CA2187437C - Detergents containing a builder and a delayed release enzyme - Google Patents
Detergents containing a builder and a delayed release enzyme Download PDFInfo
- Publication number
- CA2187437C CA2187437C CA002187437A CA2187437A CA2187437C CA 2187437 C CA2187437 C CA 2187437C CA 002187437 A CA002187437 A CA 002187437A CA 2187437 A CA2187437 A CA 2187437A CA 2187437 C CA2187437 C CA 2187437C
- Authority
- CA
- Canada
- Prior art keywords
- alkyl
- enzyme
- acid
- detergent composition
- bleach
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000003599 detergent Substances 0.000 title claims abstract description 93
- 102000004190 Enzymes Human genes 0.000 title claims abstract description 59
- 108090000790 Enzymes Proteins 0.000 title claims abstract description 59
- 230000003111 delayed effect Effects 0.000 title description 13
- 239000000203 mixture Substances 0.000 claims abstract description 182
- 238000000034 method Methods 0.000 claims abstract description 43
- -1 (trimethyl ammonium) methyl benzoyl oxybenzene Chemical compound 0.000 claims description 100
- 150000001875 compounds Chemical class 0.000 claims description 73
- 239000007844 bleaching agent Substances 0.000 claims description 68
- 125000000217 alkyl group Chemical group 0.000 claims description 60
- 125000004432 carbon atom Chemical group C* 0.000 claims description 51
- 239000000243 solution Substances 0.000 claims description 47
- 239000004094 surface-active agent Substances 0.000 claims description 47
- 239000003054 catalyst Substances 0.000 claims description 34
- 239000002243 precursor Substances 0.000 claims description 34
- 238000005406 washing Methods 0.000 claims description 31
- 125000003118 aryl group Chemical group 0.000 claims description 28
- 150000004965 peroxy acids Chemical class 0.000 claims description 22
- 229910052748 manganese Inorganic materials 0.000 claims description 21
- 239000003446 ligand Substances 0.000 claims description 19
- 239000000758 substrate Substances 0.000 claims description 15
- 125000002877 alkyl aryl group Chemical group 0.000 claims description 14
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 claims description 11
- 125000002947 alkylene group Chemical group 0.000 claims description 8
- 150000001408 amides Chemical group 0.000 claims description 8
- 150000004967 organic peroxy acids Chemical class 0.000 claims description 8
- WLDGDTPNAKWAIR-UHFFFAOYSA-N 1,4,7-trimethyl-1,4,7-triazonane Chemical compound CN1CCN(C)CCN(C)CC1 WLDGDTPNAKWAIR-UHFFFAOYSA-N 0.000 claims description 7
- 125000003342 alkenyl group Chemical group 0.000 claims description 7
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 claims description 7
- 150000003951 lactams Chemical class 0.000 claims description 6
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 6
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 5
- 125000001424 substituent group Chemical group 0.000 claims description 5
- 238000010998 test method Methods 0.000 claims description 5
- 238000012360 testing method Methods 0.000 claims description 5
- 125000004171 alkoxy aryl group Chemical group 0.000 claims description 4
- 125000003545 alkoxy group Chemical group 0.000 claims description 4
- 125000002091 cationic group Chemical group 0.000 claims description 4
- 229910052736 halogen Inorganic materials 0.000 claims description 4
- 150000002367 halogens Chemical class 0.000 claims description 4
- 230000003625 amylolytic effect Effects 0.000 claims description 3
- 125000000732 arylene group Chemical group 0.000 claims description 3
- VLTRZXGMWDSKGL-UHFFFAOYSA-M perchlorate Inorganic materials [O-]Cl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-M 0.000 claims description 3
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical compound OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 claims description 3
- ITWBWJFEJCHKSN-UHFFFAOYSA-N 1,4,7-triazonane Chemical compound C1CNCCNCCN1 ITWBWJFEJCHKSN-UHFFFAOYSA-N 0.000 claims description 2
- FYJQFTDDXICKAM-UHFFFAOYSA-N CC[Na].OC(OC(C=C1)=CC=C1S(O)(=O)=O)=O.Cl Chemical compound CC[Na].OC(OC(C=C1)=CC=C1S(O)(=O)=O)=O.Cl FYJQFTDDXICKAM-UHFFFAOYSA-N 0.000 claims description 2
- RGHNJXZEOKUKBD-SQOUGZDYSA-M D-gluconate Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C([O-])=O RGHNJXZEOKUKBD-SQOUGZDYSA-M 0.000 claims description 2
- 125000003282 alkyl amino group Chemical group 0.000 claims description 2
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 claims description 2
- 229940050410 gluconate Drugs 0.000 claims description 2
- NLIQPJSHCKEXEQ-UHFFFAOYSA-N iron;n-pyridin-2-ylpyridin-2-amine Chemical compound [Fe].C=1C=CC=NC=1NC1=CC=CC=N1.C=1C=CC=NC=1NC1=CC=CC=N1.C=1C=CC=NC=1NC1=CC=CC=N1 NLIQPJSHCKEXEQ-UHFFFAOYSA-N 0.000 claims 2
- 229940126062 Compound A Drugs 0.000 claims 1
- NLDMNSXOCDLTTB-UHFFFAOYSA-N Heterophylliin A Natural products O1C2COC(=O)C3=CC(O)=C(O)C(O)=C3C3=C(O)C(O)=C(O)C=C3C(=O)OC2C(OC(=O)C=2C=C(O)C(O)=C(O)C=2)C(O)C1OC(=O)C1=CC(O)=C(O)C(O)=C1 NLDMNSXOCDLTTB-UHFFFAOYSA-N 0.000 claims 1
- 125000003710 aryl alkyl group Chemical group 0.000 claims 1
- JXLHNMVSKXFWAO-UHFFFAOYSA-N azane;7-fluoro-2,1,3-benzoxadiazole-4-sulfonic acid Chemical compound N.OS(=O)(=O)C1=CC=C(F)C2=NON=C12 JXLHNMVSKXFWAO-UHFFFAOYSA-N 0.000 claims 1
- YRNNKGFMTBWUGL-UHFFFAOYSA-L copper(ii) perchlorate Chemical compound [Cu+2].[O-]Cl(=O)(=O)=O.[O-]Cl(=O)(=O)=O YRNNKGFMTBWUGL-UHFFFAOYSA-L 0.000 claims 1
- XCRBXWCUXJNEFX-UHFFFAOYSA-N peroxybenzoic acid Chemical compound OOC(=O)C1=CC=CC=C1 XCRBXWCUXJNEFX-UHFFFAOYSA-N 0.000 claims 1
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical compound CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 claims 1
- 239000000463 material Substances 0.000 description 51
- 229940088598 enzyme Drugs 0.000 description 50
- 150000003839 salts Chemical class 0.000 description 44
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 42
- JBKVHLHDHHXQEQ-UHFFFAOYSA-N epsilon-caprolactam Chemical compound O=C1CCCCCN1 JBKVHLHDHHXQEQ-UHFFFAOYSA-N 0.000 description 38
- 238000000576 coating method Methods 0.000 description 34
- 239000011572 manganese Substances 0.000 description 33
- 239000000047 product Substances 0.000 description 32
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 32
- 239000002253 acid Substances 0.000 description 31
- 239000011248 coating agent Substances 0.000 description 31
- 239000002245 particle Substances 0.000 description 31
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 30
- 239000002518 antifoaming agent Substances 0.000 description 26
- 239000000344 soap Substances 0.000 description 26
- 229920001296 polysiloxane Polymers 0.000 description 23
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 22
- 229920000768 polyamine Polymers 0.000 description 21
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 19
- 229920005646 polycarboxylate Polymers 0.000 description 18
- 239000011734 sodium Substances 0.000 description 18
- 229910052708 sodium Inorganic materials 0.000 description 17
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 16
- 229920001577 copolymer Polymers 0.000 description 16
- 229910052757 nitrogen Inorganic materials 0.000 description 16
- 229920000642 polymer Polymers 0.000 description 16
- 239000000377 silicon dioxide Substances 0.000 description 16
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 15
- 150000001204 N-oxides Chemical class 0.000 description 15
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 14
- 235000011941 Tilia x europaea Nutrition 0.000 description 14
- 235000014113 dietary fatty acids Nutrition 0.000 description 14
- 239000000194 fatty acid Substances 0.000 description 14
- 229930195729 fatty acid Natural products 0.000 description 14
- 239000004571 lime Substances 0.000 description 14
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerol Natural products OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 13
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 13
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 13
- 241000894007 species Species 0.000 description 13
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 12
- 239000002270 dispersing agent Substances 0.000 description 12
- 239000004744 fabric Substances 0.000 description 12
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 12
- 239000003352 sequestering agent Substances 0.000 description 12
- MWNQXXOSWHCCOZ-UHFFFAOYSA-L sodium;oxido carbonate Chemical compound [Na+].[O-]OC([O-])=O MWNQXXOSWHCCOZ-UHFFFAOYSA-L 0.000 description 12
- 238000012546 transfer Methods 0.000 description 12
- 108090001060 Lipase Proteins 0.000 description 11
- 239000004367 Lipase Substances 0.000 description 11
- 102000004882 Lipase Human genes 0.000 description 11
- 150000007513 acids Chemical class 0.000 description 11
- 229910052783 alkali metal Inorganic materials 0.000 description 11
- 150000001412 amines Chemical class 0.000 description 11
- 239000011230 binding agent Substances 0.000 description 11
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 11
- 239000003795 chemical substances by application Substances 0.000 description 11
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 11
- 238000004851 dishwashing Methods 0.000 description 11
- 150000004665 fatty acids Chemical class 0.000 description 11
- 235000019421 lipase Nutrition 0.000 description 11
- FRPJTGXMTIIFIT-UHFFFAOYSA-N tetraacetylethylenediamine Chemical compound CC(=O)C(N)(C(C)=O)C(N)(C(C)=O)C(C)=O FRPJTGXMTIIFIT-UHFFFAOYSA-N 0.000 description 11
- VKZRWSNIWNFCIQ-UHFFFAOYSA-N 2-[2-(1,2-dicarboxyethylamino)ethylamino]butanedioic acid Chemical compound OC(=O)CC(C(O)=O)NCCNC(C(O)=O)CC(O)=O VKZRWSNIWNFCIQ-UHFFFAOYSA-N 0.000 description 10
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 10
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 10
- 239000004115 Sodium Silicate Substances 0.000 description 10
- 238000004061 bleaching Methods 0.000 description 10
- 229960004106 citric acid Drugs 0.000 description 10
- 229910001385 heavy metal Inorganic materials 0.000 description 10
- 239000007787 solid Substances 0.000 description 10
- 108091005804 Peptidases Proteins 0.000 description 9
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 9
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 9
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 9
- 230000002401 inhibitory effect Effects 0.000 description 9
- 150000002500 ions Chemical class 0.000 description 9
- 229920001223 polyethylene glycol Polymers 0.000 description 9
- 229910052700 potassium Inorganic materials 0.000 description 9
- 239000011591 potassium Substances 0.000 description 9
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 8
- 125000000129 anionic group Chemical group 0.000 description 8
- 125000000623 heterocyclic group Chemical group 0.000 description 8
- 125000001183 hydrocarbyl group Chemical group 0.000 description 8
- 230000002209 hydrophobic effect Effects 0.000 description 8
- 230000008569 process Effects 0.000 description 8
- 108010065511 Amylases Proteins 0.000 description 7
- 102000013142 Amylases Human genes 0.000 description 7
- 102100037486 Reverse transcriptase/ribonuclease H Human genes 0.000 description 7
- 239000012190 activator Substances 0.000 description 7
- 125000001931 aliphatic group Chemical group 0.000 description 7
- 150000001340 alkali metals Chemical class 0.000 description 7
- 229910000323 aluminium silicate Inorganic materials 0.000 description 7
- 230000003197 catalytic effect Effects 0.000 description 7
- 239000007788 liquid Substances 0.000 description 7
- 230000003287 optical effect Effects 0.000 description 7
- 229920000620 organic polymer Polymers 0.000 description 7
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 7
- 229910052911 sodium silicate Inorganic materials 0.000 description 7
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 6
- 150000001298 alcohols Chemical class 0.000 description 6
- 125000002723 alicyclic group Chemical group 0.000 description 6
- 235000019418 amylase Nutrition 0.000 description 6
- 150000007942 carboxylates Chemical class 0.000 description 6
- 239000007859 condensation product Substances 0.000 description 6
- 239000010949 copper Substances 0.000 description 6
- 238000007046 ethoxylation reaction Methods 0.000 description 6
- 150000002191 fatty alcohols Chemical class 0.000 description 6
- 229910052742 iron Inorganic materials 0.000 description 6
- 239000000843 powder Substances 0.000 description 6
- 150000004760 silicates Chemical class 0.000 description 6
- 159000000000 sodium salts Chemical class 0.000 description 6
- 239000002689 soil Substances 0.000 description 6
- 230000000087 stabilizing effect Effects 0.000 description 6
- FAGGUIDTQQXDSJ-UHFFFAOYSA-N 3-benzoylazepan-2-one Chemical compound C=1C=CC=CC=1C(=O)C1CCCCNC1=O FAGGUIDTQQXDSJ-UHFFFAOYSA-N 0.000 description 5
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 5
- AVXURJPOCDRRFD-UHFFFAOYSA-N Hydroxylamine Chemical compound ON AVXURJPOCDRRFD-UHFFFAOYSA-N 0.000 description 5
- 229910019142 PO4 Inorganic materials 0.000 description 5
- 239000004365 Protease Substances 0.000 description 5
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 5
- 239000004902 Softening Agent Substances 0.000 description 5
- 229910021536 Zeolite Inorganic materials 0.000 description 5
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 5
- 150000008064 anhydrides Chemical class 0.000 description 5
- 239000003945 anionic surfactant Substances 0.000 description 5
- 229960003237 betaine Drugs 0.000 description 5
- 150000001720 carbohydrates Chemical group 0.000 description 5
- 239000012876 carrier material Substances 0.000 description 5
- 239000000460 chlorine Substances 0.000 description 5
- 229910052801 chlorine Inorganic materials 0.000 description 5
- 229910052802 copper Inorganic materials 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 229910052739 hydrogen Inorganic materials 0.000 description 5
- 235000021317 phosphate Nutrition 0.000 description 5
- XUWHAWMETYGRKB-UHFFFAOYSA-N piperidin-2-one Chemical compound O=C1CCCCN1 XUWHAWMETYGRKB-UHFFFAOYSA-N 0.000 description 5
- 229920002006 poly(N-vinylimidazole) polymer Polymers 0.000 description 5
- 239000010457 zeolite Substances 0.000 description 5
- YGUMVDWOQQJBGA-VAWYXSNFSA-N 5-[(4-anilino-6-morpholin-4-yl-1,3,5-triazin-2-yl)amino]-2-[(e)-2-[4-[(4-anilino-6-morpholin-4-yl-1,3,5-triazin-2-yl)amino]-2-sulfophenyl]ethenyl]benzenesulfonic acid Chemical compound C=1C=C(\C=C\C=2C(=CC(NC=3N=C(N=C(NC=4C=CC=CC=4)N=3)N3CCOCC3)=CC=2)S(O)(=O)=O)C(S(=O)(=O)O)=CC=1NC(N=C(N=1)N2CCOCC2)=NC=1NC1=CC=CC=C1 YGUMVDWOQQJBGA-VAWYXSNFSA-N 0.000 description 4
- KWIUHFFTVRNATP-UHFFFAOYSA-N Betaine Natural products C[N+](C)(C)CC([O-])=O KWIUHFFTVRNATP-UHFFFAOYSA-N 0.000 description 4
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 4
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 4
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 4
- KWIUHFFTVRNATP-UHFFFAOYSA-O N,N,N-trimethylglycinium Chemical compound C[N+](C)(C)CC(O)=O KWIUHFFTVRNATP-UHFFFAOYSA-O 0.000 description 4
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 4
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical compound C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 description 4
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 4
- ULUAUXLGCMPNKK-UHFFFAOYSA-N Sulfobutanedioic acid Chemical class OC(=O)CC(C(O)=O)S(O)(=O)=O ULUAUXLGCMPNKK-UHFFFAOYSA-N 0.000 description 4
- 238000005054 agglomeration Methods 0.000 description 4
- 230000002776 aggregation Effects 0.000 description 4
- 150000008051 alkyl sulfates Chemical class 0.000 description 4
- 229940025131 amylases Drugs 0.000 description 4
- 125000002490 anilino group Chemical group [H]N(*)C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 4
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical group OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 4
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 4
- 239000003093 cationic surfactant Substances 0.000 description 4
- 238000004140 cleaning Methods 0.000 description 4
- VTIIJXUACCWYHX-UHFFFAOYSA-L disodium;carboxylatooxy carbonate Chemical compound [Na+].[Na+].[O-]C(=O)OOC([O-])=O VTIIJXUACCWYHX-UHFFFAOYSA-L 0.000 description 4
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 4
- 239000000499 gel Substances 0.000 description 4
- 239000008103 glucose Substances 0.000 description 4
- 239000001257 hydrogen Substances 0.000 description 4
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 4
- 125000002768 hydroxyalkyl group Chemical group 0.000 description 4
- 230000002366 lipolytic effect Effects 0.000 description 4
- 239000002736 nonionic surfactant Substances 0.000 description 4
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 229910000029 sodium carbonate Inorganic materials 0.000 description 4
- 229940045872 sodium percarbonate Drugs 0.000 description 4
- 238000006467 substitution reaction Methods 0.000 description 4
- 239000003760 tallow Substances 0.000 description 4
- 239000004382 Amylase Substances 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- 108010059892 Cellulase Proteins 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 3
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 3
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 3
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 3
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 3
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 3
- TTZMPOZCBFTTPR-UHFFFAOYSA-N O=P1OCO1 Chemical compound O=P1OCO1 TTZMPOZCBFTTPR-UHFFFAOYSA-N 0.000 description 3
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 3
- RWRDLPDLKQPQOW-UHFFFAOYSA-N Pyrrolidine Chemical compound C1CCNC1 RWRDLPDLKQPQOW-UHFFFAOYSA-N 0.000 description 3
- 229920002472 Starch Polymers 0.000 description 3
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 3
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 3
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 3
- 150000001342 alkaline earth metals Chemical class 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 239000002585 base Substances 0.000 description 3
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 3
- 239000011575 calcium Substances 0.000 description 3
- 229910000019 calcium carbonate Inorganic materials 0.000 description 3
- 239000001768 carboxy methyl cellulose Substances 0.000 description 3
- 229940106157 cellulase Drugs 0.000 description 3
- 229920002678 cellulose Polymers 0.000 description 3
- 239000001913 cellulose Substances 0.000 description 3
- 235000010980 cellulose Nutrition 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 150000001860 citric acid derivatives Chemical class 0.000 description 3
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 description 3
- 235000013870 dimethyl polysiloxane Nutrition 0.000 description 3
- 229960001484 edetic acid Drugs 0.000 description 3
- 150000002148 esters Chemical class 0.000 description 3
- 229940083124 ganglion-blocking antiadrenergic secondary and tertiary amines Drugs 0.000 description 3
- 229920001519 homopolymer Polymers 0.000 description 3
- 238000011065 in-situ storage Methods 0.000 description 3
- 238000010348 incorporation Methods 0.000 description 3
- 230000005764 inhibitory process Effects 0.000 description 3
- 238000010412 laundry washing Methods 0.000 description 3
- 238000011068 loading method Methods 0.000 description 3
- 210000003141 lower extremity Anatomy 0.000 description 3
- HEBKCHPVOIAQTA-UHFFFAOYSA-N meso ribitol Natural products OCC(O)C(O)C(O)CO HEBKCHPVOIAQTA-UHFFFAOYSA-N 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910021645 metal ion Inorganic materials 0.000 description 3
- 108010020132 microbial serine proteinases Proteins 0.000 description 3
- ONLRKTIYOMZEJM-UHFFFAOYSA-N n-methylmethanamine oxide Chemical compound C[NH+](C)[O-] ONLRKTIYOMZEJM-UHFFFAOYSA-N 0.000 description 3
- 125000004433 nitrogen atom Chemical group N* 0.000 description 3
- 150000002894 organic compounds Chemical class 0.000 description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 3
- 239000010452 phosphate Substances 0.000 description 3
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 3
- 235000019351 sodium silicates Nutrition 0.000 description 3
- 229910052938 sodium sulfate Inorganic materials 0.000 description 3
- 235000011152 sodium sulphate Nutrition 0.000 description 3
- 230000003381 solubilizing effect Effects 0.000 description 3
- 239000000600 sorbitol Substances 0.000 description 3
- 235000010356 sorbitol Nutrition 0.000 description 3
- 239000008107 starch Substances 0.000 description 3
- 235000019698 starch Nutrition 0.000 description 3
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 3
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 3
- 150000003512 tertiary amines Chemical class 0.000 description 3
- 125000004178 (C1-C4) alkyl group Chemical group 0.000 description 2
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 2
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- GOKVKLCCWGRQJV-UHFFFAOYSA-N 2-[6-(decanoylamino)hexanoyloxy]benzenesulfonic acid Chemical compound CCCCCCCCCC(=O)NCCCCCC(=O)OC1=CC=CC=C1S(O)(=O)=O GOKVKLCCWGRQJV-UHFFFAOYSA-N 0.000 description 2
- JKZLOWDYIRTRJZ-UHFFFAOYSA-N 2-[6-(octanoylamino)hexanoyloxy]benzenesulfonic acid Chemical compound CCCCCCCC(=O)NCCCCCC(=O)OC1=CC=CC=C1S(O)(=O)=O JKZLOWDYIRTRJZ-UHFFFAOYSA-N 0.000 description 2
- NZCIWANIJJJEML-UHFFFAOYSA-N 2-methyl-1,4,7-triazonane Chemical compound CC1CNCCNCCN1 NZCIWANIJJJEML-UHFFFAOYSA-N 0.000 description 2
- CDWQJRGVYJQAIT-UHFFFAOYSA-N 3-benzoylpiperidin-2-one Chemical compound C=1C=CC=CC=1C(=O)C1CCCNC1=O CDWQJRGVYJQAIT-UHFFFAOYSA-N 0.000 description 2
- CNGYZEMWVAWWOB-VAWYXSNFSA-N 5-[[4-anilino-6-[bis(2-hydroxyethyl)amino]-1,3,5-triazin-2-yl]amino]-2-[(e)-2-[4-[[4-anilino-6-[bis(2-hydroxyethyl)amino]-1,3,5-triazin-2-yl]amino]-2-sulfophenyl]ethenyl]benzenesulfonic acid Chemical compound N=1C(NC=2C=C(C(\C=C\C=3C(=CC(NC=4N=C(N=C(NC=5C=CC=CC=5)N=4)N(CCO)CCO)=CC=3)S(O)(=O)=O)=CC=2)S(O)(=O)=O)=NC(N(CCO)CCO)=NC=1NC1=CC=CC=C1 CNGYZEMWVAWWOB-VAWYXSNFSA-N 0.000 description 2
- RSWGJHLUYNHPMX-UHFFFAOYSA-N Abietic-Saeure Natural products C12CCC(C(C)C)=CC2=CCC2C1(C)CCCC2(C)C(O)=O RSWGJHLUYNHPMX-UHFFFAOYSA-N 0.000 description 2
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 2
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 2
- 101100367084 Caenorhabditis elegans such-1 gene Proteins 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- RGSFGYAAUTVSQA-UHFFFAOYSA-N Cyclopentane Chemical compound C1CCCC1 RGSFGYAAUTVSQA-UHFFFAOYSA-N 0.000 description 2
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 2
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 2
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 2
- UBXUBZWFVKKBGM-UHFFFAOYSA-N FC1(C(C(C(=O)NC1)(C(C1=CC=CC=C1)=O)F)(F)F)F Chemical compound FC1(C(C(C(=O)NC1)(C(C1=CC=CC=C1)=O)F)(F)F)F UBXUBZWFVKKBGM-UHFFFAOYSA-N 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Chemical class OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 description 2
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 2
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 2
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 2
- JLVVSXFLKOJNIY-UHFFFAOYSA-N Magnesium ion Chemical compound [Mg+2] JLVVSXFLKOJNIY-UHFFFAOYSA-N 0.000 description 2
- 229930195725 Mannitol Natural products 0.000 description 2
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 2
- 229910000503 Na-aluminosilicate Inorganic materials 0.000 description 2
- 102000035195 Peptidases Human genes 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- NQRYJNQNLNOLGT-UHFFFAOYSA-N Piperidine Chemical compound C1CCNCC1 NQRYJNQNLNOLGT-UHFFFAOYSA-N 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- 241000589516 Pseudomonas Species 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- SMWDFEZZVXVKRB-UHFFFAOYSA-N Quinoline Chemical compound N1=CC=CC2=CC=CC=C21 SMWDFEZZVXVKRB-UHFFFAOYSA-N 0.000 description 2
- KHPCPRHQVVSZAH-HUOMCSJISA-N Rosin Natural products O(C/C=C/c1ccccc1)[C@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 KHPCPRHQVVSZAH-HUOMCSJISA-N 0.000 description 2
- BCKXLBQYZLBQEK-KVVVOXFISA-M Sodium oleate Chemical compound [Na+].CCCCCCCC\C=C/CCCCCCCC([O-])=O BCKXLBQYZLBQEK-KVVVOXFISA-M 0.000 description 2
- 229920002125 Sokalan® Polymers 0.000 description 2
- 108010056079 Subtilisins Proteins 0.000 description 2
- 102000005158 Subtilisins Human genes 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- 239000005864 Sulphur Substances 0.000 description 2
- 244000269722 Thea sinensis Species 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- DZBUGLKDJFMEHC-UHFFFAOYSA-N acridine Chemical compound C1=CC=CC2=CC3=CC=CC=C3N=C21 DZBUGLKDJFMEHC-UHFFFAOYSA-N 0.000 description 2
- 238000013019 agitation Methods 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- 229910000288 alkali metal carbonate Inorganic materials 0.000 description 2
- 125000005210 alkyl ammonium group Chemical group 0.000 description 2
- 125000005037 alkyl phenyl group Chemical group 0.000 description 2
- WQZGKKKJIJFFOK-PHYPRBDBSA-N alpha-D-galactose Chemical group OC[C@H]1O[C@H](O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-PHYPRBDBSA-N 0.000 description 2
- BJEPYKJPYRNKOW-UHFFFAOYSA-N alpha-hydroxysuccinic acid Natural products OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 2
- 150000003863 ammonium salts Chemical class 0.000 description 2
- 239000002280 amphoteric surfactant Substances 0.000 description 2
- 150000001450 anions Chemical class 0.000 description 2
- 238000010936 aqueous wash Methods 0.000 description 2
- 235000003704 aspartic acid Nutrition 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- 125000003236 benzoyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C(*)=O 0.000 description 2
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- 229910001424 calcium ion Inorganic materials 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 2
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 2
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 239000013522 chelant Substances 0.000 description 2
- 125000001309 chloro group Chemical group Cl* 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- 239000002537 cosmetic Substances 0.000 description 2
- 150000004985 diamines Chemical class 0.000 description 2
- 150000005690 diesters Chemical class 0.000 description 2
- 239000004205 dimethyl polysiloxane Substances 0.000 description 2
- WJJMNDUMQPNECX-UHFFFAOYSA-N dipicolinic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=N1 WJJMNDUMQPNECX-UHFFFAOYSA-N 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 229930182830 galactose Chemical group 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- 150000004820 halides Chemical group 0.000 description 2
- NAQMVNRVTILPCV-UHFFFAOYSA-N hexane-1,6-diamine Chemical compound NCCCCCCN NAQMVNRVTILPCV-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-M hydrogensulfate Chemical compound OS([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-M 0.000 description 2
- 125000001165 hydrophobic group Chemical group 0.000 description 2
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 2
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 2
- ROBFUDYVXSDBQM-UHFFFAOYSA-N hydroxymalonic acid Chemical compound OC(=O)C(O)C(O)=O ROBFUDYVXSDBQM-UHFFFAOYSA-N 0.000 description 2
- 150000002460 imidazoles Chemical class 0.000 description 2
- 150000003949 imides Chemical class 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 229910017053 inorganic salt Inorganic materials 0.000 description 2
- 238000005342 ion exchange Methods 0.000 description 2
- 239000002563 ionic surfactant Substances 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical class CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 238000004900 laundering Methods 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 229910001425 magnesium ion Inorganic materials 0.000 description 2
- 159000000003 magnesium salts Chemical class 0.000 description 2
- 150000002696 manganese Chemical class 0.000 description 2
- 229910000357 manganese(II) sulfate Inorganic materials 0.000 description 2
- 239000000594 mannitol Substances 0.000 description 2
- 235000010355 mannitol Nutrition 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000002609 medium Substances 0.000 description 2
- YDSWCNNOKPMOTP-UHFFFAOYSA-N mellitic acid Chemical compound OC(=O)C1=C(C(O)=O)C(C(O)=O)=C(C(O)=O)C(C(O)=O)=C1C(O)=O YDSWCNNOKPMOTP-UHFFFAOYSA-N 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 229920000609 methyl cellulose Polymers 0.000 description 2
- 239000001923 methylcellulose Substances 0.000 description 2
- 235000010981 methylcellulose Nutrition 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 150000007524 organic acids Chemical class 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- DMCJFWXGXUEHFD-UHFFFAOYSA-N pentatriacontan-18-one Chemical compound CCCCCCCCCCCCCCCCCC(=O)CCCCCCCCCCCCCCCCC DMCJFWXGXUEHFD-UHFFFAOYSA-N 0.000 description 2
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 2
- 229920000058 polyacrylate Polymers 0.000 description 2
- 229920000570 polyether Polymers 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 150000003138 primary alcohols Chemical class 0.000 description 2
- 108090000623 proteins and genes Proteins 0.000 description 2
- CYIDZMCFTVVTJO-UHFFFAOYSA-N pyromellitic acid Chemical compound OC(=O)C1=CC(C(O)=O)=C(C(O)=O)C=C1C(O)=O CYIDZMCFTVVTJO-UHFFFAOYSA-N 0.000 description 2
- 150000003254 radicals Chemical class 0.000 description 2
- 229910052704 radon Inorganic materials 0.000 description 2
- SYUHGPGVQRZVTB-UHFFFAOYSA-N radon atom Chemical compound [Rn] SYUHGPGVQRZVTB-UHFFFAOYSA-N 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 150000003335 secondary amines Chemical class 0.000 description 2
- 229910021647 smectite Inorganic materials 0.000 description 2
- 235000012217 sodium aluminium silicate Nutrition 0.000 description 2
- 239000002195 soluble material Substances 0.000 description 2
- 238000001694 spray drying Methods 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 125000003107 substituted aryl group Chemical group 0.000 description 2
- 239000001384 succinic acid Substances 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 108010075550 termamyl Proteins 0.000 description 2
- VKFFEYLSKIYTSJ-UHFFFAOYSA-N tetraazanium;phosphonato phosphate Chemical compound [NH4+].[NH4+].[NH4+].[NH4+].[O-]P([O-])(=O)OP([O-])([O-])=O VKFFEYLSKIYTSJ-UHFFFAOYSA-N 0.000 description 2
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 2
- KHPCPRHQVVSZAH-UHFFFAOYSA-N trans-cinnamyl beta-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OCC=CC1=CC=CC=C1 KHPCPRHQVVSZAH-UHFFFAOYSA-N 0.000 description 2
- 229910052723 transition metal Inorganic materials 0.000 description 2
- 150000003624 transition metals Chemical class 0.000 description 2
- QAEDZJGFFMLHHQ-UHFFFAOYSA-N trifluoroacetic anhydride Chemical compound FC(F)(F)C(=O)OC(=O)C(F)(F)F QAEDZJGFFMLHHQ-UHFFFAOYSA-N 0.000 description 2
- 125000000026 trimethylsilyl group Chemical group [H]C([H])([H])[Si]([*])(C([H])([H])[H])C([H])([H])[H] 0.000 description 2
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- 239000002888 zwitterionic surfactant Substances 0.000 description 2
- BQJAOYFZRGTLGB-VIFPVBQESA-N (2s)-1-benzoyl-5-oxopyrrolidine-2-carboxylic acid Chemical compound OC(=O)[C@@H]1CCC(=O)N1C(=O)C1=CC=CC=C1 BQJAOYFZRGTLGB-VIFPVBQESA-N 0.000 description 1
- VKZRWSNIWNFCIQ-WDSKDSINSA-N (2s)-2-[2-[[(1s)-1,2-dicarboxyethyl]amino]ethylamino]butanedioic acid Chemical compound OC(=O)C[C@@H](C(O)=O)NCCN[C@H](C(O)=O)CC(O)=O VKZRWSNIWNFCIQ-WDSKDSINSA-N 0.000 description 1
- 125000000008 (C1-C10) alkyl group Chemical group 0.000 description 1
- DNIAPMSPPWPWGF-GSVOUGTGSA-N (R)-(-)-Propylene glycol Chemical compound C[C@@H](O)CO DNIAPMSPPWPWGF-GSVOUGTGSA-N 0.000 description 1
- CIOXZGOUEYHNBF-UHFFFAOYSA-N (carboxymethoxy)succinic acid Chemical class OC(=O)COC(C(O)=O)CC(O)=O CIOXZGOUEYHNBF-UHFFFAOYSA-N 0.000 description 1
- PUNFIBHMZSHFKF-KTKRTIGZSA-N (z)-henicos-12-ene-1,2,3-triol Chemical compound CCCCCCCC\C=C/CCCCCCCCC(O)C(O)CO PUNFIBHMZSHFKF-KTKRTIGZSA-N 0.000 description 1
- UYXFOIMFLBVYDL-UHFFFAOYSA-N 1,2,4,7-tetramethyl-1,4,7-triazonane Chemical compound CC1CN(C)CCN(C)CCN1C UYXFOIMFLBVYDL-UHFFFAOYSA-N 0.000 description 1
- LRPVVAOGGZFVFO-UHFFFAOYSA-N 1,5,9-trimethyl-1,5,9-triazacyclododecane Chemical compound CN1CCCN(C)CCCN(C)CCC1 LRPVVAOGGZFVFO-UHFFFAOYSA-N 0.000 description 1
- VYXRTZYURDKMLT-UHFFFAOYSA-N 1-benzoylpyrrolidin-2-one Chemical compound C=1C=CC=CC=1C(=O)N1CCCC1=O VYXRTZYURDKMLT-UHFFFAOYSA-N 0.000 description 1
- CLFHABXQJQAYEF-UHFFFAOYSA-N 1-benzoylpyrrolidine-2,5-dione Chemical compound C=1C=CC=CC=1C(=O)N1C(=O)CCC1=O CLFHABXQJQAYEF-UHFFFAOYSA-N 0.000 description 1
- OSSNTDFYBPYIEC-UHFFFAOYSA-N 1-ethenylimidazole Chemical compound C=CN1C=CN=C1 OSSNTDFYBPYIEC-UHFFFAOYSA-N 0.000 description 1
- UASMUGCGGNHTCA-UHFFFAOYSA-N 18-hydroxyoctadecyl(oxido)azanium Chemical compound OCCCCCCCCCCCCCCCCCC[NH2+][O-] UASMUGCGGNHTCA-UHFFFAOYSA-N 0.000 description 1
- FNJPVNIUVIVZEV-UHFFFAOYSA-N 2,3-dibenzoyl-1,4-diphenylbut-2-ene-1,4-dione Chemical group C=1C=CC=CC=1C(=O)C(=C(C(=O)C=1C=CC=CC=1)C(=O)C=1C=CC=CC=1)C(=O)C1=CC=CC=C1 FNJPVNIUVIVZEV-UHFFFAOYSA-N 0.000 description 1
- CFPOJWPDQWJEMO-UHFFFAOYSA-N 2-(1,2-dicarboxyethoxy)butanedioic acid Chemical class OC(=O)CC(C(O)=O)OC(C(O)=O)CC(O)=O CFPOJWPDQWJEMO-UHFFFAOYSA-N 0.000 description 1
- PQHYOGIRXOKOEJ-UHFFFAOYSA-N 2-(1,2-dicarboxyethylamino)butanedioic acid Chemical compound OC(=O)CC(C(O)=O)NC(C(O)=O)CC(O)=O PQHYOGIRXOKOEJ-UHFFFAOYSA-N 0.000 description 1
- UURYKQHCLJWXEU-UHFFFAOYSA-N 2-(2-hydroxypropanoyloxy)butanedioic acid Chemical class CC(O)C(=O)OC(C(O)=O)CC(O)=O UURYKQHCLJWXEU-UHFFFAOYSA-N 0.000 description 1
- LVVZBNKWTVZSIU-UHFFFAOYSA-N 2-(carboxymethoxy)propanedioic acid Chemical class OC(=O)COC(C(O)=O)C(O)=O LVVZBNKWTVZSIU-UHFFFAOYSA-N 0.000 description 1
- HWQVXNFIYABVIW-UHFFFAOYSA-N 2-(carboxymethylamino)-4,5-dihydroxypentanoic acid Chemical compound OCC(O)CC(C(O)=O)NCC(O)=O HWQVXNFIYABVIW-UHFFFAOYSA-N 0.000 description 1
- NSMMFSKPGXCMOE-UHFFFAOYSA-N 2-[2-(2-sulfophenyl)ethenyl]benzenesulfonic acid Chemical compound OS(=O)(=O)C1=CC=CC=C1C=CC1=CC=CC=C1S(O)(=O)=O NSMMFSKPGXCMOE-UHFFFAOYSA-N 0.000 description 1
- CQWXKASOCUAEOW-UHFFFAOYSA-N 2-[2-(carboxymethoxy)ethoxy]acetic acid Chemical compound OC(=O)COCCOCC(O)=O CQWXKASOCUAEOW-UHFFFAOYSA-N 0.000 description 1
- ISBYGXCCBJIBCG-UHFFFAOYSA-N 2-[6-(nonanoylamino)hexanoyloxy]benzenesulfonic acid Chemical compound CCCCCCCCC(=O)NCCCCCC(=O)OC1=CC=CC=C1S(O)(=O)=O ISBYGXCCBJIBCG-UHFFFAOYSA-N 0.000 description 1
- TYIOVYZMKITKRO-UHFFFAOYSA-N 2-[hexadecyl(dimethyl)azaniumyl]acetate Chemical compound CCCCCCCCCCCCCCCC[N+](C)(C)CC([O-])=O TYIOVYZMKITKRO-UHFFFAOYSA-N 0.000 description 1
- OARDBPIZDHVTCK-UHFFFAOYSA-N 2-butyloctanoic acid Chemical class CCCCCCC(C(O)=O)CCCC OARDBPIZDHVTCK-UHFFFAOYSA-N 0.000 description 1
- GLVYLTSKTCWWJR-UHFFFAOYSA-N 2-carbonoperoxoylbenzoic acid Chemical compound OOC(=O)C1=CC=CC=C1C(O)=O GLVYLTSKTCWWJR-UHFFFAOYSA-N 0.000 description 1
- WJZIPMQUKSTHLV-UHFFFAOYSA-N 2-ethyldecanoic acid Chemical class CCCCCCCCC(CC)C(O)=O WJZIPMQUKSTHLV-UHFFFAOYSA-N 0.000 description 1
- PFFITEZSYJIHHR-UHFFFAOYSA-N 2-methyl-undecanoic acid Chemical class CCCCCCCCCC(C)C(O)=O PFFITEZSYJIHHR-UHFFFAOYSA-N 0.000 description 1
- PLVOWOHSFJLXOR-UHFFFAOYSA-N 2-pentylheptanoic acid Chemical class CCCCCC(C(O)=O)CCCCC PLVOWOHSFJLXOR-UHFFFAOYSA-N 0.000 description 1
- APKRDOMMNFBDSG-UHFFFAOYSA-N 2-propylnonanoic acid Chemical class CCCCCCCC(C(O)=O)CCC APKRDOMMNFBDSG-UHFFFAOYSA-N 0.000 description 1
- YNJSNEKCXVFDKW-UHFFFAOYSA-N 3-(5-amino-1h-indol-3-yl)-2-azaniumylpropanoate Chemical compound C1=C(N)C=C2C(CC(N)C(O)=O)=CNC2=C1 YNJSNEKCXVFDKW-UHFFFAOYSA-N 0.000 description 1
- OLDXODLIOAKDPY-UHFFFAOYSA-N 3-decanoylpiperidin-2-one Chemical compound CCCCCCCCCC(=O)C1CCCNC1=O OLDXODLIOAKDPY-UHFFFAOYSA-N 0.000 description 1
- WVILLSKUJNGUKA-UHFFFAOYSA-N 3-nonanoylpiperidin-2-one Chemical compound CCCCCCCCC(=O)C1CCCNC1=O WVILLSKUJNGUKA-UHFFFAOYSA-N 0.000 description 1
- YILDPURCUKWQHU-UHFFFAOYSA-N 3-octanoylpiperidin-2-one Chemical compound CCCCCCCC(=O)C1CCCNC1=O YILDPURCUKWQHU-UHFFFAOYSA-N 0.000 description 1
- ZQLDNJKHLQOJGE-UHFFFAOYSA-N 4-octylbenzoic acid Chemical compound CCCCCCCCC1=CC=C(C(O)=O)C=C1 ZQLDNJKHLQOJGE-UHFFFAOYSA-N 0.000 description 1
- XSVSPKKXQGNHMD-UHFFFAOYSA-N 5-bromo-3-methyl-1,2-thiazole Chemical compound CC=1C=C(Br)SN=1 XSVSPKKXQGNHMD-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- CKLJMWTZIZZHCS-UHFFFAOYSA-N Aspartic acid Chemical class OC(=O)C(N)CC(O)=O CKLJMWTZIZZHCS-UHFFFAOYSA-N 0.000 description 1
- 108091005658 Basic proteases Proteins 0.000 description 1
- 239000005711 Benzoic acid Substances 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical class OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 1
- IYCXNGUHGOHAPY-UHFFFAOYSA-N C(C)(C)(C)C1(C(=O)NCCC1)C(C1=CC=CC=C1)=O Chemical compound C(C)(C)(C)C1(C(=O)NCCC1)C(C1=CC=CC=C1)=O IYCXNGUHGOHAPY-UHFFFAOYSA-N 0.000 description 1
- SRUVLDGBOLOZFC-UHFFFAOYSA-N C(C)(C)(C)OC1(C(=O)NCCC1)C(C1=CC=CC=C1)=O Chemical compound C(C)(C)(C)OC1(C(=O)NCCC1)C(C1=CC=CC=C1)=O SRUVLDGBOLOZFC-UHFFFAOYSA-N 0.000 description 1
- LJPLWHMHSDKXLU-UHFFFAOYSA-N C(C)(C)C1(C(=O)NCCC1)C(C1=CC=CC=C1)=O Chemical compound C(C)(C)C1(C(=O)NCCC1)C(C1=CC=CC=C1)=O LJPLWHMHSDKXLU-UHFFFAOYSA-N 0.000 description 1
- DPYJGZQPRSOQIW-UHFFFAOYSA-N C(C)(C)OC1(C(=O)NCCC1)C(C1=CC=CC=C1)=O Chemical compound C(C)(C)OC1(C(=O)NCCC1)C(C1=CC=CC=C1)=O DPYJGZQPRSOQIW-UHFFFAOYSA-N 0.000 description 1
- QAXDZUUCXBMJJF-UHFFFAOYSA-N C(C)C1(C(=O)NCCC1)C(C1=CC=CC=C1)=O Chemical compound C(C)C1(C(=O)NCCC1)C(C1=CC=CC=C1)=O QAXDZUUCXBMJJF-UHFFFAOYSA-N 0.000 description 1
- DHWLHYSQMCLFKR-UHFFFAOYSA-N C(C)OC1(C(=O)NCCC1)C(C1=CC=CC=C1)=O Chemical compound C(C)OC1(C(=O)NCCC1)C(C1=CC=CC=C1)=O DHWLHYSQMCLFKR-UHFFFAOYSA-N 0.000 description 1
- RWHAETHMBBUPFN-SSPAHAAFSA-N C(C1=CC=CC=C1)(=O)OOC(C1=CC=CC=C1)=O.O=C[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO Chemical compound C(C1=CC=CC=C1)(=O)OOC(C1=CC=CC=C1)=O.O=C[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO RWHAETHMBBUPFN-SSPAHAAFSA-N 0.000 description 1
- HPWVICOQHLNBNK-UHFFFAOYSA-N C(CC)C1(C(=O)NCCC1)C(C1=CC=CC=C1)=O Chemical compound C(CC)C1(C(=O)NCCC1)C(C1=CC=CC=C1)=O HPWVICOQHLNBNK-UHFFFAOYSA-N 0.000 description 1
- IPMQJPNCFPGXAV-UHFFFAOYSA-N C(CC)OC1(C(=O)NCCC1)C(C1=CC=CC=C1)=O Chemical compound C(CC)OC1(C(=O)NCCC1)C(C1=CC=CC=C1)=O IPMQJPNCFPGXAV-UHFFFAOYSA-N 0.000 description 1
- BUIDLOZCNKHXSE-UHFFFAOYSA-N C(CCC)C1(C(=O)NCCC1)C(C1=CC=CC=C1)=O Chemical compound C(CCC)C1(C(=O)NCCC1)C(C1=CC=CC=C1)=O BUIDLOZCNKHXSE-UHFFFAOYSA-N 0.000 description 1
- LEXLNIUXTHTJJO-UHFFFAOYSA-N C(CCC)OC1(C(=O)NCCC1)C(C1=CC=CC=C1)=O Chemical compound C(CCC)OC1(C(=O)NCCC1)C(C1=CC=CC=C1)=O LEXLNIUXTHTJJO-UHFFFAOYSA-N 0.000 description 1
- GVYBZJIFSSSXBK-UHFFFAOYSA-N C(CCCC)OC1(C(=O)NCCC1)C(C1=CC=CC=C1)=O Chemical compound C(CCCC)OC1(C(=O)NCCC1)C(C1=CC=CC=C1)=O GVYBZJIFSSSXBK-UHFFFAOYSA-N 0.000 description 1
- HTTHZIIWIBWLSF-UHFFFAOYSA-N C(CCCCC)C1(C(=O)NCCC1)C(C1=CC=CC=C1)=O Chemical compound C(CCCCC)C1(C(=O)NCCC1)C(C1=CC=CC=C1)=O HTTHZIIWIBWLSF-UHFFFAOYSA-N 0.000 description 1
- GBRFRYWBYPZBSB-UHFFFAOYSA-N C(CCCCC)OC1(C(=O)NCCC1)C(C1=CC=CC=C1)=O Chemical compound C(CCCCC)OC1(C(=O)NCCC1)C(C1=CC=CC=C1)=O GBRFRYWBYPZBSB-UHFFFAOYSA-N 0.000 description 1
- 229910014033 C-OH Inorganic materials 0.000 description 1
- FHNUZQMQPXBPJV-UHFFFAOYSA-N CC(C)(C)CC(C)CC(=O)C1CCCNC1=O Chemical compound CC(C)(C)CC(C)CC(=O)C1CCCNC1=O FHNUZQMQPXBPJV-UHFFFAOYSA-N 0.000 description 1
- RZGTVAKPLPFBNK-UHFFFAOYSA-N CC1(C(=O)NCCC1)C(C1=CC=CC=C1)=O Chemical compound CC1(C(=O)NCCC1)C(C1=CC=CC=C1)=O RZGTVAKPLPFBNK-UHFFFAOYSA-N 0.000 description 1
- JPSGUKQHCKWQFK-UHFFFAOYSA-N COC1C(C(=O)NCC1)(C(C1=CC=CC=C1)=O)OC Chemical compound COC1C(C(=O)NCC1)(C(C1=CC=CC=C1)=O)OC JPSGUKQHCKWQFK-UHFFFAOYSA-N 0.000 description 1
- GAWIXWVDTYZWAW-UHFFFAOYSA-N C[CH]O Chemical group C[CH]O GAWIXWVDTYZWAW-UHFFFAOYSA-N 0.000 description 1
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 description 1
- KXDHJXZQYSOELW-UHFFFAOYSA-M Carbamate Chemical compound NC([O-])=O KXDHJXZQYSOELW-UHFFFAOYSA-M 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 102000011632 Caseins Human genes 0.000 description 1
- 108010076119 Caseins Proteins 0.000 description 1
- 108010084185 Cellulases Proteins 0.000 description 1
- 102000005575 Cellulases Human genes 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- CPAUGGMRDMSFTA-UHFFFAOYSA-N ClC1=C(C(=O)C2C(=O)NCCC2)C(=CC(=C1)Cl)Cl Chemical compound ClC1=C(C(=O)C2C(=O)NCCC2)C(=CC(=C1)Cl)Cl CPAUGGMRDMSFTA-UHFFFAOYSA-N 0.000 description 1
- WZMAMAFMMGDBIQ-UHFFFAOYSA-N ClC1=CC=C(C(=O)C2C(=O)NCCC2)C=C1 Chemical compound ClC1=CC=C(C(=O)C2C(=O)NCCC2)C=C1 WZMAMAFMMGDBIQ-UHFFFAOYSA-N 0.000 description 1
- DRGBUMHMYOCYIA-UHFFFAOYSA-N ClC1C(C(=O)NCC1)(C(C1=CC=CC=C1)=O)Cl Chemical compound ClC1C(C(=O)NCC1)(C(C1=CC=CC=C1)=O)Cl DRGBUMHMYOCYIA-UHFFFAOYSA-N 0.000 description 1
- 235000013162 Cocos nucifera Nutrition 0.000 description 1
- 244000060011 Cocos nucifera Species 0.000 description 1
- 102000008186 Collagen Human genes 0.000 description 1
- 108010035532 Collagen Proteins 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- 229910014570 C—OH Inorganic materials 0.000 description 1
- UNXHWFMMPAWVPI-QWWZWVQMSA-N D-Threitol Natural products OC[C@@H](O)[C@H](O)CO UNXHWFMMPAWVPI-QWWZWVQMSA-N 0.000 description 1
- HEBKCHPVOIAQTA-QWWZWVQMSA-N D-arabinitol Chemical compound OC[C@@H](O)C(O)[C@H](O)CO HEBKCHPVOIAQTA-QWWZWVQMSA-N 0.000 description 1
- FBPFZTCFMRRESA-ZXXMMSQZSA-N D-iditol Chemical compound OC[C@@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-ZXXMMSQZSA-N 0.000 description 1
- 108010092681 DNA Primase Proteins 0.000 description 1
- 102000016559 DNA Primase Human genes 0.000 description 1
- RPNUMPOLZDHAAY-UHFFFAOYSA-N Diethylenetriamine Chemical compound NCCNCCN RPNUMPOLZDHAAY-UHFFFAOYSA-N 0.000 description 1
- QEVGZEDELICMKH-UHFFFAOYSA-N Diglycolic acid Chemical compound OC(=O)COCC(O)=O QEVGZEDELICMKH-UHFFFAOYSA-N 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- QXNVGIXVLWOKEQ-UHFFFAOYSA-N Disodium Chemical class [Na][Na] QXNVGIXVLWOKEQ-UHFFFAOYSA-N 0.000 description 1
- 101100536354 Drosophila melanogaster tant gene Proteins 0.000 description 1
- 108010083608 Durazym Proteins 0.000 description 1
- UNXHWFMMPAWVPI-UHFFFAOYSA-N Erythritol Natural products OCC(O)C(O)CO UNXHWFMMPAWVPI-UHFFFAOYSA-N 0.000 description 1
- 108090000371 Esterases Proteins 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- IMROMDMJAWUWLK-UHFFFAOYSA-N Ethenol Chemical group OC=C IMROMDMJAWUWLK-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- DBVJJBKOTRCVKF-UHFFFAOYSA-N Etidronic acid Chemical compound OP(=O)(O)C(O)(C)P(O)(O)=O DBVJJBKOTRCVKF-UHFFFAOYSA-N 0.000 description 1
- BDAGIHXWWSANSR-UHFFFAOYSA-M Formate Chemical compound [O-]C=O BDAGIHXWWSANSR-UHFFFAOYSA-M 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 239000004705 High-molecular-weight polyethylene Substances 0.000 description 1
- 241000223198 Humicola Species 0.000 description 1
- 241001373560 Humicola sp. Species 0.000 description 1
- IMQLKJBTEOYOSI-GPIVLXJGSA-N Inositol-hexakisphosphate Chemical class OP(O)(=O)O[C@H]1[C@H](OP(O)(O)=O)[C@@H](OP(O)(O)=O)[C@H](OP(O)(O)=O)[C@H](OP(O)(O)=O)[C@@H]1OP(O)(O)=O IMQLKJBTEOYOSI-GPIVLXJGSA-N 0.000 description 1
- OWYWGLHRNBIFJP-UHFFFAOYSA-N Ipazine Chemical compound CCN(CC)C1=NC(Cl)=NC(NC(C)C)=N1 OWYWGLHRNBIFJP-UHFFFAOYSA-N 0.000 description 1
- 108010076876 Keratins Proteins 0.000 description 1
- 102000011782 Keratins Human genes 0.000 description 1
- JVTAAEKCZFNVCJ-UHFFFAOYSA-M Lactate Chemical compound CC(O)C([O-])=O JVTAAEKCZFNVCJ-UHFFFAOYSA-M 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 235000007688 Lycopersicon esculentum Nutrition 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229910021380 Manganese Chloride Inorganic materials 0.000 description 1
- GLFNIEUTAYBVOC-UHFFFAOYSA-L Manganese chloride Chemical compound Cl[Mn]Cl GLFNIEUTAYBVOC-UHFFFAOYSA-L 0.000 description 1
- WAEMQWOKJMHJLA-UHFFFAOYSA-N Manganese(2+) Chemical compound [Mn+2] WAEMQWOKJMHJLA-UHFFFAOYSA-N 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- 239000007832 Na2SO4 Substances 0.000 description 1
- 108091005507 Neutral proteases Proteins 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- 108700020962 Peroxidase Proteins 0.000 description 1
- 102000003992 Peroxidases Human genes 0.000 description 1
- ABLZXFCXXLZCGV-UHFFFAOYSA-N Phosphorous acid Chemical class OP(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 description 1
- LGRFSURHDFAFJT-UHFFFAOYSA-N Phthalic anhydride Natural products C1=CC=C2C(=O)OC(=O)C2=C1 LGRFSURHDFAFJT-UHFFFAOYSA-N 0.000 description 1
- IMQLKJBTEOYOSI-UHFFFAOYSA-N Phytic acid Natural products OP(O)(=O)OC1C(OP(O)(O)=O)C(OP(O)(O)=O)C(OP(O)(O)=O)C(OP(O)(O)=O)C1OP(O)(O)=O IMQLKJBTEOYOSI-UHFFFAOYSA-N 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 108010059820 Polygalacturonase Proteins 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 241000589774 Pseudomonas sp. Species 0.000 description 1
- CZPWVGJYEJSRLH-UHFFFAOYSA-N Pyrimidine Chemical compound C1=CN=CN=C1 CZPWVGJYEJSRLH-UHFFFAOYSA-N 0.000 description 1
- 240000003768 Solanum lycopersicum Species 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-N Sulfurous acid Chemical compound OS(O)=O LSNNMFCWUKXFEE-UHFFFAOYSA-N 0.000 description 1
- YSMRWXYRXBRSND-UHFFFAOYSA-N TOTP Chemical compound CC1=CC=CC=C1OP(=O)(OC=1C(=CC=CC=1)C)OC1=CC=CC=C1C YSMRWXYRXBRSND-UHFFFAOYSA-N 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- XOAAWQZATWQOTB-UHFFFAOYSA-N Taurine Natural products NCCS(O)(=O)=O XOAAWQZATWQOTB-UHFFFAOYSA-N 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 241001425718 Vagrans egista Species 0.000 description 1
- TVXBFESIOXBWNM-UHFFFAOYSA-N Xylitol Natural products OCCC(O)C(O)C(O)CCO TVXBFESIOXBWNM-UHFFFAOYSA-N 0.000 description 1
- UAOKXEHOENRFMP-ZJIFWQFVSA-N [(2r,3r,4s,5r)-2,3,4,5-tetraacetyloxy-6-oxohexyl] acetate Chemical compound CC(=O)OC[C@@H](OC(C)=O)[C@@H](OC(C)=O)[C@H](OC(C)=O)[C@@H](OC(C)=O)C=O UAOKXEHOENRFMP-ZJIFWQFVSA-N 0.000 description 1
- JNGWKQJZIUZUPR-UHFFFAOYSA-N [3-(dodecanoylamino)propyl](hydroxy)dimethylammonium Chemical compound CCCCCCCCCCCC(=O)NCCC[N+](C)(C)[O-] JNGWKQJZIUZUPR-UHFFFAOYSA-N 0.000 description 1
- IFEUBXRSLPUMSI-UHFFFAOYSA-N [ClH]1NN=NC=C1 Chemical class [ClH]1NN=NC=C1 IFEUBXRSLPUMSI-UHFFFAOYSA-N 0.000 description 1
- RVDHOZIJMWZGMV-UHFFFAOYSA-N [N+](=O)([O-])C1=CC=C(C(=O)C2C(=O)NCCC2)C=C1 Chemical compound [N+](=O)([O-])C1=CC=C(C(=O)C2C(=O)NCCC2)C=C1 RVDHOZIJMWZGMV-UHFFFAOYSA-N 0.000 description 1
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 1
- 239000012345 acetylating agent Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 150000003926 acrylamides Chemical class 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000010933 acylation Effects 0.000 description 1
- 238000005917 acylation reaction Methods 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 150000008041 alkali metal carbonates Chemical class 0.000 description 1
- 229910001413 alkali metal ion Inorganic materials 0.000 description 1
- 229910052936 alkali metal sulfate Inorganic materials 0.000 description 1
- 125000005157 alkyl carboxy group Chemical group 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 235000006708 antioxidants Nutrition 0.000 description 1
- 239000012736 aqueous medium Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 229940072107 ascorbate Drugs 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- IYVBKVVOHXVKRD-UHFFFAOYSA-N benzimidazol-1-yl(phenyl)methanone Chemical compound C1=NC2=CC=CC=C2N1C(=O)C1=CC=CC=C1 IYVBKVVOHXVKRD-UHFFFAOYSA-N 0.000 description 1
- 235000010233 benzoic acid Nutrition 0.000 description 1
- PASDCCFISLVPSO-UHFFFAOYSA-N benzoyl chloride Chemical compound ClC(=O)C1=CC=CC=C1 PASDCCFISLVPSO-UHFFFAOYSA-N 0.000 description 1
- 108010005774 beta-Galactosidase Proteins 0.000 description 1
- 102000005936 beta-Galactosidase Human genes 0.000 description 1
- 235000013361 beverage Nutrition 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- ZADPBFCGQRWHPN-UHFFFAOYSA-N boronic acid Chemical compound OBO ZADPBFCGQRWHPN-UHFFFAOYSA-N 0.000 description 1
- 150000001642 boronic acid derivatives Chemical class 0.000 description 1
- 244000309464 bull Species 0.000 description 1
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical class O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 1
- XNOQNFJEPBFKLL-UHFFFAOYSA-N butanedioic acid;1,2-diaminopropan-2-ol Chemical compound CC(N)(O)CN.OC(=O)CCC(O)=O.OC(=O)CCC(O)=O XNOQNFJEPBFKLL-UHFFFAOYSA-N 0.000 description 1
- JHIWVOJDXOSYLW-UHFFFAOYSA-N butyl 2,2-difluorocyclopropane-1-carboxylate Chemical compound CCCCOC(=O)C1CC1(F)F JHIWVOJDXOSYLW-UHFFFAOYSA-N 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 235000013877 carbamide Nutrition 0.000 description 1
- 125000002057 carboxymethyl group Chemical group [H]OC(=O)C([H])([H])[*] 0.000 description 1
- 239000005018 casein Substances 0.000 description 1
- BECPQYXYKAMYBN-UHFFFAOYSA-N casein, tech. Chemical compound NCCCCC(C(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(CC(C)C)N=C(O)C(CCC(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(C(C)O)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(COP(O)(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(N)CC1=CC=CC=C1 BECPQYXYKAMYBN-UHFFFAOYSA-N 0.000 description 1
- 235000021240 caseins Nutrition 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 230000009920 chelation Effects 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 235000019219 chocolate Nutrition 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 238000010367 cloning Methods 0.000 description 1
- 239000008199 coating composition Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 150000004700 cobalt complex Chemical class 0.000 description 1
- 229920001436 collagen Polymers 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 235000012343 cottonseed oil Nutrition 0.000 description 1
- 239000002385 cottonseed oil Substances 0.000 description 1
- MGNCLNQXLYJVJD-UHFFFAOYSA-N cyanuric chloride Chemical compound ClC1=NC(Cl)=NC(Cl)=N1 MGNCLNQXLYJVJD-UHFFFAOYSA-N 0.000 description 1
- NZNMSOFKMUBTKW-UHFFFAOYSA-N cyclohexanecarboxylic acid Chemical class OC(=O)C1CCCCC1 NZNMSOFKMUBTKW-UHFFFAOYSA-N 0.000 description 1
- SINKOGOPEQSHQD-UHFFFAOYSA-N cyclopentadienide Chemical compound C=1C=C[CH-]C=1 SINKOGOPEQSHQD-UHFFFAOYSA-N 0.000 description 1
- 230000001461 cytolytic effect Effects 0.000 description 1
- 125000003493 decenyl group Chemical group [H]C([*])=C([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- GSPKZYJPUDYKPI-UHFFFAOYSA-N diethoxy sulfate Chemical compound CCOOS(=O)(=O)OOCC GSPKZYJPUDYKPI-UHFFFAOYSA-N 0.000 description 1
- 125000004177 diethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- FSBVERYRVPGNGG-UHFFFAOYSA-N dimagnesium dioxido-bis[[oxido(oxo)silyl]oxy]silane hydrate Chemical compound O.[Mg+2].[Mg+2].[O-][Si](=O)O[Si]([O-])([O-])O[Si]([O-])=O FSBVERYRVPGNGG-UHFFFAOYSA-N 0.000 description 1
- XQRLCLUYWUNEEH-UHFFFAOYSA-L diphosphonate(2-) Chemical compound [O-]P(=O)OP([O-])=O XQRLCLUYWUNEEH-UHFFFAOYSA-L 0.000 description 1
- 229940042399 direct acting antivirals protease inhibitors Drugs 0.000 description 1
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 description 1
- VVYVUOFMPAXVCH-UHFFFAOYSA-L disodium;5-[[4-anilino-6-[2-hydroxyethyl(methyl)amino]-1,3,5-triazin-2-yl]amino]-2-[2-[4-[[4-anilino-6-[2-hydroxyethyl(methyl)amino]-1,3,5-triazin-2-yl]amino]-2-sulfonatophenyl]ethenyl]benzenesulfonate Chemical group [Na+].[Na+].N=1C(NC=2C=C(C(C=CC=3C(=CC(NC=4N=C(N=C(NC=5C=CC=CC=5)N=4)N(C)CCO)=CC=3)S([O-])(=O)=O)=CC=2)S([O-])(=O)=O)=NC(N(CCO)C)=NC=1NC1=CC=CC=C1 VVYVUOFMPAXVCH-UHFFFAOYSA-L 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- SYELZBGXAIXKHU-UHFFFAOYSA-N dodecyldimethylamine N-oxide Chemical compound CCCCCCCCCCCC[N+](C)(C)[O-] SYELZBGXAIXKHU-UHFFFAOYSA-N 0.000 description 1
- 238000007580 dry-mixing Methods 0.000 description 1
- NFDRPXJGHKJRLJ-UHFFFAOYSA-N edtmp Chemical compound OP(O)(=O)CN(CP(O)(O)=O)CCN(CP(O)(O)=O)CP(O)(O)=O NFDRPXJGHKJRLJ-UHFFFAOYSA-N 0.000 description 1
- 235000013601 eggs Nutrition 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 239000002532 enzyme inhibitor Substances 0.000 description 1
- UNXHWFMMPAWVPI-ZXZARUISSA-N erythritol Chemical compound OC[C@H](O)[C@H](O)CO UNXHWFMMPAWVPI-ZXZARUISSA-N 0.000 description 1
- XWENCHGJOCJZQO-UHFFFAOYSA-N ethane-1,1,2,2-tetracarboxylic acid Chemical class OC(=O)C(C(O)=O)C(C(O)=O)C(O)=O XWENCHGJOCJZQO-UHFFFAOYSA-N 0.000 description 1
- IGBSXRIJNMDLFB-UHFFFAOYSA-N ethane-1,2-diamine;pentanedioic acid Chemical compound NCCN.OC(=O)CCCC(O)=O.OC(=O)CCCC(O)=O IGBSXRIJNMDLFB-UHFFFAOYSA-N 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 108010093305 exopolygalacturonase Proteins 0.000 description 1
- 150000002194 fatty esters Chemical class 0.000 description 1
- 238000005187 foaming Methods 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- 229910021485 fumed silica Inorganic materials 0.000 description 1
- 230000002538 fungal effect Effects 0.000 description 1
- 125000002519 galactosyl group Chemical group C1([C@H](O)[C@@H](O)[C@@H](O)[C@H](O1)CO)* 0.000 description 1
- 150000008195 galaktosides Chemical class 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229930182478 glucoside Natural products 0.000 description 1
- 150000008131 glucosides Chemical class 0.000 description 1
- 125000002791 glucosyl group Chemical group C1([C@H](O)[C@@H](O)[C@H](O)[C@H](O1)CO)* 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 238000005469 granulation Methods 0.000 description 1
- 230000003179 granulation Effects 0.000 description 1
- 235000013882 gravy Nutrition 0.000 description 1
- DMEGYFMYUHOHGS-UHFFFAOYSA-N heptamethylene Natural products C1CCCCCC1 DMEGYFMYUHOHGS-UHFFFAOYSA-N 0.000 description 1
- 125000003187 heptyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 150000002391 heterocyclic compounds Chemical group 0.000 description 1
- HKZVDXUEAWCPIQ-UHFFFAOYSA-N hexane-1,2,3,4,5,6-hexacarboxylic acid Chemical class OC(=O)CC(C(O)=O)C(C(O)=O)C(C(O)=O)C(C(O)=O)CC(O)=O HKZVDXUEAWCPIQ-UHFFFAOYSA-N 0.000 description 1
- 229920006158 high molecular weight polymer Polymers 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 1
- 239000008172 hydrogenated vegetable oil Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical group [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- JEGIFBGJZPYMJS-UHFFFAOYSA-N imidazol-1-yl(phenyl)methanone Chemical compound C1=CN=CN1C(=O)C1=CC=CC=C1 JEGIFBGJZPYMJS-UHFFFAOYSA-N 0.000 description 1
- NBZBKCUXIYYUSX-UHFFFAOYSA-N iminodiacetic acid Chemical class OC(=O)CNCC(O)=O NBZBKCUXIYYUSX-UHFFFAOYSA-N 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000000415 inactivating effect Effects 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- CDAISMWEOUEBRE-GPIVLXJGSA-N inositol Chemical compound O[C@H]1[C@H](O)[C@@H](O)[C@H](O)[C@H](O)[C@@H]1O CDAISMWEOUEBRE-GPIVLXJGSA-N 0.000 description 1
- 229960000367 inositol Drugs 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- SUMDYPCJJOFFON-UHFFFAOYSA-N isethionic acid Chemical class OCCS(O)(=O)=O SUMDYPCJJOFFON-UHFFFAOYSA-N 0.000 description 1
- 235000008960 ketchup Nutrition 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 229960001375 lactose Drugs 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 229910003002 lithium salt Inorganic materials 0.000 description 1
- 159000000002 lithium salts Chemical class 0.000 description 1
- 150000002680 magnesium Chemical class 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000000391 magnesium silicate Substances 0.000 description 1
- 235000019792 magnesium silicate Nutrition 0.000 description 1
- 229910052919 magnesium silicate Inorganic materials 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011565 manganese chloride Substances 0.000 description 1
- 235000002867 manganese chloride Nutrition 0.000 description 1
- 239000011683 manganese gluconate Substances 0.000 description 1
- 235000014012 manganese gluconate Nutrition 0.000 description 1
- 229940072543 manganese gluconate Drugs 0.000 description 1
- OXHQNTSSPHKCPB-IYEMJOQQSA-L manganese(2+);(2r,3s,4r,5r)-2,3,4,5,6-pentahydroxyhexanoate Chemical compound [Mn+2].OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C([O-])=O.OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C([O-])=O OXHQNTSSPHKCPB-IYEMJOQQSA-L 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 108010003855 mesentericopeptidase Proteins 0.000 description 1
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 1
- XJRBAMWJDBPFIM-UHFFFAOYSA-N methyl vinyl ether Chemical compound COC=C XJRBAMWJDBPFIM-UHFFFAOYSA-N 0.000 description 1
- 239000004200 microcrystalline wax Substances 0.000 description 1
- 235000019808 microcrystalline wax Nutrition 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 150000004682 monohydrates Chemical class 0.000 description 1
- 125000001421 myristyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- DZJFABDVWIPEIM-UHFFFAOYSA-N n,n-bis(2-hydroxyethyl)dodecan-1-amine oxide Chemical compound CCCCCCCCCCCC[N+]([O-])(CCO)CCO DZJFABDVWIPEIM-UHFFFAOYSA-N 0.000 description 1
- BACGZXMASLQEQT-UHFFFAOYSA-N n,n-diethyldecan-1-amine oxide Chemical compound CCCCCCCCCC[N+]([O-])(CC)CC BACGZXMASLQEQT-UHFFFAOYSA-N 0.000 description 1
- IBOBFGGLRNWLIL-UHFFFAOYSA-N n,n-dimethylhexadecan-1-amine oxide Chemical compound CCCCCCCCCCCCCCCC[N+](C)(C)[O-] IBOBFGGLRNWLIL-UHFFFAOYSA-N 0.000 description 1
- UTTVXKGNTWZECK-UHFFFAOYSA-N n,n-dimethyloctadecan-1-amine oxide Chemical compound CCCCCCCCCCCCCCCCCC[N+](C)(C)[O-] UTTVXKGNTWZECK-UHFFFAOYSA-N 0.000 description 1
- RSVIRMFSJVHWJV-UHFFFAOYSA-N n,n-dimethyloctan-1-amine oxide Chemical compound CCCCCCCC[N+](C)(C)[O-] RSVIRMFSJVHWJV-UHFFFAOYSA-N 0.000 description 1
- FLZHCODKZSZHHW-UHFFFAOYSA-N n,n-dipropyltetradecan-1-amine oxide Chemical compound CCCCCCCCCCCCCC[N+]([O-])(CCC)CCC FLZHCODKZSZHHW-UHFFFAOYSA-N 0.000 description 1
- WNGXRJQKUYDBDP-UHFFFAOYSA-N n-ethyl-n-methylhexadecan-1-amine oxide Chemical compound CCCCCCCCCCCCCCCC[N+](C)([O-])CC WNGXRJQKUYDBDP-UHFFFAOYSA-N 0.000 description 1
- HMMPCBAWTWYFLR-UHFFFAOYSA-N n-pyridin-2-ylpyridin-2-amine Chemical compound C=1C=CC=NC=1NC1=CC=CC=N1 HMMPCBAWTWYFLR-UHFFFAOYSA-N 0.000 description 1
- MGFYIUFZLHCRTH-UHFFFAOYSA-N nitrilotriacetic acid Chemical compound OC(=O)CN(CC(O)=O)CC(O)=O MGFYIUFZLHCRTH-UHFFFAOYSA-N 0.000 description 1
- SXLLDUPXUVRMEE-UHFFFAOYSA-N nonanediperoxoic acid Chemical compound OOC(=O)CCCCCCCC(=O)OO SXLLDUPXUVRMEE-UHFFFAOYSA-N 0.000 description 1
- 125000001402 nonanoyl group Chemical group O=C([*])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000001400 nonyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 230000000269 nucleophilic effect Effects 0.000 description 1
- LYRFLYHAGKPMFH-UHFFFAOYSA-N octadecanamide Chemical compound CCCCCCCCCCCCCCCCCC(N)=O LYRFLYHAGKPMFH-UHFFFAOYSA-N 0.000 description 1
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 235000019198 oils Nutrition 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 150000002923 oximes Chemical class 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000006072 paste Substances 0.000 description 1
- 239000000137 peptide hydrolase inhibitor Substances 0.000 description 1
- 239000002304 perfume Substances 0.000 description 1
- 125000000864 peroxy group Chemical group O(O*)* 0.000 description 1
- JRKICGRDRMAZLK-UHFFFAOYSA-L peroxydisulfate Chemical compound [O-]S(=O)(=O)OOS([O-])(=O)=O JRKICGRDRMAZLK-UHFFFAOYSA-L 0.000 description 1
- 150000003014 phosphoric acid esters Chemical class 0.000 description 1
- 150000003021 phthalic acid derivatives Chemical class 0.000 description 1
- 235000002949 phytic acid Nutrition 0.000 description 1
- 239000000467 phytic acid Substances 0.000 description 1
- 229940068041 phytic acid Drugs 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920001748 polybutylene Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 229910052573 porcelain Inorganic materials 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 239000011164 primary particle Substances 0.000 description 1
- NJKRDXUWFBJCDI-UHFFFAOYSA-N propane-1,1,2,3-tetracarboxylic acid Chemical class OC(=O)CC(C(O)=O)C(C(O)=O)C(O)=O NJKRDXUWFBJCDI-UHFFFAOYSA-N 0.000 description 1
- NJEVMKZODGWUQT-UHFFFAOYSA-N propane-1,1,3,3-tetracarboxylic acid Chemical class OC(=O)C(C(O)=O)CC(C(O)=O)C(O)=O NJEVMKZODGWUQT-UHFFFAOYSA-N 0.000 description 1
- 230000002797 proteolythic effect Effects 0.000 description 1
- ROSDSFDQCJNGOL-UHFFFAOYSA-N protonated dimethyl amine Natural products CNC ROSDSFDQCJNGOL-UHFFFAOYSA-N 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- PBMFSQRYOILNGV-UHFFFAOYSA-N pyridazine Chemical compound C1=CC=NN=C1 PBMFSQRYOILNGV-UHFFFAOYSA-N 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 150000003856 quaternary ammonium compounds Chemical class 0.000 description 1
- 125000001453 quaternary ammonium group Chemical group 0.000 description 1
- 150000004023 quaternary phosphonium compounds Chemical class 0.000 description 1
- 239000002516 radical scavenger Substances 0.000 description 1
- 229920005604 random copolymer Polymers 0.000 description 1
- 238000006268 reductive amination reaction Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- HEBKCHPVOIAQTA-ZXFHETKHSA-N ribitol Chemical compound OC[C@H](O)[C@H](O)[C@H](O)CO HEBKCHPVOIAQTA-ZXFHETKHSA-N 0.000 description 1
- YGSDEFSMJLZEOE-UHFFFAOYSA-M salicylate Chemical compound OC1=CC=CC=C1C([O-])=O YGSDEFSMJLZEOE-UHFFFAOYSA-M 0.000 description 1
- 229960001860 salicylate Drugs 0.000 description 1
- 229940071089 sarcosinate Drugs 0.000 description 1
- CDAISMWEOUEBRE-UHFFFAOYSA-N scyllo-inosotol Natural products OC1C(O)C(O)C(O)C(O)C1O CDAISMWEOUEBRE-UHFFFAOYSA-N 0.000 description 1
- 229940071207 sesquicarbonate Drugs 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 239000000429 sodium aluminium silicate Substances 0.000 description 1
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 1
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 description 1
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 description 1
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 1
- 229960001922 sodium perborate Drugs 0.000 description 1
- 239000012418 sodium perborate tetrahydrate Substances 0.000 description 1
- 235000019832 sodium triphosphate Nutrition 0.000 description 1
- ZUFONQSOSYEWCN-UHFFFAOYSA-M sodium;2-(methylamino)acetate Chemical compound [Na+].CNCC([O-])=O ZUFONQSOSYEWCN-UHFFFAOYSA-M 0.000 description 1
- IBDSNZLUHYKHQP-UHFFFAOYSA-N sodium;3-oxidodioxaborirane;tetrahydrate Chemical compound O.O.O.O.[Na+].[O-]B1OO1 IBDSNZLUHYKHQP-UHFFFAOYSA-N 0.000 description 1
- YKLJGMBLPUQQOI-UHFFFAOYSA-M sodium;oxidooxy(oxo)borane Chemical compound [Na+].[O-]OB=O YKLJGMBLPUQQOI-UHFFFAOYSA-M 0.000 description 1
- 239000012265 solid product Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 235000014347 soups Nutrition 0.000 description 1
- 235000012424 soybean oil Nutrition 0.000 description 1
- 239000003549 soybean oil Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 125000004079 stearyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 125000000547 substituted alkyl group Chemical group 0.000 description 1
- 150000003890 succinate salts Chemical class 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- 150000003871 sulfonates Chemical class 0.000 description 1
- 239000000375 suspending agent Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 239000003826 tablet Substances 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- 239000011975 tartaric acid Substances 0.000 description 1
- 229940095064 tartrate Drugs 0.000 description 1
- 229960003080 taurine Drugs 0.000 description 1
- 150000004026 tertiary sulfonium compounds Chemical class 0.000 description 1
- 150000004685 tetrahydrates Chemical class 0.000 description 1
- DHCDFWKWKRSZHF-UHFFFAOYSA-L thiosulfate(2-) Chemical compound [O-]S([S-])(=O)=O DHCDFWKWKRSZHF-UHFFFAOYSA-L 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 150000003626 triacylglycerols Chemical class 0.000 description 1
- 125000004665 trialkylsilyl group Chemical group 0.000 description 1
- QQOWHRYOXYEMTL-UHFFFAOYSA-N triazin-4-amine Chemical class N=C1C=CN=NN1 QQOWHRYOXYEMTL-UHFFFAOYSA-N 0.000 description 1
- 150000003852 triazoles Chemical group 0.000 description 1
- LWIHDJKSTIGBAC-UHFFFAOYSA-K tripotassium phosphate Chemical compound [K+].[K+].[K+].[O-]P([O-])([O-])=O LWIHDJKSTIGBAC-UHFFFAOYSA-K 0.000 description 1
- WCTAGTRAWPDFQO-UHFFFAOYSA-K trisodium;hydrogen carbonate;carbonate Chemical compound [Na+].[Na+].[Na+].OC([O-])=O.[O-]C([O-])=O WCTAGTRAWPDFQO-UHFFFAOYSA-K 0.000 description 1
- 210000001364 upper extremity Anatomy 0.000 description 1
- 150000003672 ureas Chemical class 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 239000000811 xylitol Substances 0.000 description 1
- HEBKCHPVOIAQTA-SCDXWVJYSA-N xylitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)CO HEBKCHPVOIAQTA-SCDXWVJYSA-N 0.000 description 1
- 235000010447 xylitol Nutrition 0.000 description 1
- 229960002675 xylitol Drugs 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D17/00—Detergent materials or soaps characterised by their shape or physical properties
- C11D17/0039—Coated compositions or coated components in the compositions, (micro)capsules
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/38—Products with no well-defined composition, e.g. natural products
- C11D3/386—Preparations containing enzymes, e.g. protease or amylase
- C11D3/38672—Granulated or coated enzymes
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/39—Organic or inorganic per-compounds
- C11D3/3902—Organic or inorganic per-compounds combined with specific additives
- C11D3/3905—Bleach activators or bleach catalysts
- C11D3/3907—Organic compounds
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/39—Organic or inorganic per-compounds
- C11D3/3902—Organic or inorganic per-compounds combined with specific additives
- C11D3/3905—Bleach activators or bleach catalysts
- C11D3/3932—Inorganic compounds or complexes
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/39—Organic or inorganic per-compounds
- C11D3/3945—Organic per-compounds
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D2111/00—Cleaning compositions characterised by the objects to be cleaned; Cleaning compositions characterised by non-standard cleaning or washing processes
- C11D2111/40—Specific cleaning or washing processes
- C11D2111/44—Multi-step processes
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Detergent Compositions (AREA)
Abstract
There is provided a detergent composition containing: (a) a water-soluble builder, and (b) an enzyme, wherein a means is provided for delaying the release to a wash solution of said enzyme relative to the release of said water-soluble builder. A pretreat wash method is also provided.
Description
~W095128469 F PCTIUS95/04205 ..... . ._. ... - y : : 3,. 4!
1.
m .,2187437 DETERGENTS CONTAINING A BUILDER AND A DELAYED RELEASE ENZYME
~.f. ~ :~~Y.~
~. 1~i . t1 .I ~ , i This invention relates to detergent compositions containing a water-soluble builder and an enzyme, wherein a means is provided for delaying the release to the wash solution of said enzyme relative to the release of said water-soluble builder.
The satisfactory removal of enzyme sensitive soilslstains such as blood, egg, chocolate, gravy from soiled/stained substrates is a particular challenge to the formulator of a detergent composition for use in a washing method such as a laundry or machine dishwashing method.
Commonly, the removal of such soilslstains has been enabled by the use of enzyme components, proteolytic,. amylolytic, lipolytic and cellulolytic enzymes.
The Applicants have now found that where a composition containing both a water-soluble builder and an enzyme is employed, and wherein a means is provided for delaying the release to a wash solution of the enzyme relative to the release of the water-soluble builder enhanced stain/soil removal may be obtained.
The Applicants have in addition found that stain/soil removal benefits may be obtained when a soiled substrate is pretreated with a solution containing a water-soluble builder, prior to being washed in a method using an enzyme containing detergent product.
It is therefore an object of the present invention to provide compositions suitable for use in laundry and machine dishwashing methods having enhanced stain removal.
It is a related object of the present invention to provide a stain/soil pretreatment method involving pretreating the soiled substrate with a solution containing a water-soluble builder, prior to washing with an enzyme containing detergent product.
summary of the Invention According to the present invention there is provided a detergent composition containing
1.
m .,2187437 DETERGENTS CONTAINING A BUILDER AND A DELAYED RELEASE ENZYME
~.f. ~ :~~Y.~
~. 1~i . t1 .I ~ , i This invention relates to detergent compositions containing a water-soluble builder and an enzyme, wherein a means is provided for delaying the release to the wash solution of said enzyme relative to the release of said water-soluble builder.
The satisfactory removal of enzyme sensitive soilslstains such as blood, egg, chocolate, gravy from soiled/stained substrates is a particular challenge to the formulator of a detergent composition for use in a washing method such as a laundry or machine dishwashing method.
Commonly, the removal of such soilslstains has been enabled by the use of enzyme components, proteolytic,. amylolytic, lipolytic and cellulolytic enzymes.
The Applicants have now found that where a composition containing both a water-soluble builder and an enzyme is employed, and wherein a means is provided for delaying the release to a wash solution of the enzyme relative to the release of the water-soluble builder enhanced stain/soil removal may be obtained.
The Applicants have in addition found that stain/soil removal benefits may be obtained when a soiled substrate is pretreated with a solution containing a water-soluble builder, prior to being washed in a method using an enzyme containing detergent product.
It is therefore an object of the present invention to provide compositions suitable for use in laundry and machine dishwashing methods having enhanced stain removal.
It is a related object of the present invention to provide a stain/soil pretreatment method involving pretreating the soiled substrate with a solution containing a water-soluble builder, prior to washing with an enzyme containing detergent product.
summary of the Invention According to the present invention there is provided a detergent composition containing
2 (a) a water-soluble builder; and (b) an enzyme wherein a means is provided for delaying the release to a wash solution of said , enzyme relative to the release of said water-soluble builder such that in the TSO
test method herein described the time to achieve a concentration that is 5096 of the ultimate concentration of said water-soluble builder is less than 60 seconds and the time to achieve a concentration that is 50°b of the ultimate concentration of said enzyme is more than 90 seconds.
According to another aspect of the present invention there is provided a washing method comprising the steps of:
(1) applying an enzyme-free solution of a composition containing a water-soluble builder to a soiled substrate;
(2) allowing said solution to remain in contact with said soiled substrate for an effective time interval;
test method herein described the time to achieve a concentration that is 5096 of the ultimate concentration of said water-soluble builder is less than 60 seconds and the time to achieve a concentration that is 50°b of the ultimate concentration of said enzyme is more than 90 seconds.
According to another aspect of the present invention there is provided a washing method comprising the steps of:
(1) applying an enzyme-free solution of a composition containing a water-soluble builder to a soiled substrate;
(2) allowing said solution to remain in contact with said soiled substrate for an effective time interval;
(3) washing said soiled substrate using a washing method involving use of an enzyme-containing detergent composition.
water-aninble builder compound The detergent compositions of the present invention may contain a water-soluble builder compound, typically present at a level of from I °~ to 80°~ by weight, preferably from 10~ to 7096 by weight, most preferably from 2096 to 60~ by weight of the composition.
Suitable water-soluble builder compounds include the water soluble monomeric polycarboxylates, or their acid forms, homo or copolymeric polycarboxylic acids or their salts in which the polycarboxylic acid comprises at least two carboxylic radicals separated from each other by not more that two carbon atoms, carbonates, bicarbonates, borates, phosphates, silicates and mixtures of any of the foregoing.
The carboxylate or polycarboxylate builder can be monomeric or oligomeric in type although monomeric polycarboxylates are generally preferred for reasons of cost and performance.
Suitable carboxylates containing one carboxy group include the water soluble salts of lactic acid, glycolic acid and ether derivatives thereof. Polycarboxylates containing two carboxy groups include the water-soluble salts of succinic acid, malonic acid, (ethylenedioxy) diacetic acid, malefic acid, diglycolic acid, tartaric acid, tartronic acid and fumaric acid, as well as the ether carboxylates and the sutfinyl carboxylates. Polycarboxylates containing three carboxy groups include, in particular, water-soluble citrates, aconitrates and citraconates as well as succinate derivatives such as the carboxymethyloxysuccinates described in British Patent No. 1,379,241, lactoxysuccinates described in British Patent No.
1,389,732, and aminosuccinates described in Canadian Patent No. 973,771, and the oxypolycarboxylate materials such as 2-oxa-1,1,3-propane tricarboxylates described in British Patent No. 1,387,447.
Polycarboxylates containing four carboxy groups include oxydisuccinates disclosed in British Patent No. 1,261,829, 1,1,2,2-ethane tetracarboxylates, 1,1,3,3-propane tetracarboxylates and 1,1,2,3-propane tetracarboxylates. Polycarboxylates containing sulfo substituents include the sulfosuccinate derivatives disclosed in British Patent Nos. 1,398,421 and 1,398,422 and in U.S. Patent No. 3,936,448, and the sulfonated pyrolysed citrates described in British Patent No.
1,439,000.
Alicyclic and heterocyclic polycarboxylates include cyclopentane-cis,cis,cis-tetracarboxylates, cyclopentadienide pentacarboxylates, 2,3,4,5-tetrahydrofuran -cis, cis, cis-tetracarboxylates, 2,5-tetrahydrofuran - cis - dicarboxylates, 2,2,5,5-tetrahydrofuran - tetracarboxylates, 1,2,3,4,5,6-hexane - hexacarboxylates and carboxymethyl derivatives of polyhydric alcohols such as sorbitol, mannitol and xylitol. Aromatic polycarboxylates include mellitic acid, pyromellitic acid and the phthalic acid derivatives disclosed in British Patent No. 1,425,343.
Of the above, the preferred polycarboxylates are hydmxycarboxylates containing up to three carboxy groups per molecule, more particularly citrates.
W0 95128469 PCTlUS95f04205 The parent acids of the monomeric or oligomeric polycarboxylate chelating agents or riiixtures thereof with their salts, e.g. citric acid or citrate/citric acid mixtures are also contemplated as useful builder components.
Borate builders, as well as builders containing borate-forming materials that can produce borate under detergent storage or wash conditions can also be used but are not preferred at wash conditions less that about 50°C, especially less than about 40°C.
Examples of carbonate builders are the alkaline earth and alkali metal carbonates, including sodium carbonate and sesqui-carbonate and mixtures thereof with ultra-fine calcium carbonate as disclosed in German Patent Application No. 2,321,001 published on November 15, 1973.
Specific examples of water-soluble phosphate builders are the alkali metal tripolyphosphates, sodium, potassium and ammonium pyrophosphate, sodium and potassium and ammonium pyrophosphate, sodium and potassium orthophosphate, sodium polymetalphosphate in which the degree of polymerization ranges from about 6 to 21, and salts of phytic acid.
Suitable silicates include the water soluble sodium silicates with an Si02:
Na20 ratio of from 1.0 to 2.8, with ratios of from 1.6 to 2.4 being preferred, and 2.0 ratio being most preferred. The silicates may be in the form of either the anhydrous salt or a hydrated salt. Sodium silicate with an Si02: Na20 ratio of 2.0 is the most preferred silicate.
Silicates are preferably present in the detergent compositions in accord with the invention at a level of from 5~ to 50~ by weight of the composition, more preferably from 10~ to 40~ by weight.
~yme The detergent compositions contain an enzyme. Suitable enzymatic materials include the commercially available lipases, amylases, neutral and alkaline proteases, esterases, cellulases, pectinases, lactases and peroxidases conventionally incorporated into detergent compositions. Suitable enzymes are discussed in US
Patents 3,519,570 and 3,533,139.
Preferred commercially available protease enzymes include those sold under the trademarks Alcalase, Savinase, Primase, Durazym, and Esperase by Novo Industries A/S (Denmark), those sold under the trademarks Maxatase, Maxacal and Maxapem by Gist-Brocades, those sold by Genencor International, and those sold under the trademarks Opticlean and Optimase by Solvay Enzymes. Protease enzyme may be incorporated into the compositions in accordance with the invention at a level of from 0.0001 °.6 to 4 96 active enzyme by weight of the composition.
Preferred amylases include, for example, a-amylases obtained from a special strain of B licheniformis, described in more detail in GB-1,269,839 (Novo).
Preferred commercially available amylases include for example, those sold under the trademark Rapidase by Gist-Brocades, and those sold under the trademark Termamyl and BAN by Novo Industries A/S. Amylase enzyme may be incorporated into the composition in accordance with the invention at a level of from 0.00019b to 2 Yb active enzyme by weight of the composition.
Lipolytic enzyme (lipase) may be present at levels of active lipolytic enzyme of from 0.0001 ~ to 2 ~ by weight, preferably 0.0019 to 196 by weight, most preferably from 0.001 ~ to 0.5 9~ by weight of the compositions.
The lipase may be fungal or bacterial in origin being obtained, for example, from a lipase producing strain of Humicola sp., Tlrermomyces sp. or Pseudomonas sp.
including Pseudomonas pseudoalcali~enes or Pseudomas fluorescens. Lipase from chemically or genetically modified mutants of these strains are also useful herein.
A preferred lipase is derived from Pseudomonas ttseudoalcaligenes, which is described in Granted European Patent, EP-B-0218272.
Another preferred lipase herein is obtained by cloning the gene from Humicola lanueirrosa and expressing the gene in A~pereillus , as host, as described in European Patent Application, EP-A-0258 068, whfch is commercially available from Novo Industri AIS, Bagsvaerd, Denmark, under the trade mark Lipolase.
This lipase is also described in U.S. Patent 4,810,414, Huge-Jensen et al, issued March 7, 1989.
Where the enzyme is a protease, the ultimate amount in a typical wash solution is from 0.1 to 100 ICNPU, but preferably is from 0.5 to 50 IUVPU, more preferably from 3 to 30 KNPU and most preferably from 6 to 30 KNPU.
Where the enzyme is an amylase, the ultimate amount in a typical wash solution is from 1 to 200 K1VLT, but preferably is from 10 to 100 KNU, more preferably from 40 to 80 KNU.
Where the enzyme is a lipase, the ultimate amount in a typical wash solution, is from I to 300 KLU, but preferably is from 10 to 200 ICLU, more preferably from l O to l00 KLU. _ _ Where the enzyme is a cellulase,_the ultimate amount in the wash is typically from to 1200 CEVLT, but preferably is from 30 to 1000 CEVLT, more preferably from 80 to 500 CEVLJ.
Enzyme Stabilizing System Preferred enzyme-containing compositions herein may comprise from about 0.00136 to about 1096, preferably from about 0.005 to about 8~,most preferably from about 0.0196 to about 696, by weight of an enzyme stabilizing system. The enzyme stabilizing system can be any stabilizing system which is compatible with the detersive enzyme. Such stabilizing systems can comprise calcium ion, boric acid, propylene glycol, short chain carboxylic acid, boronic acid, and mixtures thereof. Such stabilizing systems can also comprise reversible enzyme inhibitors, such as reversible protease inhibitors.
The compositions herein may further comprise from 0 to about 1096, preferably from about 0.0196 to about 636 by weight, of chlorine bleach scavengers, added to prevent chlorine bleach species present in many water supplies from attacking and inactivating the enzymes, especially under alkaline conditions. While chlorine levels in water may be small, typically in the range from about 0.5 ppm to about 1.75 ppm, the available chlorine in the total volume of water that comes in contact with the enzyme during washing is usually large; accordingly, enzyme stability in-use can be problematic.
~W0 95128469 PCT/US95/04205 Suitable chlorine scavenger anions are widely available, and are illustrated by salts confaining ammonium rations or sulfite, bisulfate, thiosulfite, thiosulfate, iodide, etc. Antioxidants such as carbamate, ascorbate, etc., organic amines such as ethylenediaminetetracetic acid (EDTA) or alkali metal salt thereof, monoethanolamine (MEA), and mixtures thereof can likewise be used. Other conventional scavengers such as bisulfate, nitrate, chloride, sources of hydrogen peroxide such as sodium perborate tetrahydrate, sodium perborate monohydrate and sodium percarbonate, as well as phosphate, condensed phosphate, acetate, benzoate, citrate, formate, lactate, maLite, tartrate, salicylate, etc. and mixtures thereof can be used if desired.
uPlative relea ce l ;ne ; .r In an essential aspect of the invention a means is provided for delaying the release to a wash solution of the enzyme relative to the release of the water-soluble builder.
Said means may comprise a means for delaying the release of the enzyme to the wash solution.
Alternatively said means may comprise a means for enhancing the rate of release of the water-soluble builder to the solution.
The delayed release means can include coating the enzyme with any suitable component with a coating designed to provide the delayed release. The coating may therefore, for example, comprise a poorly water soluble material, or be a coating of sufficient thickness that the kinetics of dissolution of the thick coating provide the controlled rate of release.
~ The coating material may be applied using various methods. Any coating material is typically present at a weight ratio of coating material to bleach of from 1:99 to 1:2, preferably from 1:49 to 1:9.
WO 95128469 - _ PCTlUS95104205 Suitable coating materials include triglycerides (e.g. partially) hydrogenated vegetable oil, soy bean oil, cotton seed oil) mono or diglycerides, microcrystalline waxes, gelatin, cellulose, fatty acids and any mixtures thereof.
Other suitable coating materials can comprise the alkali and alkaline earth metal sulphates, silicates and carbonates, including calcium carbonate.
Preferred coating material is sodium silicate of Si02 : 1Va20 ratio from 1.6 :
1 to 3.4 : 1, preferably 2.8 : 1, applied as an aqueous solution to give a level of from 29& to 14?&, (normally from 3~~ to 5~) of silicate solids by weight of the percarbonate. Magnesium silicate can also be included in the coating.
Any inorganic salt coating materials may be combined with organic binder materials to provie composite inorganic salt/organic binder coatings. Suitable binders include the Ci0-C2p alcohol ethoxylates containing from 5 - 100 moles of ethylene oxide per mole of alcohol and more preferably the Clg-C24 P~m'Y
alcohol ethoxylates containing from 20 - 100 moles of ethylene oxide per mole of alcohol.
Other preferred binders include certain polymeric materials.
Polyvinylpyrrolidones with an average molecular weight of from 12,000 to 700,000 and polyethylene glycols (PEG) with an average molecular weight of from 600 to 10,400 are examples of such polymeric materials. Copolymers of malefic anhydride with ethylene, methylvinyl ether or methacrylic acid, the malefic anhydride constituting at least 20 mole percent of the polymer are further examples of polymeric materials useful as binder agents. These polymeric materials may be used as such or in combination with solvents such as water, propylene glycol and the above mentioned C10-C2p alcohol ethoxylates containing from 5 - 100 moles of ethylene oxide per mole. Further examples of binders include the Cl0-C20 mono- and diglycerol ethers and also the C10-C20 fatty acids.
Cellulose derivatives such as methylcellulose, carboxymethylcellulose and hydroxyethylcellulose, and homo- or co-polymeric polycarboxylic acids or their salts are other examples of binders suitable for use herein.
~W O 95!28469 PCT/US95104205 One method for applying the coating material involves agglomeration. Preferred agglomeration processes include the use of any of the organic binder materials described hi;reinabove. Any conventional agglomerator/mixer may be used including, but not limted to pan, rotary drum and vertical blender types.
Molten coating compositions may also be applied either by being poured onto, or spray atomized onto a moving bed of bleaching agent.
Other means of providing the required delayed release include mechanical means for altering the physical characteristics of any enzyme containing particulate to control its solubility and rate of release. Suitable protocols could include compaction, mechanical injection, manual injection, and adjustment of the solubility of the bleach compound by selection of particle size of any particulate component.
Whilst the choice of particle size will depend both on the composition of the particulate component, and the desire to meet the desired delayed release kinetics, it is desirable that the particle size should be more than 500 micrometers, preferably having an average particle diameter of from 800 to 1200 micrometers.
Additional protocols for providing the means of delayed release include the suitable choice of any other components of the detergent composition matrix such that when the composition is introduced to the wash solution the ionic strength environment therein provided enables the required delayed release kinetics to be achieved.
All suitable means for enhancing the rate of release of the water-soluble builder to the solution are envisaged.
The enhanced release means can include coating any suitable component with a coating designed to provide the enhanced release. The coating may therefore, for example, comprise a highly, or even effervescently, water soluble material.
Other means of providing the required delayed release include mechanical means for altering the physical characteristics of the water-soluble builder to enhance its solubility and rate of release.
~, fr;
A suitable protocol could include deliberate selection of the particle size of any water-soluble builder containing component. The choice of particle size will depend both on the composition of the particulate component, and the desire to meet the desired enhanced release kinetics. It is desirable that the particle size should be less than 1200 micrometers, preferably having an average particle diameter of from 1100 to 500 micrometers.
Additional protocols for providing the means of delayed release include the suitable choice of any other components of the detergent composition matrix, or of any particulate component containing the water-soluble builder, such that when the composition is introduced to the wash solution the ionic strength environment therein provided enables the required enhanced release kinetics to be achieved..
. 1. - ai. .... 3.
Relative rate of rel se - kinetic narameterc 218 7 ~ 3 7 The release of the enzyme relative to the water-soluble builder is such that in the T50 test method herein described the time to achieve a concentration that is of the ultimate concentration of said water-soluble builder is less than 60 seconds, preferably less than 50 seconds, more preferably less than 40 seconds, and the time to achieve a concentration that is 5096 of the ultimate concentration of said enzyme is more than 90 seconds, preferably more than 120 seconds, more preferably more than 150 seconds.
The ultimate wash concentration of the water-soluble builder is typically from 0.0005 ~ to 0.4 ~ , preferably from 0.005 96 to 0.35 9& , more preferably from 0.01~to0.396.
The ultimate wash concentration of the enzyme is typically from 0.000001 ~ to 0.0196 by weight of active enzyme, but preferably is from 0.0000196 to 0.0019b, more preferably from 0.00005 ~ to 0.0005 96.
The delayed release kinetics herein are defined with respect to a 'TA test method' which measures the time to achieve AR6 of the ultimate concentration/level of that component when a composition containing the component is dissolved according to the standard conditions now set out.
The standard conditions involve a 1 litre glass beaker filled with 1000 ml of distilled water at 20oC, to which lOg of composition is added. The contents of the beaker are agitated using a magnetic stirrer set at 100 rpm. The ultimate concentration/level is taken to be the concentration/level attained 10 minutes after addition of the composition to the water-filled beaker.
Suitable analytical methods are chosen to enable a reliable determination of the incidental, and ultimate in solution concentrations of the component of concern, subsequent to the addition of the composition to the water in the beaker.
WO 95!28469 PCTIUS95/04205 Such analytical methods can include those involving a continuous monitoring of the level of concentration of the component, including for example photometric and conductrimetric methods.
Alternatively, methods involving removing titres from the solution at set time intervals, stopping the disssolution process by an appropriate means such as by rapidly reducing the temperature of the titre, and then determining the concentration of the component in the titre by any means such as chemical titrimetric methods, can be employed.
Suitable graphical methods, including curve fitting methods, can be employed, where appropriate, to enable calculation of the the TA value from raw analytical results.
The particular analytical method selected for determining the concentration of the component, will depend on the nature of that component, and of the nature of the composition containing that component.
,9dditional detergent com oo nents The detergent compositions of the invention may also contain additional detergent components. The precise nature of these additional components, and levels of incorporation thereof will depend on the physical form of the composition, and the nature of the cleaning operation for which it is to be used.
The compositions of the invention may for example, be formulated as hand and machine laundry detergent compositions, including laundry additive compositions and compositions suitable for use in the pretreatment of stained fabrics and machine dishwashing compositions.
When formulated as compositions suitable for use in a machine washing method, eg: machine laundry and machine dishwashing methods, the compositions of the invention preferably contain one or more additional detergent components selected from surfactants, builders, organic polymeric compounds, bleaches, suds suppressors, Lime soap dispersants, soil suspension and anti-redeposition agents and corrosion inhibitors. Laundry compositions can also contain, as additional detergent components, softening agents.
~O 95!28469 v - - - PC1'IUS95104205 nt The detergent compositions of the invention may contain as an additional detergent component a surfactant selected from anionic, cationic, nonionic ampholytic, amphoteric and zwitterionic surfactants and mixtures thereof.
The surfactant is typically present at a level of from 0.1 ~b to 60 k by weight.
More preferred levels of incorporation of surfactant are from 1 ~ to 35 % by weight, most preferably from 1 °h to 20°6 by weight.
The surfactant is preferably formulated to be compatible with any enzyme components present in the composition. In liquid or gel compositions the surfactant is most preferably formulated such that it promotes, or at least does not degrade, the stability of any enzyme in these compositions.
A typical listing of anionic, nonionic, ampholytic, and zwitterionic classes, and species of these surfactants, is given in U.S.P. 3,929,678 issued to Laughlin and Heuring on December 30, 1975. Further examples are given in "Surface Active Agents and Detergents" (Vol. I and II by Schwartz, Perry and Beroh). A list of suitable cationic surfactants is given in U.S.P. 4,259,217 issued to Murphy on March 31, 1981.
Where present, ampholytic, amphoteric and zwitteronic surfactants are generally used in combination with one or more anionic andlor nonionic surfactants.
Anionic surfactant Essentially any anionic surfactants usefulfor detersive purposes can be included in the compositions. These can include salts (including, for example, sodium, potassium, ammotuum, and substituted ammonium salts such as mono-, di- and triethanolamine salts) of the anionic sulfate, sulfonate, carboxylate and sarcosinate surfactants.
Other anionic surfactants include the isethionates such as the acyl isethionates, N-acyl taurates, fatty acid amides of methyl tauride, alkyl succinates and sulfosuccinates, monoesters of sulfosuccinate (especially saturated and unsaturated C12 CI8 monoesters) diesters of sulfosuccinate (especially saturated and unsaturated C6 C14 diesters), N-acyl sarcosinates. Resin acids and hydrogenated resin acids are also suitable, such as rosin, hydrogenated rosin, and resin acids and hydrogenated resin acids present in or derived from tallow oil.
~O 95!28469 ~ PCT/US95/04205 21g7437 Anionic sulfate s,~_rfactant Anionic sulfate surfactants suitable for use herein include the linear and branched primary alkyl sulfates, alkyl ethoxysulfates, fatty oleyl glycerol sulfates, alkyl phenol ethylene oxide ether sulfates, the CS-Cl~ aryl-N-(Cl-C4 alkyl) and -N-(Cl-C2 hydroxyalkyl) glucamine sulfates, and sulfates of alkylpolysaccharides such as the sulfates of allcylpolyglucoside (the nonionic nonsulfated compounds being described herein).
Alkyl ethoxysulfate surfactants are preferably selected from the group consisting of the C6-Clg alkyl sulfates which have been ethoxylated with from about 0.5 to about 20 moles of ethylene oxide per molecule. More preferably, the alkyl ethoxysulfate surfactant is a C6-Clg alkyl sulfate which has been ethoxylated with from about 0.5 to about 20, preferably from about 0.5 to about 5, moles of ethylene oxide per molecule.
Anionic sulfonate surfactant Anionic sulfonate surfactants suitable for use herein include the salts of Cg-linear alkylbenzene sulfonates, alkyl ester sulfonates, C6-C~ primary or secondary alkane sulfonates, C6-C24 oleFm sulfonates, sulfonated polycarboxyiic acids, alkyl glycerol sulfonates, fatty aryl glycerol sulfonates, fatty oleyl glycerol sulfonates, and any mixtures thereof.
Anionic carboxylate surfactants suitable for use herein include the alkyl ethoxy carboxylates, the allcyl polyethoxy polycarboxylate surfactants and the soaps ('alkyl carboxyls'), especially certain secondary soaps as described herein.
Preferred alkyl ethoxy carboxylates for use herein include those with the formula RO(CH2CH20)x CH2C00-M-~' wherein R is a C6 to Clg alkyl group, x ranges from O to 10, and the ethoxylate distribution is such that, on a weight basis, the amount of material where x is 0 is less than about 20 % , and the amount of material where x is greater than 7, is less than about 25 ~, the average x is from about 2 to 4 when the average R is C13 or less, and the average x is from about 3 to 10 when the average R is greater than C13, and M is a ration, preferably W0 95128469 pCT/US95104205 chosen from alkali metal, alkaline earth metal, ammonium, mono-, di-, and tri-ethaiiol-ammonium, most preferably from sodium, potassium, ammonium and mixtures thereof with magnesium ions. The preferred alkyl ethoxy carboxylates are those where R is a CI2 to Clg alkyl group.
Alkyl polyethoxy polycarboxylate surfactants suitable for use herein include those having the formula RO-(CHItl-CFiR2-O)-R3 wherein R is a C6 to Clg alkyl group, x is from I to 25, Rl and R2 are selected from the group consisting of hydrogen, methyl acid radical, succinic acid radical, hydroxysuccinic acid radical, and mixtures thereof, wherein at least one Rl or R2 is a succinic acid radical or hydroxysuccinic acid radical, and Rg is selected from the group consisting of hydrogen, substituted or unsubstituted hydrocarbon having between 1 and 8 carbon atoms, and mixtures thereof.
Preferred soap surfactants are secondary soap surfactants which contain a carboxyl unit connected to a secondary carbon. The secondary carbon can be in a ring structure, e.g. as in p-octyt benzoic acid, or as in alkyl-substituted cyclohexyl carboxylates. The secondary soap surfactants should preferably contain no ether linkages, no ester linkages and no hydroxyl groups. There should preferably be no nitrogen atoms in the head-group (amphiphilic portion). The secondary soap surfactants usually contain 11-15 total carbon atoms, although slightly more (e.g., up to 16) can be tolerated, e.g. p-octyl benzoic acid.
The following general structures further illustrate some of the preferred secondary soap surfactants:
A. A highly preferred class of secondary soaps comprises the secondary carboxyl materials of the formula R3 CH(R4)COOM, wherein R3 is CHg(CH~x and R4 is CH3(CH2)y, wherein y can be O or an integer from 1 to
water-aninble builder compound The detergent compositions of the present invention may contain a water-soluble builder compound, typically present at a level of from I °~ to 80°~ by weight, preferably from 10~ to 7096 by weight, most preferably from 2096 to 60~ by weight of the composition.
Suitable water-soluble builder compounds include the water soluble monomeric polycarboxylates, or their acid forms, homo or copolymeric polycarboxylic acids or their salts in which the polycarboxylic acid comprises at least two carboxylic radicals separated from each other by not more that two carbon atoms, carbonates, bicarbonates, borates, phosphates, silicates and mixtures of any of the foregoing.
The carboxylate or polycarboxylate builder can be monomeric or oligomeric in type although monomeric polycarboxylates are generally preferred for reasons of cost and performance.
Suitable carboxylates containing one carboxy group include the water soluble salts of lactic acid, glycolic acid and ether derivatives thereof. Polycarboxylates containing two carboxy groups include the water-soluble salts of succinic acid, malonic acid, (ethylenedioxy) diacetic acid, malefic acid, diglycolic acid, tartaric acid, tartronic acid and fumaric acid, as well as the ether carboxylates and the sutfinyl carboxylates. Polycarboxylates containing three carboxy groups include, in particular, water-soluble citrates, aconitrates and citraconates as well as succinate derivatives such as the carboxymethyloxysuccinates described in British Patent No. 1,379,241, lactoxysuccinates described in British Patent No.
1,389,732, and aminosuccinates described in Canadian Patent No. 973,771, and the oxypolycarboxylate materials such as 2-oxa-1,1,3-propane tricarboxylates described in British Patent No. 1,387,447.
Polycarboxylates containing four carboxy groups include oxydisuccinates disclosed in British Patent No. 1,261,829, 1,1,2,2-ethane tetracarboxylates, 1,1,3,3-propane tetracarboxylates and 1,1,2,3-propane tetracarboxylates. Polycarboxylates containing sulfo substituents include the sulfosuccinate derivatives disclosed in British Patent Nos. 1,398,421 and 1,398,422 and in U.S. Patent No. 3,936,448, and the sulfonated pyrolysed citrates described in British Patent No.
1,439,000.
Alicyclic and heterocyclic polycarboxylates include cyclopentane-cis,cis,cis-tetracarboxylates, cyclopentadienide pentacarboxylates, 2,3,4,5-tetrahydrofuran -cis, cis, cis-tetracarboxylates, 2,5-tetrahydrofuran - cis - dicarboxylates, 2,2,5,5-tetrahydrofuran - tetracarboxylates, 1,2,3,4,5,6-hexane - hexacarboxylates and carboxymethyl derivatives of polyhydric alcohols such as sorbitol, mannitol and xylitol. Aromatic polycarboxylates include mellitic acid, pyromellitic acid and the phthalic acid derivatives disclosed in British Patent No. 1,425,343.
Of the above, the preferred polycarboxylates are hydmxycarboxylates containing up to three carboxy groups per molecule, more particularly citrates.
W0 95128469 PCTlUS95f04205 The parent acids of the monomeric or oligomeric polycarboxylate chelating agents or riiixtures thereof with their salts, e.g. citric acid or citrate/citric acid mixtures are also contemplated as useful builder components.
Borate builders, as well as builders containing borate-forming materials that can produce borate under detergent storage or wash conditions can also be used but are not preferred at wash conditions less that about 50°C, especially less than about 40°C.
Examples of carbonate builders are the alkaline earth and alkali metal carbonates, including sodium carbonate and sesqui-carbonate and mixtures thereof with ultra-fine calcium carbonate as disclosed in German Patent Application No. 2,321,001 published on November 15, 1973.
Specific examples of water-soluble phosphate builders are the alkali metal tripolyphosphates, sodium, potassium and ammonium pyrophosphate, sodium and potassium and ammonium pyrophosphate, sodium and potassium orthophosphate, sodium polymetalphosphate in which the degree of polymerization ranges from about 6 to 21, and salts of phytic acid.
Suitable silicates include the water soluble sodium silicates with an Si02:
Na20 ratio of from 1.0 to 2.8, with ratios of from 1.6 to 2.4 being preferred, and 2.0 ratio being most preferred. The silicates may be in the form of either the anhydrous salt or a hydrated salt. Sodium silicate with an Si02: Na20 ratio of 2.0 is the most preferred silicate.
Silicates are preferably present in the detergent compositions in accord with the invention at a level of from 5~ to 50~ by weight of the composition, more preferably from 10~ to 40~ by weight.
~yme The detergent compositions contain an enzyme. Suitable enzymatic materials include the commercially available lipases, amylases, neutral and alkaline proteases, esterases, cellulases, pectinases, lactases and peroxidases conventionally incorporated into detergent compositions. Suitable enzymes are discussed in US
Patents 3,519,570 and 3,533,139.
Preferred commercially available protease enzymes include those sold under the trademarks Alcalase, Savinase, Primase, Durazym, and Esperase by Novo Industries A/S (Denmark), those sold under the trademarks Maxatase, Maxacal and Maxapem by Gist-Brocades, those sold by Genencor International, and those sold under the trademarks Opticlean and Optimase by Solvay Enzymes. Protease enzyme may be incorporated into the compositions in accordance with the invention at a level of from 0.0001 °.6 to 4 96 active enzyme by weight of the composition.
Preferred amylases include, for example, a-amylases obtained from a special strain of B licheniformis, described in more detail in GB-1,269,839 (Novo).
Preferred commercially available amylases include for example, those sold under the trademark Rapidase by Gist-Brocades, and those sold under the trademark Termamyl and BAN by Novo Industries A/S. Amylase enzyme may be incorporated into the composition in accordance with the invention at a level of from 0.00019b to 2 Yb active enzyme by weight of the composition.
Lipolytic enzyme (lipase) may be present at levels of active lipolytic enzyme of from 0.0001 ~ to 2 ~ by weight, preferably 0.0019 to 196 by weight, most preferably from 0.001 ~ to 0.5 9~ by weight of the compositions.
The lipase may be fungal or bacterial in origin being obtained, for example, from a lipase producing strain of Humicola sp., Tlrermomyces sp. or Pseudomonas sp.
including Pseudomonas pseudoalcali~enes or Pseudomas fluorescens. Lipase from chemically or genetically modified mutants of these strains are also useful herein.
A preferred lipase is derived from Pseudomonas ttseudoalcaligenes, which is described in Granted European Patent, EP-B-0218272.
Another preferred lipase herein is obtained by cloning the gene from Humicola lanueirrosa and expressing the gene in A~pereillus , as host, as described in European Patent Application, EP-A-0258 068, whfch is commercially available from Novo Industri AIS, Bagsvaerd, Denmark, under the trade mark Lipolase.
This lipase is also described in U.S. Patent 4,810,414, Huge-Jensen et al, issued March 7, 1989.
Where the enzyme is a protease, the ultimate amount in a typical wash solution is from 0.1 to 100 ICNPU, but preferably is from 0.5 to 50 IUVPU, more preferably from 3 to 30 KNPU and most preferably from 6 to 30 KNPU.
Where the enzyme is an amylase, the ultimate amount in a typical wash solution is from 1 to 200 K1VLT, but preferably is from 10 to 100 KNU, more preferably from 40 to 80 KNU.
Where the enzyme is a lipase, the ultimate amount in a typical wash solution, is from I to 300 KLU, but preferably is from 10 to 200 ICLU, more preferably from l O to l00 KLU. _ _ Where the enzyme is a cellulase,_the ultimate amount in the wash is typically from to 1200 CEVLT, but preferably is from 30 to 1000 CEVLT, more preferably from 80 to 500 CEVLJ.
Enzyme Stabilizing System Preferred enzyme-containing compositions herein may comprise from about 0.00136 to about 1096, preferably from about 0.005 to about 8~,most preferably from about 0.0196 to about 696, by weight of an enzyme stabilizing system. The enzyme stabilizing system can be any stabilizing system which is compatible with the detersive enzyme. Such stabilizing systems can comprise calcium ion, boric acid, propylene glycol, short chain carboxylic acid, boronic acid, and mixtures thereof. Such stabilizing systems can also comprise reversible enzyme inhibitors, such as reversible protease inhibitors.
The compositions herein may further comprise from 0 to about 1096, preferably from about 0.0196 to about 636 by weight, of chlorine bleach scavengers, added to prevent chlorine bleach species present in many water supplies from attacking and inactivating the enzymes, especially under alkaline conditions. While chlorine levels in water may be small, typically in the range from about 0.5 ppm to about 1.75 ppm, the available chlorine in the total volume of water that comes in contact with the enzyme during washing is usually large; accordingly, enzyme stability in-use can be problematic.
~W0 95128469 PCT/US95/04205 Suitable chlorine scavenger anions are widely available, and are illustrated by salts confaining ammonium rations or sulfite, bisulfate, thiosulfite, thiosulfate, iodide, etc. Antioxidants such as carbamate, ascorbate, etc., organic amines such as ethylenediaminetetracetic acid (EDTA) or alkali metal salt thereof, monoethanolamine (MEA), and mixtures thereof can likewise be used. Other conventional scavengers such as bisulfate, nitrate, chloride, sources of hydrogen peroxide such as sodium perborate tetrahydrate, sodium perborate monohydrate and sodium percarbonate, as well as phosphate, condensed phosphate, acetate, benzoate, citrate, formate, lactate, maLite, tartrate, salicylate, etc. and mixtures thereof can be used if desired.
uPlative relea ce l ;ne ; .r In an essential aspect of the invention a means is provided for delaying the release to a wash solution of the enzyme relative to the release of the water-soluble builder.
Said means may comprise a means for delaying the release of the enzyme to the wash solution.
Alternatively said means may comprise a means for enhancing the rate of release of the water-soluble builder to the solution.
The delayed release means can include coating the enzyme with any suitable component with a coating designed to provide the delayed release. The coating may therefore, for example, comprise a poorly water soluble material, or be a coating of sufficient thickness that the kinetics of dissolution of the thick coating provide the controlled rate of release.
~ The coating material may be applied using various methods. Any coating material is typically present at a weight ratio of coating material to bleach of from 1:99 to 1:2, preferably from 1:49 to 1:9.
WO 95128469 - _ PCTlUS95104205 Suitable coating materials include triglycerides (e.g. partially) hydrogenated vegetable oil, soy bean oil, cotton seed oil) mono or diglycerides, microcrystalline waxes, gelatin, cellulose, fatty acids and any mixtures thereof.
Other suitable coating materials can comprise the alkali and alkaline earth metal sulphates, silicates and carbonates, including calcium carbonate.
Preferred coating material is sodium silicate of Si02 : 1Va20 ratio from 1.6 :
1 to 3.4 : 1, preferably 2.8 : 1, applied as an aqueous solution to give a level of from 29& to 14?&, (normally from 3~~ to 5~) of silicate solids by weight of the percarbonate. Magnesium silicate can also be included in the coating.
Any inorganic salt coating materials may be combined with organic binder materials to provie composite inorganic salt/organic binder coatings. Suitable binders include the Ci0-C2p alcohol ethoxylates containing from 5 - 100 moles of ethylene oxide per mole of alcohol and more preferably the Clg-C24 P~m'Y
alcohol ethoxylates containing from 20 - 100 moles of ethylene oxide per mole of alcohol.
Other preferred binders include certain polymeric materials.
Polyvinylpyrrolidones with an average molecular weight of from 12,000 to 700,000 and polyethylene glycols (PEG) with an average molecular weight of from 600 to 10,400 are examples of such polymeric materials. Copolymers of malefic anhydride with ethylene, methylvinyl ether or methacrylic acid, the malefic anhydride constituting at least 20 mole percent of the polymer are further examples of polymeric materials useful as binder agents. These polymeric materials may be used as such or in combination with solvents such as water, propylene glycol and the above mentioned C10-C2p alcohol ethoxylates containing from 5 - 100 moles of ethylene oxide per mole. Further examples of binders include the Cl0-C20 mono- and diglycerol ethers and also the C10-C20 fatty acids.
Cellulose derivatives such as methylcellulose, carboxymethylcellulose and hydroxyethylcellulose, and homo- or co-polymeric polycarboxylic acids or their salts are other examples of binders suitable for use herein.
~W O 95!28469 PCT/US95104205 One method for applying the coating material involves agglomeration. Preferred agglomeration processes include the use of any of the organic binder materials described hi;reinabove. Any conventional agglomerator/mixer may be used including, but not limted to pan, rotary drum and vertical blender types.
Molten coating compositions may also be applied either by being poured onto, or spray atomized onto a moving bed of bleaching agent.
Other means of providing the required delayed release include mechanical means for altering the physical characteristics of any enzyme containing particulate to control its solubility and rate of release. Suitable protocols could include compaction, mechanical injection, manual injection, and adjustment of the solubility of the bleach compound by selection of particle size of any particulate component.
Whilst the choice of particle size will depend both on the composition of the particulate component, and the desire to meet the desired delayed release kinetics, it is desirable that the particle size should be more than 500 micrometers, preferably having an average particle diameter of from 800 to 1200 micrometers.
Additional protocols for providing the means of delayed release include the suitable choice of any other components of the detergent composition matrix such that when the composition is introduced to the wash solution the ionic strength environment therein provided enables the required delayed release kinetics to be achieved.
All suitable means for enhancing the rate of release of the water-soluble builder to the solution are envisaged.
The enhanced release means can include coating any suitable component with a coating designed to provide the enhanced release. The coating may therefore, for example, comprise a highly, or even effervescently, water soluble material.
Other means of providing the required delayed release include mechanical means for altering the physical characteristics of the water-soluble builder to enhance its solubility and rate of release.
~, fr;
A suitable protocol could include deliberate selection of the particle size of any water-soluble builder containing component. The choice of particle size will depend both on the composition of the particulate component, and the desire to meet the desired enhanced release kinetics. It is desirable that the particle size should be less than 1200 micrometers, preferably having an average particle diameter of from 1100 to 500 micrometers.
Additional protocols for providing the means of delayed release include the suitable choice of any other components of the detergent composition matrix, or of any particulate component containing the water-soluble builder, such that when the composition is introduced to the wash solution the ionic strength environment therein provided enables the required enhanced release kinetics to be achieved..
. 1. - ai. .... 3.
Relative rate of rel se - kinetic narameterc 218 7 ~ 3 7 The release of the enzyme relative to the water-soluble builder is such that in the T50 test method herein described the time to achieve a concentration that is of the ultimate concentration of said water-soluble builder is less than 60 seconds, preferably less than 50 seconds, more preferably less than 40 seconds, and the time to achieve a concentration that is 5096 of the ultimate concentration of said enzyme is more than 90 seconds, preferably more than 120 seconds, more preferably more than 150 seconds.
The ultimate wash concentration of the water-soluble builder is typically from 0.0005 ~ to 0.4 ~ , preferably from 0.005 96 to 0.35 9& , more preferably from 0.01~to0.396.
The ultimate wash concentration of the enzyme is typically from 0.000001 ~ to 0.0196 by weight of active enzyme, but preferably is from 0.0000196 to 0.0019b, more preferably from 0.00005 ~ to 0.0005 96.
The delayed release kinetics herein are defined with respect to a 'TA test method' which measures the time to achieve AR6 of the ultimate concentration/level of that component when a composition containing the component is dissolved according to the standard conditions now set out.
The standard conditions involve a 1 litre glass beaker filled with 1000 ml of distilled water at 20oC, to which lOg of composition is added. The contents of the beaker are agitated using a magnetic stirrer set at 100 rpm. The ultimate concentration/level is taken to be the concentration/level attained 10 minutes after addition of the composition to the water-filled beaker.
Suitable analytical methods are chosen to enable a reliable determination of the incidental, and ultimate in solution concentrations of the component of concern, subsequent to the addition of the composition to the water in the beaker.
WO 95!28469 PCTIUS95/04205 Such analytical methods can include those involving a continuous monitoring of the level of concentration of the component, including for example photometric and conductrimetric methods.
Alternatively, methods involving removing titres from the solution at set time intervals, stopping the disssolution process by an appropriate means such as by rapidly reducing the temperature of the titre, and then determining the concentration of the component in the titre by any means such as chemical titrimetric methods, can be employed.
Suitable graphical methods, including curve fitting methods, can be employed, where appropriate, to enable calculation of the the TA value from raw analytical results.
The particular analytical method selected for determining the concentration of the component, will depend on the nature of that component, and of the nature of the composition containing that component.
,9dditional detergent com oo nents The detergent compositions of the invention may also contain additional detergent components. The precise nature of these additional components, and levels of incorporation thereof will depend on the physical form of the composition, and the nature of the cleaning operation for which it is to be used.
The compositions of the invention may for example, be formulated as hand and machine laundry detergent compositions, including laundry additive compositions and compositions suitable for use in the pretreatment of stained fabrics and machine dishwashing compositions.
When formulated as compositions suitable for use in a machine washing method, eg: machine laundry and machine dishwashing methods, the compositions of the invention preferably contain one or more additional detergent components selected from surfactants, builders, organic polymeric compounds, bleaches, suds suppressors, Lime soap dispersants, soil suspension and anti-redeposition agents and corrosion inhibitors. Laundry compositions can also contain, as additional detergent components, softening agents.
~O 95!28469 v - - - PC1'IUS95104205 nt The detergent compositions of the invention may contain as an additional detergent component a surfactant selected from anionic, cationic, nonionic ampholytic, amphoteric and zwitterionic surfactants and mixtures thereof.
The surfactant is typically present at a level of from 0.1 ~b to 60 k by weight.
More preferred levels of incorporation of surfactant are from 1 ~ to 35 % by weight, most preferably from 1 °h to 20°6 by weight.
The surfactant is preferably formulated to be compatible with any enzyme components present in the composition. In liquid or gel compositions the surfactant is most preferably formulated such that it promotes, or at least does not degrade, the stability of any enzyme in these compositions.
A typical listing of anionic, nonionic, ampholytic, and zwitterionic classes, and species of these surfactants, is given in U.S.P. 3,929,678 issued to Laughlin and Heuring on December 30, 1975. Further examples are given in "Surface Active Agents and Detergents" (Vol. I and II by Schwartz, Perry and Beroh). A list of suitable cationic surfactants is given in U.S.P. 4,259,217 issued to Murphy on March 31, 1981.
Where present, ampholytic, amphoteric and zwitteronic surfactants are generally used in combination with one or more anionic andlor nonionic surfactants.
Anionic surfactant Essentially any anionic surfactants usefulfor detersive purposes can be included in the compositions. These can include salts (including, for example, sodium, potassium, ammotuum, and substituted ammonium salts such as mono-, di- and triethanolamine salts) of the anionic sulfate, sulfonate, carboxylate and sarcosinate surfactants.
Other anionic surfactants include the isethionates such as the acyl isethionates, N-acyl taurates, fatty acid amides of methyl tauride, alkyl succinates and sulfosuccinates, monoesters of sulfosuccinate (especially saturated and unsaturated C12 CI8 monoesters) diesters of sulfosuccinate (especially saturated and unsaturated C6 C14 diesters), N-acyl sarcosinates. Resin acids and hydrogenated resin acids are also suitable, such as rosin, hydrogenated rosin, and resin acids and hydrogenated resin acids present in or derived from tallow oil.
~O 95!28469 ~ PCT/US95/04205 21g7437 Anionic sulfate s,~_rfactant Anionic sulfate surfactants suitable for use herein include the linear and branched primary alkyl sulfates, alkyl ethoxysulfates, fatty oleyl glycerol sulfates, alkyl phenol ethylene oxide ether sulfates, the CS-Cl~ aryl-N-(Cl-C4 alkyl) and -N-(Cl-C2 hydroxyalkyl) glucamine sulfates, and sulfates of alkylpolysaccharides such as the sulfates of allcylpolyglucoside (the nonionic nonsulfated compounds being described herein).
Alkyl ethoxysulfate surfactants are preferably selected from the group consisting of the C6-Clg alkyl sulfates which have been ethoxylated with from about 0.5 to about 20 moles of ethylene oxide per molecule. More preferably, the alkyl ethoxysulfate surfactant is a C6-Clg alkyl sulfate which has been ethoxylated with from about 0.5 to about 20, preferably from about 0.5 to about 5, moles of ethylene oxide per molecule.
Anionic sulfonate surfactant Anionic sulfonate surfactants suitable for use herein include the salts of Cg-linear alkylbenzene sulfonates, alkyl ester sulfonates, C6-C~ primary or secondary alkane sulfonates, C6-C24 oleFm sulfonates, sulfonated polycarboxyiic acids, alkyl glycerol sulfonates, fatty aryl glycerol sulfonates, fatty oleyl glycerol sulfonates, and any mixtures thereof.
Anionic carboxylate surfactants suitable for use herein include the alkyl ethoxy carboxylates, the allcyl polyethoxy polycarboxylate surfactants and the soaps ('alkyl carboxyls'), especially certain secondary soaps as described herein.
Preferred alkyl ethoxy carboxylates for use herein include those with the formula RO(CH2CH20)x CH2C00-M-~' wherein R is a C6 to Clg alkyl group, x ranges from O to 10, and the ethoxylate distribution is such that, on a weight basis, the amount of material where x is 0 is less than about 20 % , and the amount of material where x is greater than 7, is less than about 25 ~, the average x is from about 2 to 4 when the average R is C13 or less, and the average x is from about 3 to 10 when the average R is greater than C13, and M is a ration, preferably W0 95128469 pCT/US95104205 chosen from alkali metal, alkaline earth metal, ammonium, mono-, di-, and tri-ethaiiol-ammonium, most preferably from sodium, potassium, ammonium and mixtures thereof with magnesium ions. The preferred alkyl ethoxy carboxylates are those where R is a CI2 to Clg alkyl group.
Alkyl polyethoxy polycarboxylate surfactants suitable for use herein include those having the formula RO-(CHItl-CFiR2-O)-R3 wherein R is a C6 to Clg alkyl group, x is from I to 25, Rl and R2 are selected from the group consisting of hydrogen, methyl acid radical, succinic acid radical, hydroxysuccinic acid radical, and mixtures thereof, wherein at least one Rl or R2 is a succinic acid radical or hydroxysuccinic acid radical, and Rg is selected from the group consisting of hydrogen, substituted or unsubstituted hydrocarbon having between 1 and 8 carbon atoms, and mixtures thereof.
Preferred soap surfactants are secondary soap surfactants which contain a carboxyl unit connected to a secondary carbon. The secondary carbon can be in a ring structure, e.g. as in p-octyt benzoic acid, or as in alkyl-substituted cyclohexyl carboxylates. The secondary soap surfactants should preferably contain no ether linkages, no ester linkages and no hydroxyl groups. There should preferably be no nitrogen atoms in the head-group (amphiphilic portion). The secondary soap surfactants usually contain 11-15 total carbon atoms, although slightly more (e.g., up to 16) can be tolerated, e.g. p-octyl benzoic acid.
The following general structures further illustrate some of the preferred secondary soap surfactants:
A. A highly preferred class of secondary soaps comprises the secondary carboxyl materials of the formula R3 CH(R4)COOM, wherein R3 is CHg(CH~x and R4 is CH3(CH2)y, wherein y can be O or an integer from 1 to
4, x is an integer from 4 to 10 and the sum of (x + y) is 6-10, preferably 7-9, most preferably 8.
B. Another preferred class of secondary soaps comprises those carboxyl compounds wherein the carboxyl substituent is on a ring hydrocarbyl unit, i.e., secondary soaps of the formula R$-R6-COOM, wherein RS is C~-~WO 95!28469 PCT/US95104205 C10 preferably C8-C9, alkyl or alkenyl and R6 is a ring structure, such as benzene, cyclopentane and cyclohexane. (Note: RS can be in the ortho, meta or para position relative to the carboxyl on the ring.) C. Still another preferred class of secondary soaps comprises secondary carboxyl compounds of the fommla CH3(CHR)k-(CHZ)m-(CHR)n CH(COOM)(CHR)o-(CH2)p (CHR)q CH3, wherein each R is Cl-C4 alkyl, wherein k, n, o, q are integers in the range of 0-8, provided that the total number of carbon atoms (including the carboxylate) is in the range of to 18.
In each of the above formulas A, B and C, the species M can be any suitable, especially water-solubilizing, counterion.
Especially preferred secondary soap surfactants for use herein are water-soluble members selected from the group consisting of the water-soluble salts of 2-methyl-1-undecanoic acid, 2-ethyl-1-decanoic acid, 2-propyl-1-nonanoic acid, 2-butyl-octanoic acid and 2-pentyl-1-heptanoic acid.
Other suitable anionic surfactants are the alkali metal sarcosinates of formula R-CON (Rl) CH2 COOM, wherein R is a CS-C1~ linear or branched alkyl or alkenyl group, Rl is a C1-C4 alkyl group and M is an alkali metal ion.
Preferred examples are the myristyl and oleyl methyl sarcosinates in the form of their sodium salts.
Nonionic surfactant Essentially any anionic surfactants useful for detersive purposes can be included in the compositions. Exemplary, non-Limiting classes of useful nonionic surfactants are listed below.
Nonionic ~lyjtydroxy fatty acid amide cnrfac an Polyhydroxy fatty acid amides suitable for use herein are those having the structural formula R2CONR1Z wherein : Rl is H, Cl-Cq hydrocarbyl, 2-hydroxy y 4-.
w0 95128469 PCT/US95104205 a e;
.18 2181437 ethyl, 2-hydroxy propyl, or a mixture thereof, preferable C1-C4 alkyl, more prei~erably Ci or C2 alkyl, most preferably Ci alkyl (i.e., methyl); and R2 is a CS-C31 hydrocarbyl, preferably straight-chain Cg-Ci9 alkyl or alkenyl, more preferably straight-chain Cg-C i ~ alkyl or alkenyl, most preferably straight-chain Cl1-CIA alkyl or alkenyl, or mixture thereof; and Z is a polyhydroxyhydrocarbyl having a linear hydnxarbyl chain with at least 3 hydroxyls directly connected to the chain, or an alkoxylated derivative (preferably ethoxylated or propoxylated) thereof. Z preferably will be derived from a reducing sugar in a reductive amination reaction; more preferably Z is a glycityl.
Nonionic condensates of alkyl phenols The polyethylene, polypropylene, and polybutylene oxide condensates of alkyl phenols are suitable for use herein. In general, the polyethylene oxide condensates are preferred. These compounds include the condensation products of alkyl phenols having an alkyl group containing from about 6 to about 18 carbon atoms in either a straight chain or branched chain co~guration with the alkylene oxide.
Nonionic ethoxyrlated alcohol surfactant The alkyl ethoxylate condensation products of aliphatic alcohols with from about 1 to about 25 moles of ethylene oxide are suitable for use herein. The alkyl chain of the aliphatic alcohol can either be straight or branched, primary or secondary, and generally contains from 6 to 22 carbon atoms. Particularly preferred are the condensation products of aicohois having an alkyl group containing from 8 to carbon atoms with from about 2 to about 10 moles of ethylene oxide per mole of alcohol.
The ethoxylated C6-Clg fatty alcohols and C6-Clg mixed ethoxylatedlpropoxylated fatty alcohols are suitable surfactants for use herein, particularly where water soluble. Preferably the ethoxylated fatty alcohols are the Cl0-Clg ethoxylated fatty alcohols with a degree of ethoxylation of from 3 to 50, most preferably these are the C12-Clg ethoxylated fatty alcohols with a degree of ethoxylation from 3 to 40. Preferably the mixed ethoxylated/propoxylated fatty "~ r~ w, .
"WO 95128469 PCT/US95I04205 alcohols have an alkyl chain length of from 10 to 18 carbon atoms, a degree of ethoxylation of from 3 to 30 and a degree of propoxylation of from 1 to 10.
Nonionic EOIPO condensates with Rm_Ry(ene glLo_I
The condensation products of ethylene oxide with a hydrophobic base formed by the condensation of propylene oxide with propylene glycol are suitable for use herein. The hydrophobic portion of these compounds preferably has a molecular weight of from about 1500 to about 1800 and exhibits water insolubility.
Examples of compounds of this type include certain of the commercially-available PlurorucTM surfactants, marketed by BASF.
Nonionic EO condensation products with nronvlene oxidelethvlene diamine The condensation products of ethylene oxide with the product resulting from the reaction of propylene oxide and ethylenediamine are suitable for use herein.
The hydrophobic moiety of these products consists of the reaction product of ethylenediamine and excess propylene oxide, and generally has a molecular weight of from about 2500 to about 3000. Examples of this type of nonionic surfactant include certain of the commeroially available TetronicTM compounds, marketed by BASF.
Nonionic alky_Ipolysaccharide surfactant Suitable alkylpolysaccharides for use herein are disclosed in U.S. Patent 4,565,647, Llenado, issued January 21, 1986, having a hydrophobic group containing from about 6 to about 30 carbon atoms, preferably from about 10 to about 16 carbon atoms and a polysaccharide, e.g., a polyglycoside, hydrophilic group containing from about 1.3 to about 10, preferably from about 1.3 to about 3, most preferably from about 1.3 to about 2.7 saccharide units. Any reducing saccharide containing 5 or 6 carbon atoms can be used, e.g., glucose, galactose and galactosyl moieties can be substituted for the glucosyl moieties.
(Optionally the hydrophobic group is attached at the 2-, 3-, 4-, etc. positions thus giving a glucose or galactose as opposed to a glucoside or galactoside.) The intersaccharide bonds can be, e.g., between the one position of the additional saccharide units and the 2-, 3-, 4-, and/or 6- positions on the preceding saccharide units.
The preferred alkylpolyglycosides have the formula R20(CnH2n0)t(glycosyl)x wherein R2 is selected from the group consisting of alkyl, alkylphenyl, hydroxyalkyl, hydroxyalkylphenyl, and mixtures thereof in which the alkyl groups contain from 10 to 18, preferably from 12 to 14, carbon atoms; n is 2 or 3; t is from 0 to 10, preferably 0, and X is from 1.3 to 8, preferably from 1.3 to 3, most preferably from 1.3 to 2.7. The gIycosyl is preferably derived from glucose.
~O 95128469 PC1'IUS95/04205 ~lonionic fly acid amide surfactant Fatty acid amide surfactants suitable for use herein are those having the formula:
R6CON(R7)2 wherein R6 is an alkyl group containing from 7 to 21, preferably from 9 to 17 carbon atoms and each R7 is selected from the group consisting of hydrogen, CI-Cq alkyl, CI-C4 hydroxyalkyl, and -(C2H40)xH, where x is in the renge of from 1 to 3.
Am~hoteric surfactant Suitable amphoteric surfactants for use herein include the amine oxide surfactants and the alkyl amphocarboxylic acids.
A suitable example of an alkyl aphodicarboxylic acid for use herein is Miranol(TM) C2M Conc. manufactured by Miranol, Inc., Dayton, NJ.
Amine Oxide surfactant Amine oxides useful herein include those compounds having the formula R3(OR4)xlVp(RS)2 wherein R3 is selected from an alkyl, hydroxyalkyl, acylamidopropoyl and alkyl phenyl group, or mixtures thereof, containing from to 26 carbon atoms, preferably 8 to 18 carbon atoms; R4 is an alkylene or hydroxyalkylene group containing from 2 to 3 carbon atoms, preferably 2 carbon atoms, or mixtures thereof; x is from 0 to 5, preferably from 0 to 3; and each RS
is an alkyl or hydyroxyalkyl group containing from I to 3, preferably from I
to 2 carbon atoms, or a polyethylene oxide group containing from 1 to 3, preferable 1, ethylene oxide groups. The RS groups can be attached to each other, e.g., through an oxygen or nitrogen atom, to form a ring structure.
These amine oxide surfactants in particular include CIO-Clg alkyl dimethyl amine oxides and Cg-Clg alkoxy ethyl dihydroxyethyl amine oxides. Examples of such materials include dimethyloctylamine oxide, diethyldecylamine oxide, bis-(2-hydroxyethyl)dodecylamine oxide, dimethyldodecylamine oxide, dipropyltetradecylamine oxide, methylethylhexadecylamine oxide, dodecylamidopropyl dimethylamine oxide, cetyl dimethylamine oxide, stearyl dimethylamine oxide, tallow dimethylamine oxide and dimethyl-2-R'O 95128469 PCT/US95104205 as hydroxyoctadecylamine oxide. Preferred are C10-C18 ~Yl dimethyLimine oxide, and C10-18 acylamido allcyl dimethylamine oxide.
Zwitterionic cnrfa .tant Zwitterionic surfactants can also be incorporated into the detergent compositions hereof. These surfactants can be broadly described as derivatives of secondary and tertiary amines, derivatives of heterocyclic secondary and tertiary amines, or derivatives of quaternary ammonium, quaternary phosphonium or tertiary sulfonium compounds. Betaine and sultaine surfactants are exemplary zwittetionic surfactants for use herein.
The betaines useful herein are those compounds having the formula R(R')2N+R2C00- wherein R is a C6-Clg hydrocarbyl group, preferably a C10-C16 alkyl group or C10-16 acylamido alkyl group, each Rl is typically Cl-C3 alkyl, preferably methyl,m and R2 is a Cl-Cg hydrocarbyl group, preferably a Cl-C3 alkylene group, more preferably a Cl-C2 allrylene group. Examples of suitable betaines include coconut acyLunidopnopyldimethyl betaine; hexadecyl dimethyl betaine; C12-14 acylamidopropylbetaine; Cg-14 acylamidohexyldiethyl betaine; 4[Ci~l6 ~Y~ethylamidodiethylammonio]-1-carboxybutane; C16-18 acylamidodimethylbetaine; C12-16 acYlamidopentanediethyl-betaine; [C12-16 acylmethylamidodimethylbetaine. Preferred betaines are C12-18 d~ethyl-ammonio hexanoate and the C10-18 acY~dopropane (or ethane) dimethyl (or diethyl) betaines. Complex betaine surfactants are also suitable for use herein.
The sultaines useful herein are those compounds having the formula (R(Rl)ZN-~R2503- wherein R is a C6-Clg hydrocarbyl group, preferably a C10-C16 alkyl group, more preferably a C12-C13 allryl group, each Rl is typically C3 alkyl, preferably methyl, and R2 is a Cg-C6 hydrocarbyl group, preferably a Cl-C3 alkylene or, preferably, hydroxyalkylene group.
-WO 95!28469 PCTlUS95104205 Ampholytic surfactants can be incorporated into the detergent compositions herein.
These surfactants can be broadly described as aliphatic derivatives of secondary or tertiary amines, or aliphatic derivatives of heterocyclic secondary and tertiary amines in which the aliphatic radical can be straight chain or branched.
Cationic surfactants __ Cationic surfactants can also be used in the detergent compositions herein.
Suitable cationic surfactants include the quaternary ammonium surfactants selected from mono C6-C16, preferably C6-Cl0 N-alkyl or alkenyl ammonium surfactants wherein the remaining N positions are substituted by methyl, hydroxyethyl or hydroxypropyl groups.
Partia lv soluble or insoluble builder compound The detergent compositions of the present invention may contain a partially soluble or insoluble builder compound, typically present at a level of from 1 % to 80%
by weight, preferably from 10~ to 7096 by weight, most preferably from 2096 to 609b weight of the composition.
Examples of partially water soluble builders include the crystalline layered silicates. Examples of largely water insoluble builders include the sodium aluminosilicates.
Crystalline layered sodium silicates have the general formula NaMSix02x+ 1 ~YH20 wherein M is sodium or hydrogen, x is a number from 1.9 to 4 and y is a number from 0 to 20. Crystalline layered sodium silicates of this type are disclosed in EP-A-0164514 and methods for their preparation are disclosed in DE-A-3417649 and DE-A-3742043. For the purpose of the present invention, x in the general formula above has a value of 2, 3 or 4 and is preferably 2. The most preferred material is &-Na2Si205, available from Hoechst AG as NaSKS-6.
The crystalline layered sodium silicate material is preferably present in granular detergent compositions as a particulate in intimate admixture with a solid, water-soluble ionisable material. The solid, water-soluble ionisable material is selected from organic acids, organic and inorganic acid salts and mixtures thereof.
Suitable aluminosilicate zeo&tes have the unit cell formula Naz[(A102)z(SiO~y~.
XH20 wherein z and y are at least 6; the molar ratio of z to y is from 1.0 to 0.5 and x is at least 5, preferably from 7.5 to 276, more preferably from 10 to 264.
The aluminosilicate material are in hydrated form and are preferably crystalline, containing from 10 % to 28 % , more preferably from 18 ~ to 22 ~ water in bound form.
The aluminosilicate ion exchange materials can be naturally occurring materials, but are preferably synthetically derived. Synthetic crystalline aluminosilicate ion exchange materials are available under the designations Zeolite A, Zeolite B, Zeolite P, Zeolite X, Zeoilte MAP, Zeolite HS and mixtures thereof. Zeolite A
has the formula Na 12 [A102). 12 (Si02)127. xH20 wherein x is from 20 to 30, especially 27. Zeolite X has the formula Nag6 [('°'10~86(Si02)106~. 276 H20.
The detergent compositions of the invention contain as a preferred optional component an organic peroxyacid bleach source. The peroxyacid bleach source may be the organic peroxyacid per se, or it may be a peroxyacid bleach precursor compound.
Where the source is a peroxyacid bleach precursor compound, the production of the peroxyacid occurs by an in situ reaction of the precursor with a source of hydrogen peroxide. Suitable sources of hydrogen peroxide include inorganic perhydrate bleaches.
The organic peroxyacid bleach source is preferably also provided with means for delaying its release to the wash solution, such that in the T50 test, the time to achieve a concentration that is 50 % of the ultimate concentration of the peroxyacid z5 2181437 bleach is more than 180 seconds, preferably more than 240 seconds. Any of the means herein described for achieving the delayed release can be employed.
Peroxvacid bleach precursors Peroxyacid bleach precursors (bleach activators) are preferred peroxyacid sources.
Peroxyacid bleach precursors are normally incorporated at a level of from 1 ~b to 20~ by weight, more preferably from 2Y6 to 53b by weight, most preferably from 336 to 10~ by weight of the compositions.
Suitable peroxyacid bleach precursors typically contain one or more N- or O-aryl groups, which precursors can be selected from a wide range of classes.
Suitable classes include anhydrides, esters, imides and acylated derivatives of imidazoles and oximes, and examples of useful materials within these classes are disclosed in GB-A-1586789.
Suitable esters are disclosed in GB-A-836988, 864798, 1147871, 2143231 and EP-A-0170386..The acylation products of sorbitol, glucose and all saccharides with benzoylating agents and acetylating agents are also suitable.
Specific O-acylated precursor compounds include 2,3,3-tri-methyl hexanoyl oxybenzene sulfonates, benzoyl oxybenzene sulfonates, nonanoyl-6-amino caproyl oxybenzene sulfonates, monobenzoyltetraacetyl glucose benzoyl peroxide and catiotric derivatives of any of the above, including the alkyl ammonium derivatives and pentaacetyl glucose. Phthalic anhydride is a suitable anhydride type precursor.
Specific cationic derivatives of the O-aryl precursor compounds include 2-(N,N,N-trimethyl ammonium) ethyl sodium 4-sulphophenyl carbonate chloride, and any of the alkyl ammonium derivatives of the benzoyl oxybenzene sulfonates including the 4-(trimethyl ammonium) methyl derivative.
Useful N-aryl compounds are disclosed in GB-A-855735, 907356 and GB-A-1246338.
Preferred precursor compounds of the imide type include N-benzoyl succinimide, tetrabenzoyl ethylene diamine, N-benzoyl substituted ureas and the N-,N,N1N1 R'O 95/28469 PCT/US95/04205 zs 2187437 tetra acetylated allcylene diamines wherein the allcylene group contains from I to 6 carbbn atoms, particularly those compounds in which the alkylene group contains 1, 2 and 6 carbon atoms. Tetraacetyl ethylene diamine (TAED) is particularly preferred.
N-acyhtted precursor compounds of the lactam class are disclosed generally in GB-A-955735. Whilst the broadest aspect of the invention contemplates the use of any lactam useful as a peroxyacid precursor, preferred materials comprise the caprnlactams and valerolactams.
~O 95/28469 PCT/US95/04205 a~ 2187437 Suitable N-acylated lactam precursors have the formula:
II
Rs-C N CH2-CH2 - ~C H2~ ~ H2 ]~
wherein n is from 0 to about 8, preferably from 0 to 2, and R6 is H, an alkyl, aryl, alkoxyaryl or alkaryl group containing from 1 to 12 carbons, or a substituted phenyl group containing from 6 to 18 carbon atoms Suitable caprolactam bleach precursors are of the formula:
wherein R1 is H or an alkyl, aryl, alkoxyaryl or alkaryl group containing from to 12 carbon atoms, preferably from 6 to 12 carbon atoms, most preferably Rl is phenyl.
Suitable valero lactams have the formula:
Rl -- C - N
W0 95128469 .. .. PCT/US95104205 wherein R1 is H or an alkyl, aryl, alkoxyaryl or alkaryl group containing from l to 12 carbon atoms, preferably from 6 to 12 carbon atoms. In highly preferred embodiments, RI is selected from phenyl, heptyl, octyl, nonyl, 2,4,4-trimethylpentyl, decenyl and mixtures thereof.
The most preferred materials are those which are normally solid at <
30°C, particularly the phenyl derivatives, ie. benzoyl valerolactam, benzoyl caprolactam and their substituted benzoyl analogues such as chloro, amino alkyl, alkyl, aryl and alkoxy derivatives.
Caprolactam and valerolactam precursor materials wherein the RI moiety contains at least 6, preferably from 6 to 12, carbon atoms grovide peroxyacids on perhydrolysis of a hydrophobic character which afford nucleophilic and body soil clean-up. Precursor compounds wherein Rl comprises from 1 to 6 carbon atoms provide hydrophilic bleaching species which are particularly efficient for bleaching beverage stains. Mixtures of 'hydrophobic' and 'hydrophilic' caprolactams and valero lactams, typically at weight ratios of 1:5 to 5:1, preferably I:1, can be used herein for mixed stain removal benefits.
I~ghly preferred caprolactam and valerolactam precursors include benzoyl capralactam, nonanoyl capro-Lictam, benzoyl valerolactam, nonanoyl valerolactam, 3,5,5-trimethylhexanoyl caprolactam, 3,5,5-trimethylhexanoyl valerolactam, octanoyl caprolactam, octanoyl valerolactam, decanoyl caprolactam, decanoyl valerolactam, undecenoyl caprolactam, undecenoyl valerolactam, (6-octanamidocaproyl)oxybenzene-sulfonate, (6-nonanamidocaproyl)oxybenzenesulfonate, (6-decanamidocaproyl)-oxybenzenesulfonate, and mixtures thereof. Examples of highly preferred substituted benzoyl lactams include methylbenzoyl caprolactam, methylbenzoyl valerolactam, ethylbenzoyl caprolactam, ethylbenzoyl valerolactam, propylbenzoyl caprolactam, propylbenzoyl valerolactam, isopropylbenzoyl caprolactam, isopropylbenzoyl valerolactam, butylbenzoyl caprolactam, butylbenzoyl valerolactam, tent-butylbenzoyl caprolactam, tert-butylbenzoyl valerolactam, pentylbenzoyl caprolactam, pentylbenaoyl valerolactam, hexylbenzoyl caprolactam, hexylbenzoyl valerolactam, ethoxybenzoyl caprolactam, ethoxybenzoyl valerolactam, propoxybenzoyl caprolactam, propoxybenzoyl valerolactam, isopropoxybenzoyl caprolactam, isopropoxybenzoyl valerolactam, butoxybenzoyl caprolactam, butoxybenzoyl valerolactam, tert-butoxybenzoyl ~0 95128469 _ PGT/US95104205 caprolactam, tert-butoxybenzoyl valerolactam, pentoxybenzoyl caprolactam, pentoxybenzoyl valerolactam, hexoxybenzoyl caprolactam, hexoxybenzoyl valerolactam, 2,4,6-trichlorobenzoyl caprolactam, 2,4,6-trichlorobenzoyl valerolactam, pentafluorobenaoyl caprolactam, pentafluorobenzoyl valerolactam, dichlorobenzoyl caprolactam, dimethoxybenzoyl caprolactam, 4-chlorobenzoyl caprolactam, 2,4-dichlororbenzoyl caprolactam, terephthaloyl dicaprolactam, pentafluorobenzoyl caprolactam, pentafluorobenzoyl valerolactam, dichlorobenzoyl valerolactam, dimethoxybenzoyl valerolactam, 4-chlorobenzoyl valerolactam, 2,4-dichlororbenzoyl valerolactam, terephthaloyl divalerolactam, nitrobenzoyl caprolactam, 4-nitrobenzoyl valerolactam, and mixtures thereof.
Suitable imidazoles include N-benzoyl imidazole and N-benzoyl benzimidazole and other useful N-acyl group-containing peroxyacid precursors include N-benzoyl pyrrolidone, dibenzoyl taurine and benzoyl pyroglutamic acid.
Another preferred class of peroxyacid bleach activator compounds are the amide substituted compounds of the Following general formulae:
R~-C-N-R2-C-L R~-N-C-R2-CL
O R5 O or R5 0 O
wherein Rl is an aryl or allcaryl group with from 1 to 14 carbon atoms, R2 is an alkylene, arylene, and alkarylene group containing from 1 to 14 carbon atoms, and RS is H or an allcyl, aryl, or alkaryl group containing 1 to 10 carbon atoms and L
can be essentially any leaving group. Rl preferably contains from 6 to 12 carbon atoms. R2 preferably contains from 4 to 8 carbon atoms. Rl may be straight chain or branched alkyl, substituted aryl or alkylaryl containing branching, substitution, or both and may be sourced from either synthetic sources or natural sources including for example, tallow fat. Analogous structural variations are permissible for R2. The substitution can include alkyl, aryl, halogen, nitrogen, sulphur and other typical substituent groups or organic compounds. RS is preferably H or methyl. Rl and RS should not contain more than 18 carbon atoms in total. Amide substituted bleach activator compounds of this type are described in EP-A-0170386.
WO 95!28469 PCT/US95104205 The L group must be sufficiently reactive for the reaction to occur within the optimum time frame (e.g., a wash cycle). However, if L is too reactive, this activator will be difficult to stabilize for use in a bleaching composition.
These characteristics are generally paralleled by the pKa of the conjugate acid of the leaving group, although exceptions to this convention are known. Ordinarily, leaving groups that exhibit such behavior are those in which their conjugate acid has a pKa in the range of from 4 to 13, preferably from 6 to 11 and most preferably from 8 to 11.
Preferred bleach precursors are those wherein Rl, R2 and RS are as defined for the amide substituted compounds and L is selected from the group consisting of:
-O~Y, -O~Y , and -~R3Y
-N-C-Ri -N N -N-C-CH-R4 , R3 , ~ , Ra Y
i Y
I I
-0-CH=C-CH=CH2 -O-CH=C-CH=CH2 , , _O-~-Rt , -O-C=CHR4 , and -N-S-CH-R4 and mixtures thereof, wherein R1 is an alkyl, aryl, or alkaryl group containing from 1 to 14 carbon atoms, R3 is an alkyl chain containing from 1 to 8 carbon atoms, R4 is H or R3, and Y is H or a solubilizing gmup.
"WO95l28469 ~ . PCTIUS95I04205 l' . ,! 31 The preferred solubilizing groups are -S03 M+, -C02 M+, -S04 M+, -N~(R3) X and O <--N(R3)3 and most preferably -S03 M+ and -C02 M+
wherein R~ is an alkyl chain containing from 1 to 4 carbon atoms, M is a canon which provides solubility to the bleach activator and X is an anion which provides solubility to the bleach activator. Preferably, M is an alkali metal, ammonium or ' substituted ammonium cation, with sodium and potassium being most preferred, and X is a halide, hydroxide, methyisulfate or acetate anion. It should be noted that bleach activators with a leaving group that does not contain a solubilizing groups should be well dispersed in the bleaching solution in order to assist in their dissolution.
Preferred examples of bleach precursors of the above formulae include (6-octanamidocaproyl)oxybenzenesulfonate, (6-nonanamidocaproyl)oxybenzenesulfo-nate, (6-decanamidocaproyl)oxybenzenesulfonate, and mixtures thereof.
Other preferred precursor compounds include those of the benzoxazin-type, having the formula:
O
C~
I
~N C-Rt including the substituted benzoxazins ofthe type wherein Rl is H, alkyl, alkaryl, aryl, aryLilkyl, and wherein R2, R3, R4, and RS
may be the same or different substituents selected from H, halogen, alkyl, alkenyl, aryl, hydroxyl, alkoxyl, amino, alkyl amino, COOR6 (wherein R6 is H or an alkyl group) and carbonyl functions.
An especially preferred precursor of the benzoxazin-type is:
t.. :f..a ... .
32 2~ 87437 An especially preferred precursor of the benzoxazin-type is:
Or is peroxy .;~a _ The detergent compositions may also contain organic peroxyacids typically at a level of from 19b to 15 96 by weight, more preferably from 196 to 10 96 by weight of the composition.
A preferred class of organic peroxyacid compounds are the amide substituted compounds of the following general formulae:
R~ - II - ~ -R2- ~~ -OOH
0 R5 O or R~ -R-OI -R2- ~~ -OOH
b 0 wherein Rl is an aryl or alkaryl group with from 1 to 14 carbon atoms, R2 is an alkylene, arylene, and alkarylene group containing from 1 to 14 carbon atoms, and RS is H or an alkyl, aryl, or alkaryl group containing 1 to 10 carbon atoms.
RI
preferably contains from 6 to 12 carbon atoms. R2 preferably contains from 4 to 8 carbon atoms. Rl may be straight chain or branched alkyl, Substituted aryl or alkylaryl containing branching, substitution, or both and may be sourced from either synthetic sources or natural sources including for example, tallow fat.
Analogous structural variations are permissible for R2. The substitution can include alkyl, aryl, halogen, nitrogen, sulphur and other typical substituent groups or organic compounds. RS is preferably Her methyl. Rl and RS should not contain more than 18 carbon atoms in total. Amide substituted organic peroxyacid compounds of this type are described in FP-A-0170386.
0 95128469 ~ PCTIUS95/04205 Other organic peroxyacids include diperoxy dodecanedioc acid, diperoxy tetra decanedioc acid, diperoxyhexadecanedioc acid, mono- and diperazelaic acid, mono- and diperbrassylic acid, monoperoxy phthalic acid, perbenzoic acid, and their salts as disclosed in, for example, EP-A-0341 947.
Inorg m~c perh5rdrate bleaches The compositions preferably include, as a hydrogen peroxide source, an inorganic perhydrate salt, most especially when the organic peroxyacid source is a peroxyacid bleach precursor compound.
The inorganic perhydrate salts are normally incorporated in the form of the sodium salt at a level of from 1 ~ to 40 % by weight, more preferably from 2 ~ to 30 °& by weight and most preferably from 5 I to 25 % by weight of the compositions.
Examples of inorganic perhydrate salts include perborate, percarbonate, peiphosphate, persulfate and persilicate salts. The inorganic perhydrate salts are normally the alkali metal salts. The inorganic perhydrate salt may be included as the crystalline solid without additional protection. For certain perhydrate salts however, the preferred executions of such granular compositions utilize a coated form of the material which provides better storage stability for the perhydrate'salt in the granular product.
Sodium perborate can be in the form of the monohydrate of nominal formula NaB02H202 or the tetrahydrate NaB02H202.3H20.
Sodium percarbonate, which is a preferred perhydrate for inclusion in detergent compositions in accordance with the invention, is an addition compound having a formula corresponding to 2Na2C03.3H202, and is available commercially as a crystalline solid. The percarbonate is most preferably incorporated into such compositions in a coated form which provides in product stability.
A suitable coating material providing in product stability comprises mixed salt of a water soluble alkali metal sulphate and carbonate. This coating however allows for rapid release of the percarbonate bleach to the wash solution and is therefore not a suitable means for providing delayed release of the percarbonate bleach into a wash solution. Such coatings together with coating processes have previously .. a .l_3'_ '!Ia~'w. ".
WO 95!28469 been described in GS-1,466,799, granted to Interox on 9th March 1977. The weight ratio of the mixed salt coating material to percarbonate lies in the range from 1 : 200 to I : 4, more preferably from I : 99 to 1 : 9, and most preferably from 1 : 49 to 1 : 19. Preferably, the mixed salt is of sodium sulphate and sodium carbonate which has the general formula Na2S04.n.Na2C03 wherein n is form 0.1 to 3, preferably n is from 0.3 to 1.0 and most preferably n is from 0.2 to 0.5.
Potassium peroxymonopersulfate is another inorganic perhydrate salt of use in the detergent compositions herein.
~O 95128469 PCT/U595104205 Bleach catalyst The invention also encompasses compositions containing a catalytically effective amount of a bleach catalyst such as a water-soluble manganese salt.
The bleach catalyst is used in a catalytically effective amount in the compositions and processes herein. By "catalytically effective amount" is meant an amount which is sufficient, under whatever comparative test conditions are employed, to enhance bleaching and removal of the stain or stains of interest from the target substrate. Thus, in a fabric laundering operation, the target substrate will typically be a fabric stained with, for example, various food stains. For automatic dishwashing, the target substrate may be, for example, a porcelain cup or plate with tea stain or a polyethylene plate stained with tomato soup. The test conditions will vary, depending on the type of washing appliance used and the habits of the user. Thus, front-loading laundry washing machines of the type employed in Europe generally use less water and higher detergent concentrations than do top-loading U.S.-style machines. Some machines have considerably longer wash cycles than others. Some users elect to use very hot water; others use warm or even cold water in fabric laundering operations. Of course, the catalytic performance of the bleach catalyst will be affected by such considerations, and the levels of bleach catalyst used in fully-formulated detergent and bleach compositions can be appropriately adjusted. As a practical matter, and not by way of limitation, the compositions and processes herein can be adjusted to provide on the order of at least one part per ten million of the active bleach catalyst species in the aqueous washing liquor, and will preferably provide from about I ppm to about 200 ppm of the catalyst species in the laundry liquor. To illustrate this point further, on the order of 3 micromolar manganese catalyst is effective at 40°C, pH
10 under European conditions using perborate and a bleach precursor (e.g., benzoyl caprolactam). An increase in concentration of 3-5 fold may be required under U.S. conditions to achieve the same results. Conversely, use of a bleach precusor and the manganese catalyst with perborate may allow the formulator to achieve equivalent bleaching at lower perborate usage levels than products without the manganese catalyst.
The bleach catalyst material herein can comprise the free acid or be in the form of any suitable salts.
w0 95/28469 PCTIUS95104205 One type of bleach catalyst is a catalyst system comprising a heavy metal ration of defined bleach catalytic activity, such as copper, iron or manganese rations, an auxiliary metal radon having little or no bleach catalytic activity, such as zinc or aluminum rations, and a sequestrant having defined stability constants for the catalytic and auxiliary metal rations, particularly ethylenediaminetetraacetic acid, ethylenediaminetetra(methylenephosphonic acid) and water-soluble salts thereof.
Such catalysts are disclosed in U.S. Pat. 4,430,243.
Other types of bleach catalysts include the manganese-based complexes disclosed in U.S. Pat. 5,246,621 and U.S. Pat. 5,244,594. Preferred examples of these catalysts include Mn~2(u-O)3(1,4,7-trimethyl-1,4,7-triazacyclononane)2-(PF6)2, Mn~2(u-O)1(u-OAc)2(1,4,7-trimethyl-1,4,7-triazacyclononane)2-(C104)2, Mn~4(u-O)6(1,4,7-triazacyclononane)4-(C104)2, Mn~Mn~4(u-O)1(u-OAc)2-(1,4,7-trimethyl-1,4,7-triazacyclononane)2-(C104)3, and mixtures thereof.
Others are described in European patent application publication no. 549,272. Other ligands suitable for use herein include 1,5,9-trimethyl-1,5,9-triazacyclododecane, 2-methyl-1,4,7-triazacyclononane, 2-methyl-1,4,7-triazacyclononane, 1,2,4,7-tetramethyl-1,4,7-triazacyclononane, and mixtures thereof.
The bleach catalysts useful in the compositions herein may also be selected as appropriate for the present invention. For examples of suitable bleach catalysts see U.S. Pat. 4,246,612 and U.S. Pat. 5,227,084.
See also U.S. Pat. 5,194,416 which teaches mononuclear manganese (IV) complexes such as Mn(1,4,7-trimethyl-1,4,7-triazacyclononane)(OCH3)3_(pF6)_ Still another type of bleach catalyst, as disclosed in U.S. Pat. 5, I 14,606, is a water-soluble complex of manganese ()Z), (~, and/or (IV) with a ligand which is a non-carboxylate polyhydroxy compound having at least three consecutive C-OH
groups. Preferred ligands include sorbitol, iditol, dulsitol, mannitol, xylithol, arabitol, adonitol, meso-erythritol, meso-inositol, lactose, and mixtures thereof.
U.S. Pat. 5,114,611 teaches a bleach catalyst comprising a complex of transition metals, including Mn, Co, Fe, or Cu, with an non-(macro)-cyclic ligand. Said ligands are of the formula:
~O 95!28469 k PCT'/US95/04205 R~-N=C-B-C=N-R4 wherein R1, R2, R3, and R4 can each be selected from H, substituted alkyl and aryl groups such that each Rl-N=C-R2 and R3-C=N-R4 form a five or six-membered ring. Said ring can further be substituted. B is a bridging group selected from O, S. CRSR6, NR~ and C=O, wherein R5, R6, and R~ can each be H, alkyl, or aryl groups, including substituted or unsubstituted groups.
Preferred ligands include pyridine, pyridazine, pyrimidine, pyrezine, imidazole, pyraaole, and triazole rings. Optionally, said rings may be substituted with substituents such as alkyl, aryl, alkoxy, halide, and vitro. Particularly preferred is the ligand 2,2'-bispyridylamine. Preferred bleach catalysts include Co, Cu, Mn, Fe,-bispyridyhnethane and -bispyridylamine complexes. Highly preferred catalysts include Co(2,2'-bispyridylamine)C12, Di(isothiocyanato)bispyridylamine-cobalt (I)], trisdipyridylamine-cobalt()1) perchlorate, Co(2,2-bispyridylamine)202C104, Bis-(2,2'-bispyridylamine) copper(J~ perchlorate, tris(di-2-pyridylamine) iron()1) perchlorete, and mixtures thereof.
Other examples include Mn gluconate, Mn(CF3S03)2, Co(NHg)SCI, and the binuclear Mn complexed with tetra-N-dentate and bi-N-dentate ligands, including N4Mn~(u-O)2Mn~N4)+and [Bipy2Mn~(u-O)2Mn~bipy2]-(C104)3.
The bleach catalysts of the present invention may also be prepared by combining a water-soluble ligand with a water-soluble manganese salt in aqueous media and concentrating the resulting mixture by evaporation. Any convenient water-soluble salt of manganese can be used herein. Manganese (II), (~, (IV) and/or (~ is readily available on a commercial scale. In some instances, sufficient manganese may be present in the wash liquor, but, in general, it is preferred to add Mn cations in the compositions to ensure its presence in catalytically-effective amounts. Thus, the sodium salt of the ligand and a member selected from the group consisting of MnS04, Mn(C104)2 or MnCl2 (least preferred) are dissolved in water at molar ratios of ligand:Mn salt in the range of about 1:4 to 4:1 at neutral or slightly alkaline pH. The water may first be de-oxygenated by boiling and cooled by sparging with nitrogen. The resulting solution is evaporated (under N2, if desired) and the resulting solids are used in the bleaching and detergent compositions herein without further purification.
In an alteinate mode, the water-soluble manganese source, such as MnS04, is added to the bleach/cleaning composition or to the aqueous bleaching/cleaning bath which comprises the ligand. Some type of complex is apparently formed in situ, and improved bleach performance is secured. In such an in situ process, it is convenient to use a considerable molar excess of the ligand over the manganese, and mole ratios of Iigand:Mn typically are 3:1 to 15:1. The additional ligand also serves to scavenge vagrant metal ions such as iron and copper, thereby protecting the bleach from decomposition. One possible such system is described in European patent application, publication no. 549,271.
While the structures of the bleach-catalyzing manganesecomplexes of the present invention have not been elucidated, it may be speculated that they comprise chelates or other hydrated coordination complexes which result from the interaction of the carboxyl and nitrogen atoms of the ligand with the manganese ration. Likewise, the oxidation state of the manganese ration during the catalytic process is not known with certainty, and may be the (+7T), (+)I)], (+IV) or (+V) valence state. Due to the ligands' possible six points of attachment to the manganese ration, it may be reasonably speculated that mold-nuclear species and/or "cage" structures may exist in the aqueous bleaching media. Whatever the form of the active Mrrligand species which actually exists, it functions in an apparently catalytic manner to provide improved bleaching performances on stubborn stains such as tea, ketchup, coffee, blood, and the like.
Other bleach catalysts are described, for example, in European patent application, publication no. 408,131 (cobalt complex catalysts), European patent applications, publication nos. 384,503, and 306,089 (metallo-porphyrin catalysts), U.S.
4,728,455 (manganese/multidentate ligand catalyst), U.S. 4,711,748 and European patent application, publication no. 224,952, (absorbed manganese on aluminosilicate catalyst), U.S. 4,601,845 (aIuminosilicate support with manganese and zinc or magnesium salt), U.S. 4,626,373 (manganese/ligand catalyst), U.S.
4,119,557 (ferric complex catalyst), German Pat. specification 2,054,019 (cobalt chelant catalyst) Canadian 866,191 (transition metal-containing salts), U.S.
4,430,243 (chelants with manganese rations and non-catalytic metal rations), and U:S. 4,728,455 (manganese gluconate catalysts).
The detergent compositions of the invention may contain a heavy metal ion sequestrant. By heavy metal ion sequestrant it is meant herein components which act to sequester (chelate) heavy metal ions. These components may also have calcium and magnesium chelation capacity, but preferentially they show selectivity to binding heavy metal ions such as iron, manganese and copper.
FIeavy metal ion sequestrants are preferably present at a level of from 0.005 ~ to 20 ~ , more preferably from 0.196 to 10 ~ , most preferably from 0.5 36 to 5 96 by weight of the compositions.
Heavy metal ion sequestrants, which are acidic in nature, having for example phosphoric acid or carboxylic acid functionalities, may be present either in their acid form or as a complex/salt with a suitable counter cation such as an alkali or alkaline metal ion, ammonium, or substituted ammonium ion, or any mixtures thereof. Preferably any salts/complexes are water soluble. The molar ratio of said counter ration to the heavy metal ion sequestrant is preferably at least 1:1.
Suitable heavy metal ion sequestrants for use herein include organic phosphonates, such as the amino alkylene poly (alkylene phosphonates), alkali metal ethane 1-hydroxy disphosphonates and nitrilo trimethylene phosphonates.
Preferred among the above species are diethylene triamine penta (methylene phosphonate), ethylene diamine tri (methylene phosphonate) hexamethylene diamine tetra (methylene phosphonate) and hydroxy-ethylene 1,1 diphosphonate.
Other suitable heavy metal ion sequestrutt for use herein include nitrilotriacetic acid and polyaminocarboxylic acids such as ethylenediaminotetracetic acid, ethylenetriamine pentacetic acid, ethylenediamine disuccinic acid, ethylenediamine diglutaric acid, 2-hydroxypropylenediamine disuccinic acid or any salts thereof.
Especially preferred is ethylenediamine-N,N'-disuccinic acid (EDDS) or the alkali metal, alkaline earth metal, ammonium, or substituted ammonium salts thereof, or mixtures thereof. Preferred EDDS compounds are the free acid form and the sodium or magnesium salt or complex thereof. Examples of such preferred sodium salts of EDDS include Na2EDDS and NagEDDS. Examples of such preferred magnesium complexes of EDDS include MgEDDS and Mg2EDDS.
2187~~37 Other suitable heavy metal ion sequestrants for use herein are iminodiacetic acid derivatives such as 2-hydroxyethyl diacetic acid or glyceryl imino diacetic acid, described in EP-A-317,542 and EP-A-399,133.
The iminodiacetic acid-N-2-hydroxypropyl sulfonic acid and aspartic acid N-carboxymethyl N-2-hydroxypropyl-3-sulfonic acid sequestrants described in EP-A-516,102 are also suitable herein. The /3-alanine-N,N'-diacetic acid, aspartic acid-N,N'-diacetic acid, aspartic acid-N-monoacetic acid and iminodisuccinic acid sequestrants described in F.P-A-509,382 are also suitable.
EP-A-476,257 describes suitable amino based sequestrants. EP-A-510,331 describes suitable sequestiants derived from collagen, keratin or casein. EP-A-528,859 describes a suitable alkyl iminodiacetic acid sequestrant. Dipicolinic acid and 2-phosphonobutane-1,2,4-tricarboxylic acid are also suitable. Glycinamide-N,N'-disuccinic acid (GADS) is also suitable.
Organic polymeric compounds are particularly preferred components of the detergent compositions in accord with the invention. By organic polymeric ' compound it is meant essentially any polymeric organic compound commonly used as dispersants, and anti-redeposition and soil suspension agents in detergent compositions.
Organic polymeric compound is typically incorporated in the detergent compositions of the invention at a level of from 0.1 ~ to 30~, preferably from 0.5 ~ to 15 9b, most preferably from 1 ~ to 10 ~ by weight of the compositions.
Examples of organic polymeric compounds include the water soluble organic homo- or co-polymeric polycarboxylic acids or their salts in which the polycarboxylic acid comprises at least two carboxyl radicals separated from each other by not more than two carbon atoms. Polymers of the latter type are disclosed in GB-A-1,596,756. Bxamples of such salts are polyacrylates of MWt 2000-5000 and their copolymers with malefic anhydride, such copolymers having a molecular weight of from 20,000 to 100,000, especially 40,000 to 80,000.
~O 95128469 PCT/US95104205 4~ 2187437 Other suitable organic polymeric compounds include the polymers of acrylamide and acrylate having a molecular weight of from 3,000 to 100,000, and the aciylatelfumarate copolymers having a molecular weight of from 2,000 to 80,000.
The polyamino compounds are useful herein including those derived from aspartic acid such as those disclosed in EP-A-305282, EP-A-305283 and EP-A-351629.
Other organic polymeric compounds suitable for incorporation in the detergent compositions herein include cellulose derivatives such as methylcellulose, carboxymethylcellulose and hydroxyethylcellulose.
Further useful organic polymeric compounds are the polyethylene glycols, particularly those of molecular weight 1000-10000, more particularly 2000 to 8000 and most preferably about 4000.
Lime soap dispersant compound The compositions of the invention may contain a lime soap dispersant compound, which has a lime soap dispersing power (LSDP), as defined hereinafter of no more than 8, preferably no more than 7, most preferably no more than 6. The lime soap dispersant compound is preferably present at a level of from 0.1 ~ to 40 ~ by weight, more preferably 1 ~ to 209b by weight, most preferably from 2 ~ to 10 ~
by weight of the compositions.
A lime soap dispersant is a material that prevents the precipitation of alkali metal, ammonium or amine salts of fatty acids by calcium or magnesium ions. A
numerical measure of the effectiveness of a lime soap dispersant is given by the lime soap dispersing power (I,SDP) which is determined using the lime soap dispersion test as described in an article by H.C. Borghetty and C.A. Bergman, J.
Am. Oil. Chem. Soc., volume 27, pages 88-90, (1950). This lime soap dispersion test method is widely used by practitioners in this art field being referred to , for example, in the following review articles; W.N. Linfield, Surfactant Science Series, Volume 7, p3; W.N. Linfield, Tenside Surf. Det. , Volume 27, pages159-161, (1990); and M.K. Nagarajan, W.F. Masler, Cosmetics and Toiletries, Volume 104, pages 71-73, (1989). The LSDP is the 9& weight ratio of dispersing agent to sodium oleate required to disperse the lime soap deposits formed by 0.0258 of sodium oleate in 30m1 of water of 333ppm CaC03 (Ca:Mg=3:2) equivalent hardness.
Surfactants having good lime soap dispersant capability will include certain amine oxides, betaines, sulfobetaines, alkyl ethoxysulfates and ethoxylated alcohols.
Exemplary surfactants having a LSDP of no more than 8 for use in accord with the invention include C 16-C 1 g dimethyl amine oxide, C 12-C 1 g alkyl ethoxysulfates with an average degree of ethoxyladon of from 1-5, particularly C12-C15 ~yl ethoxysulfate surfactant with a degree of ethoxyladon of about 3 (L,SDP=4), and the C13-C15 ethoxylated alcohols with an average degree of ethoxyladon of either 12 (L,SDP=6) or 30, sold under the trade marks Lutensol A012 and Lutensol A030 respectively, by BASF GmbH.
Polymeric lime soap dispersants suitable for use herein are described in the article by M.K. Nagaiajan and W.F. Masler, to be found in Cosmetics and Toiletries, Volume 104, pages 71-73, (1989). Examples of such polymeric lime soap dispersants include certain water-soluble salts of copolymers of acrylic acid, methacrylic acid or mixtures thereof, and an acrylamide or substituted acrylamide, where such polymers typically have a molecular weight of from 5,000 to 20,000.
Suds su ressing system The detergent compositions of the invention, when formulated for use in machine washing compositions, preferably comprise a suds suppressing system present at a . level of from 0.01 ~o to 15 ~b , preferably from 0.05 °b to 10 ~ , most preferably fmm 0.1 ~6 to 5 9~ by weight of the composition.
Suitable suds suppressing systems for use herein may comprise essentially any known antifoam compound, including, for example silicone antifoam compounds, 2-alkyl and alcanol antifoam compounds.
By antifoam compound it is meant herein any compound or mixtures of compounds which act such as to depress the foaming or sudsing produced by a solution of a detergent composition, particularly in the presence of agitation of that solution.
Particularly preferred antifoam compounds for use herein are silicone antifoam compounds defined herein as any antifoam compound including a silicone component. Such silicone antifoam compounds also typically contain a silica component. The term "silicone" as used herein, and in general throughout the industry, encompasses a variety of relatively high molecular weight polymers containing siloxane units and hydrocarbyl group of various types. Preferred silicone antifoam compounds are the siloxanes, particularly the polydimethylsiloxanes having trimethylsilyl end blocking units.
Other suitable antifoam compounds include the monocarboxylic fatty acids and soluble salts thereof. These materials are described in US Patent 2,954,347, issued September 27, 1960 to Wayne St. John. The monocarboxylic fatty acids, and salts thereof, for use as suds suppressor typically have hydrocarbyl chains of to about 24 carbon atoms, preferably 12 to 18 carbon atoms. Suitable salts include the alkali metal salts such as sodium, potassium, and lithium salts, and ammonium and alkanolammonium salts.
Other suitable antifoam compounds include, for example, high molecular weight fatty esters (e.g. fatty acid triglycerides), fatty acid esters of monovalent alcohols, aliphatic Clg-C4p ketones (e.g. stearone) N-alkylated amino triazines such as tri-to hexa-alkylmelamines or di- to tetra alkyldiamine chlortriazines formed as ' products of cyanuric chloride with two or three moles of a primary or secondary amine containing 1 to 24 carbon atoms, propylene oxide, bis stearic acid amide and monostearyl di-alkali metal (e.g. sodium, potassium, lithium) phosphates and phosphate esters.
Copolymers of ethylene oxide and propylene oxide, particularly the mixed ethoxylated/propoxylated fatty alcohols with an alkyl chain length of from 10 to 16 carbon atoms, a degree of ethoxylation of from 3 to 30 and a degree of propoxylation of from 1 to 10, are also suitable antifoam compounds for use herein.
Suitable 2-alley-alcanols antifoam compounds for use herein have been described in DE 44 21 265._ The 2-alkyl-alcanols suitable for use herein consist of a C6 to alkyl chain carrying a terminal hydroxy group, and said alkyl chain is substituted in the a position by a C1 to C10 alkyl chain. Mixtures of 2-alkyl-alcanols can be used in the compositions according to the present invention.
A preferred suds suppressing system comprises (a) antifoam compound, preferably silicone antifoam compound, most preferably a silicone antifoam compound comprising in combination (i) polydimethyl siloxane, at a level of from SO % to 99 % , preferably 75 % to 95 % by weight of the silicone antifoam compound; and (ii) silica, at a level of from I % to 50 % , preferably 5 % to 25 % by weight of the silicone/silica antifoam compound;
wherein said silica/silicone antifoam compound is incorporated at a level of from 5 % to 50 % , preferably 10 % to 40 % by weight;
(b) a dispersant compound, most preferably comprising a silicone glycol rake copolymer with a polyoxyalkylene content of 72-78 % and an ethylene oxide to propylene oxide ratio of from 1:0.9 to 1:1.1, at a level of from 0. S % to 10 % , preferably 1 % to 10 % by weight; a particularly preferred silicone glycol rake copolymer of this type is DG0544, commercially available from DOW Corning under the trademark DC0544;
(c) an inert carrier fluid compound, most preferably comprising a C 16-C 18 ethoxylated alcohol with a degree of ethoxylation of from S to 50, preferably 8 to 15, at a level of from 5 % to 80 % , preferably 10 % to 70 % , by weight;
A preferred particulate suds suppressor system useful herein comprises a mixture of an alkylated siloxane of the type hereinabove disclosed and solid silica.
The solid silica can be a fumed silica, a precipitated silica or a silica, made by the gel formation technique. The silica particles suitable have an average particle size of from 0.1 to 50 micrometers, preferably from 1 to 20 micrometers and a surface area of at least SOm2/g. These silica particles can be rendered hydrophobic by treating them with dialkylsilyl groups and/or trialkylsilyl groups either bonded directly onto the silica or by means of a silicone resin. It is preferred to employ a silica the particles of which have been rendered hydrophobic with dimethyl and/or trimethyl silyl groups. A preferred particulate antifoam compound for inclusion in the detergent compositions in accordance with the invention suitably contain an amount of silica such that the weight ratio of silica to silicone lies in the range from 1:100 to 3:10, preferably from 1:50 to 1:7.
Another suitable particulate suds suppressing system is represented by a hydrophobic silanated (most preferably trimethyl-silanated) silica having a particle size in the range from 10 nanometers to 20 nanometers and a specific surface area above SOm2/g, intimately admixed with dimethyl silicone fluid having a molecular weight in the range from about 500 to about 200,000 at a weight ratio of silicone to silanated silica of from about 1:1 to about 1:2.
A highly preferred particulate suds suppressing system is described in EP-A-0210731 and comprises a silicone antifoam compound and an organic can-ier material having a melting point in the range 50°C to 85°C, wherein the organic carrier material comprises a monoester of glycerol and a fatty acid having a carbon chain containing from 12 to 20 capon atoms. EP-A-0210721 discloses other preferred particulate suds suppressing systems wherein the organic carrier material is a fatty acid or alcohol having a carbon chain containing from 12 to 20 carbon atoms, or a mixture thereof, with a melting point of from 45°C to 80°C.
Other highly preferred particulate suds suppressing systems are described in CA 2,099,129 which systems comprise silicone antifoam compound, a carrier material, an organic coating material and glycerol at a weight ratio of glycerol silicone antifoam compound of 1:2 to 3:1. CA 2,110,409 also discloses highly preferred particulate suds suppressing systems comprising silicone antifoam compound, a carrier material, an organic coating material and crystalline or amorphous aluminosilicate at a weight ratio of aluminosilicate : silicone antifoam compound of 1:3 to 3:1. The preferred carltier material in both of the above described highly preferred granular suds controlling agents is starch.
An exemplary particulate suds suppressing system for use herein is a particulate agglomerate component, made by an agglomeration process, comprising in combination (i) from 5 ~ to 30 % , preferably from 8 ~ to 15 ~ by weight of the component of silicone antifoam compound, preferably comprising in combination polydimethyl siloxane and silica;
(ii) from 50 % to 90 ~ , preferably from 60 ~ to 80 ~ by weight of the component, of carrier material, preferably starch;
(iii) from 5 % to 30 ~, preferably from 10 % to 20 % by weight of the component of agglomerate binder compound, where herein such compound can be any compound, or mixtures thereof typically employed as binders for agglomerates, most preferably said agglomerate binder compound comprises a C16-Clg ethoxylated alcohol with a degree of ethoxylation of from 50 to 100; and (iv) from 29b to 15 ro, preferably from 3 % to 1036, by weight of CI2-C22 hydrogenated fatty acid.
'WO95128469 ~ PCT/US95/04205 Polymeric dye transfer inhibiting ggentc The detergent compositions herein may also comprise from 0.01 ~ to 10 ro, preferably from 0.05 % to 0.5 ~ by weight of polymeric dye transfer inhibiting agents.
The polymeric dye transfer inhibiting agents are preferably selected from polyamine N-oxide polymers, copolymers of N-vinylpyrrolidone and N-vinyIimidazole, polyvinylpyrrolidone polymers or combinations thereof.
al Polyamine N-oxide poll Polyamine N-oxide polymers suitable for use herein contain units having the following structure formula P
(I) R
wherein P is a polymerisable unit, whereto the R-N-O group can be attached to, or wherein the R-N-O group forms part of the poIymerisable unit or a combination of both.
O O O
A is NC, C0, C, -O-, -S-, -N-; x is O or 1;
R are aliphatic, ethoxylated aliphatics, aromatic, heterocyclic or alicyclic groups or any combination thereof whereto the nitrogen of the N-O group can be attached or wherein the nitrogen of the N-O group is part of these groups.
The N-O group can be represented by the following general structures ~R~ ) x _ ~ _~R2)y 1 (R3)Z or =N-(R~ )x wherein Rl, R2, and R3 are aliphatic groups, aromatic, heterocyclic or alicyclic groups or combinations thereof, x or/and y or/and z is 0 or 1 and wherein the nitrogen of the N-O group can be attached or wherein the nitrogen of the N-O
group forms part of these groups. The N-O group can be part of the polymerisable unit (P) or can be attached to the polymeric backbone or a combination of both.
Suitable polyamine N-oxides wherein the N-O group forms part. of the polymerisable unit comprise polyamine N-oxides wherein R is selected from aliphatic, aromatic, alicyclic or heterocyclic groups. One class of said polyamine N-oxides comprises the group of polyamine N-oxides wherein the nitrogen of the N-O group forms part of the R-group. Preferred polyamine N-oxides are those wherein R is a heterocyclic group such as pyrridine, pyrrole, imidazole, pyrrolidine, piperidine, quinoline, acridine and derivatives thereof.
Another class of said polyamine N-oxides comprises the group of polyamine N-oxides wherein the nitrogen of the N-O group is attached to the R-group.
Other suitable polyamine N-oxides are the polyamine oxides whereto the N-O
group is attached to the polymerisable unit.
Preferred class of these polyamine N-oxides are the polyamine N-oxides having the general formula ()] wherein R is an aromatic,heterocyclic or alicyclic groups wherein the nitrogen of the N-0 functional group is part of said R group.
Examples of these classes are polyamine oxides wherein R is a heterocyclic compound such as pyrridine, pyrrole, imidazole and derivatives thereof.
Another preferred class of polyamine N-oxides are the polyamine oxides having the general formula (n wherein R are aromatic, heterocyclic or alicyclic groups wherein the nitrogen of the N-0 functional group is attached to said R groups.
'WO95128469 ' PCTIU595/04205 fixamples of these classes are polyamine oxides wherein R groups can be aromatic such as phenyl.
Any polymer backbone can be used as long as the amine oxide polymer formed is water-soluble and has dye transfer inhibiting properties. Examples of suitable polymeric backbones are polyvinyls, polyallcylenes, polyesters, polyethers, polyamide, polyimides, polyacrylates and mixtures thereof.
The amine N-oxide polymers of the present invention typically have a ratio of amine to the amine N-oxide of 10:1 to 1:1000000. However the amount of amine oxide groups present in the polyamine oxide polymer can be varied by appropriate copolymerization or by appropriate degree of N-oxidation. Preferably, the ratio of amine to amine N-oxide is from 2:3 to 1:1000000. More preferably from 1:4 to 1:1000000, most preferably from 1:7 to 1:1000000. The polymers of the present invention actually encompass random or block copolymers where one monomer type is an amine N-oxide and the other monomer type is either an amine N-oxide or not. The amine oxide unit of the polyamine N-oxides has a PKa < 10, preferably PKa < 7, more preferred PKa < 6.
The polyamine oxides can be obtained in almost any degree of polymesisation.
The degree of polymerisation is not critical provided the material has the desired water-solubility and dye-suspending power. Typically, the average molecular weight is within the range of 500 to 1000,000; preferably from 1,000 to 50,000, more preferably from 2,000 to 30,000, most preferably from 3,000 to 20,000.
bl CoRolymers of N-vinylpyrro&done an~i N-~inylimidawle Preferred polymers for use herein may comprise a polymer selected from N-vinylimidazole N-vinylpyrrolidone copolymers wherein said polymer has an average molecular weight range from 5,000 to 50,000 more preferably from 8,000 to 30,000, most preferably from 10,000 to 20,000. The preferred N-vinylimidazole N-vinylpyrrolidone copolymers have a molar ratio of N-vinylimidazole to N-vinylpyrrolidone from 1 to 0.2, more preferably from 0.8 to 0.3, most preferably from 0.6 to 0.4 .
cl PolyvinylQyrrolidone WO 95128469 PCTlUS95104205 So 2187437 The detergent compositions herein may also utilize polyvinylpyrrolidone ("PVP"
having an average molecular weight of from 2,500 to 400,000, preferably from
B. Another preferred class of secondary soaps comprises those carboxyl compounds wherein the carboxyl substituent is on a ring hydrocarbyl unit, i.e., secondary soaps of the formula R$-R6-COOM, wherein RS is C~-~WO 95!28469 PCT/US95104205 C10 preferably C8-C9, alkyl or alkenyl and R6 is a ring structure, such as benzene, cyclopentane and cyclohexane. (Note: RS can be in the ortho, meta or para position relative to the carboxyl on the ring.) C. Still another preferred class of secondary soaps comprises secondary carboxyl compounds of the fommla CH3(CHR)k-(CHZ)m-(CHR)n CH(COOM)(CHR)o-(CH2)p (CHR)q CH3, wherein each R is Cl-C4 alkyl, wherein k, n, o, q are integers in the range of 0-8, provided that the total number of carbon atoms (including the carboxylate) is in the range of to 18.
In each of the above formulas A, B and C, the species M can be any suitable, especially water-solubilizing, counterion.
Especially preferred secondary soap surfactants for use herein are water-soluble members selected from the group consisting of the water-soluble salts of 2-methyl-1-undecanoic acid, 2-ethyl-1-decanoic acid, 2-propyl-1-nonanoic acid, 2-butyl-octanoic acid and 2-pentyl-1-heptanoic acid.
Other suitable anionic surfactants are the alkali metal sarcosinates of formula R-CON (Rl) CH2 COOM, wherein R is a CS-C1~ linear or branched alkyl or alkenyl group, Rl is a C1-C4 alkyl group and M is an alkali metal ion.
Preferred examples are the myristyl and oleyl methyl sarcosinates in the form of their sodium salts.
Nonionic surfactant Essentially any anionic surfactants useful for detersive purposes can be included in the compositions. Exemplary, non-Limiting classes of useful nonionic surfactants are listed below.
Nonionic ~lyjtydroxy fatty acid amide cnrfac an Polyhydroxy fatty acid amides suitable for use herein are those having the structural formula R2CONR1Z wherein : Rl is H, Cl-Cq hydrocarbyl, 2-hydroxy y 4-.
w0 95128469 PCT/US95104205 a e;
.18 2181437 ethyl, 2-hydroxy propyl, or a mixture thereof, preferable C1-C4 alkyl, more prei~erably Ci or C2 alkyl, most preferably Ci alkyl (i.e., methyl); and R2 is a CS-C31 hydrocarbyl, preferably straight-chain Cg-Ci9 alkyl or alkenyl, more preferably straight-chain Cg-C i ~ alkyl or alkenyl, most preferably straight-chain Cl1-CIA alkyl or alkenyl, or mixture thereof; and Z is a polyhydroxyhydrocarbyl having a linear hydnxarbyl chain with at least 3 hydroxyls directly connected to the chain, or an alkoxylated derivative (preferably ethoxylated or propoxylated) thereof. Z preferably will be derived from a reducing sugar in a reductive amination reaction; more preferably Z is a glycityl.
Nonionic condensates of alkyl phenols The polyethylene, polypropylene, and polybutylene oxide condensates of alkyl phenols are suitable for use herein. In general, the polyethylene oxide condensates are preferred. These compounds include the condensation products of alkyl phenols having an alkyl group containing from about 6 to about 18 carbon atoms in either a straight chain or branched chain co~guration with the alkylene oxide.
Nonionic ethoxyrlated alcohol surfactant The alkyl ethoxylate condensation products of aliphatic alcohols with from about 1 to about 25 moles of ethylene oxide are suitable for use herein. The alkyl chain of the aliphatic alcohol can either be straight or branched, primary or secondary, and generally contains from 6 to 22 carbon atoms. Particularly preferred are the condensation products of aicohois having an alkyl group containing from 8 to carbon atoms with from about 2 to about 10 moles of ethylene oxide per mole of alcohol.
The ethoxylated C6-Clg fatty alcohols and C6-Clg mixed ethoxylatedlpropoxylated fatty alcohols are suitable surfactants for use herein, particularly where water soluble. Preferably the ethoxylated fatty alcohols are the Cl0-Clg ethoxylated fatty alcohols with a degree of ethoxylation of from 3 to 50, most preferably these are the C12-Clg ethoxylated fatty alcohols with a degree of ethoxylation from 3 to 40. Preferably the mixed ethoxylated/propoxylated fatty "~ r~ w, .
"WO 95128469 PCT/US95I04205 alcohols have an alkyl chain length of from 10 to 18 carbon atoms, a degree of ethoxylation of from 3 to 30 and a degree of propoxylation of from 1 to 10.
Nonionic EOIPO condensates with Rm_Ry(ene glLo_I
The condensation products of ethylene oxide with a hydrophobic base formed by the condensation of propylene oxide with propylene glycol are suitable for use herein. The hydrophobic portion of these compounds preferably has a molecular weight of from about 1500 to about 1800 and exhibits water insolubility.
Examples of compounds of this type include certain of the commercially-available PlurorucTM surfactants, marketed by BASF.
Nonionic EO condensation products with nronvlene oxidelethvlene diamine The condensation products of ethylene oxide with the product resulting from the reaction of propylene oxide and ethylenediamine are suitable for use herein.
The hydrophobic moiety of these products consists of the reaction product of ethylenediamine and excess propylene oxide, and generally has a molecular weight of from about 2500 to about 3000. Examples of this type of nonionic surfactant include certain of the commeroially available TetronicTM compounds, marketed by BASF.
Nonionic alky_Ipolysaccharide surfactant Suitable alkylpolysaccharides for use herein are disclosed in U.S. Patent 4,565,647, Llenado, issued January 21, 1986, having a hydrophobic group containing from about 6 to about 30 carbon atoms, preferably from about 10 to about 16 carbon atoms and a polysaccharide, e.g., a polyglycoside, hydrophilic group containing from about 1.3 to about 10, preferably from about 1.3 to about 3, most preferably from about 1.3 to about 2.7 saccharide units. Any reducing saccharide containing 5 or 6 carbon atoms can be used, e.g., glucose, galactose and galactosyl moieties can be substituted for the glucosyl moieties.
(Optionally the hydrophobic group is attached at the 2-, 3-, 4-, etc. positions thus giving a glucose or galactose as opposed to a glucoside or galactoside.) The intersaccharide bonds can be, e.g., between the one position of the additional saccharide units and the 2-, 3-, 4-, and/or 6- positions on the preceding saccharide units.
The preferred alkylpolyglycosides have the formula R20(CnH2n0)t(glycosyl)x wherein R2 is selected from the group consisting of alkyl, alkylphenyl, hydroxyalkyl, hydroxyalkylphenyl, and mixtures thereof in which the alkyl groups contain from 10 to 18, preferably from 12 to 14, carbon atoms; n is 2 or 3; t is from 0 to 10, preferably 0, and X is from 1.3 to 8, preferably from 1.3 to 3, most preferably from 1.3 to 2.7. The gIycosyl is preferably derived from glucose.
~O 95128469 PC1'IUS95/04205 ~lonionic fly acid amide surfactant Fatty acid amide surfactants suitable for use herein are those having the formula:
R6CON(R7)2 wherein R6 is an alkyl group containing from 7 to 21, preferably from 9 to 17 carbon atoms and each R7 is selected from the group consisting of hydrogen, CI-Cq alkyl, CI-C4 hydroxyalkyl, and -(C2H40)xH, where x is in the renge of from 1 to 3.
Am~hoteric surfactant Suitable amphoteric surfactants for use herein include the amine oxide surfactants and the alkyl amphocarboxylic acids.
A suitable example of an alkyl aphodicarboxylic acid for use herein is Miranol(TM) C2M Conc. manufactured by Miranol, Inc., Dayton, NJ.
Amine Oxide surfactant Amine oxides useful herein include those compounds having the formula R3(OR4)xlVp(RS)2 wherein R3 is selected from an alkyl, hydroxyalkyl, acylamidopropoyl and alkyl phenyl group, or mixtures thereof, containing from to 26 carbon atoms, preferably 8 to 18 carbon atoms; R4 is an alkylene or hydroxyalkylene group containing from 2 to 3 carbon atoms, preferably 2 carbon atoms, or mixtures thereof; x is from 0 to 5, preferably from 0 to 3; and each RS
is an alkyl or hydyroxyalkyl group containing from I to 3, preferably from I
to 2 carbon atoms, or a polyethylene oxide group containing from 1 to 3, preferable 1, ethylene oxide groups. The RS groups can be attached to each other, e.g., through an oxygen or nitrogen atom, to form a ring structure.
These amine oxide surfactants in particular include CIO-Clg alkyl dimethyl amine oxides and Cg-Clg alkoxy ethyl dihydroxyethyl amine oxides. Examples of such materials include dimethyloctylamine oxide, diethyldecylamine oxide, bis-(2-hydroxyethyl)dodecylamine oxide, dimethyldodecylamine oxide, dipropyltetradecylamine oxide, methylethylhexadecylamine oxide, dodecylamidopropyl dimethylamine oxide, cetyl dimethylamine oxide, stearyl dimethylamine oxide, tallow dimethylamine oxide and dimethyl-2-R'O 95128469 PCT/US95104205 as hydroxyoctadecylamine oxide. Preferred are C10-C18 ~Yl dimethyLimine oxide, and C10-18 acylamido allcyl dimethylamine oxide.
Zwitterionic cnrfa .tant Zwitterionic surfactants can also be incorporated into the detergent compositions hereof. These surfactants can be broadly described as derivatives of secondary and tertiary amines, derivatives of heterocyclic secondary and tertiary amines, or derivatives of quaternary ammonium, quaternary phosphonium or tertiary sulfonium compounds. Betaine and sultaine surfactants are exemplary zwittetionic surfactants for use herein.
The betaines useful herein are those compounds having the formula R(R')2N+R2C00- wherein R is a C6-Clg hydrocarbyl group, preferably a C10-C16 alkyl group or C10-16 acylamido alkyl group, each Rl is typically Cl-C3 alkyl, preferably methyl,m and R2 is a Cl-Cg hydrocarbyl group, preferably a Cl-C3 alkylene group, more preferably a Cl-C2 allrylene group. Examples of suitable betaines include coconut acyLunidopnopyldimethyl betaine; hexadecyl dimethyl betaine; C12-14 acylamidopropylbetaine; Cg-14 acylamidohexyldiethyl betaine; 4[Ci~l6 ~Y~ethylamidodiethylammonio]-1-carboxybutane; C16-18 acylamidodimethylbetaine; C12-16 acYlamidopentanediethyl-betaine; [C12-16 acylmethylamidodimethylbetaine. Preferred betaines are C12-18 d~ethyl-ammonio hexanoate and the C10-18 acY~dopropane (or ethane) dimethyl (or diethyl) betaines. Complex betaine surfactants are also suitable for use herein.
The sultaines useful herein are those compounds having the formula (R(Rl)ZN-~R2503- wherein R is a C6-Clg hydrocarbyl group, preferably a C10-C16 alkyl group, more preferably a C12-C13 allryl group, each Rl is typically C3 alkyl, preferably methyl, and R2 is a Cg-C6 hydrocarbyl group, preferably a Cl-C3 alkylene or, preferably, hydroxyalkylene group.
-WO 95!28469 PCTlUS95104205 Ampholytic surfactants can be incorporated into the detergent compositions herein.
These surfactants can be broadly described as aliphatic derivatives of secondary or tertiary amines, or aliphatic derivatives of heterocyclic secondary and tertiary amines in which the aliphatic radical can be straight chain or branched.
Cationic surfactants __ Cationic surfactants can also be used in the detergent compositions herein.
Suitable cationic surfactants include the quaternary ammonium surfactants selected from mono C6-C16, preferably C6-Cl0 N-alkyl or alkenyl ammonium surfactants wherein the remaining N positions are substituted by methyl, hydroxyethyl or hydroxypropyl groups.
Partia lv soluble or insoluble builder compound The detergent compositions of the present invention may contain a partially soluble or insoluble builder compound, typically present at a level of from 1 % to 80%
by weight, preferably from 10~ to 7096 by weight, most preferably from 2096 to 609b weight of the composition.
Examples of partially water soluble builders include the crystalline layered silicates. Examples of largely water insoluble builders include the sodium aluminosilicates.
Crystalline layered sodium silicates have the general formula NaMSix02x+ 1 ~YH20 wherein M is sodium or hydrogen, x is a number from 1.9 to 4 and y is a number from 0 to 20. Crystalline layered sodium silicates of this type are disclosed in EP-A-0164514 and methods for their preparation are disclosed in DE-A-3417649 and DE-A-3742043. For the purpose of the present invention, x in the general formula above has a value of 2, 3 or 4 and is preferably 2. The most preferred material is &-Na2Si205, available from Hoechst AG as NaSKS-6.
The crystalline layered sodium silicate material is preferably present in granular detergent compositions as a particulate in intimate admixture with a solid, water-soluble ionisable material. The solid, water-soluble ionisable material is selected from organic acids, organic and inorganic acid salts and mixtures thereof.
Suitable aluminosilicate zeo&tes have the unit cell formula Naz[(A102)z(SiO~y~.
XH20 wherein z and y are at least 6; the molar ratio of z to y is from 1.0 to 0.5 and x is at least 5, preferably from 7.5 to 276, more preferably from 10 to 264.
The aluminosilicate material are in hydrated form and are preferably crystalline, containing from 10 % to 28 % , more preferably from 18 ~ to 22 ~ water in bound form.
The aluminosilicate ion exchange materials can be naturally occurring materials, but are preferably synthetically derived. Synthetic crystalline aluminosilicate ion exchange materials are available under the designations Zeolite A, Zeolite B, Zeolite P, Zeolite X, Zeoilte MAP, Zeolite HS and mixtures thereof. Zeolite A
has the formula Na 12 [A102). 12 (Si02)127. xH20 wherein x is from 20 to 30, especially 27. Zeolite X has the formula Nag6 [('°'10~86(Si02)106~. 276 H20.
The detergent compositions of the invention contain as a preferred optional component an organic peroxyacid bleach source. The peroxyacid bleach source may be the organic peroxyacid per se, or it may be a peroxyacid bleach precursor compound.
Where the source is a peroxyacid bleach precursor compound, the production of the peroxyacid occurs by an in situ reaction of the precursor with a source of hydrogen peroxide. Suitable sources of hydrogen peroxide include inorganic perhydrate bleaches.
The organic peroxyacid bleach source is preferably also provided with means for delaying its release to the wash solution, such that in the T50 test, the time to achieve a concentration that is 50 % of the ultimate concentration of the peroxyacid z5 2181437 bleach is more than 180 seconds, preferably more than 240 seconds. Any of the means herein described for achieving the delayed release can be employed.
Peroxvacid bleach precursors Peroxyacid bleach precursors (bleach activators) are preferred peroxyacid sources.
Peroxyacid bleach precursors are normally incorporated at a level of from 1 ~b to 20~ by weight, more preferably from 2Y6 to 53b by weight, most preferably from 336 to 10~ by weight of the compositions.
Suitable peroxyacid bleach precursors typically contain one or more N- or O-aryl groups, which precursors can be selected from a wide range of classes.
Suitable classes include anhydrides, esters, imides and acylated derivatives of imidazoles and oximes, and examples of useful materials within these classes are disclosed in GB-A-1586789.
Suitable esters are disclosed in GB-A-836988, 864798, 1147871, 2143231 and EP-A-0170386..The acylation products of sorbitol, glucose and all saccharides with benzoylating agents and acetylating agents are also suitable.
Specific O-acylated precursor compounds include 2,3,3-tri-methyl hexanoyl oxybenzene sulfonates, benzoyl oxybenzene sulfonates, nonanoyl-6-amino caproyl oxybenzene sulfonates, monobenzoyltetraacetyl glucose benzoyl peroxide and catiotric derivatives of any of the above, including the alkyl ammonium derivatives and pentaacetyl glucose. Phthalic anhydride is a suitable anhydride type precursor.
Specific cationic derivatives of the O-aryl precursor compounds include 2-(N,N,N-trimethyl ammonium) ethyl sodium 4-sulphophenyl carbonate chloride, and any of the alkyl ammonium derivatives of the benzoyl oxybenzene sulfonates including the 4-(trimethyl ammonium) methyl derivative.
Useful N-aryl compounds are disclosed in GB-A-855735, 907356 and GB-A-1246338.
Preferred precursor compounds of the imide type include N-benzoyl succinimide, tetrabenzoyl ethylene diamine, N-benzoyl substituted ureas and the N-,N,N1N1 R'O 95/28469 PCT/US95/04205 zs 2187437 tetra acetylated allcylene diamines wherein the allcylene group contains from I to 6 carbbn atoms, particularly those compounds in which the alkylene group contains 1, 2 and 6 carbon atoms. Tetraacetyl ethylene diamine (TAED) is particularly preferred.
N-acyhtted precursor compounds of the lactam class are disclosed generally in GB-A-955735. Whilst the broadest aspect of the invention contemplates the use of any lactam useful as a peroxyacid precursor, preferred materials comprise the caprnlactams and valerolactams.
~O 95/28469 PCT/US95/04205 a~ 2187437 Suitable N-acylated lactam precursors have the formula:
II
Rs-C N CH2-CH2 - ~C H2~ ~ H2 ]~
wherein n is from 0 to about 8, preferably from 0 to 2, and R6 is H, an alkyl, aryl, alkoxyaryl or alkaryl group containing from 1 to 12 carbons, or a substituted phenyl group containing from 6 to 18 carbon atoms Suitable caprolactam bleach precursors are of the formula:
wherein R1 is H or an alkyl, aryl, alkoxyaryl or alkaryl group containing from to 12 carbon atoms, preferably from 6 to 12 carbon atoms, most preferably Rl is phenyl.
Suitable valero lactams have the formula:
Rl -- C - N
W0 95128469 .. .. PCT/US95104205 wherein R1 is H or an alkyl, aryl, alkoxyaryl or alkaryl group containing from l to 12 carbon atoms, preferably from 6 to 12 carbon atoms. In highly preferred embodiments, RI is selected from phenyl, heptyl, octyl, nonyl, 2,4,4-trimethylpentyl, decenyl and mixtures thereof.
The most preferred materials are those which are normally solid at <
30°C, particularly the phenyl derivatives, ie. benzoyl valerolactam, benzoyl caprolactam and their substituted benzoyl analogues such as chloro, amino alkyl, alkyl, aryl and alkoxy derivatives.
Caprolactam and valerolactam precursor materials wherein the RI moiety contains at least 6, preferably from 6 to 12, carbon atoms grovide peroxyacids on perhydrolysis of a hydrophobic character which afford nucleophilic and body soil clean-up. Precursor compounds wherein Rl comprises from 1 to 6 carbon atoms provide hydrophilic bleaching species which are particularly efficient for bleaching beverage stains. Mixtures of 'hydrophobic' and 'hydrophilic' caprolactams and valero lactams, typically at weight ratios of 1:5 to 5:1, preferably I:1, can be used herein for mixed stain removal benefits.
I~ghly preferred caprolactam and valerolactam precursors include benzoyl capralactam, nonanoyl capro-Lictam, benzoyl valerolactam, nonanoyl valerolactam, 3,5,5-trimethylhexanoyl caprolactam, 3,5,5-trimethylhexanoyl valerolactam, octanoyl caprolactam, octanoyl valerolactam, decanoyl caprolactam, decanoyl valerolactam, undecenoyl caprolactam, undecenoyl valerolactam, (6-octanamidocaproyl)oxybenzene-sulfonate, (6-nonanamidocaproyl)oxybenzenesulfonate, (6-decanamidocaproyl)-oxybenzenesulfonate, and mixtures thereof. Examples of highly preferred substituted benzoyl lactams include methylbenzoyl caprolactam, methylbenzoyl valerolactam, ethylbenzoyl caprolactam, ethylbenzoyl valerolactam, propylbenzoyl caprolactam, propylbenzoyl valerolactam, isopropylbenzoyl caprolactam, isopropylbenzoyl valerolactam, butylbenzoyl caprolactam, butylbenzoyl valerolactam, tent-butylbenzoyl caprolactam, tert-butylbenzoyl valerolactam, pentylbenzoyl caprolactam, pentylbenaoyl valerolactam, hexylbenzoyl caprolactam, hexylbenzoyl valerolactam, ethoxybenzoyl caprolactam, ethoxybenzoyl valerolactam, propoxybenzoyl caprolactam, propoxybenzoyl valerolactam, isopropoxybenzoyl caprolactam, isopropoxybenzoyl valerolactam, butoxybenzoyl caprolactam, butoxybenzoyl valerolactam, tert-butoxybenzoyl ~0 95128469 _ PGT/US95104205 caprolactam, tert-butoxybenzoyl valerolactam, pentoxybenzoyl caprolactam, pentoxybenzoyl valerolactam, hexoxybenzoyl caprolactam, hexoxybenzoyl valerolactam, 2,4,6-trichlorobenzoyl caprolactam, 2,4,6-trichlorobenzoyl valerolactam, pentafluorobenaoyl caprolactam, pentafluorobenzoyl valerolactam, dichlorobenzoyl caprolactam, dimethoxybenzoyl caprolactam, 4-chlorobenzoyl caprolactam, 2,4-dichlororbenzoyl caprolactam, terephthaloyl dicaprolactam, pentafluorobenzoyl caprolactam, pentafluorobenzoyl valerolactam, dichlorobenzoyl valerolactam, dimethoxybenzoyl valerolactam, 4-chlorobenzoyl valerolactam, 2,4-dichlororbenzoyl valerolactam, terephthaloyl divalerolactam, nitrobenzoyl caprolactam, 4-nitrobenzoyl valerolactam, and mixtures thereof.
Suitable imidazoles include N-benzoyl imidazole and N-benzoyl benzimidazole and other useful N-acyl group-containing peroxyacid precursors include N-benzoyl pyrrolidone, dibenzoyl taurine and benzoyl pyroglutamic acid.
Another preferred class of peroxyacid bleach activator compounds are the amide substituted compounds of the Following general formulae:
R~-C-N-R2-C-L R~-N-C-R2-CL
O R5 O or R5 0 O
wherein Rl is an aryl or allcaryl group with from 1 to 14 carbon atoms, R2 is an alkylene, arylene, and alkarylene group containing from 1 to 14 carbon atoms, and RS is H or an allcyl, aryl, or alkaryl group containing 1 to 10 carbon atoms and L
can be essentially any leaving group. Rl preferably contains from 6 to 12 carbon atoms. R2 preferably contains from 4 to 8 carbon atoms. Rl may be straight chain or branched alkyl, substituted aryl or alkylaryl containing branching, substitution, or both and may be sourced from either synthetic sources or natural sources including for example, tallow fat. Analogous structural variations are permissible for R2. The substitution can include alkyl, aryl, halogen, nitrogen, sulphur and other typical substituent groups or organic compounds. RS is preferably H or methyl. Rl and RS should not contain more than 18 carbon atoms in total. Amide substituted bleach activator compounds of this type are described in EP-A-0170386.
WO 95!28469 PCT/US95104205 The L group must be sufficiently reactive for the reaction to occur within the optimum time frame (e.g., a wash cycle). However, if L is too reactive, this activator will be difficult to stabilize for use in a bleaching composition.
These characteristics are generally paralleled by the pKa of the conjugate acid of the leaving group, although exceptions to this convention are known. Ordinarily, leaving groups that exhibit such behavior are those in which their conjugate acid has a pKa in the range of from 4 to 13, preferably from 6 to 11 and most preferably from 8 to 11.
Preferred bleach precursors are those wherein Rl, R2 and RS are as defined for the amide substituted compounds and L is selected from the group consisting of:
-O~Y, -O~Y , and -~R3Y
-N-C-Ri -N N -N-C-CH-R4 , R3 , ~ , Ra Y
i Y
I I
-0-CH=C-CH=CH2 -O-CH=C-CH=CH2 , , _O-~-Rt , -O-C=CHR4 , and -N-S-CH-R4 and mixtures thereof, wherein R1 is an alkyl, aryl, or alkaryl group containing from 1 to 14 carbon atoms, R3 is an alkyl chain containing from 1 to 8 carbon atoms, R4 is H or R3, and Y is H or a solubilizing gmup.
"WO95l28469 ~ . PCTIUS95I04205 l' . ,! 31 The preferred solubilizing groups are -S03 M+, -C02 M+, -S04 M+, -N~(R3) X and O <--N(R3)3 and most preferably -S03 M+ and -C02 M+
wherein R~ is an alkyl chain containing from 1 to 4 carbon atoms, M is a canon which provides solubility to the bleach activator and X is an anion which provides solubility to the bleach activator. Preferably, M is an alkali metal, ammonium or ' substituted ammonium cation, with sodium and potassium being most preferred, and X is a halide, hydroxide, methyisulfate or acetate anion. It should be noted that bleach activators with a leaving group that does not contain a solubilizing groups should be well dispersed in the bleaching solution in order to assist in their dissolution.
Preferred examples of bleach precursors of the above formulae include (6-octanamidocaproyl)oxybenzenesulfonate, (6-nonanamidocaproyl)oxybenzenesulfo-nate, (6-decanamidocaproyl)oxybenzenesulfonate, and mixtures thereof.
Other preferred precursor compounds include those of the benzoxazin-type, having the formula:
O
C~
I
~N C-Rt including the substituted benzoxazins ofthe type wherein Rl is H, alkyl, alkaryl, aryl, aryLilkyl, and wherein R2, R3, R4, and RS
may be the same or different substituents selected from H, halogen, alkyl, alkenyl, aryl, hydroxyl, alkoxyl, amino, alkyl amino, COOR6 (wherein R6 is H or an alkyl group) and carbonyl functions.
An especially preferred precursor of the benzoxazin-type is:
t.. :f..a ... .
32 2~ 87437 An especially preferred precursor of the benzoxazin-type is:
Or is peroxy .;~a _ The detergent compositions may also contain organic peroxyacids typically at a level of from 19b to 15 96 by weight, more preferably from 196 to 10 96 by weight of the composition.
A preferred class of organic peroxyacid compounds are the amide substituted compounds of the following general formulae:
R~ - II - ~ -R2- ~~ -OOH
0 R5 O or R~ -R-OI -R2- ~~ -OOH
b 0 wherein Rl is an aryl or alkaryl group with from 1 to 14 carbon atoms, R2 is an alkylene, arylene, and alkarylene group containing from 1 to 14 carbon atoms, and RS is H or an alkyl, aryl, or alkaryl group containing 1 to 10 carbon atoms.
RI
preferably contains from 6 to 12 carbon atoms. R2 preferably contains from 4 to 8 carbon atoms. Rl may be straight chain or branched alkyl, Substituted aryl or alkylaryl containing branching, substitution, or both and may be sourced from either synthetic sources or natural sources including for example, tallow fat.
Analogous structural variations are permissible for R2. The substitution can include alkyl, aryl, halogen, nitrogen, sulphur and other typical substituent groups or organic compounds. RS is preferably Her methyl. Rl and RS should not contain more than 18 carbon atoms in total. Amide substituted organic peroxyacid compounds of this type are described in FP-A-0170386.
0 95128469 ~ PCTIUS95/04205 Other organic peroxyacids include diperoxy dodecanedioc acid, diperoxy tetra decanedioc acid, diperoxyhexadecanedioc acid, mono- and diperazelaic acid, mono- and diperbrassylic acid, monoperoxy phthalic acid, perbenzoic acid, and their salts as disclosed in, for example, EP-A-0341 947.
Inorg m~c perh5rdrate bleaches The compositions preferably include, as a hydrogen peroxide source, an inorganic perhydrate salt, most especially when the organic peroxyacid source is a peroxyacid bleach precursor compound.
The inorganic perhydrate salts are normally incorporated in the form of the sodium salt at a level of from 1 ~ to 40 % by weight, more preferably from 2 ~ to 30 °& by weight and most preferably from 5 I to 25 % by weight of the compositions.
Examples of inorganic perhydrate salts include perborate, percarbonate, peiphosphate, persulfate and persilicate salts. The inorganic perhydrate salts are normally the alkali metal salts. The inorganic perhydrate salt may be included as the crystalline solid without additional protection. For certain perhydrate salts however, the preferred executions of such granular compositions utilize a coated form of the material which provides better storage stability for the perhydrate'salt in the granular product.
Sodium perborate can be in the form of the monohydrate of nominal formula NaB02H202 or the tetrahydrate NaB02H202.3H20.
Sodium percarbonate, which is a preferred perhydrate for inclusion in detergent compositions in accordance with the invention, is an addition compound having a formula corresponding to 2Na2C03.3H202, and is available commercially as a crystalline solid. The percarbonate is most preferably incorporated into such compositions in a coated form which provides in product stability.
A suitable coating material providing in product stability comprises mixed salt of a water soluble alkali metal sulphate and carbonate. This coating however allows for rapid release of the percarbonate bleach to the wash solution and is therefore not a suitable means for providing delayed release of the percarbonate bleach into a wash solution. Such coatings together with coating processes have previously .. a .l_3'_ '!Ia~'w. ".
WO 95!28469 been described in GS-1,466,799, granted to Interox on 9th March 1977. The weight ratio of the mixed salt coating material to percarbonate lies in the range from 1 : 200 to I : 4, more preferably from I : 99 to 1 : 9, and most preferably from 1 : 49 to 1 : 19. Preferably, the mixed salt is of sodium sulphate and sodium carbonate which has the general formula Na2S04.n.Na2C03 wherein n is form 0.1 to 3, preferably n is from 0.3 to 1.0 and most preferably n is from 0.2 to 0.5.
Potassium peroxymonopersulfate is another inorganic perhydrate salt of use in the detergent compositions herein.
~O 95128469 PCT/U595104205 Bleach catalyst The invention also encompasses compositions containing a catalytically effective amount of a bleach catalyst such as a water-soluble manganese salt.
The bleach catalyst is used in a catalytically effective amount in the compositions and processes herein. By "catalytically effective amount" is meant an amount which is sufficient, under whatever comparative test conditions are employed, to enhance bleaching and removal of the stain or stains of interest from the target substrate. Thus, in a fabric laundering operation, the target substrate will typically be a fabric stained with, for example, various food stains. For automatic dishwashing, the target substrate may be, for example, a porcelain cup or plate with tea stain or a polyethylene plate stained with tomato soup. The test conditions will vary, depending on the type of washing appliance used and the habits of the user. Thus, front-loading laundry washing machines of the type employed in Europe generally use less water and higher detergent concentrations than do top-loading U.S.-style machines. Some machines have considerably longer wash cycles than others. Some users elect to use very hot water; others use warm or even cold water in fabric laundering operations. Of course, the catalytic performance of the bleach catalyst will be affected by such considerations, and the levels of bleach catalyst used in fully-formulated detergent and bleach compositions can be appropriately adjusted. As a practical matter, and not by way of limitation, the compositions and processes herein can be adjusted to provide on the order of at least one part per ten million of the active bleach catalyst species in the aqueous washing liquor, and will preferably provide from about I ppm to about 200 ppm of the catalyst species in the laundry liquor. To illustrate this point further, on the order of 3 micromolar manganese catalyst is effective at 40°C, pH
10 under European conditions using perborate and a bleach precursor (e.g., benzoyl caprolactam). An increase in concentration of 3-5 fold may be required under U.S. conditions to achieve the same results. Conversely, use of a bleach precusor and the manganese catalyst with perborate may allow the formulator to achieve equivalent bleaching at lower perborate usage levels than products without the manganese catalyst.
The bleach catalyst material herein can comprise the free acid or be in the form of any suitable salts.
w0 95/28469 PCTIUS95104205 One type of bleach catalyst is a catalyst system comprising a heavy metal ration of defined bleach catalytic activity, such as copper, iron or manganese rations, an auxiliary metal radon having little or no bleach catalytic activity, such as zinc or aluminum rations, and a sequestrant having defined stability constants for the catalytic and auxiliary metal rations, particularly ethylenediaminetetraacetic acid, ethylenediaminetetra(methylenephosphonic acid) and water-soluble salts thereof.
Such catalysts are disclosed in U.S. Pat. 4,430,243.
Other types of bleach catalysts include the manganese-based complexes disclosed in U.S. Pat. 5,246,621 and U.S. Pat. 5,244,594. Preferred examples of these catalysts include Mn~2(u-O)3(1,4,7-trimethyl-1,4,7-triazacyclononane)2-(PF6)2, Mn~2(u-O)1(u-OAc)2(1,4,7-trimethyl-1,4,7-triazacyclononane)2-(C104)2, Mn~4(u-O)6(1,4,7-triazacyclononane)4-(C104)2, Mn~Mn~4(u-O)1(u-OAc)2-(1,4,7-trimethyl-1,4,7-triazacyclononane)2-(C104)3, and mixtures thereof.
Others are described in European patent application publication no. 549,272. Other ligands suitable for use herein include 1,5,9-trimethyl-1,5,9-triazacyclododecane, 2-methyl-1,4,7-triazacyclononane, 2-methyl-1,4,7-triazacyclononane, 1,2,4,7-tetramethyl-1,4,7-triazacyclononane, and mixtures thereof.
The bleach catalysts useful in the compositions herein may also be selected as appropriate for the present invention. For examples of suitable bleach catalysts see U.S. Pat. 4,246,612 and U.S. Pat. 5,227,084.
See also U.S. Pat. 5,194,416 which teaches mononuclear manganese (IV) complexes such as Mn(1,4,7-trimethyl-1,4,7-triazacyclononane)(OCH3)3_(pF6)_ Still another type of bleach catalyst, as disclosed in U.S. Pat. 5, I 14,606, is a water-soluble complex of manganese ()Z), (~, and/or (IV) with a ligand which is a non-carboxylate polyhydroxy compound having at least three consecutive C-OH
groups. Preferred ligands include sorbitol, iditol, dulsitol, mannitol, xylithol, arabitol, adonitol, meso-erythritol, meso-inositol, lactose, and mixtures thereof.
U.S. Pat. 5,114,611 teaches a bleach catalyst comprising a complex of transition metals, including Mn, Co, Fe, or Cu, with an non-(macro)-cyclic ligand. Said ligands are of the formula:
~O 95!28469 k PCT'/US95/04205 R~-N=C-B-C=N-R4 wherein R1, R2, R3, and R4 can each be selected from H, substituted alkyl and aryl groups such that each Rl-N=C-R2 and R3-C=N-R4 form a five or six-membered ring. Said ring can further be substituted. B is a bridging group selected from O, S. CRSR6, NR~ and C=O, wherein R5, R6, and R~ can each be H, alkyl, or aryl groups, including substituted or unsubstituted groups.
Preferred ligands include pyridine, pyridazine, pyrimidine, pyrezine, imidazole, pyraaole, and triazole rings. Optionally, said rings may be substituted with substituents such as alkyl, aryl, alkoxy, halide, and vitro. Particularly preferred is the ligand 2,2'-bispyridylamine. Preferred bleach catalysts include Co, Cu, Mn, Fe,-bispyridyhnethane and -bispyridylamine complexes. Highly preferred catalysts include Co(2,2'-bispyridylamine)C12, Di(isothiocyanato)bispyridylamine-cobalt (I)], trisdipyridylamine-cobalt()1) perchlorate, Co(2,2-bispyridylamine)202C104, Bis-(2,2'-bispyridylamine) copper(J~ perchlorate, tris(di-2-pyridylamine) iron()1) perchlorete, and mixtures thereof.
Other examples include Mn gluconate, Mn(CF3S03)2, Co(NHg)SCI, and the binuclear Mn complexed with tetra-N-dentate and bi-N-dentate ligands, including N4Mn~(u-O)2Mn~N4)+and [Bipy2Mn~(u-O)2Mn~bipy2]-(C104)3.
The bleach catalysts of the present invention may also be prepared by combining a water-soluble ligand with a water-soluble manganese salt in aqueous media and concentrating the resulting mixture by evaporation. Any convenient water-soluble salt of manganese can be used herein. Manganese (II), (~, (IV) and/or (~ is readily available on a commercial scale. In some instances, sufficient manganese may be present in the wash liquor, but, in general, it is preferred to add Mn cations in the compositions to ensure its presence in catalytically-effective amounts. Thus, the sodium salt of the ligand and a member selected from the group consisting of MnS04, Mn(C104)2 or MnCl2 (least preferred) are dissolved in water at molar ratios of ligand:Mn salt in the range of about 1:4 to 4:1 at neutral or slightly alkaline pH. The water may first be de-oxygenated by boiling and cooled by sparging with nitrogen. The resulting solution is evaporated (under N2, if desired) and the resulting solids are used in the bleaching and detergent compositions herein without further purification.
In an alteinate mode, the water-soluble manganese source, such as MnS04, is added to the bleach/cleaning composition or to the aqueous bleaching/cleaning bath which comprises the ligand. Some type of complex is apparently formed in situ, and improved bleach performance is secured. In such an in situ process, it is convenient to use a considerable molar excess of the ligand over the manganese, and mole ratios of Iigand:Mn typically are 3:1 to 15:1. The additional ligand also serves to scavenge vagrant metal ions such as iron and copper, thereby protecting the bleach from decomposition. One possible such system is described in European patent application, publication no. 549,271.
While the structures of the bleach-catalyzing manganesecomplexes of the present invention have not been elucidated, it may be speculated that they comprise chelates or other hydrated coordination complexes which result from the interaction of the carboxyl and nitrogen atoms of the ligand with the manganese ration. Likewise, the oxidation state of the manganese ration during the catalytic process is not known with certainty, and may be the (+7T), (+)I)], (+IV) or (+V) valence state. Due to the ligands' possible six points of attachment to the manganese ration, it may be reasonably speculated that mold-nuclear species and/or "cage" structures may exist in the aqueous bleaching media. Whatever the form of the active Mrrligand species which actually exists, it functions in an apparently catalytic manner to provide improved bleaching performances on stubborn stains such as tea, ketchup, coffee, blood, and the like.
Other bleach catalysts are described, for example, in European patent application, publication no. 408,131 (cobalt complex catalysts), European patent applications, publication nos. 384,503, and 306,089 (metallo-porphyrin catalysts), U.S.
4,728,455 (manganese/multidentate ligand catalyst), U.S. 4,711,748 and European patent application, publication no. 224,952, (absorbed manganese on aluminosilicate catalyst), U.S. 4,601,845 (aIuminosilicate support with manganese and zinc or magnesium salt), U.S. 4,626,373 (manganese/ligand catalyst), U.S.
4,119,557 (ferric complex catalyst), German Pat. specification 2,054,019 (cobalt chelant catalyst) Canadian 866,191 (transition metal-containing salts), U.S.
4,430,243 (chelants with manganese rations and non-catalytic metal rations), and U:S. 4,728,455 (manganese gluconate catalysts).
The detergent compositions of the invention may contain a heavy metal ion sequestrant. By heavy metal ion sequestrant it is meant herein components which act to sequester (chelate) heavy metal ions. These components may also have calcium and magnesium chelation capacity, but preferentially they show selectivity to binding heavy metal ions such as iron, manganese and copper.
FIeavy metal ion sequestrants are preferably present at a level of from 0.005 ~ to 20 ~ , more preferably from 0.196 to 10 ~ , most preferably from 0.5 36 to 5 96 by weight of the compositions.
Heavy metal ion sequestrants, which are acidic in nature, having for example phosphoric acid or carboxylic acid functionalities, may be present either in their acid form or as a complex/salt with a suitable counter cation such as an alkali or alkaline metal ion, ammonium, or substituted ammonium ion, or any mixtures thereof. Preferably any salts/complexes are water soluble. The molar ratio of said counter ration to the heavy metal ion sequestrant is preferably at least 1:1.
Suitable heavy metal ion sequestrants for use herein include organic phosphonates, such as the amino alkylene poly (alkylene phosphonates), alkali metal ethane 1-hydroxy disphosphonates and nitrilo trimethylene phosphonates.
Preferred among the above species are diethylene triamine penta (methylene phosphonate), ethylene diamine tri (methylene phosphonate) hexamethylene diamine tetra (methylene phosphonate) and hydroxy-ethylene 1,1 diphosphonate.
Other suitable heavy metal ion sequestrutt for use herein include nitrilotriacetic acid and polyaminocarboxylic acids such as ethylenediaminotetracetic acid, ethylenetriamine pentacetic acid, ethylenediamine disuccinic acid, ethylenediamine diglutaric acid, 2-hydroxypropylenediamine disuccinic acid or any salts thereof.
Especially preferred is ethylenediamine-N,N'-disuccinic acid (EDDS) or the alkali metal, alkaline earth metal, ammonium, or substituted ammonium salts thereof, or mixtures thereof. Preferred EDDS compounds are the free acid form and the sodium or magnesium salt or complex thereof. Examples of such preferred sodium salts of EDDS include Na2EDDS and NagEDDS. Examples of such preferred magnesium complexes of EDDS include MgEDDS and Mg2EDDS.
2187~~37 Other suitable heavy metal ion sequestrants for use herein are iminodiacetic acid derivatives such as 2-hydroxyethyl diacetic acid or glyceryl imino diacetic acid, described in EP-A-317,542 and EP-A-399,133.
The iminodiacetic acid-N-2-hydroxypropyl sulfonic acid and aspartic acid N-carboxymethyl N-2-hydroxypropyl-3-sulfonic acid sequestrants described in EP-A-516,102 are also suitable herein. The /3-alanine-N,N'-diacetic acid, aspartic acid-N,N'-diacetic acid, aspartic acid-N-monoacetic acid and iminodisuccinic acid sequestrants described in F.P-A-509,382 are also suitable.
EP-A-476,257 describes suitable amino based sequestrants. EP-A-510,331 describes suitable sequestiants derived from collagen, keratin or casein. EP-A-528,859 describes a suitable alkyl iminodiacetic acid sequestrant. Dipicolinic acid and 2-phosphonobutane-1,2,4-tricarboxylic acid are also suitable. Glycinamide-N,N'-disuccinic acid (GADS) is also suitable.
Organic polymeric compounds are particularly preferred components of the detergent compositions in accord with the invention. By organic polymeric ' compound it is meant essentially any polymeric organic compound commonly used as dispersants, and anti-redeposition and soil suspension agents in detergent compositions.
Organic polymeric compound is typically incorporated in the detergent compositions of the invention at a level of from 0.1 ~ to 30~, preferably from 0.5 ~ to 15 9b, most preferably from 1 ~ to 10 ~ by weight of the compositions.
Examples of organic polymeric compounds include the water soluble organic homo- or co-polymeric polycarboxylic acids or their salts in which the polycarboxylic acid comprises at least two carboxyl radicals separated from each other by not more than two carbon atoms. Polymers of the latter type are disclosed in GB-A-1,596,756. Bxamples of such salts are polyacrylates of MWt 2000-5000 and their copolymers with malefic anhydride, such copolymers having a molecular weight of from 20,000 to 100,000, especially 40,000 to 80,000.
~O 95128469 PCT/US95104205 4~ 2187437 Other suitable organic polymeric compounds include the polymers of acrylamide and acrylate having a molecular weight of from 3,000 to 100,000, and the aciylatelfumarate copolymers having a molecular weight of from 2,000 to 80,000.
The polyamino compounds are useful herein including those derived from aspartic acid such as those disclosed in EP-A-305282, EP-A-305283 and EP-A-351629.
Other organic polymeric compounds suitable for incorporation in the detergent compositions herein include cellulose derivatives such as methylcellulose, carboxymethylcellulose and hydroxyethylcellulose.
Further useful organic polymeric compounds are the polyethylene glycols, particularly those of molecular weight 1000-10000, more particularly 2000 to 8000 and most preferably about 4000.
Lime soap dispersant compound The compositions of the invention may contain a lime soap dispersant compound, which has a lime soap dispersing power (LSDP), as defined hereinafter of no more than 8, preferably no more than 7, most preferably no more than 6. The lime soap dispersant compound is preferably present at a level of from 0.1 ~ to 40 ~ by weight, more preferably 1 ~ to 209b by weight, most preferably from 2 ~ to 10 ~
by weight of the compositions.
A lime soap dispersant is a material that prevents the precipitation of alkali metal, ammonium or amine salts of fatty acids by calcium or magnesium ions. A
numerical measure of the effectiveness of a lime soap dispersant is given by the lime soap dispersing power (I,SDP) which is determined using the lime soap dispersion test as described in an article by H.C. Borghetty and C.A. Bergman, J.
Am. Oil. Chem. Soc., volume 27, pages 88-90, (1950). This lime soap dispersion test method is widely used by practitioners in this art field being referred to , for example, in the following review articles; W.N. Linfield, Surfactant Science Series, Volume 7, p3; W.N. Linfield, Tenside Surf. Det. , Volume 27, pages159-161, (1990); and M.K. Nagarajan, W.F. Masler, Cosmetics and Toiletries, Volume 104, pages 71-73, (1989). The LSDP is the 9& weight ratio of dispersing agent to sodium oleate required to disperse the lime soap deposits formed by 0.0258 of sodium oleate in 30m1 of water of 333ppm CaC03 (Ca:Mg=3:2) equivalent hardness.
Surfactants having good lime soap dispersant capability will include certain amine oxides, betaines, sulfobetaines, alkyl ethoxysulfates and ethoxylated alcohols.
Exemplary surfactants having a LSDP of no more than 8 for use in accord with the invention include C 16-C 1 g dimethyl amine oxide, C 12-C 1 g alkyl ethoxysulfates with an average degree of ethoxyladon of from 1-5, particularly C12-C15 ~yl ethoxysulfate surfactant with a degree of ethoxyladon of about 3 (L,SDP=4), and the C13-C15 ethoxylated alcohols with an average degree of ethoxyladon of either 12 (L,SDP=6) or 30, sold under the trade marks Lutensol A012 and Lutensol A030 respectively, by BASF GmbH.
Polymeric lime soap dispersants suitable for use herein are described in the article by M.K. Nagaiajan and W.F. Masler, to be found in Cosmetics and Toiletries, Volume 104, pages 71-73, (1989). Examples of such polymeric lime soap dispersants include certain water-soluble salts of copolymers of acrylic acid, methacrylic acid or mixtures thereof, and an acrylamide or substituted acrylamide, where such polymers typically have a molecular weight of from 5,000 to 20,000.
Suds su ressing system The detergent compositions of the invention, when formulated for use in machine washing compositions, preferably comprise a suds suppressing system present at a . level of from 0.01 ~o to 15 ~b , preferably from 0.05 °b to 10 ~ , most preferably fmm 0.1 ~6 to 5 9~ by weight of the composition.
Suitable suds suppressing systems for use herein may comprise essentially any known antifoam compound, including, for example silicone antifoam compounds, 2-alkyl and alcanol antifoam compounds.
By antifoam compound it is meant herein any compound or mixtures of compounds which act such as to depress the foaming or sudsing produced by a solution of a detergent composition, particularly in the presence of agitation of that solution.
Particularly preferred antifoam compounds for use herein are silicone antifoam compounds defined herein as any antifoam compound including a silicone component. Such silicone antifoam compounds also typically contain a silica component. The term "silicone" as used herein, and in general throughout the industry, encompasses a variety of relatively high molecular weight polymers containing siloxane units and hydrocarbyl group of various types. Preferred silicone antifoam compounds are the siloxanes, particularly the polydimethylsiloxanes having trimethylsilyl end blocking units.
Other suitable antifoam compounds include the monocarboxylic fatty acids and soluble salts thereof. These materials are described in US Patent 2,954,347, issued September 27, 1960 to Wayne St. John. The monocarboxylic fatty acids, and salts thereof, for use as suds suppressor typically have hydrocarbyl chains of to about 24 carbon atoms, preferably 12 to 18 carbon atoms. Suitable salts include the alkali metal salts such as sodium, potassium, and lithium salts, and ammonium and alkanolammonium salts.
Other suitable antifoam compounds include, for example, high molecular weight fatty esters (e.g. fatty acid triglycerides), fatty acid esters of monovalent alcohols, aliphatic Clg-C4p ketones (e.g. stearone) N-alkylated amino triazines such as tri-to hexa-alkylmelamines or di- to tetra alkyldiamine chlortriazines formed as ' products of cyanuric chloride with two or three moles of a primary or secondary amine containing 1 to 24 carbon atoms, propylene oxide, bis stearic acid amide and monostearyl di-alkali metal (e.g. sodium, potassium, lithium) phosphates and phosphate esters.
Copolymers of ethylene oxide and propylene oxide, particularly the mixed ethoxylated/propoxylated fatty alcohols with an alkyl chain length of from 10 to 16 carbon atoms, a degree of ethoxylation of from 3 to 30 and a degree of propoxylation of from 1 to 10, are also suitable antifoam compounds for use herein.
Suitable 2-alley-alcanols antifoam compounds for use herein have been described in DE 44 21 265._ The 2-alkyl-alcanols suitable for use herein consist of a C6 to alkyl chain carrying a terminal hydroxy group, and said alkyl chain is substituted in the a position by a C1 to C10 alkyl chain. Mixtures of 2-alkyl-alcanols can be used in the compositions according to the present invention.
A preferred suds suppressing system comprises (a) antifoam compound, preferably silicone antifoam compound, most preferably a silicone antifoam compound comprising in combination (i) polydimethyl siloxane, at a level of from SO % to 99 % , preferably 75 % to 95 % by weight of the silicone antifoam compound; and (ii) silica, at a level of from I % to 50 % , preferably 5 % to 25 % by weight of the silicone/silica antifoam compound;
wherein said silica/silicone antifoam compound is incorporated at a level of from 5 % to 50 % , preferably 10 % to 40 % by weight;
(b) a dispersant compound, most preferably comprising a silicone glycol rake copolymer with a polyoxyalkylene content of 72-78 % and an ethylene oxide to propylene oxide ratio of from 1:0.9 to 1:1.1, at a level of from 0. S % to 10 % , preferably 1 % to 10 % by weight; a particularly preferred silicone glycol rake copolymer of this type is DG0544, commercially available from DOW Corning under the trademark DC0544;
(c) an inert carrier fluid compound, most preferably comprising a C 16-C 18 ethoxylated alcohol with a degree of ethoxylation of from S to 50, preferably 8 to 15, at a level of from 5 % to 80 % , preferably 10 % to 70 % , by weight;
A preferred particulate suds suppressor system useful herein comprises a mixture of an alkylated siloxane of the type hereinabove disclosed and solid silica.
The solid silica can be a fumed silica, a precipitated silica or a silica, made by the gel formation technique. The silica particles suitable have an average particle size of from 0.1 to 50 micrometers, preferably from 1 to 20 micrometers and a surface area of at least SOm2/g. These silica particles can be rendered hydrophobic by treating them with dialkylsilyl groups and/or trialkylsilyl groups either bonded directly onto the silica or by means of a silicone resin. It is preferred to employ a silica the particles of which have been rendered hydrophobic with dimethyl and/or trimethyl silyl groups. A preferred particulate antifoam compound for inclusion in the detergent compositions in accordance with the invention suitably contain an amount of silica such that the weight ratio of silica to silicone lies in the range from 1:100 to 3:10, preferably from 1:50 to 1:7.
Another suitable particulate suds suppressing system is represented by a hydrophobic silanated (most preferably trimethyl-silanated) silica having a particle size in the range from 10 nanometers to 20 nanometers and a specific surface area above SOm2/g, intimately admixed with dimethyl silicone fluid having a molecular weight in the range from about 500 to about 200,000 at a weight ratio of silicone to silanated silica of from about 1:1 to about 1:2.
A highly preferred particulate suds suppressing system is described in EP-A-0210731 and comprises a silicone antifoam compound and an organic can-ier material having a melting point in the range 50°C to 85°C, wherein the organic carrier material comprises a monoester of glycerol and a fatty acid having a carbon chain containing from 12 to 20 capon atoms. EP-A-0210721 discloses other preferred particulate suds suppressing systems wherein the organic carrier material is a fatty acid or alcohol having a carbon chain containing from 12 to 20 carbon atoms, or a mixture thereof, with a melting point of from 45°C to 80°C.
Other highly preferred particulate suds suppressing systems are described in CA 2,099,129 which systems comprise silicone antifoam compound, a carrier material, an organic coating material and glycerol at a weight ratio of glycerol silicone antifoam compound of 1:2 to 3:1. CA 2,110,409 also discloses highly preferred particulate suds suppressing systems comprising silicone antifoam compound, a carrier material, an organic coating material and crystalline or amorphous aluminosilicate at a weight ratio of aluminosilicate : silicone antifoam compound of 1:3 to 3:1. The preferred carltier material in both of the above described highly preferred granular suds controlling agents is starch.
An exemplary particulate suds suppressing system for use herein is a particulate agglomerate component, made by an agglomeration process, comprising in combination (i) from 5 ~ to 30 % , preferably from 8 ~ to 15 ~ by weight of the component of silicone antifoam compound, preferably comprising in combination polydimethyl siloxane and silica;
(ii) from 50 % to 90 ~ , preferably from 60 ~ to 80 ~ by weight of the component, of carrier material, preferably starch;
(iii) from 5 % to 30 ~, preferably from 10 % to 20 % by weight of the component of agglomerate binder compound, where herein such compound can be any compound, or mixtures thereof typically employed as binders for agglomerates, most preferably said agglomerate binder compound comprises a C16-Clg ethoxylated alcohol with a degree of ethoxylation of from 50 to 100; and (iv) from 29b to 15 ro, preferably from 3 % to 1036, by weight of CI2-C22 hydrogenated fatty acid.
'WO95128469 ~ PCT/US95/04205 Polymeric dye transfer inhibiting ggentc The detergent compositions herein may also comprise from 0.01 ~ to 10 ro, preferably from 0.05 % to 0.5 ~ by weight of polymeric dye transfer inhibiting agents.
The polymeric dye transfer inhibiting agents are preferably selected from polyamine N-oxide polymers, copolymers of N-vinylpyrrolidone and N-vinyIimidazole, polyvinylpyrrolidone polymers or combinations thereof.
al Polyamine N-oxide poll Polyamine N-oxide polymers suitable for use herein contain units having the following structure formula P
(I) R
wherein P is a polymerisable unit, whereto the R-N-O group can be attached to, or wherein the R-N-O group forms part of the poIymerisable unit or a combination of both.
O O O
A is NC, C0, C, -O-, -S-, -N-; x is O or 1;
R are aliphatic, ethoxylated aliphatics, aromatic, heterocyclic or alicyclic groups or any combination thereof whereto the nitrogen of the N-O group can be attached or wherein the nitrogen of the N-O group is part of these groups.
The N-O group can be represented by the following general structures ~R~ ) x _ ~ _~R2)y 1 (R3)Z or =N-(R~ )x wherein Rl, R2, and R3 are aliphatic groups, aromatic, heterocyclic or alicyclic groups or combinations thereof, x or/and y or/and z is 0 or 1 and wherein the nitrogen of the N-O group can be attached or wherein the nitrogen of the N-O
group forms part of these groups. The N-O group can be part of the polymerisable unit (P) or can be attached to the polymeric backbone or a combination of both.
Suitable polyamine N-oxides wherein the N-O group forms part. of the polymerisable unit comprise polyamine N-oxides wherein R is selected from aliphatic, aromatic, alicyclic or heterocyclic groups. One class of said polyamine N-oxides comprises the group of polyamine N-oxides wherein the nitrogen of the N-O group forms part of the R-group. Preferred polyamine N-oxides are those wherein R is a heterocyclic group such as pyrridine, pyrrole, imidazole, pyrrolidine, piperidine, quinoline, acridine and derivatives thereof.
Another class of said polyamine N-oxides comprises the group of polyamine N-oxides wherein the nitrogen of the N-O group is attached to the R-group.
Other suitable polyamine N-oxides are the polyamine oxides whereto the N-O
group is attached to the polymerisable unit.
Preferred class of these polyamine N-oxides are the polyamine N-oxides having the general formula ()] wherein R is an aromatic,heterocyclic or alicyclic groups wherein the nitrogen of the N-0 functional group is part of said R group.
Examples of these classes are polyamine oxides wherein R is a heterocyclic compound such as pyrridine, pyrrole, imidazole and derivatives thereof.
Another preferred class of polyamine N-oxides are the polyamine oxides having the general formula (n wherein R are aromatic, heterocyclic or alicyclic groups wherein the nitrogen of the N-0 functional group is attached to said R groups.
'WO95128469 ' PCTIU595/04205 fixamples of these classes are polyamine oxides wherein R groups can be aromatic such as phenyl.
Any polymer backbone can be used as long as the amine oxide polymer formed is water-soluble and has dye transfer inhibiting properties. Examples of suitable polymeric backbones are polyvinyls, polyallcylenes, polyesters, polyethers, polyamide, polyimides, polyacrylates and mixtures thereof.
The amine N-oxide polymers of the present invention typically have a ratio of amine to the amine N-oxide of 10:1 to 1:1000000. However the amount of amine oxide groups present in the polyamine oxide polymer can be varied by appropriate copolymerization or by appropriate degree of N-oxidation. Preferably, the ratio of amine to amine N-oxide is from 2:3 to 1:1000000. More preferably from 1:4 to 1:1000000, most preferably from 1:7 to 1:1000000. The polymers of the present invention actually encompass random or block copolymers where one monomer type is an amine N-oxide and the other monomer type is either an amine N-oxide or not. The amine oxide unit of the polyamine N-oxides has a PKa < 10, preferably PKa < 7, more preferred PKa < 6.
The polyamine oxides can be obtained in almost any degree of polymesisation.
The degree of polymerisation is not critical provided the material has the desired water-solubility and dye-suspending power. Typically, the average molecular weight is within the range of 500 to 1000,000; preferably from 1,000 to 50,000, more preferably from 2,000 to 30,000, most preferably from 3,000 to 20,000.
bl CoRolymers of N-vinylpyrro&done an~i N-~inylimidawle Preferred polymers for use herein may comprise a polymer selected from N-vinylimidazole N-vinylpyrrolidone copolymers wherein said polymer has an average molecular weight range from 5,000 to 50,000 more preferably from 8,000 to 30,000, most preferably from 10,000 to 20,000. The preferred N-vinylimidazole N-vinylpyrrolidone copolymers have a molar ratio of N-vinylimidazole to N-vinylpyrrolidone from 1 to 0.2, more preferably from 0.8 to 0.3, most preferably from 0.6 to 0.4 .
cl PolyvinylQyrrolidone WO 95128469 PCTlUS95104205 So 2187437 The detergent compositions herein may also utilize polyvinylpyrrolidone ("PVP"
having an average molecular weight of from 2,500 to 400,000, preferably from
5,000 to 200,000, more preferably from 5,000 to 50,000, and most preferably from 5,000 to 15,000. Suitable polyvinylpyrrolidones are commercially vailable from ISP Corporation, New York, NY and Montreal, Canada under the product names PVP K-15 (viscosity molecular weight of 10,000), PVP K-30 (average molecular weight of 40,000), PVP K-60 (average molecular weight of 160,000), and PVP K-90 (average molecular weight of 360,000). PVP K-15 is also available from ISP Corporation. Other suitable polyvinylpyrrolidones which are commercially available from BASF Cooperation include Sokalan HP 165 and Sokalan HP 12.
Polyvinylpyrrolidone may be incorporated in the detergent compositions herein at a level of from 0.01 ~ to 5 ~ by weight of the detergent, preferably from 0.05 ~
to 3 9b by weight, and more preferably from 0.1 % to 2 % by weight. The amount of polyvinylpyrrolidone delivered in the wash solution is preferably from 0.5 ppm to 250 ppm, preferably from 2.5 ppm to 150 ppm, more preferably from 5 ppm to l00 ppm.
The detergent compositions herein may also utilize polyvinyloxazolidones as polymeric dye transfer inhibiting agents. Said polyvinyloxazolidones have an average molecular weight of from 2,500 to 400,000, preferably from 5,000 to 200,000, more preferably from 5,000 to 50,000, and most preferably from 5,000 to 15,000.
The amount of polyvinyloxazolidone incorporated in the detergent compositions may be from 0.01 ~ to 5 Rb by weight, preferably from 0.05 ~ to 3 °k by weight, and more preferably from 0.1 ~ to 2 ~ by weight. The amount of polyvinyloxazolidone delivered in the wash solution is typically from 0.5 ppm to 250 ppm, preferably from 2.5 ppm to 150 ppm, more preferably from 5 ppm to 100 ppm.
el Polyvinylimidazole R'O 95128469 PCTIUS95104205 ~ ~ 81437 The detergent compositions herein may also utilize polyvinylimidazole as polymeric dye transfer inhibiting agent. Said polyvinylimidazoles preferably have an average molecular weight of from 2,500 to 400,000, more preferably from 5,000 to 50,000, and most preferably from 5,000 to 15,000.
The amount of polyvinylimidazole incorpoarted in the detergent compositions may be from 0.01 % to 5 % by weight, preferably from 0.05 36 to 3 Y6 by weight, and more preferably from 0.136 to 2 h by weight. The amount of polyvinylimidazole delivered in the wash solution is from 0.5 ppm to 250 ppm, preferably from 2.5 ppm to 150 ppm, more preferably from 5 ppm to 100 ppm.
tical brightener The detergent compositions herein may also optionally contain from about 0.005 ~
to 5 ~ by weight of certain types of hydrophilic optical brighteners which also provide a dye transfer inhibition action. If used, the compositions herein will preferably comprise from about 0.01 qb to 1 ~ by weight of such optical brighteners.
The hydrophilic optical brighteners useful in the present invention are those having the structural formula:
R~ R2 ~N H H N
N N
C C ~ N--~~ N
/ N H H N
wherein RI is selected from anilino, N-2-bis-hydmxyethyl and NH-2-hydroxyethyl; R2 is selected from N-2-bis-hydroxyethyl, N-2-hydroxyethyl-N-methylamino, morphilino, ,chloro and amino; and M is a salt-forming radon such as sodium or potassium.
When in the above formula, RI is anilino, R2 is N-2-bis-hydroxyethyl and M is a ration such as sodium, the brightener is 4,4',-bis[(4-anilino-6-(N-2-bis-hydroxyethyl)-s-triazine-2-yl)amino]-2,2'-stilbenedisulfonic acid and disodium salt. This particular brightener species is commercially marketed under the trademark Tinopal-LTNPA-GX by Ciba-Geigy Corporation. Tinopal-UNPA-GX is the preferred hydrophilic optical brightener useful in the detergent compositions herein.
When in the above formula, RI is anilino, R2 is N-2-hydroxyethyl-N-2-methylamino and M is a ration such as sodium, the brightener is 4,4'-bis[(4-anilino-6-(N-2-hydroxyethyl-N-methylamino)-s-triazine-2-yl)amino] 2, 2' -stilbenedisulfonic acid disodium salt. This particular brightener species is commercially marketed under the tradename Tinopal SBM-GX by Ciba-Geigy Corporation.
'-WO 95/28469 PCTIUS95104205 When in the above formula, Rl is anilino, R2 is morphilino and M is a canon such as sodium, the brightener is 4,4'-bis[(4-anilino-6-morphilino-s-triazine-yl)amino]2,2'-stilbenedisulfonic acid, sodium salt. This particular brightener species is commercially marketed under the tradename Tinopal AMS-GX by Ciba Geigy Corporation.
The specific optical brightener species selected for use in the present invention provide especially effective dye transfer inhibition performance benefits when used in combination with the selected polymeric dye transfer inhibiting agents hereinbefore described. The combination of such selected polymeric materials (e.g., PVNO and/or PVPVI) with such selected optical brighteners (e.g., Tinopal UNPA-GX, Tinopal SBM-GX and/or Tinopal AMS-GX) provides significantly better dye transfer inhibition in aqueous wash solutions than does either of these two detergent composition components when used alone. Without being bound by theory, it is believed that such brighteners work this way because they have high affinity for fabrics in the wash solution and therefore deposit relatively quick on these fabrics. The extent to which brighteners deposit on fabrics in the wash solution can be defined by a parameter called the "exhaustion coefficient".
The exhaustion coefficient is in general as the ratio of a) the brightener material deposited on fabric to b) the initial brightener concentration in the wash liquor.
Brighteners with relatively high exhaustion coefficients are the most suitable for inhibiting dye transfer in the context of the present invention.
Of course, it will be appreciated that other, conventional optical brightener types of compounds can optionally be used in the present compositions to provide conventional fabric "brightness" benefits, rather than a true dye transfer inhibiting effect. Such usage is conventional and well-known to detergent formulations.
Fabric softening agents can also be incorporated into laundry detergent compositions in accordance with the present invention. These agents may be inorganic or organic in type. Inorganic softening agents are exemplified by the smectite clays disclosed in GB-A-1 400 898. Organic fabric softening agents include the water insoluble tertiary amines as disclosed in GB-A-1 514 276 and EP-B-0 011 340.
WO 95!28469 PCTIUS95/04205 Levels of smectite clay are normally in the range from 5 ~ to 15 % , more preferably from 8 % to 12 ~ by weight, with the material being added as a dry mixed component to the remainder of the formulation. Organic fabric softening agents such as the water-insoluble tertiary amines or dilong chain amide materials are incorporated at levels of from 0.5 ~ to 5 ~ by weight, normally from 1 ~
to 3 9& by weight, whilst the high molecular weight polyethylene oxide materials and the water soluble cationic materials are added at levels of from 0.1 ~ to 2 J
, normally from 0.15 l to 1.5 % by weight.
Other optional ing iii .n c Other optional ingredients suitable for inclusion in the compositions of the invention include perfumes, colours and filler salts, with sodium sulfate being a preferred filler salt.
The detergent compositions of the invention can be formulated in any desirable form such as powders, granulates, pastes, liquids, tablets and gels.
The detergent compositions of the present invention may be formulated as liquid detergent compositions. Such liquid detergent compositions typically comprise from 94 k to 35 % by weight, preferably from 90 °6 to 40 ~ by weight, most preferably from 80~ to SO Y6 by weight of a liquid carrier, e.g., water, preferably a mixture of water and organic solvent.
The detergent compositions of the present invention may also be in the form of gels. Such compositions are typically formulated with polyakenyl polyether having a molecular weight of from about '750,000 to about 4,000,000.
- W095128469 ~ a,- _ _ ' ~ -i PCT/IJ595104205 The detergent compositions of the invention are preferably in the form of solids, such as powders and granules.
The particle size of the components of granular compositions in accordance with the invention should preferably be such that no more that 5 °.6 of particles are greater than 1.4mm in diameter and not more than 5 % of particles are less than O.lSmm in diameter.
The bulls density of granular detergent compositions in accordance with the present invention typically have a bulk density of at least 450 g/litre, more usually at least 600 g/litre and more preferably from 650 gllitre to 1200 gllitre.
Bulk density is measured by means of a simple funnel and cup device consisting of a conical funnel moulded rigidly on a base and provided with a flap valve at its lower extremity to allow the contents of the funnel to be emptied into an axially afigned cylindrial cup disposed below the funnel. The funnel is 130 mm and 40 mm at its respective upper and lower extremities. It is mounted so that the lower extremity is 140 mm above the upper surface of the base. The cup has an overall height of 90 mm, an internal height of 87 mm and an internal diameter of 84 mm.
Its nominal volume is S00 ml.
To carry out a measurement, the funnel is filled with powder by hand pouring, the flap valve is opened and powder allowed to overfill the cup. The filled cup is removed from the frame and excess powder removed from the cup by passing a straight edged implement e.g. a knife, across its upper edge. The filled cup is then weighed and the value obtained for the weight of powder doubled to provide the bulk density in g/litre. Replicate measurements are made as required.
Making processes - eranular com ositions In general, granular detergent compositions in accordance with the present invention can be made via a variety of methods including dry mixing, spray drying, agglomeration and granulation.
Washing methods s~ ~i,J~.r ,~ 'y ~ -WO 95!28469 =r PCTIUS95104205 The compositions of the invention may be used in essentially any washing or cleaning method, including machine laundry and dishwashing methods.
A preferred machine dishwashing method comprises treating soiled articles selected from crockery, glassware, hollowware and cutlery and mixtures thereof, with an aqueous liquid having dissolved or dispensed therein an effective amount of a machine dishwashing composition in accord with the inevntion. By an effective amount of the machine dishwashing composition it is meant from 8g to 60g of product dissolved or dispersed in a wash solution of volume from 3 to litres, as are typical product dosages and wash solution volumes commonly employed in conventional machine dishwashing methods.
Machine laundry methods herein comprise treating soiled laundry with an aqueous wash solution in a washing machine having dissolved or dispensed therein an effective amount of a machine laundry detergent composition in accord with the invention. The detergent can be added to the wash solution either via the dispenser drawer of the washing machine or by a dispensing device. By an effective amount of the detergent composition it is meant from 40g to 300g of product dissolved or dispersed in a wash solution of volume from 5 to 65 litres, as are typical product dosages and wash solution volumes commonly employed in conventional machine laundry methods.
In a preferred washing method herein a dispensing device containing an effective amount of detergent product is introduced into the drum of a front-loading washing machine before the commencement of the wash cycle.
The dispensing device is a container for the detergent product which is used to deliver the product directly into the drum of the washing machine. Its volume , capacity should be such as to be able to contain sufficient detergent product as would normally be used in the washing method. .
Once the washing machine has been loaded with laundry the dispensing device containing the detergent product is placed inside the drum. At the commencement ~W 0 95128469 PCT/US95104205 5' 2187437 of the wash cycle of the washing machine water is introduced into the drum and the drum periodically rotates. The design of the dispensing device should be such that it permits containment of the dry detergent product but then allows release of this product during the wash cycle in response to its agitation as the drum rotates and also as a result of its immersion in the wash water.
To allow for release of the detergent product during the wash the device may possess a number of openings through which the product may pass.
Alternatively, the device may be made of a material which is permeable to liquid but impermeable to the solid product, which will allow release of dissolved product.
Preferably, the detergent product will be rapidly released at the start of the wash cycle thereby providing transient localised high concentrations of product in the drum of the washing machine at this stage of the wash cycle.
Preferred dispensing devices are reusable and are designed in such a way that container integrity is maintained in both the dry state and during the wash cycle.
Especially preferred dispensing devices for use in accord with the invention have been described in the following patents; GB-B-2, 157, 717, GB-B-2, 157, 718, EP-A-0201376, EP-A-0288345 and EP-A-0288346. An article by J.Bland published in Manufacturing Chemist, November 1989, pages 41-46 also describes especially preferred dispensing devices for use with granular laundry products which are of a type commonly know as the "granulette".
Especially preferred dispensing devices are disclosed in European Patent Application Publication Nos. 0343069 & 0343070. The latter Application discloses a device comprising a flexible sheath in the form of a bag extending from a support ring defining an orifice, the orifice being adapted to admit to the bag sufficient product for one washing cycle in a washing process. A portion of the washing medium flows through the orifice into the bag, dissolves the product, and the solution then passes outwardly through the orifice into the washing medium.
The support ring is provided with a masking arrangemnt to prevent egress of wetted, undissolved, product, this arrangement typically comprising radially extending walls extending from a central boss in a spoked wheel configuration, or a similar structure in which the walls have a helical form.
Pretreatment washing method n x t~. 6....
Sa 2181431 In a pretreatment wash method aspect of the invention a soiled/stained substrate is treated with an effective amount of a pretreatment solution containing a water-soluble builder, but no enzyme components. The solution might optionally contain other non-enzyme detergent components such as surfactants, builders, and detergent polymers. Preferably the solution also contains water-soluble builder.
The level of the water-soluble builder in said pretreatment solution is typically from 0.05% to 809&, and preferably is more than 1 ~.
The pretreatment solution is allowed to remain in contact with the soiled substrate for an effective time interval. Said time interval will typically be from 10 seconds to 1800 seconds, more preferably from 60 seconds to 600 seconds.
The soiled substrate is then washed using a suitable washing method wherein an enzyme-containing detergent product is employed. The washing method may for example, be any of the machine dishwashing or machine laundry washing methods described herein.
In the detergent compositions, the abbreviated component identifications have the following meanings:
XYAS . Sodium C1X - Cly alkyl sulfate ~~' : -A CI2_IS P~ominantly linear primary alcohol condensed with an average of Y moles of ethylene oxide ~Z . A Clx - Cly predominantly linear primary alcohol condensed with an average of Z moles of ethylene oxide ~S ~ C1X - C1Y sodium alkyl sulfate condensed with an average of Z moles of ethylene oxide per mole 'AAA . C16-Clg alkyl N-methyl glucamide.
~WO 95/28469 - - PGT/US95/04205 Silicate . Amorphous Sodium Silicate (Si02:Na20 ratio = 2.0) NaSKS-6 . Crystalline layered silicate of formula b-Na2Si205 Carbonate . Anhydrous sodium carbonate Polycarboxylate . Copolymer of 1:4 maleic/acrylic acid, average molecular weight about 80,000 -Zeolite A . Hydrated Sodium Aluminosilicate of formula Nal2(A102Si0~12. 27H20 having a primary particle size in the range from 1 to 10 micrometers Citrate . Tri-sodium citrate dihydrate Percarbonate (fast release . Anhydrous sodium percarbonate bleach of empirical particle) formula 2Na2C03.3H202 coated with a mixed salt of formula Na2SO4.n.Na2C03 where n is 0.29 and where the weight ratio of percarbonate to mixed salt is 39:1 Percarbonate (slow release . Anhydrous sodium percarbonate bleach coated with a particle) coating of sodium silicate (Si20:Na20 ratio = 2:1) at a weight ratio of percarbonate to sodium silicate of 39:1 TAB . Tetraacetyl ethylene diamine TAED (slow release . Particle formed by agglomerating TAED with citric particle) acid and polyethylene glycol (PEG) of Mw=4,000 with a weight ratio of components of TAED:citric acid:PEG of 75:10:15, coated with an external coating of citric acid at a weight ratio of agglomerate: citric acid coating of 95:5.
Benzoyl Caprolactam (slow . Particle formed by agglomerating benzoyl caprolactam release particle) (BzCI) with citric acid and polyethylene glycol (PEG) of Mw=4,000, with a weight ratio of components of BzCl:citric acid:PEG of 63:21:16, coated with an external coating of citric acid at a weight ratio of agglomerate:citric acid coating of 95:5 TAED (fast release . Particle formed by agglomerating TAED with partially particle) neutralised polycarboxylate at a ratio of TAED:polycarboxylate of 93:7, coated with an external coating of polycarboxylate at a weight ratio of agglomerate:coating of 96:4 EDDS (fast release . Particle formed by spray-drying EDDS with MgS04 at particle) a weight ratio of 26:74 Protease . Proteolytic enzyme sold under the trademark Savinase by Novo Industries A/S with an activity of 13 KNPU/g.
Protease (slow release . An enzyme prill containing proteolytic enzyme sold particle) under the tradename Savinase by Novo Industries A/S
with an activity of 13 KNPU/g coated with a coating of sodium silicate (Si02:Na20 ratio = 2:1) at a coating level of 5 ~ .
Amylase . Amylolytic enzyme sold under the trademark Termamyl 60T by Novo Industries A/S with an activity of 300 KNU/g Cellulase . Cellulosic enzyme sold by Novo Industries A/S with an activity of 1000 CEVU/g Lipase . Lipolytic enzyme sold under the trademark Lipo(ase by Novo Industries A/S with an activity of 165 KLU/g ~W095128469 ~ . PCTlUS95104205 CMC . Sodium carboxymethyl cellulose 1,1-hydroxyethane diphosphonic acid EDDS . Ethylenediamine -N, N'- disuccinic acid, [S,S] isomer in the form of the sodium salt.
PVN~ . Poly (4-vinylpyridine)-N-oxide copolymer of vinylimidaxole and vinylpyrrolidone Granular Suds Suppressor . 129b Silicone/silica, 18 % stearyl alcoho1,709b starch in granular form . ., a.
The following laundry detergent compositions were prepared values being expressed as percentages by weight of the compositions: Composition A is a prior art composition, compositions B to D are in accord with the invention:
A B C D
45AS/25AS (3:1) 9.1 9.1 9.1 9.1 35AE3S 2.3 2.3 2.3 2.3 24E5 4.5 4.5 4.5 4.5 TFAA 2.0 2.0 2.0 2.0 Z.eoHte A 13.2 13.2 13.2 13.2 Na SKS-6/citric acid 15.6 15.6 15.6 15.6 (79:21) Carbonate 7.6 7.6 7.6 7.6 TAED (fast release 6.3 - - -particle) TAED (slow release - 5.0 - 2.3 particle) Benzoyl Caprolactam - - g,0 2.~
(slow release particle) Percarbonate (fast 22.5 - - 22.5 release particle) Percarbonate (slow - 22.5 22.5 -release particle) ~O 95128469 " PCT/US95/04205 ~~~7437 DETPMP 0.5 0.8 EDDS (fast release particle)- - 0.3 0.75 Protease 0.55 - - _ Protease (slow release - 1.27 0.55 1.27 article Lipase 0.15 0.15 0.15 0.15 Cellulase 0.28 0.28 0.28 0.28 Amylase 0.27 0.27 0.27 0.27 Polycarboxylate 5.1 5.1 5.1 5.1 CMC 0.4 0.4 0.4 0.4 PVNO 0.03 0.03 0.03 0.03 Granular suds suppressor1.5 1.5 1.5 1.5 Minorslmisc to 10036
Polyvinylpyrrolidone may be incorporated in the detergent compositions herein at a level of from 0.01 ~ to 5 ~ by weight of the detergent, preferably from 0.05 ~
to 3 9b by weight, and more preferably from 0.1 % to 2 % by weight. The amount of polyvinylpyrrolidone delivered in the wash solution is preferably from 0.5 ppm to 250 ppm, preferably from 2.5 ppm to 150 ppm, more preferably from 5 ppm to l00 ppm.
The detergent compositions herein may also utilize polyvinyloxazolidones as polymeric dye transfer inhibiting agents. Said polyvinyloxazolidones have an average molecular weight of from 2,500 to 400,000, preferably from 5,000 to 200,000, more preferably from 5,000 to 50,000, and most preferably from 5,000 to 15,000.
The amount of polyvinyloxazolidone incorporated in the detergent compositions may be from 0.01 ~ to 5 Rb by weight, preferably from 0.05 ~ to 3 °k by weight, and more preferably from 0.1 ~ to 2 ~ by weight. The amount of polyvinyloxazolidone delivered in the wash solution is typically from 0.5 ppm to 250 ppm, preferably from 2.5 ppm to 150 ppm, more preferably from 5 ppm to 100 ppm.
el Polyvinylimidazole R'O 95128469 PCTIUS95104205 ~ ~ 81437 The detergent compositions herein may also utilize polyvinylimidazole as polymeric dye transfer inhibiting agent. Said polyvinylimidazoles preferably have an average molecular weight of from 2,500 to 400,000, more preferably from 5,000 to 50,000, and most preferably from 5,000 to 15,000.
The amount of polyvinylimidazole incorpoarted in the detergent compositions may be from 0.01 % to 5 % by weight, preferably from 0.05 36 to 3 Y6 by weight, and more preferably from 0.136 to 2 h by weight. The amount of polyvinylimidazole delivered in the wash solution is from 0.5 ppm to 250 ppm, preferably from 2.5 ppm to 150 ppm, more preferably from 5 ppm to 100 ppm.
tical brightener The detergent compositions herein may also optionally contain from about 0.005 ~
to 5 ~ by weight of certain types of hydrophilic optical brighteners which also provide a dye transfer inhibition action. If used, the compositions herein will preferably comprise from about 0.01 qb to 1 ~ by weight of such optical brighteners.
The hydrophilic optical brighteners useful in the present invention are those having the structural formula:
R~ R2 ~N H H N
N N
C C ~ N--~~ N
/ N H H N
wherein RI is selected from anilino, N-2-bis-hydmxyethyl and NH-2-hydroxyethyl; R2 is selected from N-2-bis-hydroxyethyl, N-2-hydroxyethyl-N-methylamino, morphilino, ,chloro and amino; and M is a salt-forming radon such as sodium or potassium.
When in the above formula, RI is anilino, R2 is N-2-bis-hydroxyethyl and M is a ration such as sodium, the brightener is 4,4',-bis[(4-anilino-6-(N-2-bis-hydroxyethyl)-s-triazine-2-yl)amino]-2,2'-stilbenedisulfonic acid and disodium salt. This particular brightener species is commercially marketed under the trademark Tinopal-LTNPA-GX by Ciba-Geigy Corporation. Tinopal-UNPA-GX is the preferred hydrophilic optical brightener useful in the detergent compositions herein.
When in the above formula, RI is anilino, R2 is N-2-hydroxyethyl-N-2-methylamino and M is a ration such as sodium, the brightener is 4,4'-bis[(4-anilino-6-(N-2-hydroxyethyl-N-methylamino)-s-triazine-2-yl)amino] 2, 2' -stilbenedisulfonic acid disodium salt. This particular brightener species is commercially marketed under the tradename Tinopal SBM-GX by Ciba-Geigy Corporation.
'-WO 95/28469 PCTIUS95104205 When in the above formula, Rl is anilino, R2 is morphilino and M is a canon such as sodium, the brightener is 4,4'-bis[(4-anilino-6-morphilino-s-triazine-yl)amino]2,2'-stilbenedisulfonic acid, sodium salt. This particular brightener species is commercially marketed under the tradename Tinopal AMS-GX by Ciba Geigy Corporation.
The specific optical brightener species selected for use in the present invention provide especially effective dye transfer inhibition performance benefits when used in combination with the selected polymeric dye transfer inhibiting agents hereinbefore described. The combination of such selected polymeric materials (e.g., PVNO and/or PVPVI) with such selected optical brighteners (e.g., Tinopal UNPA-GX, Tinopal SBM-GX and/or Tinopal AMS-GX) provides significantly better dye transfer inhibition in aqueous wash solutions than does either of these two detergent composition components when used alone. Without being bound by theory, it is believed that such brighteners work this way because they have high affinity for fabrics in the wash solution and therefore deposit relatively quick on these fabrics. The extent to which brighteners deposit on fabrics in the wash solution can be defined by a parameter called the "exhaustion coefficient".
The exhaustion coefficient is in general as the ratio of a) the brightener material deposited on fabric to b) the initial brightener concentration in the wash liquor.
Brighteners with relatively high exhaustion coefficients are the most suitable for inhibiting dye transfer in the context of the present invention.
Of course, it will be appreciated that other, conventional optical brightener types of compounds can optionally be used in the present compositions to provide conventional fabric "brightness" benefits, rather than a true dye transfer inhibiting effect. Such usage is conventional and well-known to detergent formulations.
Fabric softening agents can also be incorporated into laundry detergent compositions in accordance with the present invention. These agents may be inorganic or organic in type. Inorganic softening agents are exemplified by the smectite clays disclosed in GB-A-1 400 898. Organic fabric softening agents include the water insoluble tertiary amines as disclosed in GB-A-1 514 276 and EP-B-0 011 340.
WO 95!28469 PCTIUS95/04205 Levels of smectite clay are normally in the range from 5 ~ to 15 % , more preferably from 8 % to 12 ~ by weight, with the material being added as a dry mixed component to the remainder of the formulation. Organic fabric softening agents such as the water-insoluble tertiary amines or dilong chain amide materials are incorporated at levels of from 0.5 ~ to 5 ~ by weight, normally from 1 ~
to 3 9& by weight, whilst the high molecular weight polyethylene oxide materials and the water soluble cationic materials are added at levels of from 0.1 ~ to 2 J
, normally from 0.15 l to 1.5 % by weight.
Other optional ing iii .n c Other optional ingredients suitable for inclusion in the compositions of the invention include perfumes, colours and filler salts, with sodium sulfate being a preferred filler salt.
The detergent compositions of the invention can be formulated in any desirable form such as powders, granulates, pastes, liquids, tablets and gels.
The detergent compositions of the present invention may be formulated as liquid detergent compositions. Such liquid detergent compositions typically comprise from 94 k to 35 % by weight, preferably from 90 °6 to 40 ~ by weight, most preferably from 80~ to SO Y6 by weight of a liquid carrier, e.g., water, preferably a mixture of water and organic solvent.
The detergent compositions of the present invention may also be in the form of gels. Such compositions are typically formulated with polyakenyl polyether having a molecular weight of from about '750,000 to about 4,000,000.
- W095128469 ~ a,- _ _ ' ~ -i PCT/IJ595104205 The detergent compositions of the invention are preferably in the form of solids, such as powders and granules.
The particle size of the components of granular compositions in accordance with the invention should preferably be such that no more that 5 °.6 of particles are greater than 1.4mm in diameter and not more than 5 % of particles are less than O.lSmm in diameter.
The bulls density of granular detergent compositions in accordance with the present invention typically have a bulk density of at least 450 g/litre, more usually at least 600 g/litre and more preferably from 650 gllitre to 1200 gllitre.
Bulk density is measured by means of a simple funnel and cup device consisting of a conical funnel moulded rigidly on a base and provided with a flap valve at its lower extremity to allow the contents of the funnel to be emptied into an axially afigned cylindrial cup disposed below the funnel. The funnel is 130 mm and 40 mm at its respective upper and lower extremities. It is mounted so that the lower extremity is 140 mm above the upper surface of the base. The cup has an overall height of 90 mm, an internal height of 87 mm and an internal diameter of 84 mm.
Its nominal volume is S00 ml.
To carry out a measurement, the funnel is filled with powder by hand pouring, the flap valve is opened and powder allowed to overfill the cup. The filled cup is removed from the frame and excess powder removed from the cup by passing a straight edged implement e.g. a knife, across its upper edge. The filled cup is then weighed and the value obtained for the weight of powder doubled to provide the bulk density in g/litre. Replicate measurements are made as required.
Making processes - eranular com ositions In general, granular detergent compositions in accordance with the present invention can be made via a variety of methods including dry mixing, spray drying, agglomeration and granulation.
Washing methods s~ ~i,J~.r ,~ 'y ~ -WO 95!28469 =r PCTIUS95104205 The compositions of the invention may be used in essentially any washing or cleaning method, including machine laundry and dishwashing methods.
A preferred machine dishwashing method comprises treating soiled articles selected from crockery, glassware, hollowware and cutlery and mixtures thereof, with an aqueous liquid having dissolved or dispensed therein an effective amount of a machine dishwashing composition in accord with the inevntion. By an effective amount of the machine dishwashing composition it is meant from 8g to 60g of product dissolved or dispersed in a wash solution of volume from 3 to litres, as are typical product dosages and wash solution volumes commonly employed in conventional machine dishwashing methods.
Machine laundry methods herein comprise treating soiled laundry with an aqueous wash solution in a washing machine having dissolved or dispensed therein an effective amount of a machine laundry detergent composition in accord with the invention. The detergent can be added to the wash solution either via the dispenser drawer of the washing machine or by a dispensing device. By an effective amount of the detergent composition it is meant from 40g to 300g of product dissolved or dispersed in a wash solution of volume from 5 to 65 litres, as are typical product dosages and wash solution volumes commonly employed in conventional machine laundry methods.
In a preferred washing method herein a dispensing device containing an effective amount of detergent product is introduced into the drum of a front-loading washing machine before the commencement of the wash cycle.
The dispensing device is a container for the detergent product which is used to deliver the product directly into the drum of the washing machine. Its volume , capacity should be such as to be able to contain sufficient detergent product as would normally be used in the washing method. .
Once the washing machine has been loaded with laundry the dispensing device containing the detergent product is placed inside the drum. At the commencement ~W 0 95128469 PCT/US95104205 5' 2187437 of the wash cycle of the washing machine water is introduced into the drum and the drum periodically rotates. The design of the dispensing device should be such that it permits containment of the dry detergent product but then allows release of this product during the wash cycle in response to its agitation as the drum rotates and also as a result of its immersion in the wash water.
To allow for release of the detergent product during the wash the device may possess a number of openings through which the product may pass.
Alternatively, the device may be made of a material which is permeable to liquid but impermeable to the solid product, which will allow release of dissolved product.
Preferably, the detergent product will be rapidly released at the start of the wash cycle thereby providing transient localised high concentrations of product in the drum of the washing machine at this stage of the wash cycle.
Preferred dispensing devices are reusable and are designed in such a way that container integrity is maintained in both the dry state and during the wash cycle.
Especially preferred dispensing devices for use in accord with the invention have been described in the following patents; GB-B-2, 157, 717, GB-B-2, 157, 718, EP-A-0201376, EP-A-0288345 and EP-A-0288346. An article by J.Bland published in Manufacturing Chemist, November 1989, pages 41-46 also describes especially preferred dispensing devices for use with granular laundry products which are of a type commonly know as the "granulette".
Especially preferred dispensing devices are disclosed in European Patent Application Publication Nos. 0343069 & 0343070. The latter Application discloses a device comprising a flexible sheath in the form of a bag extending from a support ring defining an orifice, the orifice being adapted to admit to the bag sufficient product for one washing cycle in a washing process. A portion of the washing medium flows through the orifice into the bag, dissolves the product, and the solution then passes outwardly through the orifice into the washing medium.
The support ring is provided with a masking arrangemnt to prevent egress of wetted, undissolved, product, this arrangement typically comprising radially extending walls extending from a central boss in a spoked wheel configuration, or a similar structure in which the walls have a helical form.
Pretreatment washing method n x t~. 6....
Sa 2181431 In a pretreatment wash method aspect of the invention a soiled/stained substrate is treated with an effective amount of a pretreatment solution containing a water-soluble builder, but no enzyme components. The solution might optionally contain other non-enzyme detergent components such as surfactants, builders, and detergent polymers. Preferably the solution also contains water-soluble builder.
The level of the water-soluble builder in said pretreatment solution is typically from 0.05% to 809&, and preferably is more than 1 ~.
The pretreatment solution is allowed to remain in contact with the soiled substrate for an effective time interval. Said time interval will typically be from 10 seconds to 1800 seconds, more preferably from 60 seconds to 600 seconds.
The soiled substrate is then washed using a suitable washing method wherein an enzyme-containing detergent product is employed. The washing method may for example, be any of the machine dishwashing or machine laundry washing methods described herein.
In the detergent compositions, the abbreviated component identifications have the following meanings:
XYAS . Sodium C1X - Cly alkyl sulfate ~~' : -A CI2_IS P~ominantly linear primary alcohol condensed with an average of Y moles of ethylene oxide ~Z . A Clx - Cly predominantly linear primary alcohol condensed with an average of Z moles of ethylene oxide ~S ~ C1X - C1Y sodium alkyl sulfate condensed with an average of Z moles of ethylene oxide per mole 'AAA . C16-Clg alkyl N-methyl glucamide.
~WO 95/28469 - - PGT/US95/04205 Silicate . Amorphous Sodium Silicate (Si02:Na20 ratio = 2.0) NaSKS-6 . Crystalline layered silicate of formula b-Na2Si205 Carbonate . Anhydrous sodium carbonate Polycarboxylate . Copolymer of 1:4 maleic/acrylic acid, average molecular weight about 80,000 -Zeolite A . Hydrated Sodium Aluminosilicate of formula Nal2(A102Si0~12. 27H20 having a primary particle size in the range from 1 to 10 micrometers Citrate . Tri-sodium citrate dihydrate Percarbonate (fast release . Anhydrous sodium percarbonate bleach of empirical particle) formula 2Na2C03.3H202 coated with a mixed salt of formula Na2SO4.n.Na2C03 where n is 0.29 and where the weight ratio of percarbonate to mixed salt is 39:1 Percarbonate (slow release . Anhydrous sodium percarbonate bleach coated with a particle) coating of sodium silicate (Si20:Na20 ratio = 2:1) at a weight ratio of percarbonate to sodium silicate of 39:1 TAB . Tetraacetyl ethylene diamine TAED (slow release . Particle formed by agglomerating TAED with citric particle) acid and polyethylene glycol (PEG) of Mw=4,000 with a weight ratio of components of TAED:citric acid:PEG of 75:10:15, coated with an external coating of citric acid at a weight ratio of agglomerate: citric acid coating of 95:5.
Benzoyl Caprolactam (slow . Particle formed by agglomerating benzoyl caprolactam release particle) (BzCI) with citric acid and polyethylene glycol (PEG) of Mw=4,000, with a weight ratio of components of BzCl:citric acid:PEG of 63:21:16, coated with an external coating of citric acid at a weight ratio of agglomerate:citric acid coating of 95:5 TAED (fast release . Particle formed by agglomerating TAED with partially particle) neutralised polycarboxylate at a ratio of TAED:polycarboxylate of 93:7, coated with an external coating of polycarboxylate at a weight ratio of agglomerate:coating of 96:4 EDDS (fast release . Particle formed by spray-drying EDDS with MgS04 at particle) a weight ratio of 26:74 Protease . Proteolytic enzyme sold under the trademark Savinase by Novo Industries A/S with an activity of 13 KNPU/g.
Protease (slow release . An enzyme prill containing proteolytic enzyme sold particle) under the tradename Savinase by Novo Industries A/S
with an activity of 13 KNPU/g coated with a coating of sodium silicate (Si02:Na20 ratio = 2:1) at a coating level of 5 ~ .
Amylase . Amylolytic enzyme sold under the trademark Termamyl 60T by Novo Industries A/S with an activity of 300 KNU/g Cellulase . Cellulosic enzyme sold by Novo Industries A/S with an activity of 1000 CEVU/g Lipase . Lipolytic enzyme sold under the trademark Lipo(ase by Novo Industries A/S with an activity of 165 KLU/g ~W095128469 ~ . PCTlUS95104205 CMC . Sodium carboxymethyl cellulose 1,1-hydroxyethane diphosphonic acid EDDS . Ethylenediamine -N, N'- disuccinic acid, [S,S] isomer in the form of the sodium salt.
PVN~ . Poly (4-vinylpyridine)-N-oxide copolymer of vinylimidaxole and vinylpyrrolidone Granular Suds Suppressor . 129b Silicone/silica, 18 % stearyl alcoho1,709b starch in granular form . ., a.
The following laundry detergent compositions were prepared values being expressed as percentages by weight of the compositions: Composition A is a prior art composition, compositions B to D are in accord with the invention:
A B C D
45AS/25AS (3:1) 9.1 9.1 9.1 9.1 35AE3S 2.3 2.3 2.3 2.3 24E5 4.5 4.5 4.5 4.5 TFAA 2.0 2.0 2.0 2.0 Z.eoHte A 13.2 13.2 13.2 13.2 Na SKS-6/citric acid 15.6 15.6 15.6 15.6 (79:21) Carbonate 7.6 7.6 7.6 7.6 TAED (fast release 6.3 - - -particle) TAED (slow release - 5.0 - 2.3 particle) Benzoyl Caprolactam - - g,0 2.~
(slow release particle) Percarbonate (fast 22.5 - - 22.5 release particle) Percarbonate (slow - 22.5 22.5 -release particle) ~O 95128469 " PCT/US95/04205 ~~~7437 DETPMP 0.5 0.8 EDDS (fast release particle)- - 0.3 0.75 Protease 0.55 - - _ Protease (slow release - 1.27 0.55 1.27 article Lipase 0.15 0.15 0.15 0.15 Cellulase 0.28 0.28 0.28 0.28 Amylase 0.27 0.27 0.27 0.27 Polycarboxylate 5.1 5.1 5.1 5.1 CMC 0.4 0.4 0.4 0.4 PVNO 0.03 0.03 0.03 0.03 Granular suds suppressor1.5 1.5 1.5 1.5 Minorslmisc to 10036
Claims (12)
1. A detergent composition containing (a) a water-soluble builder; and (b) an enzyme wherein a means is provided for delaying the release to a wash solution of said enzyme relative to the release of said water-soluble builder such that in the T50 test method herein described the time to achieve a concentration that is 50 % of the ultimate concentration of said water-soluble builder is less than 60 seconds and the time to achieve a concentration that is 50 % of the ultimate concentration of said enzyme is more than 90 seconds.
2. A detergent composition according to Claim 1 wherein the enzyme comprises an amylolytic enzyme.
3. A detergent composition according to any one of Claims 1 and 2 comprising an organic peroxyacid bleach source wherein means is provided for delaying the release to a wash solution of said peroxyacid bleach relative to the release of said surfactant such that in the T50 test the time to achieve a concentration that is 50 % of the ultimate concentration of the peroxyacid bleach is more than 180 seconds.
4. A detergent composition according to Claim 3 wherein the time to achieve a concentration that is 50% of the ultimate concentration of the peroxyacid bleach is more than 240 seconds.
5. A detergent composition according to Claim 3 wherein said peroxyacid bleach source is a peroxybenzoic acid source.
6. A detergent composition according to Claim 3, 4 or 5 wherein said organic peroxyacid bleach source comprises in combination (i) a hydrogen peroxide source; and (ii) a peroxyacid bleach precursor compound A detergent composition according to Claim 6 ; wherein said peroxyacid bleach precursor compound has a cationic charge.
65
8. A detergent composition according to Claim 7 wherein said peroxyacid bleach precursor is 2(N,N,N-trimethyl ammonium) ethyl sodium 4-sulphophenyl carbonate chloride or 4 (trimethyl ammonium) methyl benzoyl oxybenzene sulphonate.
9. A detergent composition according to Claim 5 wherein said peroxyacid bleach precursor compound is selected from the group consisting of a) an amide substituted bleach precursor of the general formula:
or mixtures thereof, wherein R1 is an alkyl, aryl, or alkaryl group containing from about 1 to about 14 carbon atoms, R2 is an alkylene, arylene or alkarylene group containing from about 1 to about 14 carbon atoms, R5 is H or an alkyl, aryl, or alkaryl group containing from about 1 to about 10 carbon atoms, and L is a leaving group;
b) a benzoxazin-type bleach precursor of the formula:
wherein R1 is H, alkyl, alkaryl, aryl, arylalkyl, and wherein R2, R3, R4, and R5 may be the same or different substituents selected from H, halogen, alkyl, alkenyl, aryl, hydroxyl, alkoxyl, amino, alkylamino, -COOR6, wherein R6 is H or an alkyl group and carbonyl functions;
c) an N-acylated lactam bleach precursor of the formula:
wherein n is from 0 to about 8, preferably from 0 to about 2, and R6 is H, an alkyl, aryl, alkoxyaryl or alkaryl group containing from 1 to 12 carbons, or a substituted phenyl group containing from about 6 to about 18 carbon atoms;
and any mixtures of a), b) and c).
or mixtures thereof, wherein R1 is an alkyl, aryl, or alkaryl group containing from about 1 to about 14 carbon atoms, R2 is an alkylene, arylene or alkarylene group containing from about 1 to about 14 carbon atoms, R5 is H or an alkyl, aryl, or alkaryl group containing from about 1 to about 10 carbon atoms, and L is a leaving group;
b) a benzoxazin-type bleach precursor of the formula:
wherein R1 is H, alkyl, alkaryl, aryl, arylalkyl, and wherein R2, R3, R4, and R5 may be the same or different substituents selected from H, halogen, alkyl, alkenyl, aryl, hydroxyl, alkoxyl, amino, alkylamino, -COOR6, wherein R6 is H or an alkyl group and carbonyl functions;
c) an N-acylated lactam bleach precursor of the formula:
wherein n is from 0 to about 8, preferably from 0 to about 2, and R6 is H, an alkyl, aryl, alkoxyaryl or alkaryl group containing from 1 to 12 carbons, or a substituted phenyl group containing from about 6 to about 18 carbon atoms;
and any mixtures of a), b) and c).
10. A detergent composition according to any of Claims 3 - 9 additionally containing a bleach catalyst.
11. A detergent composition according to Claim 10 wherein said bleach catalyst is selected from the group consisting of Mn IV2(u-O)3(1,4,7-trimethyl-1,4,7-triazacyclononane)2-(PF6)2, Mn III2(u-O)1(u-OAc)2(1,4,7-tri-methyl-1,4,7-triazacyclononane)2-(C104)2; M n IV4(u-O)6(1,4,7-triazacy-clononane)4-(C104)2; Mn III Mn IV4(u-O)1(u-OAc)2 (1,4,7-tri-methyl-1,4,7-triazacyclononane)2-(C104)3; Mn(1,4,7-trimethyl-1,4,7-triaza-cyclononane(OCH3)3-(PF6); Co(2,2'-bispyridyl-amine)C12; Di-(isothio-cyanato)bispyridylamine-cobalt (II); trisdipyridylamine-cobalt (II) per-chlorate; Co(2,2-bispyridylamine)2- O2C1O4; Bis-(2,2'-bispyridylamine) copper(II) per-chlorate; tris(di-2-pyridylamine) iron (11) perchlorate; Mn gluconate; Mn(CF3SO3)2; Co(NH3)5C1; binuclear Mn complexed with tetra-N-dentate and bi-N-dentate ligands, including N4M n III(u-O)2M n IV N4)+and (Bipy2M n III(u-O)2Mn IV Bipy2]-(C104)3 and mixtures thereof.
12. A washing method comprising the steps of:
(1) applying an enzyme-free solution of a composition containing a water-soluble builder to a soiled substrate:
(2) allowing said solution to remain in contact with said soiled substrate for an effective time interval;
(3) washing said soiled substrate using a washing method involving use of an enzyme-containing detergent composition.
(1) applying an enzyme-free solution of a composition containing a water-soluble builder to a soiled substrate:
(2) allowing said solution to remain in contact with said soiled substrate for an effective time interval;
(3) washing said soiled substrate using a washing method involving use of an enzyme-containing detergent composition.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB9407299A GB9407299D0 (en) | 1994-04-13 | 1994-04-13 | Detergent compositions |
GB9407299.8 | 1994-04-13 | ||
PCT/US1995/004205 WO1995028469A1 (en) | 1994-04-13 | 1995-04-03 | Detergents containing a builder and a delayed release enzyme |
Publications (2)
Publication Number | Publication Date |
---|---|
CA2187437A1 CA2187437A1 (en) | 1995-10-26 |
CA2187437C true CA2187437C (en) | 2000-08-29 |
Family
ID=10753461
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA002187437A Expired - Fee Related CA2187437C (en) | 1994-04-13 | 1995-04-03 | Detergents containing a builder and a delayed release enzyme |
Country Status (9)
Country | Link |
---|---|
EP (1) | EP0755434B1 (en) |
JP (1) | JPH09512291A (en) |
CN (1) | CN1100136C (en) |
AT (1) | ATE291074T1 (en) |
CA (1) | CA2187437C (en) |
DE (1) | DE69534078T2 (en) |
ES (1) | ES2239320T3 (en) |
GB (1) | GB9407299D0 (en) |
WO (1) | WO1995028469A1 (en) |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ATE300603T1 (en) † | 1995-03-11 | 2005-08-15 | Procter & Gamble | DETERGENT AND CLEANING PRODUCT CONTAINING HYDROGEN PEROXIDE SOURCE AND PROTEASE |
US6093343A (en) * | 1996-02-08 | 2000-07-25 | The Procter & Gamble Company | Detergent particles comprising metal-containing bleach catalysts |
GB2309976A (en) * | 1996-02-08 | 1997-08-13 | Procter & Gamble | Bleach catalyst particles for inclusion in detergents |
DE19618725A1 (en) † | 1996-05-09 | 1997-11-13 | Weigert Chem Fab | Method and kit for cleaning dishes |
DE19704634A1 (en) | 1997-02-07 | 1998-08-27 | Henkel Kgaa | pH-controlled release of detergent components |
JPH11217590A (en) * | 1998-02-04 | 1999-08-10 | Kao Corp | Breaching and detergent composition |
US7022660B1 (en) * | 1999-03-09 | 2006-04-04 | The Procter & Gamble Company | Process for preparing detergent particles having coating or partial coating layers |
DE10110886A1 (en) * | 2001-03-07 | 2002-09-26 | Henkel Kgaa | Detergents and / or cleaning agents |
DE10138283A1 (en) * | 2001-08-10 | 2003-03-06 | Henkel Kgaa | washing method |
EP1953216A4 (en) * | 2005-11-16 | 2009-11-11 | Kao Corp | Composite particle |
WO2011036153A1 (en) * | 2009-09-25 | 2011-03-31 | Novozymes A/S | Detergent composition |
CN104204179A (en) | 2011-06-20 | 2014-12-10 | 诺维信公司 | Particulate composition |
EP2537918A1 (en) | 2011-06-20 | 2012-12-26 | The Procter & Gamble Company | Consumer products with lipase comprising coated particles |
EP3004313A1 (en) | 2013-05-30 | 2016-04-13 | Novozymes A/S | Particulate enzyme composition |
US20200040283A1 (en) * | 2017-03-31 | 2020-02-06 | Danisco Us Inc | Delayed release enzyme formulations for bleach-containing detergents |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2318930A1 (en) * | 1972-04-17 | 1973-10-31 | Procter & Gamble | DETERGENT MIXTURES CONTAINING ENZYME |
US4176079A (en) * | 1977-04-20 | 1979-11-27 | The Procter & Gamble Company | Water-soluble enzyme-containing article |
IE51848B1 (en) * | 1980-11-06 | 1987-04-15 | Procter & Gamble | Bleach activator compositions,preparation thereof and use in granular detergent compositions |
US4421664A (en) * | 1982-06-18 | 1983-12-20 | Economics Laboratory, Inc. | Compatible enzyme and oxidant bleaches containing cleaning composition |
US4634551A (en) * | 1985-06-03 | 1987-01-06 | Procter & Gamble Company | Bleaching compounds and compositions comprising fatty peroxyacids salts thereof and precursors therefor having amide moieties in the fatty chain |
US5130044A (en) * | 1987-10-30 | 1992-07-14 | The Clorox Company | Delayed onset active oxygen bleach composition |
GB8803114D0 (en) * | 1988-02-11 | 1988-03-09 | Bp Chem Int Ltd | Bleach activators in detergent compositions |
EP0404806B1 (en) * | 1988-03-14 | 1992-03-11 | Novo Nordisk A/S | Stabilized particulate composition |
-
1994
- 1994-04-13 GB GB9407299A patent/GB9407299D0/en active Pending
-
1995
- 1995-04-03 CN CN95193616A patent/CN1100136C/en not_active Expired - Fee Related
- 1995-04-03 EP EP95915032A patent/EP0755434B1/en not_active Revoked
- 1995-04-03 DE DE69534078T patent/DE69534078T2/en not_active Revoked
- 1995-04-03 ES ES95915032T patent/ES2239320T3/en not_active Expired - Lifetime
- 1995-04-03 JP JP7526997A patent/JPH09512291A/en not_active Ceased
- 1995-04-03 AT AT95915032T patent/ATE291074T1/en not_active IP Right Cessation
- 1995-04-03 WO PCT/US1995/004205 patent/WO1995028469A1/en active IP Right Grant
- 1995-04-03 CA CA002187437A patent/CA2187437C/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
WO1995028469A1 (en) | 1995-10-26 |
EP0755434A1 (en) | 1997-01-29 |
EP0755434B1 (en) | 2005-03-16 |
GB9407299D0 (en) | 1994-06-08 |
DE69534078D1 (en) | 2005-04-21 |
DE69534078T2 (en) | 2006-04-13 |
JPH09512291A (en) | 1997-12-09 |
CN1150817A (en) | 1997-05-28 |
EP0755434A4 (en) | 1998-07-29 |
ES2239320T3 (en) | 2005-09-16 |
CA2187437A1 (en) | 1995-10-26 |
ATE291074T1 (en) | 2005-04-15 |
CN1100136C (en) | 2003-01-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5965505A (en) | Detergents containing a heavy metal sequestrant and a delayed release peroxyacid bleach system | |
US5695679A (en) | Detergent compositions containing an organic silver coating agent to minimize silver training in ADW washing methods | |
EP0755429B1 (en) | Detergents containing a heavy metal sequestrant and a delayed release peroxyacid bleach system | |
US5755992A (en) | Detergents containing a surfactant and a delayed release peroxyacid bleach system | |
CA2187437C (en) | Detergents containing a builder and a delayed release enzyme | |
GB2294695A (en) | A method of washing laundry | |
EP0713910B1 (en) | Detergent compositions | |
GB2294706A (en) | Bleaching composition | |
CA2146051C (en) | Bleaching composition | |
WO1995028468A1 (en) | Detergent compositions | |
GB2294705A (en) | Bleaching compositions | |
US6559113B2 (en) | Detergents containing a builder and a delayed released enzyme | |
EP0755432A1 (en) | Detergents containing an enzyme and a delayed release peroxyacid bleaching system | |
CA2187436C (en) | Detergents containing a surfactant and a delayed release peroxyacid bleach source | |
CA2187306C (en) | Detergents containing a surfactant and a delayed release enzyme | |
CA2252361A1 (en) | Detergent compositions | |
EP0755431A1 (en) | Detergents containing a builder and a delayed release peroxyacid bleach source | |
WO1997023593A1 (en) | Detergent composition comprising enzyme and delayed release mechanism | |
GB2294694A (en) | Solid detergent composition | |
WO1995028454A1 (en) | Detergent compositions | |
WO1996014380A1 (en) | Detergents containing a peroxide source, a bleach precursor and a hydrogen peroxide scavenger |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EEER | Examination request | ||
MKLA | Lapsed |