CA2205848C - Pressure-sensitive adhesive tapes for electronics applications - Google Patents

Pressure-sensitive adhesive tapes for electronics applications Download PDF

Info

Publication number
CA2205848C
CA2205848C CA002205848A CA2205848A CA2205848C CA 2205848 C CA2205848 C CA 2205848C CA 002205848 A CA002205848 A CA 002205848A CA 2205848 A CA2205848 A CA 2205848A CA 2205848 C CA2205848 C CA 2205848C
Authority
CA
Canada
Prior art keywords
acrylate
vinyl
sensitive adhesive
meth
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA002205848A
Other languages
French (fr)
Other versions
CA2205848A1 (en
Inventor
Gustav Gutman
Steven D. Yau
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
3M Co
Original Assignee
Minnesota Mining and Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US08/365,748 external-priority patent/US5508107A/en
Application filed by Minnesota Mining and Manufacturing Co filed Critical Minnesota Mining and Manufacturing Co
Publication of CA2205848A1 publication Critical patent/CA2205848A1/en
Application granted granted Critical
Publication of CA2205848C publication Critical patent/CA2205848C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

There is provided a water-resistant, anti-static pressure-sensitive adhesive tape comprising a flexible substrate having opposing surfaces, at least one surface bearing thereon a removable, aziridine-crosslinked microparticulate adhesive comprised of microparticles comprising a polymer of monomers comprising at least one alkyl. (meth)acrylate or vinyl ester, said aziridine cross linking agent being present in an amount of from about 0.1 part to 2 parts per 100 part monomer, said microparticles having a surface bearing thereon an ionic conductive material formed from a polymer electrolyte base polymer selected from the group consisting of polyethylene oxide, polyphenylene oxide, polyphenylene sulfide, polyethylene sulfide, polyethyleneimine, polypropylene oxide, polybutylene oxide, polybutylene sulfide, and polybutylene imine, and at least one ionic salt selected from the group consisting of salts of alkali metals and salts of alkaline earth metals, wherein said microparticles have an average diameter of at least 1 micrometer, and a pH from 2.5 to 7.0. The tape is suitable for use as a wafer dicing tape.

Description

WO 96120983 ~ PCT/US95/14486 PRESSURE-SENSITIVE ADHESTVE TAPES
FOR ELECTRONICS APPLICATIONS
Background of the Invention Field of the Invention The invention relates to antistatic removable microparticulate pressure-sensitive adhesive tapes useful in applications requiring electrical conductivity or elimination of electrostatic charge, especially in large scale robotic printed circuit board and chip plants.
These adhesive tapes provide a remarkable capacity for preventing static charge build-up while having low adhesion to allow accurate slicing of wafers and easy removal of individual chips without transfer of adhesive to the chip.
Description of the Art Antistatic adhesive compositions are useful for attaching surface-mount components at points on printed circuit boards where they are to be conductively attached e.g., by soldering. Antistatic adhesives, when coated on selected substrates and suitably converted, provide antistatic, pressure-sensitive adhesive tapes. The tapes are useful for various applications in the electronic industry.
One application for antistatic tapes which is very important to the semiconductor fabrication industry is the attachment of newly manufactured wafers through the die slicing step where the individual chips are sliced with a diamond saw through 60-800 of the wafer thickness, and continued attachment through a testing process to determine if any chips are defective. The good chips then need to be cleanly snapped from the wafer and removed from the tape backing.
A problem with antistatic tapes already available is that either the antistatic properties are not
-2-sufficiently strong, i.e., too much charge is present when the chips are removed, causing damage, or the adhesion is not strong enough to hold the chips during processing.
Another problem is that the adhesion of wafer to tape must be low enough to allow the severed chips to be both completely separated from the wafer and removed from the adhesive tape by manual or mechanical means without leaving adhesive residue, but must be strong enough to hold the wafer in place during the sawing process. If the wafer moves, the slicing will not be clean, and damaged chips will again result.
Finally, the chips are usually removed from the tape by bending the portion of tape or applying pressure to the opposite surface of the tape to that surface holding a chip until the chip "pops" from the tape. To be useful, the tape backing must be flexible enough so that it does not split during this process, and the adhesion between the backing and the adhesive must be greater than the adhesion between the adhesive and the chip. Failure of either of these properties will result in portions of adhesive or tape remaining on the chip, which will cause slowdown or stoppage of a manufacturing line while such is remedied, or the chip cannot be properly affixed to an electronic device.
A number of methods are known for preparing antistatic adhesive compositions. One common method is the addition of conductive moieties to conventional adhesive formulations. Antistatic species may be introduced as conductive materials such as electrically conductive metal or carbon particles. Compositions of this type are disclosed in prior art references including E 0276691A, E 0518722A, U.S. 4,606,962, E 0422919A, U.S.
3,104,985, U.S. 4,749,612 and U.S. 4,548,862.

WO 96/20983 ~ PCT/US9S/I4486 The addition of ionic materials to reduce generation of static charge is also known. Suitable materials of this type include ion conducting species such as those disclosed in Japanese patents JP 61,272,279 and JP
63, 012, 681.
U.S. 4,098,945 discloses a conductive composition which comprises a polymeric binder system, a plurality of insoluble spherical domains dispersed in the system, and at least one electrically conductive filler dispersed in the binder which provides conductive pathways through the composition. The spherical domains are preferably adhesive microspheres, the use of which lessens the amount of conductive filler used.
Yet another type of antistatic tape material is provided using a metal foil tape backing. one example of this, disclosed in U.S. 3,497,383, provides embossed foil tapes where contact points of metal project from the surface of the adhesive.
No tapes available today provide all of the properties required for good performance; those having low adhesion tend to have less effective antistatic properties because filler is used to reduce the adhesion which tends to change conductivity properties, and those which provide good antistatic properties may have higher adhesion than desirable.
Surprisingly, the present invention provides a removable adhesive tape which holds the wafer in place and yet provides easy removablility for each severed chip, when desired. Further, the tapes of the invention provide exceptional antistatic properties, thus exhibiting significantly lower charges when the chip is ~ removed from the tape than any product currently available.
The unique properties of materials of the present invention are provided by the use of polymeric
-4-microparticles having complexes of polymer electrolytes on the surface of each microparticle.
Complexes of polyethylene oxide (PEO) and lithium salts have been shown to be promising materials as solid state polymer electrolytes. The use of these materials in the development of high energy lithium batteries is considered by Gilmour et al in Proc. Electrochemical Society, 89-94, (1989). Lithium salts, like those disclosed in WO 8,303,322, U.S. 4,471,037 and FR
2,568,574, are most commonly used with PEO in polymer electrolytes. Other metal salts such as alkaline earth salts may also enhance electrolytic properties as described in U.S. 5,162,174. Applications for polymer electrolytes have expanded from a focus on energy storage batteries to their use in other areas such as electrochromic displays and addition to molding resins in the production of conductive molded articles.
When coated on suitable substrates and converted into tape format, adhesives of the invention provide antistatic tapes which are extremely effective in dissipating electrostatic charge and have adhesion levels sufficient to hold the chips onto the tape during processing, but not so high as to preclude removal. They also exhibit excellent adhesion between the backing and the adhesive which reduces adhesive transfer to a chip during removal therefrom.
Particulate adhesives are known in the art, and have been coated on a variety of substrates and used primarily in applications requiring a low level of adhesion, e.g., removability. Such spheres and their use in aerosol adhesive systems having repositionable properties are disclosed in U.S. Pat. No. 3,691,140 (Silver). These .
microparticles are prepared by aqueous suspension polymerization of alkyl acrylate monomers and ionic comonomer, e.g., sodium methacrylate, in the presence of WO 96!20983 PCT/iJS95/I4486
-5-an emulsifier. The use of a water-soluble, substantially oil-insoluble ionic comonomer is critical to preventing coagulation or agglomeration of the microparticles.
However, particulate adhesives disclosed in the prior art have all been useful as repositionable adhesives for such applications as Post-Its"' brand notes, and other removable items. However, pressure-sensitive tapes made with this type of adhesive have not been considered suitable for use as antistatic tapes due to their ease of removal.
Further, such adhesives have been water-dispersible, and thus have not been able to withstand the water washing step in the wafer dicing operations of robotic printed circuit board manufacture.
However, it has now been discovered that it is possible to provide a surface conductive polymer particle adhesive which possesses sufficient adhesion to adhere during electronic processes, and still retains low tribocharging characteristics.
Surprisingly, the adhesives and tapes of the invention also can withstand water washing without swelling or crazing, while retaining respositionability and low tribocharging characteristics.
Summary of the Invention The invention provides a water-resistant, antistatic, removable pressure-sensitive adhesive tape comprising a flexible polymeric film support bearing on at least one major surface thereof a non-tribocharging, microparticulate adhesive formed from conductive, polymeric, inherently tacky, solvent-insoluble, solvent-dispersible, elastomeric microparticles. The tape is especially useful in semiconductor fabrication where low adhesion and flexibility of backing are required, along with resistance to high humidity and water.

6055~~-5528
-6-Useful removable microparticulate pressure-sensitive adhesive tapes comprise acrylate or modified acry:Late particles having a surface comprised of chains of an ionically conducting polymer electrolyte, preferably polyethylene oxide. The microparticles may be solid or hollow, as desired.
More specifically, the invention provides a water-resi:~tant, anti-static pressure-sensitive adhesive tape suitable for use as a wafer dicing tape comprising a flexible substrate having opposing surfaces, at least one surface bearing thereon a removable, aziridine-crosslinked microparticulate adhesive comprised of microparticles having a surface bearing thereon an ionic conductive material formed from a polymer electrolyte base polymer, and at least one .ionic salt selected from the group consisting of salts of alkali metals and salts of alkaline earth metals, wherein said microparticles have an average diameter of at least 1 mi~~rometer, said adhesive having an adhesion to steel of from 0.5 Newtons/100 mm (N/100 mm) to 10 N/100 mm.
According to one aspect of the present invention, there is provided a water-resistant, anti-static pressure-sensitive adhesive tape comprising a flexible substrate having opposing surfaces, at least one surface bearing thereon a removable, aziridine-crosslinked microparticulate adhesive comprised of microparticles comprising a polymer of monomers comprising at least one alkyl (meth)acrylate or vinyl ester, said aziridine cross linking agent being present in an amount of from about 0.1 part to 2 parts per 100 :part monomer, said microparticles having a surface bearing thereon an ionic conductive material formed from a polymer electrolyte base polymer selected from the group consisting of polyethylene oxide, polyphenylene oxide, -6a-polyphenylene sulfide, polyethylene sulfide, polyethyleneimine, polypropylene oxide, polybutylene oxide, polybutylene sulfide, and polybutylene imine, and at least one ~_onic salt selected from the group consisting of salts of a=_kali metals and salts of alkaline earth metals, wherein said microparticles have an average diameter of at least 1 micrometer, and a pH from 2.5 to 7Ø
Preferred pressure-sensitive adhesives useful in taper of the invention comprise conductive, polymeric, inherently tacky, solvent-insoluble, solvent-dispersible, elasi~omeric microparticles comprising 100 parts monomers, comprising:
a) from 70 to 99 of at least one monomer selected from alkyl (meth)acrylate esters and vinyl esters; and b) up to 15 parts by weight of at least one polar monomer, c) from 0.1 part to 10 parts of a polymer electrolyte;
d) from 0.05 part to 3.0 parts of at least one ionic salt selected from the group consisting of salts of alkali metals and salts of alkaline earth metals, and e) from 0.01 to 2.0 parts of an aziridine crosslinker.
Preferred microparticles use polyethylene oxide as the polymer electrolyte base polymer to form the surface polyelectrolyte complex.
As used herein, these terms have the following meanings.
1. The term "polymer electrolyte" means a polymeric species containing electron donating atoms which may be associated with acceptor atoms.
2. The term "polymer electrolyte base polymer"
means a polymer which is capable of forming a polymer electrolyte during formation of the microparticle.
3. The term "polymer electrolyte functional unit"
means the group containing the electron donating species.
4. The term "microparticle" means a particle having a diameter of from 1 micrometer to 250 micrometers.
5. The term "tribocharging" means electrostatic charge generation associated with friction between separable surfaces.
6. The term "droplet" means the liquid stage of the microparticles prior to the completion of polymerization.
7. The term "cavity" means a space within the walls of a droplet or microparticle when still in the suspension or dispersion medium prior to drying, and thus containing whatever medium was used.
8. The term "void" means an empty space completely .: within the walls of a polymerized microparticle.
9. The term "hollow" means containing at least one void or cavity.
10. The term "solid" means voids or cavity-free.

_g_
11. The term "alkyl (meth)acrylate" means an alkyl acrylate or alkyl methacrylate.
12. The term "modified surface" means a surface which has been subjected to a priming, coating or treatment such as chemical or radiation treatment such that the original properties of the surface have been changed.
13. The term "wafer" means a large disc consisting of many integrated circuits.
14. The term "chip" means an individual integrated circuit.
As used herein, all parts, percents, and ratios are by weight, unless specifically stated otherwise.
Detailed Description of the Invention Tapes of the invention are suitable for use in a variety of applications where transport of electrical current or prevention of electrostatic charge is important. However, tapes of the invention are especially useful in the printed circuit board industry, in an application commonly called "wafer dicing". This process places a wafer on a surface and then slices the wafer into individual integrated circuits or "chips".
These chips are then individually useful in electronic components. The chips must be held onto the substrate with sufficient force that they do not loosen and fall to the floor when being moved, either manually, or by a robotic arm. However, the adhesion to the substrate must be sufficiently low that they can be removed-when desired, and no adhesive buildup occurs on the lower surface. The removal is typically achieved by bending ' the substrate and "popping" the chip from it, and the adhesive tape therefor must be flexible enough that the chip can be easily popped from it.

_g_ Particulate adhesive compositions can be formulated which show remarkably little susceptibility to tr;ibocharging. In the form of adhesive tapes, these compositions are eminently suitable for use in wafer dicing operations and other similar applications where protection of sensitive electronic components is essential along with ease of removal and integrity of adhesive to tape backing.
Useful microparticulate adhesives have adhesion values to steel of from 0.5 N/100 mm to 10 N/100 mm, preferably from 1 N/100 mm to 5 N/100 mm.
Useful microparticles comprise alkyl acrylate or meahacrylate monomers, especially monofunctional unsaturated acrylate or methacrylic esters of non-tertiary alkyl alcohols, the alkyl groups of which have from 4 to about 14 carbon atoms. Such acrylates are o:Leophilic, water emulsifiable, have limited water solubility, and as homopolymers, generally have glass transition temperatures below about -20°C. Included within this class of monomers are, for example, isooctyl acrylate, 4-methyl-2-pentyl acrylate, 2-methylbutyl acrylate, isoamyl acrylate, sec-butyl acrylate, n-butyl acrylate, 2-ethylhexyl acrylate, isodecyl methacrylate, isononyl acrylate, isodecyl acrylate, and the like, singly or in mixtures.
Preferred acrylates include isooctyl acrylate, isononyl acrylate, isoamyl acrylate, isodecyl acrylate, 2-ethylhexyl acrylate, butyl acrylate (such as n-butyl acrylate and sec-butyl acrylate) and mixtures thereof.
Preferred methacrylates include isooctyl methacrylate, 2-ethylhexyl methacrylate, isononyl methacrylate, isoamyl methacrylate, isodecyl methacrylate, butyl methacrylate (such as n-butyl acrylate and sec-butyl acrylate) and mixtures thereof. Acrylate or methacrylate or other vinyl 6055~~-5528 -9a-monorners which, as homopolymers, have glass transition temperatures higher than about -20°C, e.g., tert-butyl acrylate, vinyl acetate, and the like, may be utilized in conjunction with one or more of the acrylate or methacrylate monomers provided that the glass . .. ..

transition temperature of the resultant polymer is below about -20°C.
Useful vinyl ester monomers are those which form homopolymers having glass transition temperatures below about 10°C. Such esters comprise 1 to 14 carbon atoms, and includes such monomers as vinyl 2-ethylhexanoate, vinyl caproate, vinyl laurate, vinyl pelargonate, vinyl hexanoate, vinyl propionate, vinyl decanoate, vin yi octanoate, and the like.
Useful polar monomers include moderately polar monomers such as N-vinyl-2-pyrrolidone, N-vinyl caprolactam, acrylonitrile, vinyl acrylate, and diallyl phthalate, as well as strongly polar monomers such as acrylic acid, methacrylic acid, itaconic acid, hydroxyalkyl acrylates, cyanoalkyl acrylates, acrylamides, substituted acrylamides. When more than one polar monomer is used, mixtures may include monomers having similar or unlike polarities, e.g., one moderately polar and one strongly polar monomer or two monomers from 2 0 o;ne group .
The conductive microparticles and the pressure sensitive adhesives made therefrom comprise at Least 70 parts by weight of at least one alkyl (meth)acrylate esker or vinyl ester and correspondingly, up to 30 parts by weight of one or more polar monomers.
Polymer electrolyte base polymers suitable for use i.n the invention include polyethylene oxide, polyphenylene oxide, polyphenylene sulfide, polyethylene :>ulfide, polyethyleneimine, polypropylene oxide, polybutylene oxide, polybutylene sulfide, polybutylene imine, and the like. Polyethylene oxide is preferred.
useful amounts of the polymer electrolyte base polymer in microparticles of the invention range from 0.1 part to 20 parts, preferably from 1 part to 5 parts, based on 100 parts monomer weight.

. CA 02205848 2005-06-21 The conductive properties of the polymeric microparticles are further enhanced by the addition of ionic salts to adhesive compositions which contain the mi.croparticles. It is believed that the ionic salts become associated with the electron donating groups present in the amorphous polymer domains. The adhesive contains from 0.01 moles to 10 moles of at least one salt oi: an alkali metal or alkaline earth metal per mole of polymer electrolyte base unit, or from 0.05 part to 3.0 parts per 100 parts monomer.
' Salts used for this purpose include salts of alkali metals, and alkaline earth metals, including but not limited to, NaI, NaSCN, BaCF3S03, NaBr, NaC104, LiCl, LiN03, LiC:F3S03, LiS04, LiN (SOZCF3) 2, LiOH and KOH. Lithium salts are preferred for the present invention, especially lithium nitrate.
In order to exhibit the necessary water-resistance, the composition also contains an aziridine crosslinking agent. Useful aziridines include pentaerythritol-tris-(~i-(N-aziridinyl)propionate), and trimethylolpropane-t:ris-(~-(N-aziridinyl)propionate), both available as 10$
:solutions in iPrOH under the trade name "XAMA", i.e., XAMA-2 and XAMP.-7, from B:F. Goodrich, Specialty Chemicals, and trimethylolpropane-tris-(~-(N-methylaziridinyl)propionate), available as "CX-100" from Sieneca Resins, and mixtures of one or more of the above.
Surprisingly, the use of such aziridines provides the grater-resistance necessary while maintaining the required balance of adhesion and removability. The aziridines axe present in an amount of from 0.01 part to 2 parts per 100 parts monomer.
Further crosslinking agents may also be included, such as a multifunctional (meth)acrylate, e.g., butanediol diacrylate or hexanediol diacrylate, or others WO 96/20983 PCTlUS95114486 multifunctional crosslinker such as divinylbenzene. When used, the crosslinker(s) is(are) added at a level of up to 1 percent, preferably up to 0.5 percent, of the total polymerizable composition.
Tapes of the present invention display dramatically different tribocharging properties than continuous adhesive layers of similar chemical components. For example, when coated on a film substrate, an acrylate-based emulsion adhesive produces a continuous film with a planar surface. Upon application and removal from a planar surface, this adhesive tape will cause generation of charged species on the surface of the adhesive and on the planar surface to which it was attached. The residual charge has a magnitude of up to several thousand volts. However, adhesive tape samples of the current invention, under similar conditions generate almost no charge upon removal from the planar surface.
Without wishing to be bound by theory, it is believed that the improved electrical properties of the adhesive are due to two aspects of its particulate natures firstly, the particulate prevents full area contact of the adhesive layer with the planar surface.
The reduced area of attachment results in a reduction of area of separation when the tape is removed from the planar surface, and thus there is less tendency for charged species to be generated. Secondly, there is a surface layer of conductive species available on each microparticle. The surface layer is provided by materials which facilitate conduction of electrical charge. Provision of the host polymer in spherical form allows increased availability of electron donating polymer chains.
Also, it is possible to exert better control over the length of the chains so as to increase the relative number of amorphous domains. This provides a larger WO 96!20983 PCT/US95/14486 network of conductive sites which allows more efficient conduction of electric current.

Electrical characteristics of pressure-sensitive a adhesives of the invention vary from somewhat resistive to significantly conductive materials.

The microparticulate adhesives and an emulsion containing the microparticles may be prepared by various emulsification processes, which are varied depending on whether hollow or solid microparticles are desired.

Aqueous suspensions of hollow microparticles may be prepared by a "two-step" emulsification process which first involves forming a water-in-oil emulsion of an aqueous solution of polar monomers) in oil phase monomer, i.e., at least one (meth)acrylate or vinyl ester monomer, with a polymer electrolyte base polymer, using an emulsifier having a low hydrophilic-lipophilic balance (HLB) value. Suitable emulsifiers are those having an HLB value below about 7, preferably in the range of 2 to 7. Examples of such emulsifiers include sorbitan monooleate, sorbitan trioleate, and ethoxylated oleyl alcohol such as Brij~ 93, available from Atlas Chemical Industries, Inc.

Thus, in this first step, oil phase monomer(s), polymer electrolyte base polymer, emulsifier, a free radical initiator, and a crosslinking monomer or monomers are combined, and an aqueous solution of all or a portion of the polar monomers) is agitated and poured into the oil phase mixture to form a water-in-oil emulsion. The polymer electrolyte base polymer may be added to either the oil phase or the water phase. A thickening agent , e.g., methyl cellulose may also be included in the aqueous phase of the water-in-oil emulsion. In the second step, a water-in-oil-in-water emulsion is formed by dispersing the water-in-oil emulsion of the first step into an aqueous phase containing an emulsifier having an WO 96/20983 ~ PCT/US95114486 HLB value above 6. The aqueous phase may also contain any portion of the polar monomers) which was not added in step one. Examples of such emulsifiers include ethoxylated sorbitan monooleate, ethoxylated lauryl alcohol, and alkyl sulfates. In both steps, when an y emulsifier is utilized, its concentration should be greater than its critical micelle concentration, which is herein defined as the minimum concentration of emulsifier necessary for the formation of micelles, i.e., submicroscopic aggregations of emulsifier molecules.
Critical micelle concentration is slightly different for each emulsifier, usable concentrations ranging from 1.0 x 10-4~to 3.0 moles/liter. Additional detail concerning the preparation of water-in-oil-in-water emulsions, i.e., multiple emulsions, may be found in various literature references, e.g., Surfactant Systems: Their Chemistry, Pharmacy, & Biology, (D. Attwood and A.T. Florence, Chapman & Hall Limited, New York, New York, 1983).
The final process step of this method involves the application of heat or radiation to initiate polymerization of the monomers. Useful initiators are those which are normally suitable for free radical polymerization of acrylate or vinyl ester monomers and which are oil-soluble and of very low solubility in water. However, when the polar monomer is N-vinyl pyrrolidone, the use of benzoyl peroxide as the initiator is recommended.
Examples of such initiators include azo compounds, hydroperoxides, peroxides, and the like, and photoinitiators such as benzophenone, benzoin ethyl ether, and 2,2dimethoxy-2-phenyl acetophenone.
Use of a water-soluble polymerization initiator causes formation of substantial amounts of latex. The extremely small particle size of latex particles renders any significant formation of latex undesirable. The WO 96!20983 PCT/US95/14486
-15-initiator is generally used in an amount ranging from 0.01 percent up to 10 percent by weight of the total polymerizable composition, preferably up to 5 percent.

Aqueous suspensions of hollow conductive microparticles may also by prepared by a "one-step"

emulsification process comprising aqueous suspension polymerization of at least one alkyl (meth)acrylate ester monomer or vinyl ester monomer and at least one polar monomer and a polymer electrolyte base polymer in the presence of at least one emulsifier capable of producing a water-in-oil emulsion inside the droplets which is substantially stable during emulsification and polymerization. As in the two-step emulsification process, the emulsifier is utilized in concentrations greater than its critical micelle concentration. In general, high HLB emulsifiers are required, i.e., emulsifiers having an HLB value of at least 25, will produce stable cavity-containing droplets during the polymerization, and are suitable for use in this one-step process. Examples of such emulsifiers include alkylarylether sulfates such as sodium alkylarylether sulfate, e.g., Tritons'' W/30, available from Rohm and Haas, alkylarylpolyether sulfates such as alkylarylpoly(ethylene oxide) sulfates, preferably those having up to about 4 ethyleneoxy repeat units, and alkyl sulfates such as sodium lauryl sulfate, ammonium lauryl sulfate, triethanolamine lauryl sulfate, and sodium hexadecyl sulfate, alkyl ether sulfates such as ammonium lauryl ether sulfate, and alkylpolyether sulfates such as alkyl polyethylene oxide) sulfates, preferably those having up to about 4 ethyleneoxy units. Alkyl sulfates, alkyl ether sulfates, alkylarylether sulfates and mixtures thereof are preferred as they provide a maximum void volume per microparticle for a minimum amount of surfactant. Nonionic emulsifiers, e.g., Siponic~' Y-500-WO 96!20983 PCT/US95l14486
-16-70 (ethoxylated oleyl alcohol), commercially available from Alcolac, Inc, and Pluronic~"' P103 (a block copolymer of polypropylene oxide and polyethylene oxide r commercially from BASF Corporation) can be utilized alone or in conjunction with anionic emulsifiers. Polymeric stabilizers may also be present but are not necessary.
Solid microparticles useful in adhesive tapes of the invention may be made by a similar one-step process comprising aqueous suspension polymerization of at least one alkyl (meth)acrylate ester monomer or vinyl ester monomer, at least one polar monomer and a polymer electrolyte base polymer in the presence of a suspension stabilizer. It is not necessary to use a high HLB
emulsifier because the droplets formed need not be cavity-containing droplets. Examples of such useful lower HLB emulsifiers include ammonium lauryl sulfate such as Standapol~ A, available from Hercules and other steric or electrosteric polymeric stabilizers such as polyvinyl alcohol, polyacrylic acid, polymethacrylic acid, polyacrylamide, polyvinyl pyrrolidone, polyvinyl methylether, and the like.
Preparation of microspheres may be modified by withholding the addition of all or part of the polymer electrolyte base polymer, and polar monomers until after polymerization of the oil phase is initiated; however, the components must be added to the polymerizing mixture prior to 100 polymer conversion.
Discrete conductive polymeric microparticles may also be prepared via suspension polymerizations disclosed in U.S. Pat. Nos. 3, 691, 140, 4, 166, 152, 4, 636, 432, 4,656,218, and 5,045,569, for preparing adhesive compositions.
The conductive microparticles are normally tacky, elastomeric, insoluble but swellable in organic solvents, and small, typically having diameters of at least 1 WO 96!20983 PCT/I1S95/14486
-17-micrometer, preferably in the range of 1 to about 250 micrometers, more preferably from 1 to 50 micrometers.

They may be solid or contain a single void, or multiple voids.

Following polymerization, an aqueous suspension of them microparticles is obtained which is stable to agglomeration or coagulation under room temperature conditions. The suspension may have non-volatile solids contents of from 10 to 50 percent by weight. Upon prolonged standing, the suspension separates into two phases, one phase being aqueous and substantially free of polymer, the other phase being an aqueous suspension of conductive microparticles. Where high HLB emulsifiers are used the droplets have one or more cavities which, upon drying, become voids. Both phases may contain a minor portion of small latex particles. Decantation of the microparticle-rich phase provides an aqueous suspension having a nonvolatile solids content on the order of about 40-50 percent which, if shaken with water, will readily redisperse.

If desired, the aqueous suspension of conductive microparticles may be utilized immediately following polymerization to provide inherently tacky pressure-sensitive adhesive coatings having low tribocharging characteristics, or "antistatic" adhesives.

Tapes of the invention especially useful in wafer dicing operations may be produced by coating microparticle containing compositions of the invention onto a flexible substrate which will allow sufficient flex to "pop" a chip without causing delamination of the adhesive or tearing of the backing. Suitable substrates include polymeric films such as (poly)vinylidiene chloride, polyesters, polyethylene terephthalate, polyphenylene sulfide, polypropylene, polyethylene, polyetherimide, and polyethersulfone.
-18-The coating may be carried out by conventional methods such as knife coating, Meyer bar coating, knurled roll, and other conventional means known in the art for r~
coating adhesives such as use of an extrusion die.
Primer or binders may be used, but they are not required. Preferred embodiments comprise a binder to ensure that the adhesion between the backing and the adhesive exceeds the adhesion between the adhesive and the electronic component to which it will be attached.
Useful primers include phenolic resins, acrylic resins, rubbery components, block copolyers, and mixtures thereof.
Where high-temperature properties are required, a useful primer will comprise at least one phenolic resin and at least one rubbery component. Useful rubbery components include natural rubbers such as butyl rubbers, and various synthetic compounds, including but not limited to, acrylonitrile-butadiene, acrylonitrile-butadiene-styrene copolymers, styrene-butadiene-styrene, styrene-ethylene butylene-styrene, polychloroprene, polybutadiene, polyisoprene, styrene-isoprene-styrene, and mixtures thereof. Preferred primers contain mixtures of two or more rubbery compounds, such as acrylonitrile-butadiene, and polychloroprene.
Useful phenolic resins, include but are not limited to, phenol formaldehyde resin, available commercially from Union Carbide under the trade names UCAR BKR-2620, and UCAR CK-1635, novolak resins and the like, and mixtures thereof. Preferred primers contain from 40 to 120, preferably from 40 to 100 parts of phenolic resin per 100 parts of rubbery compound.
When used, a primer may further comprise additives such as tackifying agents, antioxidants, colorants, viscosity adjusting agents, solvents and other WO 96120983 PCTlUS95I19486
-19-conventional additives, which may be used in such amounts as are known in the art.
The tape may be commercialized in roll form, or may be divided into segments for sale, such as strips or labels. Additionally, the adhesive may be provided between two substrates, e.g., the adhesive is coated onto a paper substrate, which can be used as a label, which may be provided on a low adhesion backsize or other easily removable surface for individual use.

The adhesion properties of the adhesives may be altered by addition of tackifying resin and/or plasticizer. Preferred tackifiers for use herein include hydrogenated rosin esters commercially available from companies such as Hercules Inc., under such trade names as Foral~ 65, Foral~ 85, and Foral~ 105. Other useful tackifiers include those based on t-butyl styrene.

Useful plasticizers include dioctyl phthalate, 2-ethyl hexyl phosphate, tricresyl phosphate, and the like.

It is also within the scope of this invention to include various other components to tapes of the invention, such as pigments, fillers, including additional conductive fillers, stabilizers, or various polymeric additives.

These and other aspects of the invention are illustrated by the following examples which should not be viewed as limiting in scope.

Test Methods Resistivity Measurements of Antistatic Coatings Resistivity is a measure of the intrinsic ability of a material to conduct electrons. It is a property which is independent of the dimensions of the material sample.

The surface resistivity of coatings of the invention was measured by connecting a Keithley 616 digital electrometer (Keithley 6105 resistivity adapter) to a 500
-20-volt power supply, and attaching to an electrometer.
Individual samples were measured using standard procedures according to-ASTM D-257.
Peel Adhesion Peel adhesion is the force required to remove a coated flexible sheet material from a test panel measured at a specific angle and rate of removal. In the examples, this force is expressed in grams per centimeter (cm) width of coated sheet. The procedure followed is:
A strip 1.27 cm in width of the coated sheet is applied to the horizontal surface of a clean glass test plate with at least 12.7 lineal cm in firm contact. A 2 kg hard rubber roller is used to apply the strip. The free end of the coated strip is doubled back nearly touching itself so the angle of removal will be 180°.
The free end is attached to the adhesion tester scale.
The steel test plate is clamped in the jaws of a tensile testing machine which is capable of moving the plate away from the scale at a constant rate of 2.3 meters per minute. The scale reading in grams is recorded as the tape is peeled from the steel surface. The data is reported as the average of the range of numbers observed during the test.
Wafer Dicing Tape Performance A useful wafer dicing tape will survive a series of processing steps during which individual integrated circuit chips are separated from the main wafer. The steps include wafer mounting, sawing, washing, drying and die picking.
Wafer Mounting This process combines the steps of attaching an integrated circuit wafer to the adhesive tape, attaching the tape to a circular support frame and trimming excess WO 96/20983 ~ PCT/US95/14486
-21-tape from around the outer circumference of the support frame.
Wafer Sawing The wafer sawing unit contains a computer-controlled diamond saw that scores the wafer along lines to define individual chips or dies. Water jets provide cooling and cleaning during the cutting operation, requiring the adhesive to resist water attack and retain a firm grip on the wafer.
Wafer Washing Following transfer from the wafer sawing unit to the wafer washing station, high power jets of water wash over the wafer and its associated support structure. This cleans the wafer by removing residual saw-dust.
Thereafter the washed assembly is dried before die picking.
Die Picking Computer controlled equipment directs force behind a selected chip formed in the wafer. The force causes the wafer to crack around the chip or die and releases the chip from the main body of the wafer sufficiently to be cleanly picked from the wafer and released by the wafer dicing tape.
Key to Abbreviations IOA Isooctyl Acrylate iPrOH Isopropyl Alcohol AA Acrylic Acid ' PEO Polyethylene oxide Acrylate PEO (750) Acrylate terminated PEO having a BPER 70 o Benzoyl Peroxide, Lucidoh"' 70 PEODMA Polyethylene Oxide Dimethacrylate
-22-[(PEO)9DMAJ
1,6 HDDA 1,6 Hexanediol Diacrylate ALS Ammonium Lauryl Sulfate, Standapoh' A Ammonium Lauryl Sulfate from Hercules Key to Materials Lithium Nitrate is provided as a 20$, solution in distilled water.
Benzotriazole, anti-corrosion agent, is provided as a 10~
solution in 50/50 iPrOH/Water XAMA-7 - Pentaerythritol-tris-(~i-(N-aziridinyl) propionate) crosslinker as a 10$ solution in iPrOH
XAMA-2 - Trimethylolpropane-tris-(~i-(N-aziridinyl)propionate) crosslinker as a 10$ solution in iPrOH.
Both crosslinkers are available from B.F. Goodrich, Specialty Chemicals, Performance Resins and Emulsions Division.
CX-100 - Trimethylolpropane-tris-(~i-(N-aziridinyl)propionate) provided as a 10~ solution in iPrOH, available from Zeneca Resins.
Key to Film Substrates Blue PVC film from Ross & Roberts Scotchcah'' Film (Plasticized PVC) from 3M Company Clear PVC film from American Mirrex Biaxially Oriented Polypropylene (BOPP) film Phenolic Resin BKR-2620-Phenol-Formaldehyde Resin, designated BKR-2620 UCAR, by Union Carbide.
TM
SantivarA-Antioxidant di-tertiary amyl hydroquinone TM
Piccolyte S115-Polyterpene resin (tackifier) Zirex-Zinc Resinate (tackifier) Phenolic Resin (CK-1635)-Phenol-Formaldehyde Resin, by Union Carbide, designated CK-1635 UCAR.

W O 96!20983 PCTlUS95/14486
-23-Examples Preparations of Microparticles Example 1 Acrylic acid (5.4 g), polyethylene oxide acrylate ' 5 (PEO 750) (13.5 g), PEODMA (0.15 g) and 70~. benzoyl peroxide (0.99 g) were dissolved in isooctyl acrylate (223.2 g). This solution was added to an aqueous solution of surfactant. The surfactant solution comprised Standapoh'' A, available from Hercules, (8.4 g) dissolved in de-ionized water (360 g) in a glass-lined vessel. An emulsion of the isooctyl acrylate solution in the aqueous solution was produced by high shear mixing using an Omni mixer at setting 5. Mixing was continued until the average particle size of the oily droplets was approximately 3 um. Size was determined using an optical microscope.

The resulting oil-in-water emulsion was charged to a 1 liter glass resin reactor equipped with four baffles, a paddle stirrer and a suitable heat source, such as a heating mantle. With continuous stirring at a rate of 400 rpm, the reactor and contents were heated to 60C.

At this point the reactor was degassed with nitrogen. A reaction proceeded in the absence of oxygen.

This was allowed to continue for a period of 22 hours while both temperature and stirring rate were maintained.

The resulting aqueous suspension contained insoluble particles of approximately 5 um in diameter.

To 100 parts of this particulate adhesive, was added a combination of lithium salts to increase ionic conductivity, ammonium hydroxide for pH adjustment, benzotriazole for corrosion inhibition and a crosslinker to improve water resistance of the coating. Each of the additional ingredients was slowly stirred into the adhesive composition and thoroughly mixed just prior to WO 96/20983 . PCT/L1S95/14486
-24-coating. Use of the coating composition within one hour of crosslinker addition provided optimum coating results.
Table 1 c' Adhesive Compositions Composition Sample 1 Sample 2 Sample 3 ' iAdhesive 100 g 100 g 100 g I

20$ LiN03 2.5 g 2.5 g 2.5 g 10~ benzo 0.5 g 0.5 g 0.5 g triazole 10~ CX-100 0.06 g - -10~ XAMA-2 - 0.06 g -10~ XAMA-7 - - 0.03 g Water - 50 g 102 g Table 1 (font. ) Adhesive Compositions Sample 4 Sample 5 Sample 6 Sample 7 Adhesive 100 g 100 g 100 g 100 g 20~ LiNOs 2.5 g 2.5 g 2.5 g 2.5 g 10~ benzo 0.5 g 0.5 g 0.5 g 0.5 g triazol 10~ XAMA-7 0.06 g 0.06 g 0.06 g 0.06 g NH90H - 0.3 g 0.44 g 0.50 g Water 50 g 50 g 50 g 50 g pH 2.7 7.2 8.0 8.9 n i i i i i Samples 4 and 5 showed good water resistance. Preferred compositions have a pH from 2.5 to 7.0; most preferred compositions from 3.0 to 7Ø At higher pHs such as 8 or more, poor resistance to water was seen (Samples 6 and 7) .

Preparation of Primer Solution wt ~ t a ,.. ; ~ '1 Butadiene/Acrylonitrile 75.00 parts 5.755 Neoprene W. 25.00 parts 1.918 Phenolic Resin BKR-2620 19.90 parts 1.527 Santivar A 3.95 parts 0.3038 Piccolyte S115 49.67 parts 3.811 Zirex 49.67 parts 3.811 Phenolic Resin 69.43 parts 5.328$

Methyl Ethyl Ketone 329.57 parts 25.290$

iso-Propanol 60.00 parts 4.604 Toluene 621.00 parts 47.652 The resins, tackifiers and antioxidant indicated above are dissolved in a mixed solvent comprising methyl ethyl ketone, iso-propanol and toluene to provide a primer coating for film supports. Conventional churns, equipped with stirrers, or similar equipment may be used for primer solution preparation. The solution is inspected for clarity and filtered if necessary.
Film Priming One part of the primer composition was diluted, prior to coating, with two parts of a mixed solvent of 2:1 toluene:MEK. Both the PVC and Scotchcah' films received a coat of primer using a #4 Meyer bar.
Evaporation of the primer solvent at 77°C, for about 3 minutes, yielded a dried primed film suitable for coating with adhesive. The dried primer layer was approximately 7.9x10-6 mm to 1.2x10-5 mm thick. The primer was direct coated onto both films.
(An alternative means of primer application uses a gravure roll coater equipped with a knurled roll of about 10 lines/mm with drying at 75°C.) Adhesive Coatin Two methods, for applying the adhesive to the primed backing, gave suitable product for application as wafer t dicing tapes. The ScotchCal~ was directly coated with adhesive, i.e., the adhesive applied directly to the primed substrate using a #12 Meyer bar then dried at 66°C
for 6 minutes. The PVC was coated by a transfer method, i.e., a knurled-roll coating was used to prepare an adhesive layer, 1.2x10-4mm thick, on a release liner.
Thereafter transfer of the adhesive layer to the primed surface of the film produced the adhesive tape of the present invention.
An alternative means of adhesive application uses a gravure roll water having a knurled roll of about 3.5 lines/mm.
Table 2 Adhesive Tape Properties The following table demonstrates the properties of wafer dicing tape of the invention as well as two comparative tape constructions. The first comparative tape, called C1, is a commercially available antistatic tape, available from Nitto Corporation. The second comparative, called C2 is a non-water resistant adhesive similar to those of the invention, but having a pH of 9.2.
Sample Volts Tribocharge Resistance AdhesionWater Ohms oz/inch resistance On Steel On Silicon C1 Nitto 1840 1183 5.2 x 101 2.8 Good ..

Tape Sample 3 6 2 8.5 x 10' 3.0 Good on Blue PVC

Sample 3 13 1 4.0 x 10' 3.5 Good on Scotchcal C2 on Blue 6 2 5.2 x 10' 2.5 Swells PVC

Claims (10)

CLAIMS:
1. A water-resistant, anti-static pressure-sensitive adhesive tape comprising a flexible substrate having opposing surfaces, at least one surface bearing thereon a removable, aziridine-crosslinked microparticulate adhesive comprised of microparticles comprising a polymer of monomers comprising at least one alkyl (meth)acrylate or vinyl ester, said aziridine cross linking agent being present in an amount of from about 0.1 part to 2 parts per 100 parts monomer, said microparticles having a surface bearing thereon an ionic conductive material formed from a polymer electrolyte base polymer selected from the group consisting of polyethylene oxide, polyphenylene oxide, polyphenylene sulfide, polyethylene sulfide, polyethyleneimine, polypropylene oxide, polybutylene oxide, polybutylene sulfide, and polybutylene imine, and at least one ionic salt selected from the group consisting of salts of alkali metals and salts of alkaline earth metals, wherein said microparticles have an average diameter of at least 1 micrometer, and a pH from 2.5 to 7Ø
2. An anti-static pressure-sensitive adhesive tape according to claim 1, wherein said adhesive microparticles comprise a polymer of monomers comprising:
a) at least 70 parts of said at least one alkyl (meth)acrylate or vinyl ester, b) correspondingly, up to 30 parts of at least one polar monomer, to make 100 parts monomer, and wherein said ionic conductive material comprises from 0.1 part to 10 parts per hundred parts of monomer of said polymer electrolyte base polymer and from 0.01 moles to moles of said at least one salt of an alkali metal or alkaline earth metal per mole of said polymer electrolyte base polymer.
3. An anti-static pressure-sensitive adhesive tape according to claim 2, wherein said polymer of monomers comprises:
a) at least 85 parts by weight of said at least one alkyl (meth)acrylate or vinyl ester, and b) correspondingly, up to 15 parts by weight of said at least one polar monomer, to make 100 parts monomer.
4. An anti-static pressure-sensitive adhesive tape according to claim 3, wherein said at least one polar monomer is selected from the group consisting of N-vinyl-2-pyrrolidone, N-vinyl caprolactam, acrylonitrile, vinyl acrylate, diallyl phthalate, acrylic acid, methacrylic acid, itaconic acid, hydroxyalkyl acrylates, cyanoalkyl acrylates, acrylamides, and substituted acrylamides.
5. A water-resistant anti-static particulate pressure-sensitive adhesive according to any one of claims 1 to 4, wherein the aziridine crosslinking agent is selected from the group consisting of pentaerythritol-tris-(.beta.-(N-aziridinyl)propionate), (trimethylolpropane-tris-(.beta.-(N-aziridinyl)propionate), (trimethylolpropane-tris-(.beta.-(N-methylaziridinyl)propionate) and mixtures thereof.
6. An anti-static particulate pressure-sensitive adhesive according to any one of claims 1 to 5, wherein the polymer electrolyte base polymer is polyethylene oxide.
7. A anti-static pressure-sensitive adhesive tape according to any one of claims 1 to 6, wherein said at least one ionic salt is selected from the group consisting of LiCl, LiNO3, LiCF3SO3, LISO4, LiOH, KOH, NaSCN, NaI, BaSO3CF3, LiN (SO3CF3) 2 and NH4OH.
8. An anti-static pressure sensitive adhesive tape according to any one of claims 1 to 7, wherein the at least one alkyl (meth)acrylate is selected from the group consisting of isooctyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, isononyl (meth)acrylate, isoamyl (meth)acrylate, isodecyl (meth)actylate, and butyl (meth)acrylate.
9. An anti-static pressure-sensitive adhesive tape according to any one of claims 1 to 7, wherein the at least one vinyl ester is selected from the group consisting of vinyl 2-ethylhexanoate, vinyl caproate, vinyl laurate, vinyl pelargonate, vinyl hexanoate, vinyl propionate, vinyl decanoate, and vinyl octanoate.
10. An anti-static pressure-sensitive adhesive tape according to any one of claims 1 to 9, wherein said flexible substrate is selected from the group consisting of (poly)vinyldiene chloride, polyesters, polyethylene terephthalate, polyphenylene sulfide, polypropylene, polyethylene, polyetherimide, and polyethersulfone.
CA002205848A 1994-12-29 1995-11-08 Pressure-sensitive adhesive tapes for electronics applications Expired - Fee Related CA2205848C (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US08/365,748 US5508107A (en) 1993-07-28 1994-12-29 Pressure-sensitive adhesive tapes for electronics applications
US08/365,748 1994-12-29
PCT/US1995/014486 WO1996020983A1 (en) 1994-12-29 1995-11-08 Pressure-sensitive adhesive tapes for electronics applications

Publications (2)

Publication Number Publication Date
CA2205848A1 CA2205848A1 (en) 1996-07-11
CA2205848C true CA2205848C (en) 2006-10-17

Family

ID=29405835

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002205848A Expired - Fee Related CA2205848C (en) 1994-12-29 1995-11-08 Pressure-sensitive adhesive tapes for electronics applications

Country Status (1)

Country Link
CA (1) CA2205848C (en)

Also Published As

Publication number Publication date
CA2205848A1 (en) 1996-07-11

Similar Documents

Publication Publication Date Title
US5508107A (en) Pressure-sensitive adhesive tapes for electronics applications
EP0711448B1 (en) Conductive microparticles and pressure-sensitive adhesive tapes made therefrom
JP3473701B2 (en) Antistatic pressure-sensitive adhesive tape with high temperature resistance
US5885708A (en) Antistatic latex adhesives
EP0444354B1 (en) Hollow acid-free acrylate polymeric microspheres having multiple small voids
JP3807748B2 (en) Heat resistant antistatic pressure sensitive adhesive tape
EP0371635B1 (en) Hollow acrylate polymer microspheres
EP1007596B1 (en) Contact Printable Adhesive Composition and Methods of Making Thereof
EP2277967A1 (en) Pressure-sensitive adhesive compositions, pressure sensitive adhesive sheets and surface proctecting films
KR20000049003A (en) Stabilized adhesive microspheres
WO1997008260A1 (en) Optically clear antistatic pressure-sensitive adhesive film
CN105073938A (en) Electrically peelable adhesive composition, electrically peelable adhesive sheet, and method for using electrically peelable adhesive sheet
EP0888412B1 (en) Pressure sensitive adhesive film comprising tacky microspheres
WO1999029795A1 (en) Optically clear antistatic pressure-sensitive adhesive film
US6447900B1 (en) Pressure-sensitive adhesive
EP0109177B1 (en) Removable pressure-sensitive adhesive tape
CA2205848C (en) Pressure-sensitive adhesive tapes for electronics applications
JPH09316411A (en) Surface protective film for green sheet
JPH1060400A (en) Self-adhesive composition and curing tape
CA2187316C (en) High temperature resistant antistatic pressure-sensitive adhesive tape
JP3494943B2 (en) Adhesive sheet for screen printing plate cleaning
JPS63135472A (en) Restrippable pressure-sensitive adhesive
JPH06322340A (en) Alkaline water-soluble adhesive
JPH10287850A (en) Repeelable pressure-sensitive sheet
JP2006008827A (en) Aqueous dispersion of composite resin composition for adhesive and adhesive composition

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed
MKLA Lapsed

Effective date: 20121108