CA2266458A1 - Method and agent for desulphurisation - Google Patents

Method and agent for desulphurisation Download PDF

Info

Publication number
CA2266458A1
CA2266458A1 CA002266458A CA2266458A CA2266458A1 CA 2266458 A1 CA2266458 A1 CA 2266458A1 CA 002266458 A CA002266458 A CA 002266458A CA 2266458 A CA2266458 A CA 2266458A CA 2266458 A1 CA2266458 A1 CA 2266458A1
Authority
CA
Canada
Prior art keywords
agent
particles
compound
stream
carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002266458A
Other languages
French (fr)
Inventor
Rodney Martin Sambrook
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Imperial Chemical Industries Ltd
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CA2266458A1 publication Critical patent/CA2266458A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/889Manganese, technetium or rhenium
    • B01J23/8892Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8603Removing sulfur compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Gas Separation By Absorption (AREA)
  • Industrial Gases (AREA)

Abstract

Sulphur compounds are removed from a gas and/or liquid stream by an agent comprising at least one compound of manganese and at least one compound of iron. Desulphurization agent comprising at least one compound of manganese and at least one of iron, present in relative molar proportions of about 8:1 to 1:8.

Description

~CA 0 2 2 6 6 4 ~ 8 19 9 9 - 0 3 - 19 . .

METHOD AND AGENT FOR DESULPHURISATION

The invention relates to desulphurisation and in particular to the purification of streams (liquid or gas or both) by the partial or complete removal of sulphur compounds, e.g.
hydrogen sulphide, low molecular weight mercaptans, or the like therefrom. The invention may also be applied to the purification of air or other gas containing sulphur compounds. The invention relates to a method and a desulphurisation agent.

In one aspect the invention provides a method of reducing the content of a sulphur compound in stream of gas and/or liquid, the method comprising contacting the stream with particles of a compound of manganese and particles of a compound of iron characterised in that the particles are incorporated in a porous carrier, the molar ratio is from 8:1 to 1:8 (Mn:Fe) and in that the particles are bonded together by a bonding agent ~o form a desulphurisation agent which is contacted with the stream at a temperature from about 20~ to about 1 50~C.

The desulphurisation is performed, for example, at a temperature preferably from about 40~C to about 1 50~C. Preferably the compounds are the oxides, hydroxides, carbonates, e.g. hydroxycarbonate or basic carbonate or the like of both manganese and iron. These active ingredients may be incorporated within a carrier of the invention by simple impregnation or impregnation/deposition, coforming, precipitation from aqueous solution or other techniques well known to those skilled in the art of catalyst AMEN~D SHEET
IPEA/EP
.. , ........ ... . " , ., , ., .. " . " . . .

la preparation. Tlle carrier may be alumina, silica, aluminosilicates or the like. The content of the carrier material will be in the range 1 to 40% by weight.

E~l~ S~EET
. ~--n . ~

CA 022664~8 1999-03-19 , Preferably the compounds are in the relative molar proportions of about 1:1.

In a preferred feature the desulphurisation agent comprises shaped particles. The particles may be presented in a variety of shapes and sizes preferably as spheres;
extrudates, granules, tablets or the like. The binding agent may be cement, alumina, clay, silica or organic resins or the like. The agent may require exposure to elevated temperatures to achieve the optimum bond strength. Preferably the agent includes a promoter which is one or more of potassium hydroxide, nickel hydroxide and sodium hydroxide, optionally with a derivative of zinc. The concentration of the promoter is preferably in the range of from about 1% to about 10~,/o. The inclusion of copper or copper compounds has proved to be beneficial because it will scavenge lower concentrations of sulphur compounds and also remove arsine.

In a further preferred feature the shaped desulphurisation agent is porous. The pore volume will be in the range of 0.1 to 0.6 ml/g, preferably 0.25-0.45 ml/g. It is recognised that the shaped porous materials should exhibit a significant level of macro porosity.

The desulphurisation agent may be used in a fixed bed, a fluid bed or a moving bed.
The choice of the reactor system will depend on generated requirements and the nature of the gas stream, e.g. sour feed. Particle sizes of about 3 to about 6mm are particularly useful in a fixed bed. In a fluid bed, the particle size is preferably in the AMEN~D SHEET
,.,.,, IPE~!,EP ..........

CA 022664~8 1999-03-19 range about 20 to about 120 microns, most preferably about 30 to about 100 microns.
For the moving bed, the particle size is preferably in the range about 120 to 600 microns, most preferably about 200 to about 500 microns.

The method of the invention may be enhanced by the incorporation of materials with sorption properties. Such materials may be added according to the physical form of the desulphurisation agent. They may be added on to the surface or within the pores of a porous desulph~lrisation agent or in the bulk phase. Such materials may be catalytica!ly active. The materials (which may be included either singly or in combination) are preferably oxides, carbonates, silicates, phosphates of alkali metals, alkaline earths, rare earths. Zn, Co~ Ni, Mo, Cr, Cu, Ti, Zr, Si, Al, precious metals. The materials may be incorporated ~ ithin the material of the invention by impregnation, deposition, coformillg~ precipitation techniques well known to those skilled in the art of catalyst preparation. The content of the sorption materials may range from about 0.5 to 40% by weight, preferably in the range 2 to 20% by weight.

In a preferred feature of the invention, other reagents are associated with the desulphurisation agent to ~eact with other substances present in the stream to be ~reated al from about ambient to about 250~C. One such reagent is an alkaline reagent such as alkali metal hydroxide or silicate, the alkali metal is preferably sodium. Such an alkaline reagent will react with halides or strongly acidic gases present in the sour feed such as SOx to form halide or sulphite respectively (which may be recovered later). Tlle reagents may be impregnated into the desulphurisation agent or A~EN5~0 SHEET
~ IPE~/EP

CA 022664~8 1999-03-19 ' incorporated into the bulk phase by other means well known to those skilled in the art of catalyst preparation.

The spent desuJphurisation agent of the invention may be regenerated by exposure to an oxidising atmosphere e.g. air at elevated temperature. The presence of steam when regenerating may be beneficial.

In another aspect the method of the present invention includes the further step of exposing the spent agent to oxidation at elevated temperature to remove the sulphur compounds and regenerate the agent for re-use.

The sulphur compound to be removed may be hydrogen sulphide gas or a low rnolecular weight mercaptan such as propyl mercaptan. The hydrocarbon stream may be liquid or gas or both, examples being natural gas, town gas, industrial waste gas, coke oven gas, coal gas, liquid or gas from petroleum plant oil refinery. EMuent streams from biomass digesters, general industrial process may also be treated.

The method may be perforrned at pressures ranging from about atmospheric to about 100 atmospheres without adverse effect.

In another aspect the invention provides a desulphurisation agent comprising a porous carrier containing at least one compound of manganese and at least one of iron, present in relative molar proportions of about 8:1 to 1:8, bonded together by a bonding agent. In a further aspect the invention AMEN~D SHEET
IPEAJEP
,. . ... ...

WO 98/17374 5 PCTtGB97/02735 provides such an agent incorporating a promoter and in yet a further aspect the invention provides such an agent incorporating a sorption material.

In order that the invention may be well understood it will now be described by way of illustration with reference to the following example.

Example I

Pellets of varying composition, as det~ilP~ below, were prepared by standard forming techniques, calcin~d at 4500C and allowed to cool.

Component, Wt.% A B C D
m~n~nese dioxide 5 38 iron oxide 80 70 70 10 sodium hydroxide 10 5 2 binder 20 20 20 20 30 ml. of each sample were placed in a tubular reactor subjected to a flow (3 litres/hour) of nitrogen cont~ining 20% hydrogen sulphide at ambient ternperature and ~res~ule and the time noted for 10 ppm hydrogen sulphide to be ~letecte i at the outlet of the reactor. The following results were obtained.

Sample time mins It will be observed that when both Mn and Fe were present the time increased and that this increase was greatly improved when more m~n~nese was present.

Claims (25)

1. A method of reducing the content of a sulphur compound in a stream of gas and/or liquid, the method comprising contacting the stream with particles of a compound of manganese and particles of a compound of iron characterised in that the particles are incorporated in a porous carrier, the molar ratio is from 8:1 to 1:8 (Mn:Fe) and in that the particles are bonded together by a bonding agent to form a desulphurisation agent which is contacted with the stream from about 20° to about 150°C
2. A method according to Claim 1, wherein the contact temperature is from about 40°
to about 150°C.
3. A method according to Claim 1 or 2, wherein the particles comprise an oxide, hydroxide or carbonate of each of manganese and iron.
4. A method according to any preceding Claim, wherein the relative molar proportions are about 1:1.
5. A method according to any preceding Claim, wherein the particles are bonded by a bonding agent which is a cement, alumina or a clay; silica; or organic resin.
6. A method according to any preceding Claim, wherein the carrier has a pore volume in the range of 0.1 to 0.6 ml/g.
7. A method according to Claim 6, wherein the pore volume is 0.25 to 0.45 ml/g.
8. A method according to any preceding Claim, wherein the carrier is porous alumina, silica or aluminosilicate.
9. A method according to any preceding Claim, wherein the carrier includes a promoter which is a hydroxide of a potassium, nickel and sodium, optionally with a compound of zinc.
10. A method according to any preceding Claim, wherein the carrier includes copper or a compound thereof as a scavenger.
11. A method according to any preceding Claim, wherein a sorption material is present in or on the carrier.
12. A method according to Claim 11, wherein the content of sorption material is from 0.5% by weight to about 40% by weight of the total weight of the agent.
13. A method according to any preceding Claim, wherein the particles range from about 3mm to about 6mm and the agent is disposed in a fixed bed.
14. A method according to any of Claims 1 to 12, wherein the particles are from about 20 to about 120 microns and the agent is disposed in a fluid bed.
15. A method according to any of Claims 1 to 12 wherein the particles are from about 120 microns to about 600 microns and the agent is disposed in a moving bed.
16. A method according to any preceding Claim, wherein the carrier includes an alkaline reagent to react with a halide or strongly acidic gas in the stream.
17. A method according to Claim 16, wherein the alkaline reagent is an alkali metal hydroxide or silicate.
18. A method according to Claim 16 or 17, wherein the body containing the alkaline reagent is contacted with the stream at a temperature of from about ambient to about 250°C.
19. A method according to any preceding Claim, including the step of regenerating the spent body.
20. A method according to Claim 19, wherein the spent body is regenerated by contact with air or stream at elevated temperature.
21. A desulphurisation agent comprising a porous carrier containing at least one compound of manganese and at least one of iron, present in relative molar proportions of about 8:1 to 1:8. bonded together by a bonding agent.
22. An agent according to Claim 21, wherein the molar proportions are about 1:1.
23. An agent according to Claim 21 or 22, including a promoter.
24. An agent according to Claim 21, 22 or 23, including a sorption material.
25. An agent according to any of Claims 21 to 24, including an alkaline reagent.
CA002266458A 1996-10-21 1997-10-06 Method and agent for desulphurisation Abandoned CA2266458A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB9621906.8 1996-10-21
GBGB9621906.8A GB9621906D0 (en) 1996-10-21 1996-10-21 Desulphurisation
PCT/GB1997/002735 WO1998017374A1 (en) 1996-10-21 1997-10-06 Method and agent for desulphurisation

Publications (1)

Publication Number Publication Date
CA2266458A1 true CA2266458A1 (en) 1998-04-30

Family

ID=10801748

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002266458A Abandoned CA2266458A1 (en) 1996-10-21 1997-10-06 Method and agent for desulphurisation

Country Status (7)

Country Link
EP (1) EP0946259A1 (en)
JP (1) JP2001502236A (en)
AU (1) AU4566497A (en)
BR (1) BR9712408A (en)
CA (1) CA2266458A1 (en)
GB (2) GB9621906D0 (en)
WO (1) WO1998017374A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7105140B2 (en) * 2002-03-04 2006-09-12 Conocophillips Company Desulfurization compositions
GB0619396D0 (en) 2006-10-02 2006-11-08 M I Drilling Fluids Uk Ltd Porous articles
MX2017002349A (en) * 2017-02-22 2017-07-10 Inst Nac De Investig Forestales Agricolas Y Pecuarias Removal of h2s at low-temperature by nanometric ferrites of high surface area obtained by modified chemical co-precopitation.

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE759979A (en) * 1965-02-10 1971-06-07 Grillo Werke Ag PROCESS FOR ELIMINATION OF SULFUR IN RESIDUAL GASES
JPS5430398B2 (en) * 1975-01-29 1979-09-29
US4017586A (en) * 1975-08-06 1977-04-12 Reeves Adam A Stack gas treatment
SU825133A1 (en) * 1978-12-20 1981-04-30 Институт Газа Ан Украинской Сср Catalyst for conversion of sulfur-containing gases to elemental sulfur
JPS56100622A (en) * 1980-01-17 1981-08-12 Hitachi Zosen Corp Dry desulfurizing method in reducing atmosphere
NL8105728A (en) * 1981-10-30 1983-05-16 Tno PROCESS FOR THE REMOVAL OF HYDROGEN SULFIDE FROM PROCESS GASES USING FIXED ACCEPTORS, PROCESS FOR CYCLICALLY REGENERATING THE ACCEPTORS USED AT HIGH TEMPERATURE, AND METHOD FOR PREPARING THESE PROCESS.
DE3228481A1 (en) * 1982-07-30 1984-02-02 VEG-Gasinstituut N.V., 7300 Apeldoorn REACTION MEASURES, METHOD FOR THEIR PRODUCTION AND THEIR USE
GB2125779B (en) * 1982-08-19 1986-01-29 Nippon Shokubai Kagaku Gogyo C Desulfurization of h2s-containing gases
DE3390486T1 (en) * 1983-05-26 1985-05-30 Azerbajdžanskij institut nefti i chimii imeni M. Azizbekova, Baku Process for purifying gases from sulfur compounds
JPS60166033A (en) * 1984-02-06 1985-08-29 Mitsubishi Heavy Ind Ltd Desulfurizing agent
US5417946A (en) * 1993-12-30 1995-05-23 Shell Oil Company Process for removing total reduced sulfur compounds from gaseous stream

Also Published As

Publication number Publication date
EP0946259A1 (en) 1999-10-06
GB2318309A (en) 1998-04-22
GB9721228D0 (en) 1997-12-03
BR9712408A (en) 1999-10-19
WO1998017374A1 (en) 1998-04-30
GB9621906D0 (en) 1996-12-11
JP2001502236A (en) 2001-02-20
AU4566497A (en) 1998-05-15
GB2318309B (en) 2001-05-16

Similar Documents

Publication Publication Date Title
EP0568003B1 (en) Absorption of hydrogen sulfide and absorbent composition therefor
EP0944425B1 (en) Process and composition for the removal of sulphur compounds from fluids
AU2009289077B2 (en) Adsorbents
CA2472329C (en) Sulphided ion exchange resins
HK17497A (en) Removal of mercury from liquid hydrocarbons
EP2829315A2 (en) Contaminant removal from a gas stream
CN101462063B (en) Desulfurizing agent for removing carbonyl sulfur, thiol and hydrogen sulphide by catalytic oxidation as well as preparation and application
CN111744355B (en) Desulfurization method and desulfurization device for industrial mixed gas
Long et al. Preparation, characterization and H2S adsorptive removal of ion-exchanged zeolite X
EP1184562B1 (en) Apparatus for removing sulfur-containing component in fuel
EP1651565B1 (en) Processes and systems for making phosgene
US8535416B2 (en) Method for eliminating mercury from a gas containing CO2 and oxygen
US20240075426A1 (en) Heterogeneous desulfurization catalyst
CA2266458A1 (en) Method and agent for desulphurisation
AU2009289076B2 (en) Adsorbents
MXPA99003678A (en) Method and agent for desulphurisation
US4608240A (en) Method for the desulfurization of hydrocarbon gas
JPS62500083A (en) Gas purification method to remove sulfur compounds
KR100925491B1 (en) Organic-inorganic complex for removing sulfur complex materials, method of preparation thereof, and the use of the same
JPH07118668A (en) Method for removing sulfur compound in sulfur-containing gas
WO1982002346A1 (en) Scavenging hydrogen sulfide from hydrocarbon gases
MXPA99001729A (en) Process and composition for increasing the reactivity of sulfur scavenging iron oxides

Legal Events

Date Code Title Description
FZDE Discontinued