CA2301231A1 - Roof and wall cladding - Google Patents

Roof and wall cladding Download PDF

Info

Publication number
CA2301231A1
CA2301231A1 CA002301231A CA2301231A CA2301231A1 CA 2301231 A1 CA2301231 A1 CA 2301231A1 CA 002301231 A CA002301231 A CA 002301231A CA 2301231 A CA2301231 A CA 2301231A CA 2301231 A1 CA2301231 A1 CA 2301231A1
Authority
CA
Canada
Prior art keywords
batt
bonded
external
roof
density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002301231A
Other languages
French (fr)
Inventor
Soren Lund Jensen
Marianne Guldberg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rockwool AS
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CA2301231A1 publication Critical patent/CA2301231A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/02Shape or form of insulating materials, with or without coverings integral with the insulating materials
    • F16L59/021Shape or form of insulating materials, with or without coverings integral with the insulating materials comprising a single piece or sleeve, e.g. split sleeve, two half sleeves
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • C03C13/06Mineral fibres, e.g. slag wool, mineral wool, rock wool
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • E04B1/78Heat insulating elements
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/02Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
    • E04C2/10Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of wood, fibres, chips, vegetable stems, or the like; of plastics; of foamed products
    • E04C2/16Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of wood, fibres, chips, vegetable stems, or the like; of plastics; of foamed products of fibres, chips, vegetable stems, or the like
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04DROOF COVERINGS; SKY-LIGHTS; GUTTERS; ROOF-WORKING TOOLS
    • E04D3/00Roof covering by making use of flat or curved slabs or stiff sheets
    • E04D3/35Roofing slabs or stiff sheets comprising two or more layers, e.g. for insulation
    • E04D3/351Roofing slabs or stiff sheets comprising two or more layers, e.g. for insulation at least one of the layers being composed of insulating material, e.g. fibre or foam material
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2213/00Glass fibres or filaments
    • C03C2213/02Biodegradable glass fibres

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Electromagnetism (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Building Environments (AREA)
  • Roof Covering Using Slabs Or Stiff Sheets (AREA)
  • Body Structure For Vehicles (AREA)
  • Vehicle Interior And Exterior Ornaments, Soundproofing, And Insulation (AREA)
  • Glass Compositions (AREA)
  • Laminated Bodies (AREA)

Abstract

Pipe sections for external roof or wall cladding are formed of bonded man-made vitreous fibre batts wherein the fibres have a viscosity at 1400 ~C of 10 to 170 poise and a dissolution rate at pH 4.5 of at least 20 nm per day.

Description

ROOF AND WALL CLADDING
This invention relates to bonded man-made vitreous fibre (MMVF) batts which are constructed for use as external roof or wall cladding or as pipe sections, i.e., insulation for fitting around pipes which may be internal or external.
Batts for external use are much more exposed to adverse conditions such as moisture, sun, temperature and wind than batts for internal use. The combination of moisture and heat can create an aggressive environment for the fibres, but conventional MMVF fibres, in conventional batt constructions, resist this. The exposure to wind can promote delamination, but sufficient structural strength can be provided by known techniques such as bonding with a bonding agent and by constructing the batt with the fibre direction predominantly perpendicular, as lamellar~boards, instead of the conventional orientation of being substantially parallel to the face of the batt. .
Similarly batts for internal or external pipe sections insulation are more exposed to humid conditions than batts for regular internal uses, especially when enclosed in an aluminium membrane or plastics membrane or other impermeable sheath.
More recently, there has been a trend to develop MMV
fibres which have some degree of solubility in physiological fluids. Most of the publications on this topic of solubility emphasise the desirability of the fibres having some degree ,of solubility in physiological saline at pH around 7.5.
Fibres which, instead, have improved solubility at around pH 4.5 are described in W096/14454 and W096/14274.
A problem which arises with the use of MMVF batts made from fibres having appreciable solubility at near neutral pH (approximately pH 7.5) in roof or wall cladding is that the fibres are liable to degrade when exposed to atmospheric humidity for prolonged periods or when exposed SUBSTITUTE SHEET (RULE 26) to condensation or direct contact with water. Accordingly it can be unsatisfactory to use such fibres for external roof or wall cladding, unless special precautions are taken to minimise this problem.
It would be desirable to be able to provide pipe sections or external roof or wall cladding formed from MMVF
fibres which are regarded as having good physiological solubility under relevant test conditions but which have less tendency to degrade when exposed to ambient humidity.
According to the present invention, we provide pipe sections or external roof or wall cladding which is a bonded MMVF batt wherein the fibres are formed of a composition which includes fibres formed from, Si02 32 to 48%
A1z03 18 to 3 0 %
Ca0 10 to 30%
Mg0 2 to 20%
Fe0 9 to 15%
Na20 + K20 0 to 10 %
Ti02 0 to 6 %
Other Elements 0 to 15%
and the composition has a viscosity at 1400°C of 10 to 70 poise, and the fibres have a dissolution rate of at least 20nm per day when measured at a pH of 4.5 (by the methods described in W096/14454. Preferably they are relatively insoluble at pH 7.5 The invention includes the MMVF cladding batts themselves, their use as external wall or roof cladding in buildings and building components which are to be on the exterior of a building, and the buildings or building components themselves which include the defined MMVF batts.
The invention includes the use of pipe sections for insulating pipes.
The building or building component generally comprises a metal, wood or other frame work on to which the MWF
batts are secured in a position such that they will be on the exterior of the building in use. The building may be SUBSTITUTE SNEET (RULE 26) an entire building, but the invention also includes building components, for instance a roof structure or wall structure. For instance the roof or wall structure may constitute an entire roof or wall for a building or several such structures, each containing a plurality of baits, may be assembled on site to provide a roof or wall.
The cladding batt as initially manufactured (ie before leaving the plant where it is manufactured) or before installation in or on the building component or building is often provided with a substantially overall or impermeable coating on its external surface. This protective coating may be of water-repellant materials such as roofing felt or it may be of a foil or a decorative material such as paint .
Even if such a coating is not applied before assembly, the external surface of the batt or batts in the building component or building are usually provided with a coating.
For instance roof boards may be coated with roof felt, asphalt, wood plate, vlies, foil or solar heating units.
The roof boards are preferably sufficiently stiff that one can walk on them. Wall cladding may be coated with plaster (either inorganic or organic), cement, paint, polyurethane, roof felt, foil (for instance aluminium), glass or solar heating units.
One type of cladding batt according to the invention is a very high density MMVF bait, typically having a density 500 to 2,000 Kg/m3, often 700 to 1,200 Kg/m3. This high density product usually carries a coating of paint or other substantially impermeable or overall surface covering. Other batts according to the invention may have lower density than this and can be roof boards or wall boards of more conventional construction.
The cladding batts of the invention usually have a density of at least 50 Kg/m3 and often at least 70 Kg/m3, typically up to 500 Kg/m3. Batts of differing densities can be laid one upon the other in use, with the higher density batt usually on the outside.
SUBSTITUTE SHEET (RULE ~6) Preferred cladding products of the invention have a multi-density construction, usually a dual density construction, with the MMVF layer which is on the outside of the building in use having a higher density than, and formed substantially integral with, the remainder of the MMVF batt. For instance the outer layer usual has a density of at least 60 Kg/m3 and preferably at least 70 or 80 Kg/m3, and often it has a density of at least 20 Kg/m3, and frequently at least 50 Kg/m3, above the density of the layer beneath it. The high density outer layer is usually at least 5 mm thick, often 10 to 40 mm thick and typically constitutes 2 to 30%, often 3 to 15 or 20%, of the total thickness of the MMVF bait.
The cladding batts are usually square or rectangular slabs but can have other, more complex, shapes, especially when they form parts of roofs. The batts generally have a thickness of 10 to 500 mm. The thicker batts are stiff and axe provided as slabs but some of the thinner batts, for instance as facade or wall boards, may sometimes be supplied as a roll of sheet material.
The cladding batts and pipe sections are usually bonded by incorporation of conventional phenolic or other binder, typically in amounts of 1 to 5%, often 2 to 40, by weight of the batt.
water-repellent material may additionally be included in the cladding batts and pipe sections during manufacture in conventional manner, for instance an oil may be included to improve water-repellency. The total ignition loss of the batts is generally in the range 2 or 3% up to 5 or 6%.
The batts can be made by any of the conventional techniques known for making batts of the desired construction for description of suitable methods of making and using external MMVF wall and roof cladding and pipe sections, reference should be made to any or all of EP
133,083, 277,500, 420,837, 435,942, 518,964, 521,058, 560,878, 590,098 and 654,100, GB 1,027,799 and 2,223,248, DK 155,163 and DK-U3-9200033, DE-U1-29616962, DE 4,143,387, SLIBSTITI ITF SHFFT (RLII. F ~R1 4,319,340 and 4,432,866, and W094/16162, 94/16163, 94/16164 and 95/20708, and W089/07731, W089/07733, W096/37728 and W097/01060. All these are incorporated by reference.
The fibres may be substantially parallel to the 5 external face of the batt or the fibres may be substantially perpendicular to the face of the batt, the product then being of the type conventionally known as a lamellar batt or slab.
External roof cladding can have any of the normal configurations of roof boards or other roof cladding and generally has a density in the range 100 to 400, preferably 100 to 200, Kg/m3 and a thickness of 10 to 500, usually 10 to 300 mm.
Single layer roof boards often have a density of 100 300kg/m3 and a thickness of 10-300mm. Instead of using a single layer, several layers may be applied one on top of the other, for instance as a combination of lamellar and normal batts, but preferably with the outer layer having the highest density and/or being a lamellar batt.
Preferred roof cladding is formed of dual density batts. The density of the bottom may be 60-200kg/m3 and the density of the top is usually at least 5okg/m3 more and is usually 200-400 kg/m3. The thickness of the bottom may be at least l5mm and the thickness of the top may be 100-300mm. The maximum total thickness is usually 350mm.
Wall cladding can be of two types. The first type is what is commonly known as a facade board. The other type of wall cladding is often known as a lamella board. The wall cladding generally has a density in the range 50 to 400, often 50 to 200 Kg/m3, often around 50 to 150 Kg/m3.
For instance facade boards may have a density of around 70 to 150 Kg/m3 whilst lamellar boards may have a density of 50 to 100 or 150 Kg/m3. They may have a thickness typically of 10 to 300, often 10 to 200 mm.
Lamella boards can be made with lower densities compared to the normal single layer boards. Furthermore, lamella boards can resist the influence of the wind SUBSTiTIITF SHEET (RULE 261 WO 99!08971 PCT/EP98/03978 (delamination strength) , which can be a problem with normal single layer boards having the same density. Lamella boards normally have an impermeable surface coating, for instance of wood, foil, roofing felt or other substantially impermeable sheet material.
Typical facade boards have a width of 20cm or more, e.g., 60crn, and can typically have a length of 1-2 metres (e . g . , 1 . 2m) but can be a roll (e . g . , lOm) . Roof boards usually have a width of above 50cm (e.g., 60cm or 120cm up to 150cm) and a length which is more (e.g., 90cm up to 300cm, e.g., 180 or 140cm).
Pipe sections are used for heating insulation, cooling insulation or condensing insulation around internal or external pipes and pipe fittings. Condensing insulation has a thickness or shape designed so that vapour condenses on the outer surface of the pipe section and/or so that condensed vapour is drained out of the pipe section in order to prevent corrosion of the pipes (see EP 739,470, W094/05947; EP 528,936, W097/16676).
The sections can be covered with impermeable aluminium foil or plates; paper coated with aluminium; metal plates, i.e., steel plates, preferably galvanised metal plates, with a corrosion-preventing plastic film or coating;
roofing felt; or woven or non-woven glass fibre fleece or cloth. Also the pipe sections may be coated with: canvas, paint, plastic foil, i.e., PVC, cardboard or paper. The covering material can be impregnated with bitumen in order to be weather resistant.
The covering material can be tire resistant.
Usually pipe sections have a density from 40-400Kg/m3, preferably 60-300Kg/m3. The pipe sections may include support rings which are part of the insulation. Pipe sections may consist of two types of wool, one type for the pipes and another more dense type for the support rings.
These support rings have the purpose for cold pipes to avoid condensation and for hot pipes to avoid thermal loss .
Pipe section support rings usually have densities from 150-C~ WSTI~i iTF SHFFT (Rlli F ~R1 400Kg/m3 preferably 250-350Kg/m3 and preferred around 300Kg/m3. Wool for the remainder of the pipe section typically has density of 40-200Kg/m3, preferably 60-180Kg/m3.
In the invention, the preferred amount of Si02, A1203, CaO, MgO, Alkali, TiOz and other elements, and the preferred viscosities and dissolution rates (at pH 4.5 and at pH 7.5) are all preferably as described in W096/14454 and W096/14274 and reference should be made to those.
The amount of Fe0 is preferably 9-11%. Preferably it is at least 9 . 5 % .
The following are examples of suitable compositions.
wt% E F G

Si02 44,1 43,1 42,2 A1203 21,5 23,0 23,4 TiOz 1,5 1,7 1,6 Fe0 9,7 10,1 9,5 Ca0 17,9 15,1 14,5 Mg0 2,9 4,9 7,2 NaZO 1, 7 1, 0 0, 8 K20 0, 6 0, 9 0, 8 Sinter 1100 1100 1100 temp C

Viscosity 39 40 34 poise 1400C

Dissolution 46 55 51 rate pH 4.5 nm/day SUBSTITUTE SHfET (RUt.E 26)

Claims (14)

1. A building or building component including a bonded man-made vitreous fibre batt as external roof or wall cladding, or pipes or pipe fittings provided with a bonded man-made vitreous batt as an internal or external pipe section around the pipe or pipe fitting, wherein the fibres of the bonded batt are formed of a composition which includes, by weight of oxides, SiO2~~ 32 to 48%
Al2O3~~ 18 to 30%
CaO~~ 10 to 30%
MgO ~~ 2 to 20%
FeO~~ 9 to 15%
Na2O + K2O~ 0 to 10%
TiO2~~ 0 to 6%
Other Elements ~ 0 to 15%
and the composition has a viscosity at 1400°C of 10 to 70 poise and the fibres have a dissolution rate of at least 20nm per day when measured at a pH of 4.5.
2. Use according to claim 1 in which the batt has a protective coating on its outer surface.
3. Use according to claim 1 or claim 2 in which the amount of FeO in the composition is 9.5 to 11%.
4. Use according to any of claims 1 to 3 of the bonded batt as external roof or wall cladding.
5. Use according to claim 4 in which the batt has a density of 500 to 2000.
6. Use according to claim 4 or claim 5 in which the batt has a dual density construction.
7. Use according to any of claims 1 to 3 of the bonded batt as internal or external pipe sections around pipes of pipe fittings.
8. Use according to claim 7 in which the batt includes a ring of insulation of increased density.
9. A building or building component including a bonded batt as external roof or wall cladding or pipes or pipe fittings provided with a bonded bait as internal or external pipe sections around the pipes or pipe fittings, wherein the batt is as defined in any of claims 1, 2 or 3.
10. A bonded man-made vitreous fibre batt suitable for use as external use or wall cladding or as pipe sections and which has a protective coating on its outer surface and wherein the fibres of the bonded batt are formed of a composition which includes, by weight of oxides, SiO2~~ 32 to 48%
Al2O3~~ 18 to 30%
CaO~~ 10 to 30%
MgO ~~ 2 to 20%
FeO~~ 9 to 15%
Na2O + K2O ~ 0 to 10%
TiO2~~ 0 to 6%
Other Elements 0 to 15%
and the composition has a viscosity at 1400°C of 10 to 70 poise and the fibres have a dissolution rate of at least 20nm per day when measured at a pH of 4.5.
11. A batt according to claim 10 in which the amount of FeO in the composition is 9.5 to 11%.
12. A batt according to claim 10 or claim 11 for external roof or wall cladding and having a density of 500 to 2000kg/m3.
13. A bath according to any of claims 10 to 12 for external roof or wall cladding having a dual density construction.
14. A batt according to claim 10 or claim 11 for pipe sections and including a ring of insulation of increased density.
CA002301231A 1997-08-18 1998-06-30 Roof and wall cladding Abandoned CA2301231A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GBGB9717482.5A GB9717482D0 (en) 1997-08-18 1997-08-18 Roof and wall cladding
GB9717482.5 1997-08-18
PCT/EP1998/003978 WO1999008971A1 (en) 1997-08-18 1998-06-30 Roof and wall cladding

Publications (1)

Publication Number Publication Date
CA2301231A1 true CA2301231A1 (en) 1999-02-25

Family

ID=10817655

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002301231A Abandoned CA2301231A1 (en) 1997-08-18 1998-06-30 Roof and wall cladding

Country Status (11)

Country Link
EP (1) EP1005439A1 (en)
JP (1) JP2001515007A (en)
CN (1) CN1267272A (en)
AU (1) AU8802698A (en)
CA (1) CA2301231A1 (en)
GB (1) GB9717482D0 (en)
HR (1) HRP980453A2 (en)
HU (1) HUP0003072A2 (en)
PL (1) PL338832A1 (en)
SK (1) SK1872000A3 (en)
WO (1) WO1999008971A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7807594B2 (en) * 2007-08-15 2010-10-05 Johns Manville Fire resistant glass fiber
EA201270212A1 (en) * 2009-07-31 2012-08-30 Роквул Интернэшнл А/С METHOD OF MANUFACTURING ELEMENT CONTAINING MINERAL FIBER AND ELEMENT MANUFACTURED BY THIS METHOD
KR101477733B1 (en) * 2011-04-12 2014-12-30 주식회사 케이씨씨 Mineral Wool Fiber Composition having improved Bio-Solubility, And Mineral Wool
EA026878B1 (en) * 2011-04-13 2017-05-31 Роквул Интернэшнл А/С Method of manufacture of man made vitreous fibres
PL2791071T3 (en) * 2011-12-16 2016-09-30 Melt composition for the production of man-made vitreous fibres
AU2021400610B2 (en) * 2020-12-15 2023-10-05 Nippon Sheet Glass Company, Limited Reinforcing glass fiber, chopped strand, fiber sheet, and rod

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0021781A3 (en) * 1979-06-19 1981-04-01 Tac Construction Materials Limited Water-settable compositions, shaped article made thereof and process for the production of such an article
DE3701592A1 (en) * 1987-01-21 1988-08-04 Rockwool Mineralwolle METHOD FOR CONTINUOUSLY PRODUCING A FIBER INSULATION SHEET AND DEVICE FOR IMPLEMENTING THE METHOD
CH678709A5 (en) * 1989-07-14 1991-10-31 Isover S A
DK164303C (en) 1990-05-14 1992-10-19 Vik Consult INSULATION FOR A PIPE OR CHANNEL WITH A RELATIVE LOW SURFACE TEMPERATURE AND PROCEDURE FOR PREPARING THE INSULATION
WO1994005947A1 (en) 1992-08-31 1994-03-17 Rockwool International A/S Method and apparatus for insulating
US5571610A (en) * 1993-06-21 1996-11-05 Owens Corning Fiberglass Technology, Inc. Glass mat thermoplastic product
WO1995019523A1 (en) 1994-01-14 1995-07-20 Rockwool International A/S Method and apparatus for insulating
DK0791087T3 (en) 1994-11-08 1999-05-03 Rockwool Int Synthetic glassy fibers
GB9509813D0 (en) * 1995-05-15 1995-07-05 Rockwool Int Method and apparatus for the manufacture of man-made vitreous fibre products
JPH11515078A (en) 1995-10-30 1999-12-21 ハイグロウィック−インターナショナル アーペーエス Insulation system and method for providing an insulation system to a pipe or vessel (insulation system)

Also Published As

Publication number Publication date
EP1005439A1 (en) 2000-06-07
WO1999008971A1 (en) 1999-02-25
PL338832A1 (en) 2000-11-20
SK1872000A3 (en) 2000-09-12
HUP0003072A2 (en) 2001-06-28
AU8802698A (en) 1999-03-08
JP2001515007A (en) 2001-09-18
HRP980453A2 (en) 1999-06-30
GB9717482D0 (en) 1997-10-22
CN1267272A (en) 2000-09-20

Similar Documents

Publication Publication Date Title
US6949483B2 (en) Man-made vitreous fibres
JP2008507646A (en) Thermal insulation board with wind and rain barrier coating and water repellent coating
DK167578B1 (en) HEATING AND SOUND INSULATING PANEL
KR101372797B1 (en) Incombustible and breathable reflective insulation materials with easy installing
CA2301260A1 (en) Mineral fibre insulation
DK156965B (en) EXTERIOR, WATER-REJECTIVE BUILDING COVER.
CA2301231A1 (en) Roof and wall cladding
CA2301261A1 (en) Roof and wall cladding
CN108952205A (en) A kind of thermal-insulating waterproof composite sheet material and preparation method suitable for roofing transformation
GB2355430A (en) Breathable building membrane
CN207829237U (en) The in-situ concrete wall of wood cement board composite heat-insulating layer permanence template with ribbing
CZ2000583A3 (en) Roof covering and wall lining
CZ2000584A3 (en) Roof covering and wall lining
JPS647175B2 (en)
WO2013164432A1 (en) External thermal insulation composite facade system (etics)
EP4134230A1 (en) Insulation panel
CN209083032U (en) A kind of thermal-insulating waterproof composite sheet material suitable for roofing transformation
JPS6315444Y2 (en)
ITTV20100035U1 (en) STRUCTURE OF WATERPROOF GAS PANEL, PARTICULARLY FOR INSULATION OF BUILDINGS.
JPS6315443Y2 (en)
JPH09242210A (en) Adiabatic plate used also as flask
AU658088B2 (en) Improved insulation
IT202100010037A1 (en) RIGID PANEL FOR CONSTRUCTION WITH FOAM CENTRAL LAYER AND RESIN COATING.
FI70286C (en) VIND- OCH FUKTSKYDDSSKIVA
CA1326625C (en) Use of fibrous mat-faced gypsum board in shaft wall assemblies and improved fire-resistant board

Legal Events

Date Code Title Description
FZDE Discontinued