CA2292369A1 - Surface treated boron nitride for forming a low viscosity high thermal conductivity polymer based boron nitride composition and method - Google Patents

Surface treated boron nitride for forming a low viscosity high thermal conductivity polymer based boron nitride composition and method Download PDF

Info

Publication number
CA2292369A1
CA2292369A1 CA002292369A CA2292369A CA2292369A1 CA 2292369 A1 CA2292369 A1 CA 2292369A1 CA 002292369 A CA002292369 A CA 002292369A CA 2292369 A CA2292369 A CA 2292369A CA 2292369 A1 CA2292369 A1 CA 2292369A1
Authority
CA
Canada
Prior art keywords
boron nitride
group
thermal conductivity
surface treated
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002292369A
Other languages
French (fr)
Inventor
Hatsuo Ishida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Edison Polymer Innovation Corp
Original Assignee
Edison Polymer Innovation Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US09/164,927 priority Critical patent/US6160042A/en
Priority claimed from US09/164,927 external-priority patent/US6160042A/en
Application filed by Edison Polymer Innovation Corp filed Critical Edison Polymer Innovation Corp
Priority to CA002292369A priority patent/CA2292369A1/en
Priority to EP99403250A priority patent/EP1114843B1/en
Priority claimed from EP99403250A external-priority patent/EP1114843B1/en
Publication of CA2292369A1 publication Critical patent/CA2292369A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)

Abstract

A low viscosity high thermal conductivity polymer-based boron nitride composition and a surface-treated boron nitride material for use as a filler in this composition, and methods of preparation is described.

Description

SURFACE TREATED BORON NITRIDE FOR FORMING A LOW
VISCOSITY HIGH THERMAL CONDUCTIVITY POLYMER BASED
- BORON NITRIDE COMPOSITION AND METHOD
FIELD OF THE INVENTION
The present invention is a continuation in part of patent application Serial No. 081846547 filed May 1, 1997, the disclosure of which is herein incorporated by reference, and relates more particularly to a method of forming a low viscosity high thermal conductivity polymer based boron nitride composition and to a surface treated boron nitride material for use as a filler in forming a low viscosity high thermal conductivity polymer based boron nitride composite composition.
BACKGROUND OF INVENTION
Molding compositions are useful in the electronics industry to encapsulate electrical components such as integrated circuit devices so as to protect them from electrical and environmental damage. Some of the essential features needed for current electronic packaging materials include low coefficient of thermal expansion, high thermal conductivity, low dielectric constant, low water absorption and low viscosity. If the thermal conductivity of the material composition is too low the encapsulant may itself be detrimental in that it may act as a heat barrier and cause the temperature of the electrical components to rise above the temperature reliability specifications for the components which, in tum, may shorten the useful life D-3825 _ 2 _ of the encapsulated electrical components particularly for components such as semiconductors.
The heat dissipation problem in microelectronics is becoming increasingly important as the demands far denser and faster circuits intensify.
Polymer compounds having a high thermal conductivity are also useful for other products such as computer cases, battery cases, electronic controller housings and for other encasements where heat removal is an important consideration.
Applicant's parent patent application serial number 08/846,457 discloses a composite polymer based material possessing the characteristics of low thermal expansion, high electrical resistivity and high thermal conductivity. The preferred polymer is a poiybenzoxazine compound which is filled with particles containing boron nitride. Thermal conductivities as high as 37.5 W/mK were demonstrated based upon the loading concentration of the boron nitride filler. In general the higher the concentration of boron nitride the higher the thermal conductivity of the polymer composite. However, the viscosity of the composite also increases it direct proportion to the increase in filler concentration. Beyond a certain filler loading, the increased viscosity will cause material processing problems. A molding compound must have adequate fluidity to enable it to be processed into product. Although additives andlor modifiers may be included to improve the flow characteristics of the D-3825 _ 3 -molding compound they substantially increase cost and may affect other properties such as strength.
SUMMARY OF THE INVENTION
It has been discovered in accordance with the present invention that hexagonal boron nitride can be surface treated to form functional primary and secondary amine linkages at their edge planes which, when coupled to a polymer selected from the group consisting of polybenzoxazine, epoxy resins and novolac or resol type phenolic resins, form a polymer composite of substantially reduced viscosity independent of the boron nitride loading 0 concentration. Stated otherwise, the viscosity of the polymer composite containing a given loading concentration of boron nitride particles surface treated in accordance with the subject invention will be substantially lower than the viscosity of a comparative polymer composite containing filler particles of untreated boron nitride. Moreover, the thermal conductivity of the s polymer composite is dependent upon the loading concentration of the boron nitride filler independent of the surface treatment of the boron nitride particles.
The method of the present invention comprises the steps of:
treating particles of hexagonal boron nitride with 1,4-phenylene diisocyanate, reacting the treated particles with an aminophenoi, combining the so treated hexagonal boron nitride particles with an unreacted monomer selected from the group consisting of benzoxazine, epoxy resins and novoiac or resol type ..
phenolic resins to form a composite and polymerizing the composite.
The present invention also relates to a surface treated boron nitride material for use as a filler in forming a low viscosity high thermal conductivity polymer based composite composition with the surface treated boron nitride particles having the formula:
OH
BNHCNH~ f ) )-gNCNH- ~ ~- ) ) J
~a -B=NCNH-( ~ ) ~ NHCNH-U
OH OH

The advantages of the present invention will become apparent from the following detailed description of tfi'e present invention when read in conjunction with the accompanying drawing in which:

FIG 1 is a graph showing the comparative relationship between the viscosity at 100° C of a 30 wt% boron nitride filled polybenzoxazine monomer composition to the same composition with untreated boron nitride.
DETAILED DESCRIPTION OF THE INVENTION
Graphite is made up of layer planes of hexagonal arrays or networks of carbon atoms. These layer planes of hexagonal arranged carbon atoms are substantially flat and are oriented so as to be substantially parallel and equidistant to one another. The flat parallel layers of carbon atoms are referred to as basal planes and are linked or bonded together in groups arranged in crystallites. Hexagonal boron nitride is similar in morphology to graphite in that both have a flat, plate like shape with molecularly smooth basal planes. However, the edge planes of the boron nitride platelet possess functional amine and hydroxyl groups on its surtace.
It has been discovered in accordance with the present invention that the surface chemistry of hexagonal boron nitride particles can be treated to modify the interfacial interaction of the particles so as to cause a coupling between its functional groups and the polymer into which it is loaded.
The surface treatment of the boron nitride particles consist of ?0 two steps as shown in the generalized reaction scheme below. In the first step of the treatment an isocyanate group ,viz., 1,4-phenylene diisocyanate surface amino groups at the edge planes of the particles to form amine linkages. The second step of the surface treatment preferably occurs immediately after the first step of the treatment to minimize exposure to moisture. In the second step of the treatment the free isocyanate group reacts preferentially with the amine group of an aminophenol viz., 4-aminopenof to form additional amide groups. The reactivity of amino group with isocyanate occurs much faster than with the phenol group. It should be understood that with the large availability of amino functional groups, this surface treatment may incorporate other functional groups as well, such as by substituting a different amino phenol compound in the second step of the treatment For example, they include compounds having the formula:

where X is a linear or branched aliphatic spacer group having from 1 to 40 carbon atoms, or a phenylene group. The phenylene group may be ortho-, meta- or para- substituted by the Y group. Also, other available hydrogen atoms may be substituted to improve the compatibility or reactivity with the matrix resin.
These groups include methyl, ethyl, propyl, hydroxyl, vitro, methoxy, ethoxy, phenyl, or another Y group. On occasion, surface treatment of boron nitride may be an attraction option to reduce water content at the fiileNmatrix interface. Minimization of interaction with the matrix resin my be assisted by haring groups such as F or CF3 as substituents for the other available hydrogens.
Y is a functional group which is designed to chemically react or physically strongly interact with the matrix resin. In addition to hydroxyl, those groups include, though they are not limited to, amino, methyleamino, ethyleneamino, amido, thiot, epoxy, vinyl, acetylenyl, silanot, nitrite, carboxyl, methacryl, acryl, allyl, anhydride, cyanate, norbornenyl, and mateimido. The functional group may also include such groups as -CF3,-CFZCF3 , -CF2CFZCF3, or other fluorine compounds to minimize the interaction with the matrix resin while adding ~ 0 hydrophobicity to the filler surface.
A generalized reaction scheme of a process of the present invention follows:
-BNH= NHCNH O OCN
+ NCO OCN
5 ~-B=NH -$zN H O OCN
OH nA
~ NHCNH O NHCNH-X-Y
H N-X-Y . JO
s ~ O
~=NCNH~ ~ NH H X-Y

OH ~ O

where X and Y are as defined above.
A preferred embodiment of the present invention where, in the second step, an ortho-, meta-, or para-aminophenol is used as one of the reactants, to wit:
-BNHCNH O OCN
NCO O OCN --~ O
~=NCNH . O~OCN
OH OH
_ +
~oH
a, OH
~NHCNH ~ O NHCN
p ,~

~~NCNH O~ NHCNH
IJ
off o 0 off A futher embodiment is one where, in the second step, 4-aminophenol, HZN~ ( ) rOH
U

is_used as one of the reactants, resulting in a material of the formula BNHC~1H-~nrgCNH~(~ -pg B=NCNH-~ ( ) ~-NHCNH-~-OH
U II ~/
OH
The surface treatment of the boron-~itride particles is carried out using tetrahydrofuran (THF) as the preferred solvent: The following is a detailed example of the surface treatment procedure:
Hexagonal boron nitride filler particles (°Polartherm 180") were supplied by the Advanced Ceramics Corporation of Cleveland, Ohio. These ceramic particles have a medium size of 6.8 gym, a surface area of 16.6 m2lg, and a soluble borate content of approximately 0.2%. The boron nitride particles were first washed prior to use to remove possible residual surface contaminants remaining from the powder processing. For the washing of the boron nitride particles a 2% glacial acetic acid deionized water solution is preferred. The aqueous acetic acid/boron nitride slurry may consist of 7 wt%

solids stirred at 85°C for four hours and then vacuum filtered using a Buchner funnel and Whatman GFIB filter paper. The boron nitride particles may then be washed again with fresh deionized water using twice the volume of water used in the original aqueous acetic acid wash. . After the final rinse, the boron nitride filter cake may gently be separated into smaller chunks and dried in air circulating over at 110°C. After one hour, the boron nitride chunks are further separated to a more powdery state and reinserted in an oven overnight. The recovered powder yield from the washing procedure was 98.1 %. The washing procedure also resulted in about a 50% reduction in bulk volume due to increased powder packing.
The washed boron nitride particles were added to a three necked reaction flask. The amounts of boron nitride and THF were based on a 8 wt% solids slurry. Approximately 1/3 of the total amount of THF was initially added to the flask. The boron nitride/THF slurry was then stirred with a magnetic stirrer and blanketed with an argon gas purge. Meanwhile, 1,4-phenylene diisocyanate was added to additional THF and stirred and warmed.
The amount of phenylene diisocyanate was based on a 0.3 wt% total solution concentration. The 1,4-phenylene diisocyanate solution was then slowly added to the stirring boron nitride slurry. The remaining THF to be added to the slurry was added to the reaction flask which was then transferred to an oil bath, heated and refluxed for 4 hours.

A solution of 4-aminophenol in THF surface was prepared based on a 0.6 wt% total solution concentration. Following treatment with 1,4-phenylene diisocyanate and vacuum filtering, the resultant boron nitride cake was redispersed in fresh THF and a 4-aminophenol solution was slowly added to the boron nitride slurry. The slurry was warmed, stirred for two hours, and then vacuum filtered. Fresh THF was then added over the boron nitride and vacuum filtered. The boron nitride cake was removed, redispersed in fresh THF, stirred, and then vacuum filtered once again. The boron nitride cake was removed, gently separated into chunks, and dried under a hood overnight.
The surface functional groups on these purified hexagonal boron nitride particles consist of primary and secondary amine groups in addition to hydroxy groups. It has been demonstrated in accordance with the present invention that the viscosity of a composite resin system selected from the 5 group consisting of benzoxazine, epoxy resins and novolac or resol type phenolic resins and a filler containing particles of boron nitride can be substantially reduced using surface treated hexagonal boron nitride particles as compared to a similarly filled resin system using untreated boron nitride particles. This is evident in Figure 1 in which a 30 wt% boron nitride filled BA-a benzoxazine monomer shows a 59% reduction in viscosity relative to an untreated boron nitride filled system at 100°C. The polymerization of the monomer to polybenzoxazine occurs upon application of pressure and/or heat as is well known to those skilled in the art. .
In the parent application Serial Number 08/846457 a composition is taught containing a benzoxazine resin and a filler material which includes particles of boron nitride which permits the boron nitride to be loaded to concentration levels well above 60wt% and up to 90wt% for increasing thermal conductivity up to 37.5W/mk or higher. The advantages of using surface treated particles of hexagonal boron nitride as the filler material permits the loading concentration to be raised without increasing the viscosity of the composite relative to the same composite at the higher loading with untreated particles thereby providing enhanced thermal conductivity and lower viscosity or simply to reduce the viscosity of the filled polymer composite to enhance its processability.

Claims (8)

1. A method for forming a low viscosity high thermal conductivity polymer composite containing particles of hexagonal boron nitride comprising the steps of: (a) treating the surface of the hexagonal boron nitride particles with 1,4-phenylene diisocyanate, (b) thereafter reacting the thus-treated boron nitride particles with a compound of the formula where X is a linear or branched aliphatic group having from 1 to 40 carbon atoms, or a substituted or unsubstituted phenylene group wherein the substituents are methyl, ethyl, propyl, hydroxyl, nitro, methoxy, ethoxy, phenyl, or another Y group or one or more F or CF3 groups, Y is hydroxyl, amino, methyleneamino, ethyleneamino, amido, thiol, epoxy, vinyl, acetylenyl, silanol, nitrite, carboxyl, methacryl, acryl, allyl, anhydride, cyanate, norbomenyl, and maleimido and, where applicable, may have additional substituents selected from the group consisting of -CF3,-CF2CF3 , and, -CF2 CF2 CF3, and (c) combining the surface treated hexagonal boron nitride particles with a monomer selected from the group consisting of benzoxazine, epoxy resins and novoiac or resol type phenolic resins and polymerizing the monomer filled with treated boron nitride to form said low viscosity high thermal conductivity polymer composite.
2. A method according to claim 1 wherein, in the compound of the formula H2N-X-Y, X is phenylene and Y is ortho-,meta- or para-OH.
3. A method as defined in claim 1 where the treatment in steps (a) and (b) occurs using tetrahydrofuran (THF) as solvent.
4. A surface treated boron nitride material of the formula:
5. A surface treated boron nitride as defined in claim 1 coupled to a polymer selected from the group consisting of polybenzoxazine, epoxy resins and novolac or resol type phenolic resins.
6- A composition for use in forming a low viscosity high thermal conductivity polymer based composite comprising a polymer selected from the group consisting of polybenzoxazine, epoxy resins and novoiac or resol type phenolic resins and a filler material including particles of surface treated boron nitride with the surface treated boron nitride having the following surface treatment schematic representation:
where X is a linear or branched aliphatic group having from 1 to 40 carbon atoms, or a substituted or unsubstituted phenylene group wherein the substituents are methyl, ethyl, propyl, hydroxyl, nitro, methoxy, ethoxy, phenyl, or another Y group or one or more F or CF3 groups, Y is hydroxyl, amino, methyleneamino, ethyleneamino, amido, thiol, epoxy, vinyl, acetylenyl, silanol, nitrite, carboxyl, methacryl, acryl, allyl, anhydride, cyanate, norbomenyl, and maleimido, and, where applicable, may have additional substituents selected from the group consisting of -CF3, -CF2CF3, and, -CF2CF2CF3,
7. A composition as defined in claim 6 wherein X is phenylene and Y is ortho-, meta- or para-OH.
8. A composition according to claim 7 wherein X is phenylene and Y is 4-OH.
CA002292369A 1997-05-01 1999-12-16 Surface treated boron nitride for forming a low viscosity high thermal conductivity polymer based boron nitride composition and method Abandoned CA2292369A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US09/164,927 US6160042A (en) 1997-05-01 1998-10-01 Surface treated boron nitride for forming a low viscosity high thermal conductivity polymer based boron nitride composition and method
CA002292369A CA2292369A1 (en) 1998-10-01 1999-12-16 Surface treated boron nitride for forming a low viscosity high thermal conductivity polymer based boron nitride composition and method
EP99403250A EP1114843B1 (en) 1999-12-16 1999-12-22 Surface treated boron nitride for forming a low viscosity high thermal conductivity polymer based boron nitride composition and method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US09/164,927 US6160042A (en) 1997-05-01 1998-10-01 Surface treated boron nitride for forming a low viscosity high thermal conductivity polymer based boron nitride composition and method
CA002292369A CA2292369A1 (en) 1998-10-01 1999-12-16 Surface treated boron nitride for forming a low viscosity high thermal conductivity polymer based boron nitride composition and method
EP99403250A EP1114843B1 (en) 1999-12-16 1999-12-22 Surface treated boron nitride for forming a low viscosity high thermal conductivity polymer based boron nitride composition and method

Publications (1)

Publication Number Publication Date
CA2292369A1 true CA2292369A1 (en) 2001-06-16

Family

ID=27171112

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002292369A Abandoned CA2292369A1 (en) 1997-05-01 1999-12-16 Surface treated boron nitride for forming a low viscosity high thermal conductivity polymer based boron nitride composition and method

Country Status (1)

Country Link
CA (1) CA2292369A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2429943A4 (en) * 2009-05-13 2015-03-11 Du Pont Surface modified hexagonal boron nitride particles

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2429943A4 (en) * 2009-05-13 2015-03-11 Du Pont Surface modified hexagonal boron nitride particles

Similar Documents

Publication Publication Date Title
US6160042A (en) Surface treated boron nitride for forming a low viscosity high thermal conductivity polymer based boron nitride composition and method
JP2001192500A (en) Surface-treated boron nitride for forming high thermal conductive polymer based boron nitride composition having low viscosity and method for forming the same composition
JP3836649B2 (en) Semiconductor sealing resin composition and molded product thereof
EP2201079B1 (en) Thermally conductive composition
EP0044136A1 (en) Encapsulation of electronic device
US5859105A (en) Organosilicon-containing compositions capable of rapid curing at low temperature
US20060079634A1 (en) RTV heat conductive silicone rubber compositions
EP0546522B1 (en) Sliding member and composition usable for the formation thereof
US3931026A (en) Electrically insulating encapsulating composition for semiconductor devices
EP1114843B1 (en) Surface treated boron nitride for forming a low viscosity high thermal conductivity polymer based boron nitride composition and method
JP4315895B2 (en) Phosphorus-containing coated magnesium oxide powder, method for producing the same, and resin composition containing the powder
JP3714502B2 (en) High thermal conductive resin composition
US5852092A (en) Organosilicon-containing compositions having enhanced adhesive properties
CA2292369A1 (en) Surface treated boron nitride for forming a low viscosity high thermal conductivity polymer based boron nitride composition and method
JP3714506B2 (en) High thermal conductive resin composition having excellent water resistance
EP0400786B1 (en) Heat stable acrylamide polysiloxane composition
EP0369244B1 (en) Polyarylene sulfide resin composition
TW506983B (en) Surface treated boron nitride for forming a low viscosity high thermal conductivity polymer based boron nitride composition and method
EP0244188B1 (en) Polyarylene thioether molding product
JPH0753873A (en) Thermosetting silicone rubber composition
DE69930604T2 (en) A surface treated boron nitride for producing a boron nitride composition based on a low viscosity, high thermal conductivity polymer and method
CN111471278A (en) Low-temperature high-radiant-heat epoxy resin composition and application thereof
CN110872492A (en) Thermally conductive material, method for producing same, and thermally conductive composition
JPH0733983A (en) Insulating and heat-dissipating sheet
JP2938080B2 (en) Epoxy resin composition for semiconductor encapsulation

Legal Events

Date Code Title Description
EEER Examination request
FZDE Discontinued