CA2227250C - Passive optical telecommunication system employing multiple wavelength source and plural power splitting stages - Google Patents

Passive optical telecommunication system employing multiple wavelength source and plural power splitting stages Download PDF

Info

Publication number
CA2227250C
CA2227250C CA002227250A CA2227250A CA2227250C CA 2227250 C CA2227250 C CA 2227250C CA 002227250 A CA002227250 A CA 002227250A CA 2227250 A CA2227250 A CA 2227250A CA 2227250 C CA2227250 C CA 2227250C
Authority
CA
Canada
Prior art keywords
optical
power splitter
wdm
wavelength
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA002227250A
Other languages
French (fr)
Other versions
CA2227250A1 (en
Inventor
Edward Eric Harstead
Wayne Harvey Knox
Martin C. Nuss
Jason Blain Stark
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nokia of America Corp
Original Assignee
Lucent Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lucent Technologies Inc filed Critical Lucent Technologies Inc
Publication of CA2227250A1 publication Critical patent/CA2227250A1/en
Application granted granted Critical
Publication of CA2227250C publication Critical patent/CA2227250C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0226Fixed carrier allocation, e.g. according to service
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0241Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths
    • H04J14/0242Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON
    • H04J14/0245Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for downstream transmission, e.g. optical line terminal [OLT] to ONU
    • H04J14/0246Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for downstream transmission, e.g. optical line terminal [OLT] to ONU using one wavelength per ONU
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0241Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths
    • H04J14/0242Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON
    • H04J14/0245Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for downstream transmission, e.g. optical line terminal [OLT] to ONU
    • H04J14/0247Sharing one wavelength for at least a group of ONUs
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0278WDM optical network architectures
    • H04J14/0282WDM tree architectures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/08Time-division multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0221Power control, e.g. to keep the total optical power constant

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

A unique time slot is assigned to each of a plurality of wavelengths emitted by a single, centralized wavelength division multiplexed optical source to provide a "bit interleaved" WDM signal. In accordance with an illustrative embodiment of the present invention, the thus-developed bit-interleaved WDM signal is replicated in cascaded stages of amplification and power splitting before data is encoded for respective frequency dependent receivers as, for example, a plurality of passive optical networks. Because the output of the optical source need not be encoded with data for the respective receivers until after many stages of splitting and amplification, a small number of time division multiplexing (TDM) modulators synchronized to the source may be used to deliver data to potentially tens of thousands of subscribers.

Description

PASSIVE OPTICAL TELECOMMUNICATION SYSTEM EMPLOYING
MULTIPLE WAVELENGTH SOURC'.E AND PLURAL
POWER SPLITTING STAGES
Field of the Invention The present invention relates generally to optical communication systems and, more particularly, to optical fiber communication systems in which multiple information channels are carried on a single mode optical fiber.
Background of the Invention A passive optical network typically consists of a transmitter, feeder fiber, a remote branching device, and an optical network unit (ONU) for each subscriber or group of subscribers. In a conventional T1DM power splitting passive optical network, the transmitter emits an aggregated signal on a single wavelength, while the branching device splits the aggregated signal into a plurality of identical signals, each such signal being distributed to a corresponding ONI1 configured to receive at the aggregate bit-rate.
In a wavelength division multiplexed (WDM) passive optical network, each transmitted wavelength carries data for a single ONU and is modulated at the baseband bit: rate. The branching device, which may comprise, for example, a wavelength grating router, establishes a virtual point-to-point link between the transmitter and the ONU. A multifrequency optical source such as a multifrequency laser or a WDM laser array is customarily used to generate the comb of wavelengths required for the WDM network.
Since data for each wavelength channel is encoded directly at the multifrequency optical source, for example, by turning on and off individual elements of a multifrequency laser array, one WDM multifrequency laser is required for each N
subscribers or optical network units, where N is the number of wavelengths emitted by the laser. Due to the high cost of multifrequency optical sources, WDM for fiber distribution :networks as they have heretofore been envisioned is not deemed cost-competitive with conventional power splitting passive optical networks or even simple point-to-point schemes (one fiber per customer). Accordingly, there is a continuing need for an efficient and cost-effective WDM system that is capable of transmitting a large number of spectral channels.
Summary o~f the Invention The aforementioned deficiencies are addressed, and an advance is made in the art by an optical communications network architecture in which optical power splitting techniques and, optionally, optical amplifiers such as erbium doped fiber amplifiers (>::DFAs), for example, are deployed in a cascaded distribution fabric that permits a single multiple frequency optical source to serve as the primary optical source for a substantially higher number of frequency dependent receivers, such as passive optical networks including one or more optical network units, than has heretofore been possible.

A unique time slot is assigned to each of a plurality of wavelengths emitted by a single, centralized wavelength division multiplexed (WDM) optical source to provide a "bit interleaved" WDM signal. In accordance with the present invention, the thus-developed bit-interleaved WL)M signal is replicated in cascaded stages of amplification and power splitting before data is encoded for respective frequency dependent receivers as, for example, a plurality of WDM passive optical networks.
Because the output of the optical source need not be encoded with data for the respective receivers until after many stages of splitting and amplification, a small number of time division multiplexing (TDM) modlulators synchronized to the source may be used to deliver data to potentially tens of thousands of subscribers.
In accordance with one aspect of the present invention there is provided an optical source distribution network, comprising: an optical transmitter including a multifrequency optical source for supplying an optical signal having a plurality of wavelength division multiplexed (WDM) channels, substantially all light supplied over a given time interval being within a single wavelength channel; a power sputter having an input port, for receiving the optical signal from said multifrequency source, and a plurality of output ports, and a plurality of' data encoding modulators, each said data encoding modulator being coupled to one of said output ports and being operable to sequentially modulate at least some of the wavelength channels present on an output signal received from said power sputter; and a plurality of frequency dependent receivers, each said frequency dependent receiver bein~; operable to receive and wavelength demultiplex a modulated optical signal received from one of said data encoding modulators over an optical medium.
In accordance with another aspect of the present invention there is provided a method of operating an optical multiple wavelength communication system comprising the steps of: receiving, at a power sputter having an input port, an optical signal having a plurality of wavelength division multiplexed (WDM) channels, substantially all light received over a given interval being of a single WDM channel; sequentially modulating at least some of the WDM channels present on an output signal received from said power 3a sputter with a f rst modulator; sequentially modulating at least some of the WDM channels present on an output signal received from said power sputter with a second modulator; and launching the modulated WDM channels into an optical medium.
The various features of the present invention will become apparent from the following detailed description considered in conjunction with the accompanying drawings.
It is to be understood, however, that the drawings are designed solely for purposes of illustration and not as a definition of the limits of the invention, for which reference should be made to the appended claims.
Brief Description of the Drawings A more complete understanding of the invention may be obtained by reading the following description of specific illustrative embodiments of the invention in conjunction with the appended drawings in which:
FIG. 1 is a schematic diagram of a cascaded multiple wavelength optical communications system utilizing a single multiple wavelength optical source to serve a number of passive optical networks in accordance with an illustrative embodiment of the present invention;
FIG. 2 is a schematic diagram of an investigative cascaded multiple wavelength optical communication system constructed in accordance with the present invention and used to evaluate the performance of a cascading distribution fabric, the bit interleaved multiple frequency optical source thereof being configured as a fiber-chirped, femtosecond-laser;
FIG. 3A is a graphical representation depicting the transmission spectra of data tran;~mitted on a single wavelength channel launched into a distribution fiber after being encoded with a pseudo-random bit (PSBR) sequence with the single stage cascading distribution fabric being omitted from the investigative system of FIG. 2, the upper and lower traces respectively corresponding to the spectra observed at the input of 1 CI the distribution fiber and at a single port of a demultiplexing waveguide grating router;
FIG. 3B is a graphical representation depicting the transmission spectra of data transmitted on a single wavelength channel launched into a distribution fiber after being encoeLed with a pseudo-random bit (PSBR) sequence with the single stage cascading distribution fabric incorporated as shown into the investigative system of FIG.
1 ~~ 2, the upper' and lower traces respectively corresponding to the spectra observed at the input of the distribution fiber and at a single port of a demultiplexing waveguide grating router;
FIG. 4 graphically compares the bit error rate vs. received power observed in the PSBR encoded wavelength channel when the cascading distribution 2C> fabric was omitted from-and included in, respectively, the investigative system of FIG. 2;
FIG. SA is a graphical representation depicting the transmission spectra of data transmitted on fifteen wavelength channels launched into a distribution fiber after being encoded with a pseudo-random bit (PSBR) sequence by a single modulator, with the single stage cascading distribution fabric being omitted from the investigative system 25 of FIG. 2 and the upper and lower traces respectively corresponding to the spectra S
observed at the input of the distribution fiber and at a single output port of a demultiplex.ing waveguide grating router;
FIG. SB is a graphical representation depicting the transmission spectra of data transmitted on fifteen wavelength channels launched into a distribution fiber after i being encoded with a pseudo-random bit (PSBR) sequence by a single modulator, with the single stage cascading distribution fabric incorporated as shown into the investigative system of FIG. 2 and the upper and lower traces respectively corresponding to the spectra observed at the input of the distribution fiber and at a single port of a demultiplexing waveguide grating muter; and 1C> FIG. 6 is a graphical representation comparing the bit error rate vs.
received power observed in one of fifteen PSBR encoded wavelength channels when the cascading distribution fabric was omitted from and included in the investigative system of FIG. 2.
Detailed Description of the Invention 1 '~ With initial reference to FIG. 1, there is shown an optical communications system 10 constructed in accordance with an illustrative embodiment of the present invention. By way of illustrative example, optical communications system 10 may be implemented in a local access communication network designed to serve many thousands of subscribers. In any event, as seen in FIG. 1, it will be seen that communications 20 system 10 includes a transmitter 12 comprising a bit-interleaved multifrequency light source 14 for sequentially emitting N wavelength channels, a cascaded distribution fabric 16, a plurality of data-encoding modulators M,-M", and a plurality of frequency dependent receivers R1-R". Illustratively, some or all of the frequency dependent receivers may be configured as passive optical networks (PONS) consisting of, as shown in FIG. l, a WDM sputter 22 having multiple output ports each for supplying a respectively discrete wavelength (or a narrow wavelength band or channel centered around that wavelength) to an associated optical network unit 24. Alternate PON
configurations are, of course, possible. For example, in lieu of a wavelength selective muter, a simple power sputter (not shown)--having its output ports optically coupled to respective frequency selective filters (not shown) - may be used to distribute the discrete wavelengths to the appropriate optical network units.
As will soon become apparent, a principal advantage of the present invention resides in the ease to which communication system 10 can be scaled to accommodate the addition of many more subscribers, as needed, merely by introducing one or more additional power splitting and amplification stages, and a number of modulators, corresponding to the number of WDM passive optical networks to be introduced, to distribution fabric 14. Essentially, for k stages of l: M power-sputters, and N
wavelength channels, the number of subscribers served is Mk x N.
In accordance with the present invention, optical source 12 is configured as a bit-interleaved multifrequency source, in which there is only a single wavelength or wavelength channel centered around that wavelength, present at any given time.
One optical source which is suitable for the purposes of the present invention is disclosed in U.S. Patent No. 5,631,758, which issued on May 20, 1997.
This patent discloses a technique in which the output of a broadband short-pulse source is stretched to a large fraction of the time between pulses by linear dispersion in a fiber. The dispersion imposes a linear frequency chirp onto the stretched pulses, so that each WDM channel occupies a different time slot. A femtosecond laser was employed in this patent as the broadband short-pulse source. For example, a transform-limited Ciaussian laser pulse of duration t has a time bandwidth product (w)(t)=0.44, so that a 70 fs laser pulse has an optical bandwidth (FWHM)(Ov) of 6.4 THz, enough for 32 WDM channels spaced at 200 GHz. For the purposes of the present invention, however, any multifrequency optical source that can supply an optical signal having a plurality of wavelength division multiplexed (WDM) channels in which substantially all light supplied over a given time interval is within a single WDM channel, may be used.
Illustratively, in lieu of a femtosecond laser, a short pulse ASE source may be employed. By way of further example, a gain switched diode laser--amplified and spectrally broadened by self phase modulation in a fiber--may be used. See "Electro-Optic Testing of Ultrafast Electronic and Optoelectronic Devices" by T. Nagatsuma, Technical Digest, p. 46, Optical Society of America, Washinl,~ton, 1995. Yet another multifrequency optical source which may be utilized to implement the present invention is disclosed in U.S. Patent No. 5,793,507, which issued on August 11, 1998. In the latter patent, there is proposed a discretely chirped WDM source that, illustratively, comprises a WDM
laser array in which successive wavelength channels are pulsed on and off serially, thus generating a step-function approximation to a continuously chirped WDM source.
Yet another example of a suitable multifrequency bit-interleaving optical source is disclosed in U.S. Patent No. 5,861,965 which issued on January 19, 1999.
Essentially, this patent proposes an arrangement in which the output of a broad spectrum optical source such as a light emitting diode is supplied to a wavelength splitter having at least one input port and a plurality of output ports each corresponding to an individual wavelength channel. Each of the output ports have optically coupled thereto a respective length of optical fiber that is configured to provide a different time delay for each wavelength channel, thereby ensuring that each individual wavelength occupies a discrete time slot.
In view of the preceding discussion, it should be readily appreciated by those skilled in the art that although reference may be made hereafter to a femtosecond _'i laser-chirped pulse multiple frequency source, as for example, in the discussion of the investigative apparatus depicted in FIG. 2, such reference is by way of illustration only and it is contemplated by the inventors herein that any bit interleaved, multiple frequency optical sources such as, for example, those enumerated above, may be employed.
In any event, and with continued reference to FIG. 1, it will be seen that light emitted by source 12 propagavtes through cascaded distribution fabric 16. In the illustrative embodiment depicted in FIG. 1, only two stages of distribution fabric 16 are shown for clarity of illustration. Each stage comprises a 1:M power splitter 26, 28 and, where appropriate to maintain the requisite power level, a pre-amplifier 30, 32. The light passes through distribution fabric 16 and, thereafter, through a modulator as modulator M,, where a 1 _'> TDM signal encodes data onto each WDM channel sequentially.
The fully-encoded WDM signal is then transmitted to a frequency dependent receiver as R,, a passive optical network in the illustrative embodiment depicted in FIG. 1, for distribution to subscribers in their homes. For a power splitter with 32 output ports, a total of 32,768 PONs can be serviced using three cascaded stages of splitting, and a single WDM light source. For a PON having 16 WDM
channels, this system serves 524,288 subscribers with a single source. In general, for k cascaded stages having M-fold split, and N WDM channels, a single light source serves N ~ Mk subscribers. The light source is shared by all subscribers, while the costs of the modulator ;end final cascade stage are shared by each PON.
An investigative system employing a linearly chirped femtosecond laser 40 as the bit-interleaved multifrequency source is shown in FIG. 2 and was constructed in order to a;valuate the performance of a cascading distribution fabric according to the present rove:ntion. The distribution fabric 42 consists of a single power splitting stage employing an optical amplifier 44 and a power splitter 46 having an input port and a plurality of output ports. Before preamplification, the laser spectrum has a 3 dB
bandwidth in excess of 70 nm and is centered about 1550 nm, a typical communications wavelength..
The system was configured such that data for each separate channel may be multiplexed into the buffer of a pattern generator (not shown), and delivered in Non-Return-to-Zero (NRZ) forrr~at to a modulator 48. Each of the fifteen individual channels is programmable with a pseudo-random bitstream (PRBS), with variable offset. Additionally, each channel can be blanked, so that no data is transmitted on that channel. The performance of the system, in the absence of crosstalk, is first measured by transmitting a 2'5 PRBS
on a single channel. In the first measurement, a PRBS was transmitted on channel 8, at 1563.7 nm, while the remaining 15 channels were blanked. The transmission spectra, 15~ FIGS. 3A and 3B, show the light transmitted into the distribution fiber 50 (upper trace) and that received after port 8 (lower trace) of WDM router 52. The peaking of the output speci:rum results from nonuniform gain in the preamplifier and distribution amplifier. This can be eliminated by using gain-flattened amplifiers, and by active equalization of the spectrum using the data modulator.
2CI The BER vs. received power, FIG. 4, shows that the received power level for a bit error rate of 10-9 is -50.3 dBm without the distribution fabric, and -50.3 dBm with the distribution fabric. No significant power penalty is incurred by the introduction of the distribution stage. Transmission measurements made using channel 1, at the edge of the output spectrum show an overall power penalty of 1 dB, due to the peaking of the 2'~ output spectrum, but no significant ASE penalty.

With reference now to FIGS. SA, SB, and 6, the results of a second measurement, by which the effects of crosstalk may be evaluated, will now be discussed.
For this measurement, a PRBS was transmitted on each of the fifteen wavelength channels, with the measurements again being taken at port 8 of the router.
Each PRBS
'_> was offset by 736 bits, relative to the previous channel. The BER
measurements, FIG. 6, indicates a sensitivity of -50.1 dBm and -50.3 dBm, without and with distribution stage, respectively. Comparing FIGS. SA and SB, the peaked spectrum of the distribution stage suppresses the crosstalk levels away from channel 8, resulting in a crosstalk penalty of -0.2 dB. Measurements of transmission on channel 1 again show a 1 dB
penalty due 10 to spectral peaking in the distribution stage. Again, it should be emphasized that the penalties associated with nonuniform gain in the amplifier stage can be eliminated by using gain-flattened amplifiers, only leaving an insignificant power penalty due to ASE, as discussed below.
Cascaded distribution in accordance with the present invention cannot be 1 '.i continued indefinitely. Each power splitter in the distribution fabric divides the input power among its individual output ports, and is preceded by a compensating amplifier, contributing; noise to the transmission in the form of amplified spontaneous emission (ASE). The ASE power after a cascade of N stages is given by N N
pASE = m by Ov ~, ~Gk -1 )Lk nkP ~ Gm Lm ( 1 ) k=t m=k+I
where m is the number of polarization modes, h Planck's constant, v the light frequency, Ov the optical filter frequency bandwidth, Gk the gain of stage k, Lk the loss in stage k, and nk~ the spontaneous emission factor of the amplifier in stage k. For N
identical unity-gain stages the ASE power is PASS = Nmhv w n,~~, amounting to 64 nW (-42 dBm) per stage in a 1 nm optical bandwidth, with m = 2 and n.,.n = 2 . The power s..

penalty associated with cascaded distribution is lO PnsE (2) Pn = dB, ln(10) . P"~"~r when the receiver thermal noise power dominates optical shot noise. For a transmitted signal level of 100 ~,W (-10 dBm), and a three-stage cascade of 1:32 sputters, one half 'i million subscribers can be served using a single source, with a power penalty of only 0.008 dB.
Although modifications and changes may be suggested by those skilled in the art, it is the intention of the inventors to embody within the patent warranted hereon all changes and modifications as reasonably and properly come within the scope of their 1 C> contribution to the art.

Claims (17)

1. An optical source distribution network, comprising:
an optical transmitter including a multifrequency optical source for supplying an optical signal having a plurality of wavelength division multiplexed (WDM) channels, substantially all light supplied over a given time interval being within a single wavelength channel;
a power sputter having an input port, for receiving the optical signal from said multifrequency source, and a plurality of output ports, and a plurality of data encoding modulators, each said data encoding modulator being coupled to one of said output ports and being operable to sequentially modulate at least some of the wavelength channels present on an output signal received from said power sputter; and a plurality of frequency dependent receivers, each said frequency dependent receiver being operable to receive and wavelength demultiplex a modulated optical signal received from one of said data encoding modulators over an optical medium.
2. The optical source distribution network according to claim 1, further including at least one optical amplifier coupled to a port of said power sputter.
3. The optical source distribution network according to claim 1, wherein said at least one optical amplifier is coupled to an input port of said power sputter.
4. The optical source distribution network according to claim 1, wherein said at least one optical amplifier is an erbium doped fiber amplifier.
5. The optical source distribution network according to claim 1, wherein said multifrequency source includes an array of substantially single frequency lasers, each emitting light constituting a respective wavelength channel and being operable to supply a pulse occupying a fraction of time such that only a single WDM laser in the array emits over a given time interval.
6. The optical source distribution network according to claim 1, wherein at least one of said frequency dependent receivers is a passive optical network including a wavelength muter and a plurality of optical network units, each optical network unit receiving from said router a corresponding wavelength demultiplexed signal.
7. The optical source distribution network according to claim 1, wherein said power splitter is a first power splitter, said optical source distribution network further including a second power splitter having an input port coupled to an output port of said first power splitter and a plurality of output ports, and wherein at least one of said data encoding modulators is coupled to an output port of said second power splitter.
8. The optical source distribution network according to claim 7, further including at least one optical amplifier coupled to a port of one of said power splitters.
9. The optical source distribution network according to claim 7, further including at least one optical amplifier optically interconnecting ports of said first and second power splitters.
10. An optical transmitter for use in an optical source distribution network comprising:
a multifrequency optical source for supplying an optical signal having a plurality of wavelength division multiplexed (WDM) channels, substantially all light supplied over a given interval being within a single WDM channel;
a power splitter having an input port, for receiving the optical signal from said multifrequency source, and a plurality of output ports; and a plurality of data encoding modulators, each said data encoding modulator being coupled to one of said output ports and being operable to sequentially modulate at least some of the WDM channels present on an output signal received from said power splitter.
11. The optical transmitter according to claim 10, wherein said multifrequency source includes an array of substantially single frequency lasers, each emitting light constituting a respective wavelength channel and being operable to supply a pulse occupying a fraction of time such that only a single WDM laser in the array emits over a given time interval.
12. The optical transmitter according to claim 10, further including at least one optical amplifier coupled to a port of said power splitter.
13. The optical transmitter according to claim 12, wherein said at least one optical amplifier is coupled to an input port of said power splitter.
14. The optical transmitter according to claim 10, wherein said power splitter is a first power splitter, said optical transmitter further including a second power splitter having an input port coupled to an output port of said first power splitter and a plurality of output ports.
15. The optical transmitter according to claim 14, wherein at least one of said data encoding modulators is coupled to an output port of said second power splitter.
16. A method of operating an optical multiple wavelength communication system comprising the steps of:
receiving, at a power splitter having an input port, an optical signal having a plurality of wavelength division multiplexed (WDM) channels, substantially all light received over a given interval being of a single WDM channel;
sequentially modulating at least some of the WDM channels present on an output signal received from said power splitter with a first modulator;
sequentially modulating at least some of the WDM channels present on an output signal received from said power splitter with a second modulator; and launching the modulated WDM channels into an optical medium.
17. The method of claim 16, further including a step of receiving and wavelength demultiplexing respective modulated optical signals received from said data encoding modulators over the optical medium.
CA002227250A 1997-02-11 1998-01-19 Passive optical telecommunication system employing multiple wavelength source and plural power splitting stages Expired - Fee Related CA2227250C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/798,895 US5912749A (en) 1997-02-11 1997-02-11 Call admission control in cellular networks
US08/798,895 1997-02-11

Publications (2)

Publication Number Publication Date
CA2227250A1 CA2227250A1 (en) 1998-08-11
CA2227250C true CA2227250C (en) 2001-10-30

Family

ID=25174535

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002227250A Expired - Fee Related CA2227250C (en) 1997-02-11 1998-01-19 Passive optical telecommunication system employing multiple wavelength source and plural power splitting stages

Country Status (2)

Country Link
US (1) US5912749A (en)
CA (1) CA2227250C (en)

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6304350B1 (en) * 1997-05-27 2001-10-16 Lucent Technologies Inc Temperature compensated multi-channel, wavelength-division-multiplexed passive optical network
US6072612A (en) * 1997-08-08 2000-06-06 Lucent Technologies, Inc. WDM transmitter for optical networks using a loop-back spectrally sliced light emitting device
JP3769109B2 (en) * 1997-09-10 2006-04-19 富士通株式会社 Optical transmitter, optical receiver, and optical communication method
US6782203B2 (en) * 1998-08-31 2004-08-24 Lucent Technologies Inc. Scalable optical demultiplexing arrangement for wide band dense wavelength division multiplexed systems
EP1087556B1 (en) * 1999-09-22 2008-07-02 Lucent Technologies Inc. Optical network with power splitters
US7386236B1 (en) 1999-09-27 2008-06-10 Alloptic, Inc. Multiple wavelength TDMA optical network
US6862380B2 (en) * 2000-02-04 2005-03-01 At&T Corp. Transparent optical switch
DE10029336A1 (en) * 2000-03-20 2002-01-03 Sel Alcatel Ag Broadband optical light source, use of a broadband optical light source and methods for demultiplexing
CA2402730C (en) * 2000-03-31 2007-06-19 At&T Corp. Multiple input waveguide grating router for broadcast and multicast services
US20030030873A1 (en) * 2001-05-09 2003-02-13 Quellan, Inc. High-speed adjustable multilevel light modulation
EP1271825A1 (en) * 2001-06-25 2003-01-02 Lucent Technologies Inc. Method and system for multiplexed optical information transport
JP2003134089A (en) * 2001-10-26 2003-05-09 Fujitsu Ltd Transmitter
US7209657B1 (en) * 2001-12-03 2007-04-24 Cheetah Omni, Llc Optical routing using a star switching fabric
US6816101B2 (en) * 2002-03-08 2004-11-09 Quelian, Inc. High-speed analog-to-digital converter using a unique gray code
AU2003223687A1 (en) * 2002-04-23 2003-11-10 Quellan, Inc. Combined ask/dpsk modulation system
JP2004013681A (en) * 2002-06-10 2004-01-15 Bosu & K Consulting Kk Name card information managing system
US7035361B2 (en) 2002-07-15 2006-04-25 Quellan, Inc. Adaptive noise filtering and equalization for optimal high speed multilevel signal decoding
KR100606102B1 (en) * 2002-08-03 2006-07-28 삼성전자주식회사 Broadcast/communication unified passive optical network system
US7259906B1 (en) 2002-09-03 2007-08-21 Cheetah Omni, Llc System and method for voice control of medical devices
AU2003287628A1 (en) 2002-11-12 2004-06-03 Quellan, Inc. High-speed analog-to-digital conversion with improved robustness to timing uncertainty
FR2851100B1 (en) * 2003-02-07 2005-05-27 France Telecom DEVICE AND METHOD FOR HIGH-SPEED OPTICAL TRANSMISSION, USE OF THE DEVICE AND METHOD
US7804760B2 (en) 2003-08-07 2010-09-28 Quellan, Inc. Method and system for signal emulation
JP2007502054A (en) 2003-08-07 2007-02-01 ケラン インコーポレイテッド Method and system for crosstalk cancellation
EP1687929B1 (en) * 2003-11-17 2010-11-10 Quellan, Inc. Method and system for antenna interference cancellation
US7616700B2 (en) 2003-12-22 2009-11-10 Quellan, Inc. Method and system for slicing a communication signal
US7747174B2 (en) * 2004-09-08 2010-06-29 Avago Technologies Fiber Ip (Singapore) Pte. Ltd. Multi-channel fabry-perot laser transmitters and methods of generating multiple modulated optical signals
US7725079B2 (en) 2004-12-14 2010-05-25 Quellan, Inc. Method and system for automatic control in an interference cancellation device
US7522883B2 (en) 2004-12-14 2009-04-21 Quellan, Inc. Method and system for reducing signal interference
US20060268393A1 (en) * 2005-01-21 2006-11-30 Omni Sciences, Inc. System and method for generating supercontinuum light
US20060245461A1 (en) * 2005-01-21 2006-11-02 Omni Services, Inc. Method and system for generating mid-infrared light
CN101238654B (en) * 2005-06-03 2011-08-31 株式会社Kt Wave division multiplexing passive optical network system
US7324922B2 (en) * 2005-10-26 2008-01-29 International Business Machines Corporation Run-time performance verification system
US7519253B2 (en) 2005-11-18 2009-04-14 Omni Sciences, Inc. Broadband or mid-infrared fiber light sources
WO2007127369A2 (en) 2006-04-26 2007-11-08 Quellan, Inc. Method and system for reducing radiated emissions from a communications channel
KR100825745B1 (en) 2006-11-16 2008-04-29 한국전자통신연구원 Passive optical network(pon) comprising optical link protection apparatus and method of protecting optical link in the same pon
US7734189B2 (en) * 2006-11-30 2010-06-08 Avago Technologies Fiber Ip (Singapore) Pte. Ltd. Parallel channel optical communication using modulator array and shared laser
EP2521505B1 (en) 2010-01-07 2017-09-06 Omni MedSci, Inc. Fiber lasers and mid-infrared light sources in methods and systems for selective biological tissue processing and spectroscopy
US20130216187A1 (en) * 2011-08-17 2013-08-22 Douglas Ferris Dowling Distributed passive optical networks
US20130089330A1 (en) * 2011-10-06 2013-04-11 Alcatel-Lucent Usa Inc. Method And Apparatus For Efficient Operation Of A Passive Optical Communications Access Network
US9993159B2 (en) 2012-12-31 2018-06-12 Omni Medsci, Inc. Near-infrared super-continuum lasers for early detection of breast and other cancers
EP3181048A1 (en) 2012-12-31 2017-06-21 Omni MedSci, Inc. Near-infrared lasers for non-invasive monitoring of glucose, ketones, hba1c, and other blood constituents
WO2014143276A2 (en) 2012-12-31 2014-09-18 Omni Medsci, Inc. Short-wave infrared super-continuum lasers for natural gas leak detection, exploration, and other active remote sensing applications
WO2014105521A1 (en) 2012-12-31 2014-07-03 Omni Medsci, Inc. Short-wave infrared super-continuum lasers for early detection of dental caries
US10660526B2 (en) 2012-12-31 2020-05-26 Omni Medsci, Inc. Near-infrared time-of-flight imaging using laser diodes with Bragg reflectors
US9500634B2 (en) 2012-12-31 2016-11-22 Omni Medsci, Inc. Short-wave infrared super-continuum lasers for natural gas leak detection, exploration, and other active remote sensing applications

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2104740T3 (en) * 1991-02-11 1997-10-16 Alsthom Cge Alcatel OPTICAL COMMUNICATION SYSTEM FOR THE SUBSCRIBER CONNECTION AREA WITH OPTICAL AMPLIFIERS.
JP3158706B2 (en) * 1992-09-09 2001-04-23 株式会社日立製作所 Light distribution device
CA2118616C (en) * 1993-03-11 1999-09-14 Thomas Edward Darcie Optical network based on remote interrogation of terminal equipment
US5631758A (en) * 1995-10-26 1997-05-20 Lucent Technologies Inc. Chirped-pulse multiple wavelength telecommunications system
US5793507A (en) * 1996-05-31 1998-08-11 Lucent Technologies Inc. Discretely chirped multiple wavelength optical source for use in a passive optical network telecommunications system

Also Published As

Publication number Publication date
US5912749A (en) 1999-06-15
CA2227250A1 (en) 1998-08-11

Similar Documents

Publication Publication Date Title
CA2227250C (en) Passive optical telecommunication system employing multiple wavelength source and plural power splitting stages
US6141127A (en) High capacity chirped-pulse wavelength-division multiplexed communication method and apparatus
US5861965A (en) Optical communication system employing spectrally sliced optical source
US6151145A (en) Two-wavelength WDM Analog CATV transmission with low crosstalk
KR100480246B1 (en) Passive optical network using loop back of multi-wavelength light generated at central office
US7646978B2 (en) Methods and apparatuses to provide a wavelength division-multiplexing passive optical network based on wavelength-locked wavelength-division-multiplexed light sources
AU2005285414B2 (en) System and method for spectral loading an optical transmission system
AU2008361451B2 (en) Passive optical networks
MXPA97006479A (en) Optical communication system that uses spectralme divided optical source
US7092595B2 (en) Multiple-wavelength pulsed light source for a wavelength division multiplexed passive optical network
US8934788B2 (en) Optical apparatus
US6072612A (en) WDM transmitter for optical networks using a loop-back spectrally sliced light emitting device
JP2014530523A (en) Configuration for coexisting GPON and XGPON optical communication systems
US6856768B2 (en) Dynamic add/drop of channels in a linear-optical-amplifier-based wavelength-division-multiplexed system
JPH06258545A (en) Optical branching device
Collings et al. A 1021 channel WDM system
Boivin et al. 110 Channels x 2.35 Gb/s from a single femtosecond laser
US5793507A (en) Discretely chirped multiple wavelength optical source for use in a passive optical network telecommunications system
KR100609698B1 (en) Wavelength division multiplexing passive optical network and optical source generating method
Cho et al. Broadcast transmission in WDM-PON using a broadband light source
Stark et al. Cascaded WDM passive optical network with a highly shared source
JP2007266675A (en) Optical transmission apparatus
Spolitis et al. Extended reach 32-channel dense spectrum-sliced optical access system
Jayasinghe et al. Scalability of RSOA-based multiwavelength Ethernet PON architecture with dual feeder fiber
Schrenk et al. High Customer Density PON With Passive Amplification Through Distributed Pump for ${>} $1: 1000 Tree Split

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed