn Ile Pro Val Asp Lys Val Glu Ile Glu Ile Ala Thr Val Met Pro Ser Gly Asn Arg Glu Leu Leu Thr Pro Pro Pro Gln Pro Glu Lys Ala Gln Glu Glu Glu Glu Glu Glu Glu Ser Thr Pro Arg Leu Ile Asp Gly Ser Ser Pro Gln Glu Pro Glu Phe Thr Gly Val Leu Gly Pro His Thr Asn Glu Asp Phe Pro Thr Cys Leu Leu Cys Thr Cys Ile Ser Thr Thr Val Tyr Cys Asp Asp His Glu Leu Asp Ala Ile Pro Pro Leu Pro Lys Asn Thr Ala Tyr Phe Tyr Ser Arg Phe Asn Arg Ile Lys Lys Ile Asn Lys Asn Asp Phe Ala Ser Leu Ser Asp Leu Lys Arg Ile Asp Leu Thr Ser Asn Leu Ile Ser Glu Ile Asp Glu Asp Ala Phe Arg Lys Leu Pro Gln Leu Arg Glu Leu Val Leu Arg Asp Asn Lys Ile Arg Gln Leu Pro Glu Leu Pro Thr Thr Leu Thr Phe Ile Asp Ile Ser Asn Asn Arg Leu Gly Arg Lys Gly Ile Lys Gln Glu Ala Phe Lys Asp Met Tyr Asp Leu His His Leu Tyr Leu Thr Asp Asn Asn Leu Asp His Ile Pro Leu Pro Leu Pro Glu Asn Leu Arg Ala Leu His Leu Gln Asn Asn Asn Ile Leu Glu Met His Glu Asp Thr Phe Cys Asn Val Lys Asn Leu Thr Tyr Ile Arg Lys Ala Leu Glu Asp Ile Arg Leu Asp Gly Asn Pro Ile Asn Leu Ser Lys Thr Pro Gln Ala Tyr Met Cys Leu Pro Arg Leu Pro Val Gly Ser Leu Val (2) INFORMATION FOR SEQ ID N0:5:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 1083 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA
(xi) SEQUENCE DESCRIPTION: SEQ ID N0:5:
TWAACAGCGG
GTCCCCCGCT
GGAATTTACA
CGAACTGAGA
ATTTTTGGAA
GAGAGTTGTA
TCTTCCGCYT
TTCTTCTCAA
CGTCAACCAA
AGGGAAAAAA
AGYTCCTAAA
GGAGCCAAAA AANANAAANA p~~AAAAAAAA AANAAGANAA GNNNNNAAAA1080 AAANAAAAAA
pip, 1083 (2) INFORMATION FOR SEQ ID N0:6:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 56 amino acids (B) TYPE: amino acid (C) STRANDEDNESS:
(D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein (xi) SEQUENCE DESCRIPTION: SEQ ID N0:6:
Met Ile Leu Leu Lys Val Cys Ser Ala Ala Ser Leu Leu Gly Glu Gly Phe Met Asn Gln Val Thr Ser Thr Asn Lys Ala Ser Leu Ser Leu Leu Ser Leu Thr Met Lys Val Ala Val Asn Lys Gly Lys Lys Glu Arg Glu Leu Phe Ile Pro Phe Gln Phe Gln (2) INFORMATION FOR SEQ ID N0:7:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 643 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (ii) MOLECULE TYPE: CDNA
(xi) SEQUENCE DESCRIPTION: SEQ ID N0:7:
ATAAAGCAGG AGGTAGAGAG CCAP.AAAAAA AAAAAAAAAA AAA 643 (2) INFORMATION FOR SEQ ID N0:8:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 38 amino acids (B) TYPE: amino acid (C) STRANDEDNESS:
(D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein (xi) SEQUENCE DESCRIPTION: SEQ ID N0:8:
Met Leu Pro Val Pro Lys Arg Leu His Ser Phe Asn Ile Tyr Val Thr Ala Cys Tyr Val Pro Gly Val Gly Gln Val Leu Gly Thr Lys Glu Arg Pro Pro His Pro Thr Pro (2) INFORMATION FOR SEQ ID N0:9:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 1047 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA
(xi) SEQUENCE DESCRIPTION: SEQ ID N0:9:
AAAGGGCAGA
TGTCATTCTT
AAGTCCTGGG
TAGTCAATCT
CATTGGGGGG
AACCCCACCT
AATGTGTCTT
GAAACTTCGA
TGCTCCCTGT
TGGAGCTACT
CTTCTTGCCT
GAGGCCTAGT
TGGGGACAGG
CAGTGCCACC
GACATCCCTT
TCTGGTGGCT
GGGAAGACCC
CAAAAAGCAA AAAAA7~AAAA AAAAAAA 1047 (2) INFORMATION FOR SEQ ID NO:10:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 57 amino acids (B) TYPE: amino acid (C) STRANDEDNESS:
(D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein (xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:
Met Arg Val Ser Phe Gly Ala Asp Val Gly Phe Gly Thr Ile Ala Cys Asp Cys His Ser Leu Ala Val Cys Ile Pro Gln Lys Leu Phe Ser Glu Ser Ser Ser Trp Pro Lys Ser Trp Val Ser Phe Thr Val Leu Val Ala Asp Tyr Ser Arg Gln Met Arg Asn Ser (2) INFORMATION FOR SEQ ID NO:11:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 2851 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:
ACCTCCTTGC
TTTGGCGGAG
TTGAAAACTG
ATAGAGTAGT
GGAAACATCC
CAGAGAAACG
AGCACTTATT
ATTAAGATTG
CTGTTTGAAT
TACATCCACA
TTGTGGTGCT
GCCCTTCTGT
TGCGTGAGGT
AAATCCAGAT
TGAGTAGGAA
ACACTCTGGA
TGTCTAAACT
CTTTTAACAG
ACATCTCAGA
GCAACCTTCG
CTGGGAATCA
AACTGTGGAT
AGTCACTAGT
TCACTCCCTT
GTGACATACT
GTGCCCGGTG
ATTACTTCAC
AAGGCATGGC
TTACTCCAAA
GTGATGGTAC
TGGTGAGTAA
CCACTACTCC
ATGAGGCACG
CCAATGTGAC
TCCCAGTGAC
AAATCATCAT
TCTACAAGAT
AAATTATTAA
TGCCTGCTAT
ACACAACAAC
TCCGAATGAA
CAAAP~P.ACAA
AAATCTACTG
(2) INFORMATION FOR SEQ ID N0:12:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 640 amino acids (B) TYPE: amino acid (C) STRANDEDNESS:
(D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein {xi) SEQUENCE DESCRIPTION: SEQ ID N0:12:
Met Leu Asn Lys Met Thr Leu His Pro Gln Gln Ile Met Ile Gly Pro Arg Phe Asn Arg Ala Leu Phe Asp Pro Leu Leu Val Val Leu Leu Ala Leu Gln Leu Leu Val Val Ala Gly Leu Val Arg Ala Gln Thr Cys Pro Ser Val Cys Ser Cys Ser Asn Gln Phe Ser Lys Val Ile Cys Val Arg Lys Asn Leu Arg Glu Val Pro Asp Gly Ile Ser Thr Asn Thr Arg Leu Leu Asn Leu His Glu Asn Gln Ile Gln Ile Ile Lys Val Asn Ser Phe Lys His Leu Arg His Leu Glu Ile Leu Gln Leu Ser Arg Asn His Ile Arg Thr Ile Glu Ile Gly Ala Phe Asn Gly Leu Ala Asn Leu Asn Thr Leu Glu Leu Phe Asp Asn Arg Leu Thr Thr Ile Pro Asn Gly Aia Phe Val Tyr Leu Ser Lys Leu Lys Glu Leu Trp Leu Arg Asn Asn Pro Ile Glu Ser Ile Pro Ser Tyr Ala Phe Asn Arg Ile Pro Ser Leu Arg Arg Leu Asp Leu Gly Glu Leu Lys Arg Leu Ser Tyr Ile Ser Glu Gly Ala Phe Glu Gly Leu Ser Asn Leu Arg Tyr Leu Asn Leu Ala Met Cys Asn Leu Arg Glu Ile Pro Asn Leu Thr Pro Leu Ile Lys Leu Asp Glu Leu Asp Leu Ser Gly Asn His Leu Ser Ala Ile Arg Pro Gly Ser Phe Gln Gly Leu Met His Leu Gln Lys Leu Trp Met Ile Gln Ser Gln Ile Gln Val Ile Glu Arg Asn Ala Phe Asp Asn Leu Gln Ser Leu Val Glu Ile Asn Leu Ala His Asn Asn Leu Thr Leu Leu Pro His Asp Leu Phe Thr Pro Leu His His Leu Glu Arg Ile His Leu His His Asn Pro Trp Asn Cys Asn Cys Asp Ile Leu Trp Leu Ser Trp Trp Ile Lys Asp Met Ala Pro Ser Asn Thr Ala Cys Cys Ala Arg Cys Asn Thr Pro Pro Asn Leu Lys Gly Arg Tyr Ile Gly Glu Leu Asp Gln Asn Tyr Phe Thr Cys Tyr Ala Pro Val Ile Val Glu Pro Pro Ala Asp Leu Asn Val Thr Glu Gly Met Ala Ala Glu Leu Lys Cys Arg Ala Ser Thr Ser Leu Thr Ser Val Ser Trp Ile Thr Pro Asn Gly Thr Val Met Thr His Gly Ala Tyr Lys Val Arg Ile Ala Val Leu Ser Asp Gly Thr Leu Asn Phe Thr Asn Val Thr Val Gln Asp Thr Gly Met Tyr Thr Cys Met Val Ser Asn Ser Val Gly Asn Thr Thr Ala Ser Ala Thr Leu Asn Val Thr Ala Ala Thr Thr Thr Pro Phe Ser Tyr Phe Ser Thr Val Thr Val Glu Thr Met Glu Pro Ser Gln Asp Glu Ala Arg Thr Thr Asp Asn Asn Val Gly Pro Thr Pro Val Val Asp Trp Glu Thr Thr Asn Val Thr Thr Ser Leu Thr Pro Gln Ser Thr Arg Ser Thr Glu Lys Thr Phe Thr Ile Pro Val Thr Asp Ile Asn Ser Gly Ile Pro Gly Ile Asp Glu Val Met Lys Thr Thr Lys Ile Ile Ile Gly Cys Phe Val Ala Ile Thr Leu Met Ala Ala Val Met Leu Val Ile Phe Tyr Lys Met Arg Lys Gln His His Arg Gln Asn His His Ala Pro Thr Arg Thr Val Glu Ile Ile Asn Val Asp Asp Glu Ile Thr Gly Asp Thr Pro Met Glu Ser His Leu Pro Met Pro Ala Ile Glu His Glu His Leu Asn His Tyr Asn Ser Tyr Lys Ser Pro Phe Asn His Thr Thr Thr Val Asn Thr Ile Asn Ser Ile His Ser Ser Val His Glu Pro Leu Leu Ile Arg Met Asn Ser Lys Asp Asn Val Gln Glu Thr Gln Ile (2) INFORMATION FOR SEQ ID N0:13:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 4531 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear i.i ) MOLECULE TYPE : cDNA
(xi) SEQUENCE DESCRIPTION: SEQ ID N0:13:
TATATTTTTC
ATGCATTATC
GTTTCATGAG
GTGTCTTGGG
ATCAGTAGTT
TCCTTGCATG
GAAACCCCAC
TGGTCTCTAC
CATACAAAGG
GAGACCTTCC
TTTCCACACC
TAAAGCCTTT
CTCCTACCTC
GTTCATGCTG
GATGCTTGAA
CACGTCTTCC
TGTGGCCATA
TTCTTCACAA
GATGTTTTTT
CTTTGGCATA
AAAAGAGGGT
ATGGTAACTA
GGTGAGTCAT
CCAATGTGAC
TCCCAGTGAC
AAATCATCAT
TCTACAAGAT
AAATTATTAA
TGCCTGCTAT
ACACAACAAC
TCCGAATGAA
CAAAP~P.ACAA
AAATCTACTG
(2) INFORMATION FOR SEQ ID N0:12:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 640 amino acids (B) TYPE: amino acid (C) STRANDEDNESS:
(D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein {xi) SEQUENCE DESCRIPTION: SEQ ID N0:12:
Met Leu Asn Lys Met Thr Leu His Pro Gln Gln Ile Met Ile Gly Pro Arg Phe Asn Arg Ala Leu Phe Asp Pro Leu Leu Val Val Leu Leu Ala Leu Gln Leu Leu Val Val Ala Gly Leu Val Arg Ala Gln Thr Cys Pro Ser Val Cys Ser Cys Ser Asn Gln Phe Ser Lys Val Ile Cys Val Arg Lys Asn Leu Arg Glu Val Pro Asp Gly Ile Ser Thr Asn Thr Arg Leu Leu Asn Leu His Glu Asn Gln Ile Gln Ile Ile Lys Val Asn Ser Phe Lys His Leu Arg His Leu Glu Ile Leu Gln Leu Ser Arg Asn His Ile Arg Thr Ile Glu Ile Gly Ala Phe Asn Gly Leu Ala Asn Leu Asn Thr Leu Glu Leu Phe Asp Asn Arg Leu Thr Thr Ile Pro Asn Gly Aia Phe Val Tyr Leu Ser Lys Leu Lys Glu Leu Trp Leu Arg Asn Asn Pro Ile Glu Ser Ile Pro Ser Tyr Ala Phe Asn Arg Ile Pro Ser Leu Arg Arg Leu Asp Leu Gly Glu Leu Lys Arg Leu Ser Tyr Ile Ser Glu Gly Ala Phe Glu Gly Leu Ser Asn Leu Arg Tyr Leu Asn Leu Ala Met Cys Asn Leu Arg Glu Ile Pro Asn Leu Thr Pro Leu Ile Lys Leu Asp Glu Leu Asp Leu Ser Gly Asn His Leu Ser Ala Ile Arg Pro Gly Ser Phe Gln Gly Leu Met His Leu Gln Lys Leu Trp Met Ile Gln Ser Gln Ile Gln Val Ile Glu Arg Asn Ala Phe Asp Asn Leu Gln Ser Leu Val Glu Ile Asn Leu Ala His Asn Asn Leu Thr Leu Leu Pro His Asp Leu Phe Thr Pro Leu His His Leu Glu Arg Ile His Leu His His Asn Pro Trp Asn Cys Asn Cys Asp Ile Leu Trp Leu Ser Trp Trp Ile Lys Asp Met Ala Pro Ser Asn Thr Ala Cys Cys Ala Arg Cys Asn Thr Pro Pro Asn Leu Lys Gly Arg Tyr Ile Gly Glu Leu Asp Gln Asn Tyr Phe Thr Cys Tyr Ala Pro Val Ile Val Glu Pro Pro Ala Asp Leu Asn Val Thr Glu Gly Met Ala Ala Glu Leu Lys Cys Arg Ala Ser Thr Ser Leu Thr Ser Val Ser Trp Ile Thr Pro Asn Gly Thr Val Met Thr His Gly Ala Tyr Lys Val Arg Ile Ala Val Leu Ser Asp Gly Thr Leu Asn Phe Thr Asn Val Thr Val Gln Asp Thr Gly Met Tyr Thr Cys Met Val Ser Asn Ser Val Gly Asn Thr Thr Ala Ser Ala Thr Leu Asn Val Thr Ala Ala Thr Thr Thr Pro Phe Ser Tyr Phe Ser Thr Val Thr Val Glu Thr Met Glu Pro Ser Gln Asp Glu Ala Arg Thr Thr Asp Asn Asn Val Gly Pro Thr Pro Val Val Asp Trp Glu Thr Thr Asn Val Thr Thr Ser Leu Thr Pro Gln Ser Thr Arg Ser Thr Glu Lys Thr Phe Thr Ile Pro Val Thr Asp Ile Asn Ser Gly Ile Pro Gly Ile Asp Glu Val Met Lys Thr Thr Lys Ile Ile Ile Gly Cys Phe Val Ala Ile Thr Leu Met Ala Ala Val Met Leu Val Ile Phe Tyr Lys Met Arg Lys Gln His His Arg Gln Asn His His Ala Pro Thr Arg Thr Val Glu Ile Ile Asn Val Asp Asp Glu Ile Thr Gly Asp Thr Pro Met Glu Ser His Leu Pro Met Pro Ala Ile Glu His Glu His Leu Asn His Tyr Asn Ser Tyr Lys Ser Pro Phe Asn His Thr Thr Thr Val Asn Thr Ile Asn Ser Ile His Ser Ser Val His Glu Pro Leu Leu Ile Arg Met Asn Ser Lys Asp Asn Val Gln Glu Thr Gln Ile (2) INFORMATION FOR SEQ ID N0:13:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 4531 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear i.i ) MOLECULE TYPE : cDNA
(xi) SEQUENCE DESCRIPTION: SEQ ID N0:13:
TATATTTTTC
ATGCATTATC
GTTTCATGAG
GTGTCTTGGG
ATCAGTAGTT
TCCTTGCATG
GAAACCCCAC
TGGTCTCTAC
CATACAAAGG
GAGACCTTCC
TTTCCACACC
TAAAGCCTTT
CTCCTACCTC
GTTCATGCTG
GATGCTTGAA
CACGTCTTCC
TGTGGCCATA
TTCTTCACAA
GATGTTTTTT
CTTTGGCATA
AAAAGAGGGT
ATGGTAACTA
GGTGAGTCAT
TCATATAAGT
TTAAAGAGAA
TTTTTCATCC
AAACTCTTTG
CTGATACTGG
GTGTTTTTAT
ATAATTTCAA
AGATGTGTTT
GAGGTTATTC
AAACTGCTAT
TTAAATTTAT
TCTTGATGGC
TAATATATTT
AGTCCTCTCC
GAAGATACTC
ATATGCCAGA
TTATAATTCC
CTTATGTTCT CGCCCCTCTA CACTTGAAAT AACAAAATGC CTTAATT"TTA4140 TGGATTAGTT
TTCAACTTTC
CCACATTTTA
GGAGAGCGTC
TTTGGATGAT
CTGTATTAGC
TAATAAAATT
(2) INFORMATION FOR SEQ ID N0:14:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 171 amino acids (B) TYPE: amino acid (C) STRANDEDNESS:
(D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein (xi) SEQUENCE DESCRIPTION: SEQ ID N0:14:
Met Arg Leu Lys Met Phe Leu Thr Pro His Met Cys Val Met Ala Ser Leu Ile Cys Ser Arg Gln Leu Phe Gly Trp Leu Phe Arg Arg Val Arg Phe Glu Lys Val Ile Phe Gly Ile Leu Thr Val Met Ser Ile Gln Gly Tyr Ala Asn Leu Arg Asn Gln Trp Ser Ile Ile Gly Glu Phe Asn Asn Leu Pro Gln Glu Glu Leu Leu Gln Trp Ile Lys Tyr Ser Thr Thr Ser Asp Ala Val Phe Ala Gly Ala Met Pro Thr Met Ala Ser Ile Lys Leu Ser Thr Leu His Pro Ile Val Asn His Pro His Tyr Glu Asp Ala Asp Leu Arg Ala Arg Thr Lys Ile Val Tyr Ser Thr Tyr Ser Arg Lys Ser Ala Lys Glu Val Arg Asp Lys Leu Leu Glu Leu His Val Asn Tyr Tyr Val Leu Glu Glu Ala Trp Cys Val Val Arg Thr Lys Phe Ile Leu Gln Asp Gly Gln Glu Val Leu Ser Ala Ala Glu Lys (2) INFORMATION FOR SEQ ID N0:15:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 1502 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA
(xi) SEQUENCE DESCRIPTION: SEQ ID N0:15:
ATGGCTTTAA
GGCTATTTGT
GATCGGTCTG
GAATGTGGCT
AAGGAGGACT
TTTCAGAAGG
TTTTATAGGA
CCTCCTCCTC
ACGGCCTCCA
GTCCTGCTGG
AAACCCAGCT
CTTGACAGAC
TCAGTGCAGA
AGCCCCAACC
AACGCAGGCC
TGTGGCGAGT
TCTTTTTGTG
CTTGAAAGCT
CCAGTCCAGT
ACACTGGTAG
GAGAGTGGCG
GGTTCCCTGT
TTTGGGGGAA
GTATGTTTTA
AAATAAATTT CAAGTATTTT TTTTAAAAAC TAAAi!~AAAAA AAAAAAAAAA1500 AAAAAAAAAA
pp 1502 (2) INFORMATION FOR SEQ ID N0:16:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 423 amino acids (B) TYPE: amino acid (C) STRANDEDNESS:
(D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein (xi) SEQUENCE DESCRIPTION: SEQ ID N0:16:
Met Ala Leu Lys Val Leu Leu Glu Gln Glu Lys Thr Phe Phe Thr Leu Leu Val Leu Leu Gly Tyr Leu Ser Cys Lys Val Thr Cys Glu Thr Gly Asp Cys Arg Gln Gln Glu Phe Arg Asp Arg Ser Gly Asn Cys Val Pro Cys Asn Gln Cys Gly Pro Gly Met Glu Leu Ser Lys Glu Cys Gly Phe Gly Tyr Gly Glu Asp Ala Gln Cys Val Thr Cys Arg Leu His Arg Phe Lys Glu Asp Trp Gly Phe Gln Lys Cys Lys Pro Cys Leu Asp Cys Ala g5 90 95 Val Val Asn Arg Phe Gln Lys Ala Asn Cys Ser Ala Thr Ser Asp Ala Ile Cys Gly Asp Cys Leu Pro Gly Phe Tyr Arg Lys Thr Lys Leu Val Gly Phe Gln Asp Met Glu Cys Val Pro Cys Gly Asp Pro Pro Pro Pro Tyr Glu Pro His Cys Ala Ser Lys Val Asn Leu Val Lys Ile Ala Ser Thr Ala Ser Ser Pro Arg Asp Thr Ala Leu Ala Ala Val Ile Cys Ser i65 170 175 Ala Leu Ala Thr Val Leu Leu Ala Leu Leu Ile Leu Cys Val Ile Tyr Cys Lys Arg Gln Phe Met Glu Lys Lys Pro Ser Trp Ser Leu Arg Ser Gln Asp Ile Gln Tyr Asn Gly Ser Glu Leu Ser Cys Leu Asp Arg Pro Gln Leu His Glu Tyr Ala His Arg Ala Cys Cys Gln Cys Arg Arg Asp Ser Val Gln Thr Cys Gly Pro Val Arg Leu Leu Pro Ser Met Cys Cys Glu Glu Ala Cys Ser Pro Asn Pro Ala Thr Leu Gly Cys Gly Val His Ser Ala Ala Ser Leu Gln Ala Arg Asn Ala Gly Pro Ala Gly Glu Met Val Pro Thr Phe Phe Gly Ser Leu Thr Gln Ser Ile Cys Gly Glu Phe Ser Asp Ala Trp Pro Leu Met Gln Asn Pro Met Gly Gly Asp Asn Ile Ser Phe Cys Asp Ser Tyr Pro Glu Leu Ala Gly Glu Asp Ile His Ser Leu Asn Pro Glu Leu Glu Ser Ser Thr Ser Leu Asp Ser Asn Ser Ser Gln Asp Leu Val Gly Gly Ala Val Pro Val Gln Ser His Ser Glu Asn Phe Thr Ala Ala Thr Asp Leu Ser Arg Tyr Asn Asn Thr Leu Val Glu Ser Ala Ser Thr Gln Asp Ala Leu Thr Met Arg Ser Gln Leu Asp Gln Glu Ser Gly Ala Ile Ile His Pro Ala Thr Gln Thr Ser Leu Gln Val Arg Gln Arg Leu Gly Ser Leu (2) INFORMATION FOR SEQ ID N0:17:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 339 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA
(xi) SEQUENCE DESCRIPTION: SEQ ID N0:17:
WO 99/20644 PCT/US98l12034 (2) INFORMATION FOR SEQ ID N0:18:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 552 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA
(xi) SEQUENCE DESCRIPTION: SEQ ID N0:18:
GTAAAATCCA
ATGTGAAATT
TAGAACTTTG
GTGGAAATAT
TCACTAGCAT
TTTCTTGGTC
ACTCCATTAC
CTGTGCTACT
GTTGGGGCAG
(2) INFORMATION FOR SEQ ID N0:19:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 47 amino acids (B) TYPE: amino acid (C) STRANDEDNESS:
(D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein (xi) SEQUENCE DESCRIPTION: SEQ ID N0:19:
Thr Gly Leu His Leu Ser Thr Val Glu Ile Ser Ala Ser Phe Cys Lys Pro Leu Leu Arg Thr Leu Ser Cys Leu Gln Lys Ser Leu Ala Leu Thr Asp Ser Ala Thr Met Trp Leu Tyr Ser Leu Ile Asn Leu Val Leu (2) INFORMATION FOR SEQ ID N0:20:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 308 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA
(xi) SEQUENCE DESCRIPTION: SEQ ID N0:20:
TTTTAATAAA AATGTANACA GGTGGGGCAA P~F~~AAAAAAA 1?~~7~AAAAAAA AAAAAAAAAA 3 0 0 pppp~p 3 0 8 (2) INFORMATION FOR SEQ ID N0:21:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 789 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA
(xi) SEQUENCE DESCRIPTION: SEQ ID N0:21:
(2) INFORMATION FOR SEQ ID N0:22:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 151 amino acids (B) TYPE: amino acid (C) STRANDEDNESS:
(D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein (xi) SEQUENCE DESCRIPTION: SEQ ID N0:22:
Met Pro Asp Tyr Tyr Lys Pro Gln Tyr Leu Leu Asp Phe Glu Asp Arg Leu Pro Ser Ser Val His Gly Ser Asp Ser Leu Ser Leu Asn Ser Phe Asn Ser Val Thr Ser Thr Asn Leu Glu Trp Asp Asp Ser Ala Ile Ala Pro Ser Ser Glu Asp Tyr Asp Phe Gly Asp Val Phe Pro Ala Val Pro Ser Val Pro Ser Thr Asp Trp Glu Asp Gly Asp Leu Thr Asp Thr Val Ser Gly Pro Arg Ser Thr Ala Ser Asp Leu Thr Ser Ser Lys Ala Ser Thr Arg Ser Pro Thr Gln Arg Gln Asn Pro Phe Asn Glu Glu Pro Ala Glu Thr Val Ser Ser Ser Asp Thr Thr Pro Val His Thr Thr Ser Gln Glu Lys Glu Glu Ala Gln Ala Leu Asp Pro Pro Asp Ala Cys Thr Glu Leu Glu Val Ile Arg Val Thr (2) INFORMATION FOR SEQ ID N0:23:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 3443 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA
(xi) SEQUENCE DESCRIPTION: SEQ ID N0:23:
CCATGACACA TCTCTAACTC AAAAGGACCA GGGCCAAGGT CTGGAAR.AAA AACRAGTTGG 420 CAAGTCCAGA
CATCTGGTGC
CTGAGCCAAG
AATCCCTGCA
CCACACCTGA
AATTTGCGAG
GGAAAGAAGA
AAAAGTCCCA
AGGTGTTTGG
TAAAGGTTCA
CCTTTGTTAG
AGAAAAGGCT
AGAAAGCCCA
TGGTCCACTT
AAGCAGAGGA
TGCTTTCTGC
TTGAACATTA
CACAGCTTCC
TTACTGGAGC
GCCACAAGAT
AAGCTACTGC
TGTGAACTTC
ACTGGATGTA GCCTGCCCAG TGAAAGGGCC ATTTTTAGGA CAGCACCCTC~CACCCCTGTG2040 GCGGCCCACC
TCCTGAGGGA
CCTCCAACCC
TGAACAGAGT
AACAGCTCAT
GTGATCAGCT TTGGTGAGAG GAGACGGCTG
CTGCCTTCCT
CTCGGCATCT
TGGTACATGC
GATGTTCATG
AGATTATCTT
ATGAGGGTGT
GGATAGAGCC
ACAGCGATTT
AAAAAGTCTC
CAAAATCGAC
AACAACCTCC
ACTTGAGTTG
TCCTCTGATG
AGCCATGGAT
CATTAAAGGA
ACTGTAGAAC
GAAATTTCCA
GAGTCTATAA F~AAAAAAAAA AAA 3443 (2) INFORMATION FOR SEQ ID N0:24:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 574 amino acids (B) TYPE: amino acid (C) STRANDEDNESS:
(D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein (xi) SEQUENCE DESCRIPTION: SEQ ID N0:24:
Met Pro Leu Phe Glu Ala Glu Glu Gly Val Leu Ser Arg Thr Gln Ile Phe Pro Thr Thr Iie Lys Val Ile Asp Pro Glu Phe Leu Glu Glu Pro Pro Ala Leu Ala Phe Leu Tyr Lys Asp Leu Tyr Glu Glu Ala Val Gly Glu Lys Lys Lys Glu Glu Glu Thr Ala Ser Glu Gly Asp Ser Val Asn Ser Glu Ala Ser Phe Pro Ser Arg Asn Ser Asp Thr Asp Asp Gly Thr Gly Ile Tyr Phe Glu Lys Tyr Ile Leu Lys Asp Asp Ile Leu His Asp Thr Ser Leu Thr Gln Lys Asp Gln Gly Gln Gly Leu Glu Xaa Lys Xaa Val Gly Lys Asp Asp Ser Tyr Gln Pro Ile Ala Ala Glu Gly Glu Ile Trp Gly Lys Phe Gly Thr Ile Cys Arg Glu Lys Ser Leu Glu Glu Gln Lys Gly Val Tyr Gly Glu Gly Glu Ser Val Asp His Val Glu Thr Val Gly Asn Val Ala Met Gln Lys Lys Ala Pro Ile Thr Glu Asp Val Arg VaI Ala Thr Gln Lys Ile Ser Tyr Ala Val Pro Phe Glu Asp Thr His His Val Leu Glu Arg Ala Asp Glu Ala Gly Ser Gln Gly Asn Glu Val Gly Asn Ala Ser Pro Glu Val Asn Leu Asn Val Pro Val Gln Val Ser Phe Pro Glu Glu Glu Phe Ala Ser Gly Ala Thr His Val Gln Glu Thr Ser Leu Glu Glu Pro Lys Ile Leu Val Pro Pro Glu Pro Ser Glu Glu Arg Leu Arg Asn Ser Pro Val Gln Asp Glu Tyr Glu Phe Thr Glu Ser Leu His Asn Glu Val Val Pro Gln Asp Ile Leu Ser Glu Glu Leu Ser Ser Glu Ser Thr Pro Glu Asp Val Leu Ser Gln Gly Lys Glu Ser Phe Glu His Ile Ser Glu Asn Glu Phe Ala Ser Glu Ala Glu Gln Ser Thr Pro Ala Glu Gln Lys Glu Leu Gly Ser Glu Arg Lys Glu Glu Asp Gln Leu Ser Ser Glu Val Val Thr Glu Lys Ala Gln Lys Glu Leu Lys Lys Ser Gln Ile Asp Thr Tyr Cys Tyr Thr Cys Lys Cys Pro Ile Ser Ala Thr Asp Lys Val Phe Gly Thr His Lys Asp His Glu Val Ser Thr Leu Asp Thr Ala Ile Ser Ala Val Lys Val Gln Leu Ala Glu Phe Leu Glu Asn Leu Gln Glu Lys Ser Leu Arg Ile Glu Ala Phe Val Ser Glu Ile Glu Ser Phe Phe Asn Thr Ile Glu Glu Asn Cys Ser Lys Asn Glu Lys Arg Leu Glu Glu Gln Asn Glu Glu Met Met Lys Lys Val Leu Ala Gln Tyr Asp Glu Lys Ala Gln Ser Phe Glu Glu Val Lys Lys Lys Lys Met Glu Phe Leu His Glu Glr_ Met Val His Phe Leu Gln Ser Met Asp Thr Ala Lys Asp Thr Leu Glu Thr Ile Val Arg Glu Ala Glu Glu Leu Asp Glu Ala Val Phe Leu Thr Ser Phe Glu Glu Ile Asn Glu Arg Leu Leu Ser Ala Met Glu Ser Thr Ala Ser Leu Glu Lys Met Pro Ala Ala Phe Ser Leu Phe Glu His Tyr Asp Asp Ser Ser Ala Arg Ser Asp Gln Met Leu Lys Gln Val Ala Val Pro Gln Leu Pro Arg Leu Glu Leu Arg Asn Gln Ile Leu Pro Pro Ala Gln Gln Leu Gln Phe Thr Gly Ala (2) INFORMATION FOR SEQ ID N0:25:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 1199 base pairs (B) TYPE: nucleic acid WO 99120644 , PGT/US98/22034 {C) STRANDEDNESS: double (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA
(xi) SEQUENCE DESCRIPTION: SEQ ID N0:25:
CATGTCTGCT
CTCCCCAAGG
GGGCCCCGGA
CTCCTGGYTG
CATCCACACC
CTCAAGTCCT
CTCACACAGA
TGGGGGGTGG
TTTTTTTTTC
TTTCCCTTTG
TAGTTTACTC
CCACAAAAAT
TCCTCCTCCT
CAGACCCGCC
CTTGTATATT
GAAAGTGACT
AATGAAAAAA
AAGAAAAAAA
TGTATAAAAA TTAAACAAGC TATGCTTCGA CTCAAAAAAA p~~AAP~A 1140 1?~
AAAAAAAAAA AAAAA7~AAA14 AAAAAP~AAAA AAAAAAAAAA AAAAAAAAAA1199 AAAAAAAAA
(2) INFORMATION FOR SEQ ID N0:26:
(i) SEQUENCE CHARACTERISTICS:
{A) LENGTH: 56 amino acids {B) TYPE: amino acid (C) STRANDEDNESS:
(D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein (xi) SEQUENCE DESCRIPTION: SEQ ID N0:26:
Met Leu Met Asn Pro Ile Arg Arg Arg Phe Gln Gln Val Pro His Pro Pro Leu Leu Leu Leu Leu Leu Leu Leu Thr Ala Arg Thr Gly Gly Gly Gln Gly Asp Thr Trp Ala Asp Pro Pro Ala Leu Pro Pro Pro His Pro Ala Pro His Ile Ile Leu Gln Ser (2) INFORMATION FOR SEQ ID N0:27:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 839 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA
(xi) SEQUENCE
DESCRIPTION:
SEQ
ID N0:27:
GCAGGCAGCC
TTCCGCCCAG
ATTTCAGAGT
GTTTACTGTT
TATTTTCACG
TCATCTTTGC
TTCCACTATC
CCTCATCGTG
GGCCTGCCCG
WO 99~p(,~ PCT/US98/22034 (2) INFORMATION FOR SEQ ID N0:28:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 56 amino acids (B) TYPE: amino acid (C) STRANDEDNESS:
(D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein (xi) SEQUENCE DESCRIPTION: SEQ ID N0:2B:
Met Phe Leu Arg Gln Asn Leu Thr Val Pro Leu Ile Val Leu Gly Asp Xaa Trp Trp His Pro Val Thr Leu Arg Thr Thr Phe Pro Gly Ala Cys Pro Leu Cys Ser Cys Cys Cys Leu Ala Val Pro Leu Leu Pro Pro Val Val Tyr Ile Pro Gly Ile Leu Asn (2) INFORMATION FOR SEQ ID N0:29:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 29 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "oligonucleotide"
(xi) SEQUENCE DESCRIPTION: SEQ ID N0:29:
(2) INFORMATION FOR SEQ ID N0:30:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 29 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "oligonucleotide"
(xi) SEQUENCE DESCRIPTION: SEQ ID N0:30:
(2) INFORMATION FOR SEQ ID N0:31:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 29 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "oligonucleotide"
(xi) SEQUENCE DESCRIPTION: SEQ ID N0:31:
(2) INFORMATION FOR SEQ ID N0:32:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 29 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "oligonucleotide"
(xi) SEQUENCE DESCRIPTION: SEQ ID N0:32:
(2) INFORMATION FOR SEQ ID N0:33:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 27 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "oligonucleotide"
(xi) SEQUENCE DESCRIPTION: SEQ ID N0:33:
(2) INFORMATION FOR SEQ ID N0:34:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 29 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "oligonucleotide"
(xi) SEQUENCE DESCRIPTION: SEQ ID N0:34:
(2) INFORMATION FOR SEQ ID N0:35:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 29 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "oligonucleotide"
(xi) SEQUENCE DESCRIPTION: SEQ ID N0:35:
(2) INFORMATION FOR SEQ ID N0:36:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 29 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "oligonculeotide"
(xi) SEQUENCE DESCRIPTION: SEQ ID N0:36:
(2) INFORMATION FOR SEQ ID N0:37:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 29 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "oligonucleotide"
(xi) SEQUENCE DESCRIPTION: SEQ ID N0:37:
(2) INFORMATION FOR SEQ ID N0:38:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 29 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "oligonucleotide"
(xi) SEQUENCE DESCRIPTION: SEQ ID N0:38:
(2) INFORMATION FOR SEQ ID N0:39:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 29 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "oligonucleotide"
(xi) SEQUENCE DESCRIPTION: SEQ ID N0:39:
(2) INFORMATION FOR SEQ ID N0:40:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 27 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "oligonucleotide"
(xi) SEQUENCE DESCRIPTION: SEQ ID N0:40:
(2) INFORMATION FOR SEQ ID N0:41:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 29 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc ~ "oligonucleotide"
(xi) SEQUENCE DESCRIPTION: SEQ ID N0:41:
TTAAAGAGAA
TTTTTCATCC
AAACTCTTTG
CTGATACTGG
GTGTTTTTAT
ATAATTTCAA
AGATGTGTTT
GAGGTTATTC
AAACTGCTAT
TTAAATTTAT
TCTTGATGGC
TAATATATTT
AGTCCTCTCC
GAAGATACTC
ATATGCCAGA
TTATAATTCC
CTTATGTTCT CGCCCCTCTA CACTTGAAAT AACAAAATGC CTTAATT"TTA4140 TGGATTAGTT
TTCAACTTTC
CCACATTTTA
GGAGAGCGTC
TTTGGATGAT
CTGTATTAGC
TAATAAAATT
(2) INFORMATION FOR SEQ ID N0:14:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 171 amino acids (B) TYPE: amino acid (C) STRANDEDNESS:
(D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein (xi) SEQUENCE DESCRIPTION: SEQ ID N0:14:
Met Arg Leu Lys Met Phe Leu Thr Pro His Met Cys Val Met Ala Ser Leu Ile Cys Ser Arg Gln Leu Phe Gly Trp Leu Phe Arg Arg Val Arg Phe Glu Lys Val Ile Phe Gly Ile Leu Thr Val Met Ser Ile Gln Gly Tyr Ala Asn Leu Arg Asn Gln Trp Ser Ile Ile Gly Glu Phe Asn Asn Leu Pro Gln Glu Glu Leu Leu Gln Trp Ile Lys Tyr Ser Thr Thr Ser Asp Ala Val Phe Ala Gly Ala Met Pro Thr Met Ala Ser Ile Lys Leu Ser Thr Leu His Pro Ile Val Asn His Pro His Tyr Glu Asp Ala Asp Leu Arg Ala Arg Thr Lys Ile Val Tyr Ser Thr Tyr Ser Arg Lys Ser Ala Lys Glu Val Arg Asp Lys Leu Leu Glu Leu His Val Asn Tyr Tyr Val Leu Glu Glu Ala Trp Cys Val Val Arg Thr Lys Phe Ile Leu Gln Asp Gly Gln Glu Val Leu Ser Ala Ala Glu Lys (2) INFORMATION FOR SEQ ID N0:15:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 1502 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA
(xi) SEQUENCE DESCRIPTION: SEQ ID N0:15:
ATGGCTTTAA
GGCTATTTGT
GATCGGTCTG
GAATGTGGCT
AAGGAGGACT
TTTCAGAAGG
TTTTATAGGA
CCTCCTCCTC
ACGGCCTCCA
GTCCTGCTGG
AAACCCAGCT
CTTGACAGAC
TCAGTGCAGA
AGCCCCAACC
AACGCAGGCC
TGTGGCGAGT
TCTTTTTGTG
CTTGAAAGCT
CCAGTCCAGT
ACACTGGTAG
GAGAGTGGCG
GGTTCCCTGT
TTTGGGGGAA
GTATGTTTTA
AAATAAATTT CAAGTATTTT TTTTAAAAAC TAAAi!~AAAAA AAAAAAAAAA1500 AAAAAAAAAA
pp 1502 (2) INFORMATION FOR SEQ ID N0:16:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 423 amino acids (B) TYPE: amino acid (C) STRANDEDNESS:
(D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein (xi) SEQUENCE DESCRIPTION: SEQ ID N0:16:
Met Ala Leu Lys Val Leu Leu Glu Gln Glu Lys Thr Phe Phe Thr Leu Leu Val Leu Leu Gly Tyr Leu Ser Cys Lys Val Thr Cys Glu Thr Gly Asp Cys Arg Gln Gln Glu Phe Arg Asp Arg Ser Gly Asn Cys Val Pro Cys Asn Gln Cys Gly Pro Gly Met Glu Leu Ser Lys Glu Cys Gly Phe Gly Tyr Gly Glu Asp Ala Gln Cys Val Thr Cys Arg Leu His Arg Phe Lys Glu Asp Trp Gly Phe Gln Lys Cys Lys Pro Cys Leu Asp Cys Ala g5 90 95 Val Val Asn Arg Phe Gln Lys Ala Asn Cys Ser Ala Thr Ser Asp Ala Ile Cys Gly Asp Cys Leu Pro Gly Phe Tyr Arg Lys Thr Lys Leu Val Gly Phe Gln Asp Met Glu Cys Val Pro Cys Gly Asp Pro Pro Pro Pro Tyr Glu Pro His Cys Ala Ser Lys Val Asn Leu Val Lys Ile Ala Ser Thr Ala Ser Ser Pro Arg Asp Thr Ala Leu Ala Ala Val Ile Cys Ser i65 170 175 Ala Leu Ala Thr Val Leu Leu Ala Leu Leu Ile Leu Cys Val Ile Tyr Cys Lys Arg Gln Phe Met Glu Lys Lys Pro Ser Trp Ser Leu Arg Ser Gln Asp Ile Gln Tyr Asn Gly Ser Glu Leu Ser Cys Leu Asp Arg Pro Gln Leu His Glu Tyr Ala His Arg Ala Cys Cys Gln Cys Arg Arg Asp Ser Val Gln Thr Cys Gly Pro Val Arg Leu Leu Pro Ser Met Cys Cys Glu Glu Ala Cys Ser Pro Asn Pro Ala Thr Leu Gly Cys Gly Val His Ser Ala Ala Ser Leu Gln Ala Arg Asn Ala Gly Pro Ala Gly Glu Met Val Pro Thr Phe Phe Gly Ser Leu Thr Gln Ser Ile Cys Gly Glu Phe Ser Asp Ala Trp Pro Leu Met Gln Asn Pro Met Gly Gly Asp Asn Ile Ser Phe Cys Asp Ser Tyr Pro Glu Leu Ala Gly Glu Asp Ile His Ser Leu Asn Pro Glu Leu Glu Ser Ser Thr Ser Leu Asp Ser Asn Ser Ser Gln Asp Leu Val Gly Gly Ala Val Pro Val Gln Ser His Ser Glu Asn Phe Thr Ala Ala Thr Asp Leu Ser Arg Tyr Asn Asn Thr Leu Val Glu Ser Ala Ser Thr Gln Asp Ala Leu Thr Met Arg Ser Gln Leu Asp Gln Glu Ser Gly Ala Ile Ile His Pro Ala Thr Gln Thr Ser Leu Gln Val Arg Gln Arg Leu Gly Ser Leu (2) INFORMATION FOR SEQ ID N0:17:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 339 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA
(xi) SEQUENCE DESCRIPTION: SEQ ID N0:17:
WO 99/20644 PCT/US98l12034 (2) INFORMATION FOR SEQ ID N0:18:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 552 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA
(xi) SEQUENCE DESCRIPTION: SEQ ID N0:18:
GTAAAATCCA
ATGTGAAATT
TAGAACTTTG
GTGGAAATAT
TCACTAGCAT
TTTCTTGGTC
ACTCCATTAC
CTGTGCTACT
GTTGGGGCAG
(2) INFORMATION FOR SEQ ID N0:19:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 47 amino acids (B) TYPE: amino acid (C) STRANDEDNESS:
(D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein (xi) SEQUENCE DESCRIPTION: SEQ ID N0:19:
Thr Gly Leu His Leu Ser Thr Val Glu Ile Ser Ala Ser Phe Cys Lys Pro Leu Leu Arg Thr Leu Ser Cys Leu Gln Lys Ser Leu Ala Leu Thr Asp Ser Ala Thr Met Trp Leu Tyr Ser Leu Ile Asn Leu Val Leu (2) INFORMATION FOR SEQ ID N0:20:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 308 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA
(xi) SEQUENCE DESCRIPTION: SEQ ID N0:20:
TTTTAATAAA AATGTANACA GGTGGGGCAA P~F~~AAAAAAA 1?~~7~AAAAAAA AAAAAAAAAA 3 0 0 pppp~p 3 0 8 (2) INFORMATION FOR SEQ ID N0:21:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 789 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA
(xi) SEQUENCE DESCRIPTION: SEQ ID N0:21:
(2) INFORMATION FOR SEQ ID N0:22:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 151 amino acids (B) TYPE: amino acid (C) STRANDEDNESS:
(D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein (xi) SEQUENCE DESCRIPTION: SEQ ID N0:22:
Met Pro Asp Tyr Tyr Lys Pro Gln Tyr Leu Leu Asp Phe Glu Asp Arg Leu Pro Ser Ser Val His Gly Ser Asp Ser Leu Ser Leu Asn Ser Phe Asn Ser Val Thr Ser Thr Asn Leu Glu Trp Asp Asp Ser Ala Ile Ala Pro Ser Ser Glu Asp Tyr Asp Phe Gly Asp Val Phe Pro Ala Val Pro Ser Val Pro Ser Thr Asp Trp Glu Asp Gly Asp Leu Thr Asp Thr Val Ser Gly Pro Arg Ser Thr Ala Ser Asp Leu Thr Ser Ser Lys Ala Ser Thr Arg Ser Pro Thr Gln Arg Gln Asn Pro Phe Asn Glu Glu Pro Ala Glu Thr Val Ser Ser Ser Asp Thr Thr Pro Val His Thr Thr Ser Gln Glu Lys Glu Glu Ala Gln Ala Leu Asp Pro Pro Asp Ala Cys Thr Glu Leu Glu Val Ile Arg Val Thr (2) INFORMATION FOR SEQ ID N0:23:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 3443 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA
(xi) SEQUENCE DESCRIPTION: SEQ ID N0:23:
CCATGACACA TCTCTAACTC AAAAGGACCA GGGCCAAGGT CTGGAAR.AAA AACRAGTTGG 420 CAAGTCCAGA
CATCTGGTGC
CTGAGCCAAG
AATCCCTGCA
CCACACCTGA
AATTTGCGAG
GGAAAGAAGA
AAAAGTCCCA
AGGTGTTTGG
TAAAGGTTCA
CCTTTGTTAG
AGAAAAGGCT
AGAAAGCCCA
TGGTCCACTT
AAGCAGAGGA
TGCTTTCTGC
TTGAACATTA
CACAGCTTCC
TTACTGGAGC
GCCACAAGAT
AAGCTACTGC
TGTGAACTTC
ACTGGATGTA GCCTGCCCAG TGAAAGGGCC ATTTTTAGGA CAGCACCCTC~CACCCCTGTG2040 GCGGCCCACC
TCCTGAGGGA
CCTCCAACCC
TGAACAGAGT
AACAGCTCAT
GTGATCAGCT TTGGTGAGAG GAGACGGCTG
CTGCCTTCCT
CTCGGCATCT
TGGTACATGC
GATGTTCATG
AGATTATCTT
ATGAGGGTGT
GGATAGAGCC
ACAGCGATTT
AAAAAGTCTC
CAAAATCGAC
AACAACCTCC
ACTTGAGTTG
TCCTCTGATG
AGCCATGGAT
CATTAAAGGA
ACTGTAGAAC
GAAATTTCCA
GAGTCTATAA F~AAAAAAAAA AAA 3443 (2) INFORMATION FOR SEQ ID N0:24:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 574 amino acids (B) TYPE: amino acid (C) STRANDEDNESS:
(D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein (xi) SEQUENCE DESCRIPTION: SEQ ID N0:24:
Met Pro Leu Phe Glu Ala Glu Glu Gly Val Leu Ser Arg Thr Gln Ile Phe Pro Thr Thr Iie Lys Val Ile Asp Pro Glu Phe Leu Glu Glu Pro Pro Ala Leu Ala Phe Leu Tyr Lys Asp Leu Tyr Glu Glu Ala Val Gly Glu Lys Lys Lys Glu Glu Glu Thr Ala Ser Glu Gly Asp Ser Val Asn Ser Glu Ala Ser Phe Pro Ser Arg Asn Ser Asp Thr Asp Asp Gly Thr Gly Ile Tyr Phe Glu Lys Tyr Ile Leu Lys Asp Asp Ile Leu His Asp Thr Ser Leu Thr Gln Lys Asp Gln Gly Gln Gly Leu Glu Xaa Lys Xaa Val Gly Lys Asp Asp Ser Tyr Gln Pro Ile Ala Ala Glu Gly Glu Ile Trp Gly Lys Phe Gly Thr Ile Cys Arg Glu Lys Ser Leu Glu Glu Gln Lys Gly Val Tyr Gly Glu Gly Glu Ser Val Asp His Val Glu Thr Val Gly Asn Val Ala Met Gln Lys Lys Ala Pro Ile Thr Glu Asp Val Arg VaI Ala Thr Gln Lys Ile Ser Tyr Ala Val Pro Phe Glu Asp Thr His His Val Leu Glu Arg Ala Asp Glu Ala Gly Ser Gln Gly Asn Glu Val Gly Asn Ala Ser Pro Glu Val Asn Leu Asn Val Pro Val Gln Val Ser Phe Pro Glu Glu Glu Phe Ala Ser Gly Ala Thr His Val Gln Glu Thr Ser Leu Glu Glu Pro Lys Ile Leu Val Pro Pro Glu Pro Ser Glu Glu Arg Leu Arg Asn Ser Pro Val Gln Asp Glu Tyr Glu Phe Thr Glu Ser Leu His Asn Glu Val Val Pro Gln Asp Ile Leu Ser Glu Glu Leu Ser Ser Glu Ser Thr Pro Glu Asp Val Leu Ser Gln Gly Lys Glu Ser Phe Glu His Ile Ser Glu Asn Glu Phe Ala Ser Glu Ala Glu Gln Ser Thr Pro Ala Glu Gln Lys Glu Leu Gly Ser Glu Arg Lys Glu Glu Asp Gln Leu Ser Ser Glu Val Val Thr Glu Lys Ala Gln Lys Glu Leu Lys Lys Ser Gln Ile Asp Thr Tyr Cys Tyr Thr Cys Lys Cys Pro Ile Ser Ala Thr Asp Lys Val Phe Gly Thr His Lys Asp His Glu Val Ser Thr Leu Asp Thr Ala Ile Ser Ala Val Lys Val Gln Leu Ala Glu Phe Leu Glu Asn Leu Gln Glu Lys Ser Leu Arg Ile Glu Ala Phe Val Ser Glu Ile Glu Ser Phe Phe Asn Thr Ile Glu Glu Asn Cys Ser Lys Asn Glu Lys Arg Leu Glu Glu Gln Asn Glu Glu Met Met Lys Lys Val Leu Ala Gln Tyr Asp Glu Lys Ala Gln Ser Phe Glu Glu Val Lys Lys Lys Lys Met Glu Phe Leu His Glu Glr_ Met Val His Phe Leu Gln Ser Met Asp Thr Ala Lys Asp Thr Leu Glu Thr Ile Val Arg Glu Ala Glu Glu Leu Asp Glu Ala Val Phe Leu Thr Ser Phe Glu Glu Ile Asn Glu Arg Leu Leu Ser Ala Met Glu Ser Thr Ala Ser Leu Glu Lys Met Pro Ala Ala Phe Ser Leu Phe Glu His Tyr Asp Asp Ser Ser Ala Arg Ser Asp Gln Met Leu Lys Gln Val Ala Val Pro Gln Leu Pro Arg Leu Glu Leu Arg Asn Gln Ile Leu Pro Pro Ala Gln Gln Leu Gln Phe Thr Gly Ala (2) INFORMATION FOR SEQ ID N0:25:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 1199 base pairs (B) TYPE: nucleic acid WO 99120644 , PGT/US98/22034 {C) STRANDEDNESS: double (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA
(xi) SEQUENCE DESCRIPTION: SEQ ID N0:25:
CATGTCTGCT
CTCCCCAAGG
GGGCCCCGGA
CTCCTGGYTG
CATCCACACC
CTCAAGTCCT
CTCACACAGA
TGGGGGGTGG
TTTTTTTTTC
TTTCCCTTTG
TAGTTTACTC
CCACAAAAAT
TCCTCCTCCT
CAGACCCGCC
CTTGTATATT
GAAAGTGACT
AATGAAAAAA
AAGAAAAAAA
TGTATAAAAA TTAAACAAGC TATGCTTCGA CTCAAAAAAA p~~AAP~A 1140 1?~
AAAAAAAAAA AAAAA7~AAA14 AAAAAP~AAAA AAAAAAAAAA AAAAAAAAAA1199 AAAAAAAAA
(2) INFORMATION FOR SEQ ID N0:26:
(i) SEQUENCE CHARACTERISTICS:
{A) LENGTH: 56 amino acids {B) TYPE: amino acid (C) STRANDEDNESS:
(D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein (xi) SEQUENCE DESCRIPTION: SEQ ID N0:26:
Met Leu Met Asn Pro Ile Arg Arg Arg Phe Gln Gln Val Pro His Pro Pro Leu Leu Leu Leu Leu Leu Leu Leu Thr Ala Arg Thr Gly Gly Gly Gln Gly Asp Thr Trp Ala Asp Pro Pro Ala Leu Pro Pro Pro His Pro Ala Pro His Ile Ile Leu Gln Ser (2) INFORMATION FOR SEQ ID N0:27:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 839 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA
(xi) SEQUENCE
DESCRIPTION:
SEQ
ID N0:27:
GCAGGCAGCC
TTCCGCCCAG
ATTTCAGAGT
GTTTACTGTT
TATTTTCACG
TCATCTTTGC
TTCCACTATC
CCTCATCGTG
GGCCTGCCCG
WO 99~p(,~ PCT/US98/22034 (2) INFORMATION FOR SEQ ID N0:28:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 56 amino acids (B) TYPE: amino acid (C) STRANDEDNESS:
(D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein (xi) SEQUENCE DESCRIPTION: SEQ ID N0:2B:
Met Phe Leu Arg Gln Asn Leu Thr Val Pro Leu Ile Val Leu Gly Asp Xaa Trp Trp His Pro Val Thr Leu Arg Thr Thr Phe Pro Gly Ala Cys Pro Leu Cys Ser Cys Cys Cys Leu Ala Val Pro Leu Leu Pro Pro Val Val Tyr Ile Pro Gly Ile Leu Asn (2) INFORMATION FOR SEQ ID N0:29:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 29 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "oligonucleotide"
(xi) SEQUENCE DESCRIPTION: SEQ ID N0:29:
(2) INFORMATION FOR SEQ ID N0:30:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 29 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "oligonucleotide"
(xi) SEQUENCE DESCRIPTION: SEQ ID N0:30:
(2) INFORMATION FOR SEQ ID N0:31:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 29 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "oligonucleotide"
(xi) SEQUENCE DESCRIPTION: SEQ ID N0:31:
(2) INFORMATION FOR SEQ ID N0:32:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 29 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "oligonucleotide"
(xi) SEQUENCE DESCRIPTION: SEQ ID N0:32:
(2) INFORMATION FOR SEQ ID N0:33:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 27 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "oligonucleotide"
(xi) SEQUENCE DESCRIPTION: SEQ ID N0:33:
(2) INFORMATION FOR SEQ ID N0:34:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 29 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "oligonucleotide"
(xi) SEQUENCE DESCRIPTION: SEQ ID N0:34:
(2) INFORMATION FOR SEQ ID N0:35:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 29 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "oligonucleotide"
(xi) SEQUENCE DESCRIPTION: SEQ ID N0:35:
(2) INFORMATION FOR SEQ ID N0:36:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 29 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "oligonculeotide"
(xi) SEQUENCE DESCRIPTION: SEQ ID N0:36:
(2) INFORMATION FOR SEQ ID N0:37:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 29 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "oligonucleotide"
(xi) SEQUENCE DESCRIPTION: SEQ ID N0:37:
(2) INFORMATION FOR SEQ ID N0:38:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 29 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "oligonucleotide"
(xi) SEQUENCE DESCRIPTION: SEQ ID N0:38:
(2) INFORMATION FOR SEQ ID N0:39:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 29 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "oligonucleotide"
(xi) SEQUENCE DESCRIPTION: SEQ ID N0:39:
(2) INFORMATION FOR SEQ ID N0:40:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 27 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "oligonucleotide"
(xi) SEQUENCE DESCRIPTION: SEQ ID N0:40:
(2) INFORMATION FOR SEQ ID N0:41:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 29 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc ~ "oligonucleotide"
(xi) SEQUENCE DESCRIPTION: SEQ ID N0:41:
Claims (49)
1. A composition comprising an isolated polynucleotide selected from the group consisting of:
(a) a polynucleotide comprising the nucleotide sequence of SEQ ID
NO:1;
(b) a polynucleotide comprising the nucleotide sequence of SEQ ID
NO:1 from nucleotide 113 to nucleotide 742;
(c) a polynucleotide comprising the nucleotide sequence of SEQ ID
NO:.1 from nucleotide 179 to nucleotide 742;
(d) a polynucleotide comprising the nucleotide sequence of SEQ ID
NO:1 from nucleotide 1 to nucleotide 568;
(e) a polynucleotide comprising the nucleotide sequence of the full-length protein coding sequence of clone AC41_1 deposited under accession number ATCC 98101;
(f) a polynucleotide encoding the full-length protein encoded by the cDNA insert of clone AC41_1 deposited under accession number ATCC 98101;
(g) a polynucleotide comprising the nucleotide sequence of the mature protein coding sequence of clone AC41-1 deposited under accession number ATCC 98101;
(h) a polynucleotide encoding the mature protein encoded by the cDNA insert of clone AC41_1 deposited under accession number ATCC 98101;
(i) a polynucleotide encoding a protein comprising the amino acid sequence of SEQ ID NO:2;
(j) a polynucleotide encoding a protein comprising a fragment of the amino acid sequence of SEQ ID NO:2 having biological activity;
(k) a polynucleotide which is an allelic variant of a polynucleotide of (a)-(h) above;
(l) a polynucleotide which encodes a species homologue of the protein of (i) or (j) above ; and (m) a polynucleotide capable of hybridizing under stringent conditions to any one of the polynucleotides specified in (a)-(j).
(a) a polynucleotide comprising the nucleotide sequence of SEQ ID
NO:1;
(b) a polynucleotide comprising the nucleotide sequence of SEQ ID
NO:1 from nucleotide 113 to nucleotide 742;
(c) a polynucleotide comprising the nucleotide sequence of SEQ ID
NO:.1 from nucleotide 179 to nucleotide 742;
(d) a polynucleotide comprising the nucleotide sequence of SEQ ID
NO:1 from nucleotide 1 to nucleotide 568;
(e) a polynucleotide comprising the nucleotide sequence of the full-length protein coding sequence of clone AC41_1 deposited under accession number ATCC 98101;
(f) a polynucleotide encoding the full-length protein encoded by the cDNA insert of clone AC41_1 deposited under accession number ATCC 98101;
(g) a polynucleotide comprising the nucleotide sequence of the mature protein coding sequence of clone AC41-1 deposited under accession number ATCC 98101;
(h) a polynucleotide encoding the mature protein encoded by the cDNA insert of clone AC41_1 deposited under accession number ATCC 98101;
(i) a polynucleotide encoding a protein comprising the amino acid sequence of SEQ ID NO:2;
(j) a polynucleotide encoding a protein comprising a fragment of the amino acid sequence of SEQ ID NO:2 having biological activity;
(k) a polynucleotide which is an allelic variant of a polynucleotide of (a)-(h) above;
(l) a polynucleotide which encodes a species homologue of the protein of (i) or (j) above ; and (m) a polynucleotide capable of hybridizing under stringent conditions to any one of the polynucleotides specified in (a)-(j).
2. A composition of claim 1 wherein said polynucleotide is operably linked to an expression control sequence.
3. A host cell transformed with a composition of claim 2.
4. The host cell of claim 3, wherein said cell is a mammalian cell.
5. A process for producing a protein, which comprises:
(a) growing a culture of the host cell of claim 3 in a suitable culture medium; and (b) purifying the protein from the culture.
(a) growing a culture of the host cell of claim 3 in a suitable culture medium; and (b) purifying the protein from the culture.
6. A protein produced according to the process of claim 5.
7. The protein of claim 6 comprising a mature protein.
8. A composition comprising a protein, wherein said protein comprises an amino acid sequence selected from the group consisting of:
(a) the amino acid sequence of SEQ ID NO:2;
(b) the amino acid sequence of SEQ ID NO:2 from amino acid 53 to amino acid 129;
(c) fragments of the amino acid sequence of SEQ ID NO:2; and (d) the amino acid sequence encoded by the cDNA insert of clone AC41_1 deposited under accession number ATCC 98101;
the protein being substantially free from other mammalian proteins.
(a) the amino acid sequence of SEQ ID NO:2;
(b) the amino acid sequence of SEQ ID NO:2 from amino acid 53 to amino acid 129;
(c) fragments of the amino acid sequence of SEQ ID NO:2; and (d) the amino acid sequence encoded by the cDNA insert of clone AC41_1 deposited under accession number ATCC 98101;
the protein being substantially free from other mammalian proteins.
9. The composition of claim 8, wherein said protein comprises the amino acid sequence of SEQ ID NO:2.
10. The composition of claim 8, wherein said protein comprises the amino acid sequence of SEQ ID NO:2 from amino acid 53 to amino acid 129.
11. The composition of claim 8, further comprising a pharmaceutically acceptable carrier.
12. A method for preventing, treating or ameliorating a medical condition which comprises administering to a mammalian subject a therapeutically effective amount of a composition of claim 11.
13. An isolated gene corresponding to the cDNA sequence of SEQ ID NO:1.
14. A composition comprising an isolated polynucleotide selected from the group consisting of:
(a) a polynucleotide comprising the nucleotide sequence of SEQ ID
NO:3;
(b) a polynucleotide comprising the nucleotide sequence of SEQ ID
NO:3 from nucleotide 161 to nucleotide 1126;
(c) a polynucleotide comprising the nucleotide sequence of SEQ ID
NO:3 from nucleotide 218 to nucleotide 1126;
(d) a polynucleotide comprising the nucleotide sequence of SEQ ID
NO:3 from nucleotide 1 to nucleotide 553;
(e) a polynucleotide comprising the nucleotide sequence of the full-length protein coding sequence of clone AC222_1 deposited under accession number ATCC 98101;
(f) a polynucleotide encoding the full-length protein encoded by the cDNA insert of clone AC222_1 deposited under accession number ATCC
98101;
(g) a polynucleotide comprising the nucleotide sequence of the mature protein coding sequence of clone AC222_1 deposited under accession number ATCC 98101;
(h) a polynucleotide encoding the mature protein encoded by the cDNA insert of clone AC222_1 deposited under accession number ATCC
98101;
(i) a polynucleotide encoding a protein comprising the amino acid sequence of SEQ ID NO:4;
(j) a polynucleotide encoding a protein comprising a fragment of the amino acid sequence of SEQ ID NO:4 having biological activity;
(k) a polynucleotide which is an allelic variant of a polynucleotide of (a)-(h) above;
(l) a polynucleotide which encodes a species homologue of the protein of (i) or (j) above ; and (m) a polynucleotide capable of hybridizing under stringent conditions to any one of the polynucleotides specified in (a)-(j).
(a) a polynucleotide comprising the nucleotide sequence of SEQ ID
NO:3;
(b) a polynucleotide comprising the nucleotide sequence of SEQ ID
NO:3 from nucleotide 161 to nucleotide 1126;
(c) a polynucleotide comprising the nucleotide sequence of SEQ ID
NO:3 from nucleotide 218 to nucleotide 1126;
(d) a polynucleotide comprising the nucleotide sequence of SEQ ID
NO:3 from nucleotide 1 to nucleotide 553;
(e) a polynucleotide comprising the nucleotide sequence of the full-length protein coding sequence of clone AC222_1 deposited under accession number ATCC 98101;
(f) a polynucleotide encoding the full-length protein encoded by the cDNA insert of clone AC222_1 deposited under accession number ATCC
98101;
(g) a polynucleotide comprising the nucleotide sequence of the mature protein coding sequence of clone AC222_1 deposited under accession number ATCC 98101;
(h) a polynucleotide encoding the mature protein encoded by the cDNA insert of clone AC222_1 deposited under accession number ATCC
98101;
(i) a polynucleotide encoding a protein comprising the amino acid sequence of SEQ ID NO:4;
(j) a polynucleotide encoding a protein comprising a fragment of the amino acid sequence of SEQ ID NO:4 having biological activity;
(k) a polynucleotide which is an allelic variant of a polynucleotide of (a)-(h) above;
(l) a polynucleotide which encodes a species homologue of the protein of (i) or (j) above ; and (m) a polynucleotide capable of hybridizing under stringent conditions to any one of the polynucleotides specified in (a)-(j).
15. A composition comprising a protein, wherein said protein comprises an amino acid sequence selected from the group consisting of:
(a) the amino acid sequence of SEQ ID NO:4;
(b) the amino acid sequence of SEQ ID NO:4 from amino acid 1 to amino acid 131;
(c) fragments of the amino acid sequence of SEQ ID NO:4; and (d) the amino acid sequence encoded by the cDNA insert of clone AC222_1 deposited under accession number ATCC 98101;
the protein being substantially free from other mammalian proteins.
(a) the amino acid sequence of SEQ ID NO:4;
(b) the amino acid sequence of SEQ ID NO:4 from amino acid 1 to amino acid 131;
(c) fragments of the amino acid sequence of SEQ ID NO:4; and (d) the amino acid sequence encoded by the cDNA insert of clone AC222_1 deposited under accession number ATCC 98101;
the protein being substantially free from other mammalian proteins.
16. An isolated gene corresponding to the cDNA sequence of SEQ ID NO:3.
17. A composition comprising an isolated polynucleotide selected from the group consisting of:
(a) a polynucleotide comprising the nucleotide sequence of SEQ ID
NO:5;
(b) a polynucleotide comprising the nucleotide sequence of SEQ ID
NO:5 from nucleotide 827 to nucleotide 994;
(c) a polynucleotide comprising the nucleotide sequence of SEQ ID
NO:5 from nucleotide 869 to nucleotide 994;
(d) a polynucleotide comprising the nucleotide sequence of the full-length protein coding sequence of clone AJ143_1 deposited under accession number ATCC 98101;
(e) a polynucleotide encoding the full-length protein encoded by the cDNA insert of clone AJ143_1 deposited under accession number ATCC 98101;
(f) a polynucleotide comprising the nucleotide sequence of the mature protein coding sequence of clone AJ143_1 deposited under accession number ATCC 98101;
(g) a polynucleotide encoding the mature protein encoded by the cDNA insert of clone AJ143_1 deposited under accession number ATCC 98101;
(h) a polynucleotide encoding a protein comprising the amino acid sequence of SEQ ID NO:6;
(i) a polynucleotide encoding a protein comprising a fragment of the amino acid sequence of SEQ ID NO:6 having biological activity;
(j) a polynucleotide which is an allelic variant of a polynucleotide of (a)-(g) above;
(k) a polynucleotide which encodes a species homologue of the protein of (h) or (i) above ; and (l) a polynucleotide capable of hybridizing under stringent conditions to any one of the polynucleotides specified in (a)-(i).
(a) a polynucleotide comprising the nucleotide sequence of SEQ ID
NO:5;
(b) a polynucleotide comprising the nucleotide sequence of SEQ ID
NO:5 from nucleotide 827 to nucleotide 994;
(c) a polynucleotide comprising the nucleotide sequence of SEQ ID
NO:5 from nucleotide 869 to nucleotide 994;
(d) a polynucleotide comprising the nucleotide sequence of the full-length protein coding sequence of clone AJ143_1 deposited under accession number ATCC 98101;
(e) a polynucleotide encoding the full-length protein encoded by the cDNA insert of clone AJ143_1 deposited under accession number ATCC 98101;
(f) a polynucleotide comprising the nucleotide sequence of the mature protein coding sequence of clone AJ143_1 deposited under accession number ATCC 98101;
(g) a polynucleotide encoding the mature protein encoded by the cDNA insert of clone AJ143_1 deposited under accession number ATCC 98101;
(h) a polynucleotide encoding a protein comprising the amino acid sequence of SEQ ID NO:6;
(i) a polynucleotide encoding a protein comprising a fragment of the amino acid sequence of SEQ ID NO:6 having biological activity;
(j) a polynucleotide which is an allelic variant of a polynucleotide of (a)-(g) above;
(k) a polynucleotide which encodes a species homologue of the protein of (h) or (i) above ; and (l) a polynucleotide capable of hybridizing under stringent conditions to any one of the polynucleotides specified in (a)-(i).
18. A composition comprising a protein, wherein said protein comprises an amino acid sequence selected from the group consisting of:
(a) the amino acid sequence of SEQ ID NO:6;
(b) the amino acid sequence of SEQ ID NO:6 from amino acid 1 to amino acid 20;
(c) fragments of the amino acid sequence of SEQ ID NO:6; and (d) the amino acid sequence encoded by the cDNA insert of clone AJ143_1 deposited under accession number ATCC 98101;
the protein being substantially free from other mammalian proteins.
(a) the amino acid sequence of SEQ ID NO:6;
(b) the amino acid sequence of SEQ ID NO:6 from amino acid 1 to amino acid 20;
(c) fragments of the amino acid sequence of SEQ ID NO:6; and (d) the amino acid sequence encoded by the cDNA insert of clone AJ143_1 deposited under accession number ATCC 98101;
the protein being substantially free from other mammalian proteins.
19. An isolated gene corresponding to the cDNA sequence of SEQ ID NO:5.
20. A composition comprising an isolated polynucleotide selected from the group consisting of:
(a) a polynucleotide comprising the nucleotide sequence of SEQ ID
NO:7;
(b) a polynucleotide comprising the nucleotide sequence of SEQ ID
NO:7 from nucleotide 91 to nucleotide 204;
(c) a polynucleotide comprising the nucleotide sequence of the full-length protein coding sequence of clone AJ168 4 deposited under accession number ATCC 98101;
(d) a polynucleotide encoding the full-length protein encoded by the cDNA insert of clone AJ168_4 deposited under accession number ATCC 98101;
(e) a polynucleotide comprising the nucleotide sequence of the mature protein coding sequence of clone AJ168_4 deposited under accession number ATCC 98101;
(f) a polynucleotide encoding the mature protein encoded by the cDNA insert of clone AJ168_4 deposited under accession number ATCC 98101;
(g) a polynucleotide encoding a protein comprising the amino acid sequence of SEQ ID NO:8;
(h) a polynucleotide encoding a protein comprising a fragment of the amino acid sequence of SEQ ID NO:8 having biological activity;
(i) a polynucleotide which is an allelic variant of a polynucleotide of (a)-(f) above;
(j) a polynucleotide which encodes a species homologue of the protein of (g) or (h) above ; and (k) a polynucleotide capable of hybridizing under stringent conditions to any one of the polynucleotides specified in (a)-(h).
(a) a polynucleotide comprising the nucleotide sequence of SEQ ID
NO:7;
(b) a polynucleotide comprising the nucleotide sequence of SEQ ID
NO:7 from nucleotide 91 to nucleotide 204;
(c) a polynucleotide comprising the nucleotide sequence of the full-length protein coding sequence of clone AJ168 4 deposited under accession number ATCC 98101;
(d) a polynucleotide encoding the full-length protein encoded by the cDNA insert of clone AJ168_4 deposited under accession number ATCC 98101;
(e) a polynucleotide comprising the nucleotide sequence of the mature protein coding sequence of clone AJ168_4 deposited under accession number ATCC 98101;
(f) a polynucleotide encoding the mature protein encoded by the cDNA insert of clone AJ168_4 deposited under accession number ATCC 98101;
(g) a polynucleotide encoding a protein comprising the amino acid sequence of SEQ ID NO:8;
(h) a polynucleotide encoding a protein comprising a fragment of the amino acid sequence of SEQ ID NO:8 having biological activity;
(i) a polynucleotide which is an allelic variant of a polynucleotide of (a)-(f) above;
(j) a polynucleotide which encodes a species homologue of the protein of (g) or (h) above ; and (k) a polynucleotide capable of hybridizing under stringent conditions to any one of the polynucleotides specified in (a)-(h).
21. A composition comprising a protein, wherein said protein comprises an amino acid sequence selected from the group consisting of:
(a) the amino acid sequence of SEQ ID NO:8;
(b) fragments of the amino acid sequence of SEQ ID NO:8; and (c) the amino acid sequence encoded by the cDNA insert of clone AJ168_4 deposited under accession number ATCC 98101;
the protein being substantially free from other mammalian proteins.
(a) the amino acid sequence of SEQ ID NO:8;
(b) fragments of the amino acid sequence of SEQ ID NO:8; and (c) the amino acid sequence encoded by the cDNA insert of clone AJ168_4 deposited under accession number ATCC 98101;
the protein being substantially free from other mammalian proteins.
22. An isolated gene corresponding to the cDNA sequence of SEQ ID NO:7.
23. A composition comprising an isolated polynucleotide selected from the group consisting of:
(a) a polynucleotide comprising the nucleotide sequence of SEQ ID
NO:9;
(b) a polynucleotide comprising the nucleotide sequence of SEQ ID
NO:9 from nucleotide 60 to nucleotide 230;
(c) a polynucleotide comprising the nucleotide sequence of SEQ ID
NO:9 from nucleotide 1 to nucleotide 323;
(d) a polynucleotide comprising the nucleotide sequence of the full-length protein coding sequence of clone AK684_1 deposited under accession number ATCC 98101;
(e) a polynucleotide encoding the full-length protein encoded by the cDNA insert of clone AK684_1 deposited under accession number ATCC
98101;
(f) a polynucleotide comprising the nucleotide sequence of the mature protein coding sequence of clone AK684_1 deposited under accession number ATCC 98101;
(g) a polynucleotide encoding the mature protein encoded by the cDNA insert of clone AK684_1 deposited under accession number ATCC
98101;
(h) a polynucleotide encoding a protein comprising the amino acid sequence of SEQ ID NO:10;
(i) a polynucleotide encoding a protein comprising a fragment of the amino acid sequence of SEQ ID NO:10 having biological activity;
(j) a polynucleotide which is an allelic variant of a polynucleotide of (a)-(g) above;
(k) a polynucleotide which encodes a species homologue of the protein of (h) or (i) above ; and (l) a polynucleotide capable of hybridizing under stringent conditions to any one of the polynucleotides specified in (a)-(i).
(a) a polynucleotide comprising the nucleotide sequence of SEQ ID
NO:9;
(b) a polynucleotide comprising the nucleotide sequence of SEQ ID
NO:9 from nucleotide 60 to nucleotide 230;
(c) a polynucleotide comprising the nucleotide sequence of SEQ ID
NO:9 from nucleotide 1 to nucleotide 323;
(d) a polynucleotide comprising the nucleotide sequence of the full-length protein coding sequence of clone AK684_1 deposited under accession number ATCC 98101;
(e) a polynucleotide encoding the full-length protein encoded by the cDNA insert of clone AK684_1 deposited under accession number ATCC
98101;
(f) a polynucleotide comprising the nucleotide sequence of the mature protein coding sequence of clone AK684_1 deposited under accession number ATCC 98101;
(g) a polynucleotide encoding the mature protein encoded by the cDNA insert of clone AK684_1 deposited under accession number ATCC
98101;
(h) a polynucleotide encoding a protein comprising the amino acid sequence of SEQ ID NO:10;
(i) a polynucleotide encoding a protein comprising a fragment of the amino acid sequence of SEQ ID NO:10 having biological activity;
(j) a polynucleotide which is an allelic variant of a polynucleotide of (a)-(g) above;
(k) a polynucleotide which encodes a species homologue of the protein of (h) or (i) above ; and (l) a polynucleotide capable of hybridizing under stringent conditions to any one of the polynucleotides specified in (a)-(i).
24. A composition comprising a protein, wherein said protein comprises an amino acid sequence selected from the group consisting of:
(a) the amino acid sequence of SEQ ID NO:10;
(b) fragments of the amino acid sequence of SEQ ID NO:10; and (c) the amino acid sequence encoded by the cDNA insert of clone AK684_1 deposited under accession number ATCC 98101;
the protein being substantially free from other mammalian proteins.
(a) the amino acid sequence of SEQ ID NO:10;
(b) fragments of the amino acid sequence of SEQ ID NO:10; and (c) the amino acid sequence encoded by the cDNA insert of clone AK684_1 deposited under accession number ATCC 98101;
the protein being substantially free from other mammalian proteins.
25. An isolated gene corresponding to the cDNA sequence of SEQ ID NO:9.
26. A composition comprising an isolated polynucleotide selected from the group consisting of:
(a) a polynucleotide comprising the nucleotide sequence of SEQ ID
NO:11;
(b) a polynucleotide comprising the nucleotide sequence of SEQ ID
NO:11 from nucleotide 812 to nucleotide 2731;
(c) a polynucleotide comprising the nucleotide sequence of SEQ ID
NO:11 from nucleotide 944 to nucleotide 2731;
(d) a polynucleotide comprising the nucleotide sequence of SEQ ID
NO:11 from nucleotide 855 to nucleotide 1186;
(e) a polynucleotide comprising the nucleotide sequence of the full-length protein coding sequence of clone AS209_1 deposited under accession number ATCC 98101;
(f) a polynucleotide encoding the full-length protein encoded by the cDNA insert of clone AS209_1 deposited under accession number ATCC 98101;
(g) a polynucleotide comprising the nucleotide sequence of the mature protein coding sequence of clone AS209_1 deposited under accession number ATCC 98101;
(h) a polynucleotide encoding the mature protein encoded by the cDNA insert of clone AS209_1 deposited under accession number ATCC 98101;
(i) a polynucleotide encoding a protein comprising the amino acid sequence of SEQ ID NO:12;
(j) a polynucleotide encoding a protein comprising a fragment of the amino acid sequence of SEQ ID NO:12 having biological activity;
(k) a polynucleotide which is an allelic variant of a polynucleotide of (a)-(h) above;
(l) a polynucleotide which encodes a species homologue of the protein of (i) or (j) above ; and (m) a polynucleotide capable of hybridizing under stringent conditions to any one of the polynucleotides specified in (a)-(j).
(a) a polynucleotide comprising the nucleotide sequence of SEQ ID
NO:11;
(b) a polynucleotide comprising the nucleotide sequence of SEQ ID
NO:11 from nucleotide 812 to nucleotide 2731;
(c) a polynucleotide comprising the nucleotide sequence of SEQ ID
NO:11 from nucleotide 944 to nucleotide 2731;
(d) a polynucleotide comprising the nucleotide sequence of SEQ ID
NO:11 from nucleotide 855 to nucleotide 1186;
(e) a polynucleotide comprising the nucleotide sequence of the full-length protein coding sequence of clone AS209_1 deposited under accession number ATCC 98101;
(f) a polynucleotide encoding the full-length protein encoded by the cDNA insert of clone AS209_1 deposited under accession number ATCC 98101;
(g) a polynucleotide comprising the nucleotide sequence of the mature protein coding sequence of clone AS209_1 deposited under accession number ATCC 98101;
(h) a polynucleotide encoding the mature protein encoded by the cDNA insert of clone AS209_1 deposited under accession number ATCC 98101;
(i) a polynucleotide encoding a protein comprising the amino acid sequence of SEQ ID NO:12;
(j) a polynucleotide encoding a protein comprising a fragment of the amino acid sequence of SEQ ID NO:12 having biological activity;
(k) a polynucleotide which is an allelic variant of a polynucleotide of (a)-(h) above;
(l) a polynucleotide which encodes a species homologue of the protein of (i) or (j) above ; and (m) a polynucleotide capable of hybridizing under stringent conditions to any one of the polynucleotides specified in (a)-(j).
27. A composition comprising a protein, wherein said protein comprises an amino acid sequence selected from the group consisting of:
(a) the amino acid sequence of SEQ ID NO:12;
(b) the amino acid sequence of SEQ ID NO:12 from amino acid 1 to amino acid 125;
(c) fragments of the amino acid sequence of SEQ ID NO:12; and (d) the amino acid sequence encoded by the cDNA insert of clone AS209_1 deposited under accession number ATCC 98101;
the protein being substantially free from other mammalian proteins.
(a) the amino acid sequence of SEQ ID NO:12;
(b) the amino acid sequence of SEQ ID NO:12 from amino acid 1 to amino acid 125;
(c) fragments of the amino acid sequence of SEQ ID NO:12; and (d) the amino acid sequence encoded by the cDNA insert of clone AS209_1 deposited under accession number ATCC 98101;
the protein being substantially free from other mammalian proteins.
28. An isolated gene corresponding to the cDNA sequence of SEQ ID
NO: 11.
NO: 11.
29. A composition comprising an isolated polynucleotide selected from the group consisting of:
(a) a polynucleotide comprising the nucleotide sequence of SEQ ID
NO:13;
(b) a polynucleotide comprising the nucleotide sequence of SEQ ID
NO:13 from nucleotide 2196 to nucleotide 2708;
(c) a polynucleotide comprising the nucleotide sequence of SEQ ID
NO:13 from nucleotide 489 to nucleotide 890;
(d) a polynucleotide comprising the nucleotide sequence of the full-length protein coding sequence of clone AX56_28 deposited under accession number ATCC 98180;
(e) a polynucleotide encoding the full-length protein encoded by the cDNA insert of clone AX56_28 deposited under accession number ATCC
98180;
(f) a polynucleotide comprising the nucleotide sequence of the mature protein coding sequence of clone AX56_28 deposited under accession number ATCC 98180;
a polynucleotide encoding the mature protein encoded by the cDNA insert of clone AX56_28 deposited under accession number ATCC
98180;
(h) a polynucleotide encoding a protein comprising the amino acid sequence of SEQ ID NO:14;
(i) a polynucleotide encoding a protein comprising a fragment of the amino acid sequence of SEQ ID NO:14 having biological activity;
(j) a polynucleotide which is an allelic variant of a polynucleotide of (a)-(g) above;
(k) a polynucleotide which encodes a species homologue of the protein of (h) or (i) above ; and (l) a polynucleotide capable of hybridizing under stringent conditions to any one of the polynucleotides specified in (a)-(i).
(a) a polynucleotide comprising the nucleotide sequence of SEQ ID
NO:13;
(b) a polynucleotide comprising the nucleotide sequence of SEQ ID
NO:13 from nucleotide 2196 to nucleotide 2708;
(c) a polynucleotide comprising the nucleotide sequence of SEQ ID
NO:13 from nucleotide 489 to nucleotide 890;
(d) a polynucleotide comprising the nucleotide sequence of the full-length protein coding sequence of clone AX56_28 deposited under accession number ATCC 98180;
(e) a polynucleotide encoding the full-length protein encoded by the cDNA insert of clone AX56_28 deposited under accession number ATCC
98180;
(f) a polynucleotide comprising the nucleotide sequence of the mature protein coding sequence of clone AX56_28 deposited under accession number ATCC 98180;
a polynucleotide encoding the mature protein encoded by the cDNA insert of clone AX56_28 deposited under accession number ATCC
98180;
(h) a polynucleotide encoding a protein comprising the amino acid sequence of SEQ ID NO:14;
(i) a polynucleotide encoding a protein comprising a fragment of the amino acid sequence of SEQ ID NO:14 having biological activity;
(j) a polynucleotide which is an allelic variant of a polynucleotide of (a)-(g) above;
(k) a polynucleotide which encodes a species homologue of the protein of (h) or (i) above ; and (l) a polynucleotide capable of hybridizing under stringent conditions to any one of the polynucleotides specified in (a)-(i).
30. A composition comprising a protein, wherein said protein comprises an amino acid sequence selected from the group consisting of:
(a) the amino acid sequence of SEQ ID NO:14;
(b) fragments of the amino acid sequence of SEQ ID NO:14; and (c) the amino acid sequence encoded by the cDNA insert of clone AX56_28 deposited under accession number ATCC 98180;
the protein being substantially free from other mammalian proteins.
(a) the amino acid sequence of SEQ ID NO:14;
(b) fragments of the amino acid sequence of SEQ ID NO:14; and (c) the amino acid sequence encoded by the cDNA insert of clone AX56_28 deposited under accession number ATCC 98180;
the protein being substantially free from other mammalian proteins.
31. An isolated gene corresponding to the cDNA sequence of SEQ ID
NO:13.
NO:13.
32. A composition comprising an isolated polynucleotide selected from the group consisting of:
(a) a polynucleotide comprising the nucleotide sequence of SEQ ID
NO:15;
(b) a polynucleotide comprising the nucleotide sequence of SEQ ID
NO:15 from nucleotide 51 to nucleotide 1319;
(c) a polynucleotide comprising the nucleotide sequence of SEQ ID
NO:15 from nucleotide 126 to nucleotide 1319;
(d) a polynucleotide comprising the nucleotide sequence of SEQ ID
NO:15 from nucleotide 409 to nucleotide 495;
(e) a polynucleotide comprising the nucleotide sequence of the full-length protein coding sequence of clone AX92_3 deposited under accession number ATCC 98101;
(f) a polynucleotide encoding the full-length protein encoded by the cDNA insert of clone AX92_3 deposited under accession number ATCC 98101;
(g) a polynucleotide comprising the nucleotide sequence of the mature protein coding sequence of clone AX92_3 deposited under accession number ATCC 98101;
(h) a polynucleotide encoding the mature protein encoded by the cDNA insert of clone AX92_3 deposited under accession number ATCC 98101;
(i) a polynucleotide encoding a protein comprising the amino acid sequence of SEQ ID NO:16;
(j) a polynucleotide encoding a protein comprising a fragment of the amino acid sequence of SEQ ID NO:16 having biological activity;
(k) a polynucleotide which is an allelic variant of a polynucleotide of (a)-(h) above;
(l) a polynucleotide which encodes a species homologue of the protein of (i) or (j) above ; and (m) a polynucleotide capable of hybridizing under stringent conditions to any one of the polynucleotides specified in (a)-(j).
(a) a polynucleotide comprising the nucleotide sequence of SEQ ID
NO:15;
(b) a polynucleotide comprising the nucleotide sequence of SEQ ID
NO:15 from nucleotide 51 to nucleotide 1319;
(c) a polynucleotide comprising the nucleotide sequence of SEQ ID
NO:15 from nucleotide 126 to nucleotide 1319;
(d) a polynucleotide comprising the nucleotide sequence of SEQ ID
NO:15 from nucleotide 409 to nucleotide 495;
(e) a polynucleotide comprising the nucleotide sequence of the full-length protein coding sequence of clone AX92_3 deposited under accession number ATCC 98101;
(f) a polynucleotide encoding the full-length protein encoded by the cDNA insert of clone AX92_3 deposited under accession number ATCC 98101;
(g) a polynucleotide comprising the nucleotide sequence of the mature protein coding sequence of clone AX92_3 deposited under accession number ATCC 98101;
(h) a polynucleotide encoding the mature protein encoded by the cDNA insert of clone AX92_3 deposited under accession number ATCC 98101;
(i) a polynucleotide encoding a protein comprising the amino acid sequence of SEQ ID NO:16;
(j) a polynucleotide encoding a protein comprising a fragment of the amino acid sequence of SEQ ID NO:16 having biological activity;
(k) a polynucleotide which is an allelic variant of a polynucleotide of (a)-(h) above;
(l) a polynucleotide which encodes a species homologue of the protein of (i) or (j) above ; and (m) a polynucleotide capable of hybridizing under stringent conditions to any one of the polynucleotides specified in (a)-(j).
33. A composition comprising a protein, wherein said protein comprises an amino acid sequence selected from the group consisting of:
(a) the amino acid sequence of SEQ ID NO:16;
(b) fragments of the amino acid sequence of SEQ ID NO:16; and (c) the amino acid sequence encoded by the cDNA insert of clone AX92_3 deposited under accession number ATCC 98101;
the protein being substantially free from other mammalian proteins.
(a) the amino acid sequence of SEQ ID NO:16;
(b) fragments of the amino acid sequence of SEQ ID NO:16; and (c) the amino acid sequence encoded by the cDNA insert of clone AX92_3 deposited under accession number ATCC 98101;
the protein being substantially free from other mammalian proteins.
34. An isolated gene corresponding to the cDNA sequence of SEQ ID
NO:15.
NO:15.
35. A composition comprising an isolated polynucleotide selected from the group consisting of:
(a) a polynucleotide comprising the nucleotide sequence of SEQ ID
NO:18;
(b) a polynucleotide comprising the nucleotide sequence of SEQ ID
NO:18 from nucleotide 210 to nucleotide 350;
(c) a polynucleotide comprising the nucleotide sequence of SEQ ID
NO:18 from nucleotide 300 to nucleotide 350;
(d) a polynucleotide comprising the nucleotide sequence of the full-length protein coding sequence of clone BF245_1 deposited under accession number ATCC 98101;
(e) a polynucleotide encoding the full-length protein encoded by the cDNA insert of clone BF245_1 deposited under accession number ATCC 98101;
(f) a polynucleotide comprising the nucleotide sequence of the mature protein coding sequence of clone BF245_1 deposited under accession number ATCC 98101;
(g) a polynucleotide encoding the mature protein encoded by the cDNA insert of clone BF245_1 deposited under accession number ATCC 98101;
(h) a polynucleotide encoding a protein comprising the amino acid sequence of SEQ ID NO:19;
(i) a polynucleotide encoding a protein comprising a fragment of the amino acid sequence of SEQ ID NO:19 having biological activity;
(j) a polynucleotide which is an allelic variant of a polynucleotide of (a)-(g) above;
(k) a polynucleotide which encodes a species homologue of the protein of (h) or (i) above ; and (l) a polynucleotide capable of hybridizing under stringent conditions to any one of the polynucleotides specified in (a)-(i).
(a) a polynucleotide comprising the nucleotide sequence of SEQ ID
NO:18;
(b) a polynucleotide comprising the nucleotide sequence of SEQ ID
NO:18 from nucleotide 210 to nucleotide 350;
(c) a polynucleotide comprising the nucleotide sequence of SEQ ID
NO:18 from nucleotide 300 to nucleotide 350;
(d) a polynucleotide comprising the nucleotide sequence of the full-length protein coding sequence of clone BF245_1 deposited under accession number ATCC 98101;
(e) a polynucleotide encoding the full-length protein encoded by the cDNA insert of clone BF245_1 deposited under accession number ATCC 98101;
(f) a polynucleotide comprising the nucleotide sequence of the mature protein coding sequence of clone BF245_1 deposited under accession number ATCC 98101;
(g) a polynucleotide encoding the mature protein encoded by the cDNA insert of clone BF245_1 deposited under accession number ATCC 98101;
(h) a polynucleotide encoding a protein comprising the amino acid sequence of SEQ ID NO:19;
(i) a polynucleotide encoding a protein comprising a fragment of the amino acid sequence of SEQ ID NO:19 having biological activity;
(j) a polynucleotide which is an allelic variant of a polynucleotide of (a)-(g) above;
(k) a polynucleotide which encodes a species homologue of the protein of (h) or (i) above ; and (l) a polynucleotide capable of hybridizing under stringent conditions to any one of the polynucleotides specified in (a)-(i).
36. A composition comprising a protein, wherein said protein comprises an amino acid sequence selected from the group consisting of:
(a) the amino acid sequence of SEQ ID NO:19;
(b) fragments of the amino acid sequence of SEQ ID NO:19; and (c) the amino acid sequence encoded by the cDNA insert of clone BF245_1 deposited under accession number ATCC 98101;
the protein being substantially free from other mammalian proteins.
(a) the amino acid sequence of SEQ ID NO:19;
(b) fragments of the amino acid sequence of SEQ ID NO:19; and (c) the amino acid sequence encoded by the cDNA insert of clone BF245_1 deposited under accession number ATCC 98101;
the protein being substantially free from other mammalian proteins.
37. An isolated gene corresponding to the cDNA sequence of SEQ ID
NO:18, SEQ ID NO:17 or SEQ ID NO:20.
NO:18, SEQ ID NO:17 or SEQ ID NO:20.
38. A composition comprising an isolated polynucleotide selected from the group consisting of:
(a) a polynucleotide comprising the nucleotide sequence of SEQ ID
NO:21;
(b) a polynucleotide comprising the nucleotide sequence of SEQ ID
NO:21 from nucleotide 322 to nucleotide 774;
(c) a polynucleotide comprising the nucleotide sequence of SEQ ID
NO:21 from nucleotide 149 to nucleotide 477;
(d) a polynucleotide comprising the nucleotide sequence of the full-length protein coding sequence of clone BG33_7 deposited under accession number ATCC 98101;
(e) a polynucleotide encoding the full-length protein encoded by the cDNA insert of clone BG33_7 deposited under accession number ATCC 98101;
(f) a polynucleotide comprising the nucleotide sequence of the mature protein coding sequence of clone BG33_7 deposited under accession number ATCC 98101;
(g) a polynucleotide encoding the mature protein encoded by the cDNA insert of clone BG33_7 deposited under accession number ATCC 98101;
(h) a polynucleotide encoding a protein comprising the amino acid sequence of SEQ ID NO:22;
(i) a polynucleotide encoding a protein comprising a fragment of the amino acid sequence of SEQ ID NO:22 having biological activity;
(j) a polynucleotide which is an allelic variant of a polynucleotide of (a)-(g) above;
(k) a polynucleotide which encodes a species homologue of the protein of (h) or (i) above ; and (l) a polynucleotide capable of hybridizing under stringent conditions to any one of the polynucleotides specified in (a)-(i).
(a) a polynucleotide comprising the nucleotide sequence of SEQ ID
NO:21;
(b) a polynucleotide comprising the nucleotide sequence of SEQ ID
NO:21 from nucleotide 322 to nucleotide 774;
(c) a polynucleotide comprising the nucleotide sequence of SEQ ID
NO:21 from nucleotide 149 to nucleotide 477;
(d) a polynucleotide comprising the nucleotide sequence of the full-length protein coding sequence of clone BG33_7 deposited under accession number ATCC 98101;
(e) a polynucleotide encoding the full-length protein encoded by the cDNA insert of clone BG33_7 deposited under accession number ATCC 98101;
(f) a polynucleotide comprising the nucleotide sequence of the mature protein coding sequence of clone BG33_7 deposited under accession number ATCC 98101;
(g) a polynucleotide encoding the mature protein encoded by the cDNA insert of clone BG33_7 deposited under accession number ATCC 98101;
(h) a polynucleotide encoding a protein comprising the amino acid sequence of SEQ ID NO:22;
(i) a polynucleotide encoding a protein comprising a fragment of the amino acid sequence of SEQ ID NO:22 having biological activity;
(j) a polynucleotide which is an allelic variant of a polynucleotide of (a)-(g) above;
(k) a polynucleotide which encodes a species homologue of the protein of (h) or (i) above ; and (l) a polynucleotide capable of hybridizing under stringent conditions to any one of the polynucleotides specified in (a)-(i).
39. A composition comprising a protein, wherein said protein comprises an amino acid sequence selected from the group consisting of:
(a) the amino acid sequence of SEQ ID NO:22;
(b) the amino acid sequence of SEQ ID NO:22 from amino acid 1 to amino acid 121;
(c) fragments of the amino acid sequence of SEQ ID NO:22; and (d) the amino acid sequence encoded by the cDNA insert of clone BG33_7 deposited under accession number ATCC 98101;
the protein being substantially free from other mammalian proteins.
(a) the amino acid sequence of SEQ ID NO:22;
(b) the amino acid sequence of SEQ ID NO:22 from amino acid 1 to amino acid 121;
(c) fragments of the amino acid sequence of SEQ ID NO:22; and (d) the amino acid sequence encoded by the cDNA insert of clone BG33_7 deposited under accession number ATCC 98101;
the protein being substantially free from other mammalian proteins.
40. An isolated gene corresponding to the cDNA sequence of SEQ ID
NO:21.
NO:21.
41. A composition comprising an isolated polynucleotide selected from the group consisting of:
(a) a polynucleotide comprising the nucleotide sequence of SEQ ID
NO:23;
(b) a polynucleotide comprising the nucleotide sequence of SEQ ID
NO:23 from nucleotide 80 to nucleotide 1801;
(c) a polynucleotide comprising the nucleotide sequence of SEQ ID
NO:23 from nucleotide 1 to nucleotide 421;
(d) a polynucleotide comprising the nucleotide sequence of the full-length protein coding sequence of clone BM46_10 deposited under accession number ATCC 98152;
(e) a polynucleotide encoding the full-length protein encoded by the cDNA insert of clone BM46_10 deposited under accession number ATCC
98152;
(f) a polynucleotide comprising the nucleotide sequence of the mature protein coding sequence of clone BM46_10 deposited under accession number ATCC 98152;
(g) a polynucleotide encoding the mature protein encoded by the cDNA insert of clone BM46_10 deposited under accession number ATCC
98152;
(h) a polynucleotide encoding a protein comprising the amino acid sequence of SEQ ID NO:24;
(i) a polynucleotide encoding a protein comprising a fragment of the amino acid sequence of SEQ ID NO:24 having biological activity;
(j) a polynucleotide which is an allelic variant of a polynucleotide of (a)-(g) above;
(k) a polynucleotide which encodes a species homologue of the protein of (h) or (i) above ; and (l) a polynucleotide capable of hybridizing under stringent conditions to any one of the polynucleotides specified in (a)-(i).
(a) a polynucleotide comprising the nucleotide sequence of SEQ ID
NO:23;
(b) a polynucleotide comprising the nucleotide sequence of SEQ ID
NO:23 from nucleotide 80 to nucleotide 1801;
(c) a polynucleotide comprising the nucleotide sequence of SEQ ID
NO:23 from nucleotide 1 to nucleotide 421;
(d) a polynucleotide comprising the nucleotide sequence of the full-length protein coding sequence of clone BM46_10 deposited under accession number ATCC 98152;
(e) a polynucleotide encoding the full-length protein encoded by the cDNA insert of clone BM46_10 deposited under accession number ATCC
98152;
(f) a polynucleotide comprising the nucleotide sequence of the mature protein coding sequence of clone BM46_10 deposited under accession number ATCC 98152;
(g) a polynucleotide encoding the mature protein encoded by the cDNA insert of clone BM46_10 deposited under accession number ATCC
98152;
(h) a polynucleotide encoding a protein comprising the amino acid sequence of SEQ ID NO:24;
(i) a polynucleotide encoding a protein comprising a fragment of the amino acid sequence of SEQ ID NO:24 having biological activity;
(j) a polynucleotide which is an allelic variant of a polynucleotide of (a)-(g) above;
(k) a polynucleotide which encodes a species homologue of the protein of (h) or (i) above ; and (l) a polynucleotide capable of hybridizing under stringent conditions to any one of the polynucleotides specified in (a)-(i).
42. A composition comprising a protein, wherein said protein comprises an amino acid sequence selected from the group consisting of:
(a) the amino acid sequence of SEQ ID NO:24;
(b) the amino acid sequence of SEQ ID NO:24 from amino acid 1 to amino acid 112;
(c) fragments of the amino acid sequence of SEQ ID NO:24; and (d) the amino acid sequence encoded by the cDNA insert of clone BM46_10 deposited under accession number ATCC 98152;
the protein being substantially free from other mammalian proteins.
(a) the amino acid sequence of SEQ ID NO:24;
(b) the amino acid sequence of SEQ ID NO:24 from amino acid 1 to amino acid 112;
(c) fragments of the amino acid sequence of SEQ ID NO:24; and (d) the amino acid sequence encoded by the cDNA insert of clone BM46_10 deposited under accession number ATCC 98152;
the protein being substantially free from other mammalian proteins.
43. An isolated gene corresponding to the cDNA sequence of SEQ ID
NO:23.
NO:23.
44. A composition comprising an isolated polynucleotide selected from the group consisting of:
(a) a polynucleotide comprising the nucleotide sequence of SEQ ID
NO:25;
(b) a polynucleotide comprising the nucleotide sequence of SEQ ID
NO:25 from nucleotide 719 to nucleotide 886;
(c) a polynucleotide comprising the nucleotide sequence of SEQ ID
NO:25 from nucleotide 812 to nucleotide 886;
(d) a polynucleotide comprising the nucleotide sequence of SEQ ID
NO:25 from nucleotide 1 to nucleotide 853;
(e) a polynucleotide comprising the nucleotide sequence of the full-length protein coding sequence of clone J317_1 deposited under accession number ATCC 98101;
(f) a polynucleotide encoding the full-length protein encoded by the cDNA insert of clone J317_1 deposited under accession number ATCC 98101;
(g) a polynucleotide comprising the nucleotide sequence of the mature protein coding sequence of clone J317_1 deposited under accession number ATCC 98101;
(h) a polynucleotide encoding the mature protein encoded by the cDNA insert of clone J317_1 deposited under accession number ATCC 98101;
(i) a polynucleotide encoding a protein comprising the amino acid sequence of SEQ ID NO:26;
(j) a polynucleotide encoding a protein comprising a fragment of the amino acid sequence of SEQ ID NO:26 having biological activity;
(k) a polynucleotide which is an allelic variant of a polynucleotide of (a)-(h) above;
(l) a polynucleotide which encodes a species homologue of the protein of (i) or (j) above ; and (m) a polynucleotide capable of hybridizing under stringent conditions to any one of the polynucleotides specified in (a)-(j).
(a) a polynucleotide comprising the nucleotide sequence of SEQ ID
NO:25;
(b) a polynucleotide comprising the nucleotide sequence of SEQ ID
NO:25 from nucleotide 719 to nucleotide 886;
(c) a polynucleotide comprising the nucleotide sequence of SEQ ID
NO:25 from nucleotide 812 to nucleotide 886;
(d) a polynucleotide comprising the nucleotide sequence of SEQ ID
NO:25 from nucleotide 1 to nucleotide 853;
(e) a polynucleotide comprising the nucleotide sequence of the full-length protein coding sequence of clone J317_1 deposited under accession number ATCC 98101;
(f) a polynucleotide encoding the full-length protein encoded by the cDNA insert of clone J317_1 deposited under accession number ATCC 98101;
(g) a polynucleotide comprising the nucleotide sequence of the mature protein coding sequence of clone J317_1 deposited under accession number ATCC 98101;
(h) a polynucleotide encoding the mature protein encoded by the cDNA insert of clone J317_1 deposited under accession number ATCC 98101;
(i) a polynucleotide encoding a protein comprising the amino acid sequence of SEQ ID NO:26;
(j) a polynucleotide encoding a protein comprising a fragment of the amino acid sequence of SEQ ID NO:26 having biological activity;
(k) a polynucleotide which is an allelic variant of a polynucleotide of (a)-(h) above;
(l) a polynucleotide which encodes a species homologue of the protein of (i) or (j) above ; and (m) a polynucleotide capable of hybridizing under stringent conditions to any one of the polynucleotides specified in (a)-(j).
45. A composition comprising a protein, wherein said protein comprises an amino acid sequence selected from the group consisting of:
(a) the amino acid sequence of SEQ ID NO:26;
(b) fragments of the amino acid sequence of SEQ ID NO:26; and (c) the amino acid sequence encoded by the cDNA insert of clone J317_1 deposited under accession number ATCC 98101;
the protein being substantially free from other mammalian proteins.
(a) the amino acid sequence of SEQ ID NO:26;
(b) fragments of the amino acid sequence of SEQ ID NO:26; and (c) the amino acid sequence encoded by the cDNA insert of clone J317_1 deposited under accession number ATCC 98101;
the protein being substantially free from other mammalian proteins.
46. An isolated gene corresponding to the cDNA sequence of SEQ ID
NO:25.
NO:25.
47. A composition comprising an isolated polynucleotide selected from the group consisting of:
(a) a polynucleotide comprising the nucleotide sequence of SEQ ID
NO:27;
(b) a polynucleotide comprising the nucleotide sequence of SEQ ID
NO:27 from nucleotide 442 to nucleotide 609;
(c) a polynucleotide comprising the nucleotide sequence of SEQ ID
NO:27 from nucleotide 1 to nucleotide 483;
(d) a polynucleotide comprising the nucleotide sequence of the full-length protein coding sequence of clone O289_1 deposited under accession number ATCC 98101;
(e) a polynucleotide encoding the full-length protein encoded by the cDNA insert of clone O289_1 deposited under accession number ATCC 98101;
(f) a polynucleotide comprising the nucleotide sequence of the mature protein coding sequence of clone 0289-1 deposited under accession number ATCC 98101;
(g) a polynucleotide encoding the mature protein encoded by the cDNA insert of clone O289_1 deposited under accession number ATCC 98101;
(h) a polynucleotide encoding a protein comprising the amino acid sequence of SEQ ID NO:28;
(i) a polynucleotide encoding a protein comprising a fragment of the amino acid sequence of SEQ ID NO:28 having biological activity;
(j) a polynucleotide which is an allelic variant of a polynucleotide of (a)-(g) above;
(k) a polynucleotide which encodes a species homologue of the protein of (h) or (i) above ; and (l) a polynucleotide capable of hybridizing under stringent conditions to any one of the polynucleotides specified in (a)-(i).
(a) a polynucleotide comprising the nucleotide sequence of SEQ ID
NO:27;
(b) a polynucleotide comprising the nucleotide sequence of SEQ ID
NO:27 from nucleotide 442 to nucleotide 609;
(c) a polynucleotide comprising the nucleotide sequence of SEQ ID
NO:27 from nucleotide 1 to nucleotide 483;
(d) a polynucleotide comprising the nucleotide sequence of the full-length protein coding sequence of clone O289_1 deposited under accession number ATCC 98101;
(e) a polynucleotide encoding the full-length protein encoded by the cDNA insert of clone O289_1 deposited under accession number ATCC 98101;
(f) a polynucleotide comprising the nucleotide sequence of the mature protein coding sequence of clone 0289-1 deposited under accession number ATCC 98101;
(g) a polynucleotide encoding the mature protein encoded by the cDNA insert of clone O289_1 deposited under accession number ATCC 98101;
(h) a polynucleotide encoding a protein comprising the amino acid sequence of SEQ ID NO:28;
(i) a polynucleotide encoding a protein comprising a fragment of the amino acid sequence of SEQ ID NO:28 having biological activity;
(j) a polynucleotide which is an allelic variant of a polynucleotide of (a)-(g) above;
(k) a polynucleotide which encodes a species homologue of the protein of (h) or (i) above ; and (l) a polynucleotide capable of hybridizing under stringent conditions to any one of the polynucleotides specified in (a)-(i).
48. A composition comprising a protein, wherein said protein comprises an amino acid sequence selected from the group consisting of:
(a) the amino acid sequence of SEQ ID NO:28;
(b) fragments of the amino acid sequence of SEQ ID NO:28; and (c) the amino acid sequence encoded by the cDNA insert of clone O289-1 deposited under accession number ATCC 98101;
the protein being substantially free from other mammalian proteins.
(a) the amino acid sequence of SEQ ID NO:28;
(b) fragments of the amino acid sequence of SEQ ID NO:28; and (c) the amino acid sequence encoded by the cDNA insert of clone O289-1 deposited under accession number ATCC 98101;
the protein being substantially free from other mammalian proteins.
49. An isolated gene corresponding to the cDNA sequence of SEQ ID
NO:27.
NO:27.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US95555797A | 1997-10-18 | 1997-10-18 | |
US08/955,557 | 1997-10-18 | ||
PCT/US1998/022034 WO1999020644A1 (en) | 1997-10-18 | 1998-10-16 | Secreted proteins and polynucleotides encoding them |
Publications (1)
Publication Number | Publication Date |
---|---|
CA2306457A1 true CA2306457A1 (en) | 1999-04-29 |
Family
ID=25496993
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA002306457A Abandoned CA2306457A1 (en) | 1997-10-18 | 1998-10-16 | Secreted proteins and polynucleotides encoding them |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP1037899A1 (en) |
JP (1) | JP2001520033A (en) |
AU (1) | AU1101199A (en) |
CA (1) | CA2306457A1 (en) |
WO (1) | WO1999020644A1 (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU738688B2 (en) | 1997-09-12 | 2001-09-27 | Apoxis Sa | Cysteine rich receptors-train |
WO1999037818A1 (en) * | 1998-01-27 | 1999-07-29 | Millennium Pharmaceuticals, Inc. | Novel molecules of the tnf receptor superfamily and uses therefor |
WO2000049149A1 (en) * | 1999-02-19 | 2000-08-24 | Toshio Kitamura | Novel tnf receptor-like proteins |
MXPA02006199A (en) | 1999-12-22 | 2003-10-15 | Exxon Chemical Patents Inc | Polypropylenebased adhesive compositions. |
US7067603B1 (en) | 1999-12-22 | 2006-06-27 | Exxonmobil Chemical Patents Inc. | Adhesive alpha-olefin inter-polymers |
AU6531101A (en) * | 2000-06-02 | 2001-12-17 | Genentech Inc | Secreted and transmembrane polypeptides and nucleic acids encoding the same |
AU2001297542A1 (en) * | 2001-01-03 | 2002-10-03 | Bristol-Myers Squibb Company | Human leucine-rich repeat containing protein expressed predominately in nervous system tissues, hlrrns1 |
US7157558B2 (en) * | 2001-06-01 | 2007-01-02 | Genentech, Inc. | Polypeptide encoded by a polynucleotide overexpresses in tumors |
EP1545575A4 (en) * | 2002-09-19 | 2006-04-05 | Us Gov Health & Human Serv | P. ariasi polypeptides, p. perniciosus polypeptides and methods of use |
EP1789070B1 (en) * | 2004-08-03 | 2012-10-24 | Biogen Idec MA Inc. | Taj in neuronal function |
US7544659B2 (en) * | 2004-08-13 | 2009-06-09 | Genentech, Inc. | Promotion of axonal regeneration |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB9214857D0 (en) * | 1992-07-13 | 1992-08-26 | Medical Res Council | Human nucleic acid fragments and their use |
-
1998
- 1998-10-16 CA CA002306457A patent/CA2306457A1/en not_active Abandoned
- 1998-10-16 JP JP2000516985A patent/JP2001520033A/en not_active Withdrawn
- 1998-10-16 WO PCT/US1998/022034 patent/WO1999020644A1/en not_active Application Discontinuation
- 1998-10-16 AU AU11011/99A patent/AU1101199A/en not_active Abandoned
- 1998-10-16 EP EP98953697A patent/EP1037899A1/en not_active Withdrawn
Also Published As
Publication number | Publication date |
---|---|
WO1999020644A1 (en) | 1999-04-29 |
JP2001520033A (en) | 2001-10-30 |
AU1101199A (en) | 1999-05-10 |
EP1037899A1 (en) | 2000-09-27 |
WO1999020644A9 (en) | 1999-09-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2269755A1 (en) | Secreted proteins and polynucleotides encoding them | |
CA2278595A1 (en) | Secreted proteins and polynucleotides encoding them | |
CA2283195A1 (en) | Secreted proteins and polynucleotides encoding them | |
CA2274732A1 (en) | Secreted proteins and polynucleotides encoding them | |
CA2306457A1 (en) | Secreted proteins and polynucleotides encoding them | |
WO1999026972A1 (en) | Secreted proteins and polynucleotides encoding them | |
CA2278770A1 (en) | Secreted proteins and polynucleotides encoding them | |
CA2281059A1 (en) | Secreted proteins and polynucleotides encoding them | |
WO1997046682A2 (en) | Polynucleotides from human adult pbmc encoding secreted proteins | |
CA2322732A1 (en) | Secreted proteins and polynucleotides encoding them | |
CA2284109A1 (en) | Secreted proteins and polynucleotides encoding them | |
CA2281015A1 (en) | Secreted proteins and polynucleotides encoding them | |
CA2273845A1 (en) | Secreted proteins and polynucleotides encoding them | |
EP0895539A2 (en) | Secreted proteins and polynucleotides encoding them | |
CA2276085A1 (en) | Secreted proteins and polynucleotides encoding them | |
CA2278153A1 (en) | Secreted proteins and polynucleotides encoding them | |
CA2278104A1 (en) | Secreted proteins and polynucleotides encoding them | |
CA2309782A1 (en) | Secreted proteins and polynucleotides encoding them | |
WO1999027079A1 (en) | Secreted proteins and polynucleotides encoding them | |
CA2272050A1 (en) | Secreted proteins and polynucleotides encoding them | |
CA2295212A1 (en) | Secreted proteins and polynucleotides encoding them | |
WO1998014576A2 (en) | Secreted proteins and polynucleotides encoding them | |
CA2291477A1 (en) | Human semaphorin e and polynucleotides encoding it | |
CA2276092A1 (en) | Secreted proteins and polynucleotides encoding them | |
CA2276063A1 (en) | Secreted proteins and polynucleotides encoding them |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FZDE | Discontinued |