CA2150793C - Controlling deposits in the calcination of fluxed iron ore pellets - Google Patents

Controlling deposits in the calcination of fluxed iron ore pellets Download PDF

Info

Publication number
CA2150793C
CA2150793C CA002150793A CA2150793A CA2150793C CA 2150793 C CA2150793 C CA 2150793C CA 002150793 A CA002150793 A CA 002150793A CA 2150793 A CA2150793 A CA 2150793A CA 2150793 C CA2150793 C CA 2150793C
Authority
CA
Canada
Prior art keywords
magnesium
recited
aqueous solution
salt
calcination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CA002150793A
Other languages
French (fr)
Other versions
CA2150793A1 (en
Inventor
Donald C. Roe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suez WTS USA Inc
Original Assignee
GE Betz Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GE Betz Inc filed Critical GE Betz Inc
Priority to CA002150793A priority Critical patent/CA2150793C/en
Publication of CA2150793A1 publication Critical patent/CA2150793A1/en
Application granted granted Critical
Publication of CA2150793C publication Critical patent/CA2150793C/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/02Roasting processes

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

A stable aqueous solution comprising a water soluble salt of a magnesium compound is used to reduce deposits in kilns or furnaces used to make iron ore agglomerates, known as pellets, during iron ore calcination.

Description

CONTROLLING DEPOSITS IN THE CALCINATION
OF FLUXED IRON ORE PELLETS

FIELD OF THE INVENTION

The present invention relates to compositions and methods for inhibiting deposits during calcination of fluxed iron ore pellets.
BACKGROUND OF THE INVENTION
Crude iron ore cannot be used directly in the steel making process, but must first be concentrated and refined. When the iron content of the ore is increased, the process generally is referred to as concentration, and this can sometimes be accomplished simply by crushing, screening, and washing. Other times, the ore is ground to very small particles before the iron oxides can be separated from the rest of the material, called gangue, which is normally accomplished by magnetic drums.

However, even where there is satisfactory concentration, iron ore consisting of fine particles must first be agglomerated into a coarser form, and this process is referred to as agglomeration. The most desirable size for blast-furnace feed is from 6-25 mm, and pelletizing is one of the meth-ods frequently used to achieve this type of coarse iron ore feed.

z159'793 In the pelletizing process, which accounts for about two-thirds of U.S. agglomerate production, the ore must be ground to a very fine size, less than 75 m. The ground ore is mixed with the proper amount of water, and sometimes with a small amount of bentonite, and this is rolled into small balls 10-20 mm in diameter in a balling drum or disk. These green pellets are dried, then are heated to 1200 -1370 C to bond the small particles, and finally are cooled. The heating can be done on a traveling grate, or in a shaft furnace, or by a combination of a traveling grate and a rotary kiln.
Another of the chief raw materials in the steel making process in addition to the iron ore, is the fluxing material, consisting of lime (CaCO3) and/or dolomite (CaCO3-MgCO3). Typically, limestone is crushed and screened to the desired particle size, and burnt lime for steel making is then prepared from the limestone by calcination in a long rotary kiln. It is common to combine the iron ore pelletizing operation described above with the limestone and/or dolomite flux preparation and calcination by add-ing the limestone and/or dolomite particles directly to the iron ore particles which are to be formed into pellets. This mixture is then heated in the same device, usually a long rotary kiln, often with a traveling grate, so that the pelletizing and limestone and/or dolomite calcination are accomplished in the same step and in the same heating furnace. This combined step is usually referred to as calcination of the iron ore, although the chief result is the hardening of the green iron ore pellets.
During the heating of the mixture of particles of limestone and/or dolomite flux and particles of iron ore formed into pellets, which will be referred to as flux pellet kilning, a problem is frequently encountered in-volving deposits which form on the walls of the rotary kiln or other furnace or heating device being used. These deposits are formed as a result of the flux pellet kilning operation, perhaps as a result of a combination of mechanical adhesion and condensation on the cooler skin of the kiln or furnace surface. The predominant constituent of such deposits is ferric oxide (hematite), with the majority of the remainder being magnetic iron oxide (magnetite). However, there is frequently a significant amount, about 2-10% by weight of the total deposit, of calcium phosphate, Ca1 p(PO4)6(OH)2 (hydroxyapetite).

Such deposits create substantial problems in the kilning operation, e.g., large portions of such deposits can break away and become admix-ed with the pellets being calcined, thus resulting in an unacceptable final product. Also, as a result of the formation of these deposits, significant removal problems are created.

For example, there is a significant down time for the kilns, furnaces or other heating devices being used, during which the deposits are me-chanically removed by such off-line cleaning methods as compressed air driven jack-hammers, small charges of blasting explosives, or more time-consuming approaches utilizing hammers and chisels, etc. These proc-esses of mechanical removal present serious problems in addition to the down time which they entail. An on-line method of cleaning which is fre-quently used involves mechanical removal of these deposits by "shoot-ing", in which the deposits are blasted away by repeated discharging of shotguns against the deposits. This procedure poses the obvious risks to the personnel performing it, but also has been known to result in serious damage to the walls of the kiln or other furnace heating device being used.
In order to significantly inhibit the formation of these flux pellet kiln deposits, and thereby significantly increase the efficiency of the flux pellet kilning operation, the present invention provides for the administration of a water soluble magnesium compound that undergoes thermal decompo-sition, preferably to form magnesium oxide at temperatures of about 100 -1200 C.

BRIEF DESCRIPTION OF THE PRIOR ART

U.S. Pat. No. 4,503,019 discloses the use of blends of magnesium oxide and copper oxychloride for inhibiting and dispersing calcium oxide deposit formation in coal-fired kilns.

U.S. Pat. No. 5,221,320 discloses a method of inhibiting the forma-tion of iron oxide containing deposits on the surfaces of heating devices during fluxed iron ore pellet calcination, wherein the flux employed con-tains phosphate, which consists of a treatment of magnesium hydroxide, copper oxychloride and an alkyl benzene sulfonate suspending agent.
The phosphate content, as P205, of the flux in said fluxed iron ore pellet must be less than 1% by weight of the total weight of flux and iron ore in the pellets.

None of the above applications in any way suggest the composi-tions and methods of the present invention.

DETAILED DESCRIPTION OF THE INVENTION

The present invention relates to a method of inhibiting the forma-tion of iron oxide containing deposits on the surfaces of heating devices 5 during fluxed iron ore pellet calcination comprising treating the atmos-phere of said heating device in which said calcination takes place with a deposit-inhibiting amount of an aqueous solution comprising a magne-sium compound that undergoes thermal decomposition, preferably to form magnesium oxide, at temperatures of about 100 -1200 C, with tem-peratures of from about 100 -500 C particularly preferred. In a preferred embodiment, the present invention comprises treating the atmosphere of the heating device where calcination takes place with a deposit-inhibiting amount of an aqueous solution comprising (1) a magnesium salt, e.g., magnesium acetate, magnesium sulfate, magnesium chloride, or magne-sium nitrate (the latter particularly preferred) with (2) a surfactant select-ed from the group consisting of ethoxylated alkylphenols, (e.g., ethoxy-lated nonylphenols), phosphate esters (e.g., Triton QS-44, Union Car-bide) or nonionic glucosides, particularly preferred (e:g., Triton BG-10).

The present invention, being an aqueous solution, is easier to store, handle and feed than a suspension of a water insoluble salt as found in, e.g., U.S. Patent 5,221,320. Suspensions, which have been previously used for the purposes of the present invention are viscous, require stirring to keep the solids suspended, and prove difficult to pump and feed. The present invention is also more effective than prior art methods at equivalent magnesium treatment rates. This is believed to be due to the increased surface area of the magnesium salt decomposition products as compared to the relatively large particle size of magnesium hydroxide particles.

* trade-mark 21'5' 0793 It has been found that water soluble magnesium compounds that undergo thermal decomposition, preferably to form magnesium oxide at temperatures of about 1000-1200 C are effective for inhibiting deposits on the interior of iron ore pellet kilns. The magnesium salt can be formulated as a concentrated solution, and then diluted with water and applied through spray nozzles into the atmosphere of the kiln. Additional product components believed to improve performance are nonionic or anionic sur-factants for improved spray atomization due to surface tension reduction and calcium salt inhibitors to inhibit spray nozzle deposition, e.g., CaCO3.
In a preferred embodiment of the present invention, the magnesium com-pounds undergo thermal decomposition to form magnesium oxide at a temperature of from about 100 -500 C. An exemplary magnesium com-pound is magnesium nitrate. Exemplary surfactants are ethoxylated nonylphenols, phosphate esters and nonionic glucosides. Exemplary deposit control agents are 2-phosphono-butane-1,2,4-tricarboxylic acid and 1 -hydroxyethylene-1, 1 -diphosphonic acid.

The present invention further relates to a.composition for inhibiting the formation of iron oxide containing deposits on the surfaces of heating devices during fluxed iron ore pellet calcination comprising an aqueous solution containing (1) a magnesium salt, e.g., magnesium acetate, mag-nesium sulfate, magnesium chloride, or magnesium nitrate (particularly preferred) with (2) a surfactant selected from the group consisting of ethoxylated alkylphenols, phosphate esters or nonionic glucosides.
Field studies have revealed that a particularly preferred embodi-ment of the present invention, an aqueous solution of magnesium nitrate and a nonionic glucoside surfactant, is especially effective in inhibiting deposition in a taconite pellet kiln. Specifically, the treatment has virtu-ally eliminated down-time for off-line cleaning, as well as substantially reducing deposit formation and the need for shot-gunning.

The aqueous solution containing magnesium is injected into the kiln in an amount of from about 0.001-0.1 pounds of Mg as MgO per ton of pellets, with from about 0.005-0.05 pounds of Mg as MgO per ton of pellets being preferred. While the particularly preferred embodiment described above contains about 63% by weight magnesium nitrate hexa-hydrate (or 10% Mg as MgO) and 1% by weight nonionic glucoside sur-factant, with the balance being water, a more meaningful treatment range is as follows: the water soluble product of the present invention contains from about 1-25% Mg as MgO, with from 5-15% Mg as MgO preferred.
While this invention has been described with respect to particular embodiments thereof, it is apparent that numerous other forms and modi-fications of this invention will be obvious to those skilled in the art. The appended claims and this invention generally should be construed to cover all such obvious forms and modifications which are within the true spirit and scope of the present invention.

Claims (35)

1. A method of inhibiting the formation of iron oxide containing deposits on the surfaces of heating devices during fluxed iron ore pellet calcination comprising treating the atmosphere of said heating device in which said calcination takes place with a deposit-inhibiting amount of an aqueous solution containing a water soluble salt of a magnesium compound.
2. The method as recited in claim 1 wherein said aqueous solution further contains a surface tension reducing amount of a surfactant which is nonionic or anionic.
3. The method as recited in claim 2 wherein said surfactant is selected from the group consisting of ethoxylated alkylphenols, phosphate esters and nonionic glucosides.
4. The method as recited in claim 3 wherein said ethoxylated alkylphenol is an ethoxylated nonylphenol.
5. The method as recited in any one of claims 1 to 4 wherein said salt of a magnesium compound is magnesium nitrate.
6. The method as recited in any one of claims 1 to 4 wherein said salt of a magnesium compound is selected from the group consisting of magnesium acetate, magnesium sulfate and magnesium chloride.
7. The method as recited in any one of claims 1 to 6 wherein said aqueous solution further contains a calcium salt inhibitor selected from the group consisting of 2-phosphonobutane-1,2,4-tricarboxylic acid and 1-hydroxyethylene-1,1-diphosphonic acid.
8. The method as recited in any one of claims 1 to 7 wherein said magnesium compound undergoes thermal decomposition to form magnesium oxide at a temperature of from about 100°-1200°C.
9. The method as recited in claim 8 wherein said magnesium compound undergoes thermal decomposition to form magnesium oxide at a temperature of from about 100°-500°C.
10. A composition for inhibiting the formation of iron oxide containing deposits on the surfaces of heating devices during fluxed iron ore pellet calcination comprising an aqueous solution containing a water soluble salt of a magnesium compound and a surfactant selected from the group consisting of ethoxylated alkylphenols, phosphate esters and nonionic glucosides.
11. The composition as recited in claim 10 wherein said aqueous solution further contains a calcium salt inhibitor selected from the group consisting of 2-phosphonobutane-1,2,4-tricarboxylic acid and 1-hydroxyethylene-1,1-diphosphonic acid.
12. The composition as recited in claim 11 wherein said salt of a magnesium compound is magnesium nitrate.
13. The composition as recited in claim 11 wherein said salt of a magnesium compound is selected from the group consisting of magnesium acetate, magnesium sulfate and magnesium chloride.
14. The composition as recited in claim 11 wherein said ethoxylated alkylphenol is an ethoxylated nonylphenol.
15. A method of inhibiting formation of iron oxide-containing deposits on surfaces of heating devices during fluxed iron ore pellet calcination comprising calcining iron ore pellets and treating the atmosphere of said heating device in which said calcination takes place with a compound comprising a water soluble salt of magnesium.
16. The method as recited in claim 15 wherein said compound is in an aqueous solution further containing a surface tension reducing amount of a surfactant which is nonionic or anionic.
17. The method as recited in claim 16 wherein said surfactant is selected from the group consisting of ethoxylated alkylphenols, phosphate esters and nonionic glucosides.
18. The method as recited in claim 15 wherein said salt of magnesium is magnesium nitrate.
19. The method as recited in claim 15 wherein said salt of magnesium is selected from the group consisting of magnesium acetate, magnesium sulfate and magnesium chloride.
20. The method as recited in claim 16 wherein said aqueous solution further contains a calcium salt inhibitor selected from the group consisting of 2-phosphonobutane-1,2,4-tricarboxylic acid and 1-hydroxyethylene-1,1-diphosphonic acid.
21. The method as recited in claim 15 wherein said compound comprising a water soluble salt of magnesium undergoes thermal decomposition to form magnesium oxide at a temperature of from about 100°-1500°C.
22. The method as recited in claim 21 wherein said compound comprising a water soluble salt of magnesium undergoes thermal decomposition to form magnesium oxide at a temperature of from about 100°-500°C.
23. The method as recited in claim 17 wherein said ethoxylated alkylphenol is an ethoxylated nonylphenol.
24. The method as recited in claim 15 comprising treating the atmosphere of said heating device in which said calcination takes place with from about 0.1-1% of an aqueous solution containing a water soluble salt of a magnesium compound.
25. The method as recited in claim 15 wherein said aqueous solution is sprayed into said heating device using a gas atomizing nozzle.
26. The method as recited in claim 15 wherein said aqueous solution is applied through a gas or liquid cooled injection lance.
27. A method of inhibiting formation of iron oxide-containing deposits on surfaces of heating devices during fluxed iron ore pellet calcination comprising calcining iron ore pellets and treating the atmosphere of said heating device in which said calcination takes place with an aqueous solution containing from about 0.01-5% of a water soluble salt comprising magnesium nitrate, said aqueous solution sprayed into said heating device using a gas atomizing nozzle and applied through a gas- or liquid-cooled injection lance.
28. The method as recited in claim 27 wherein said aqueous solution further contains a surface tension reducing amount of a surfactant which is nonionic or anionic.
29. The method as recited in claim 28 wherein said surfactant is selected from the group consisting of ethoxylated alkylphenols, phosphate esters and nonionic glucosides.
30. The method as recited in claim 28 wherein said aqueous solution further contains a calcium salt inhibitor selected from the group consisting of 2-phosphonobutane-1,2,4-tricarboxylic acid and 1-hydroxyethylene-1,1-diphosphonic acid.
31. The method as recited in claim 27 wherein said magnesium nitrate undergoes thermal decomposition to form magnesium oxide at a temperature of from about 100°-1200°C.
32. The method as recited in claim 31 wherein said magnesium nitrate undergoes thermal decomposition to form magnesium oxide at a temperature of from about 100°-500°C.
33. The method as recited in claim 29 wherein said ethoxylated alkylphenol is an ethoxylated nonylphenol.
34. A method of inhibiting formation of iron oxide-containing deposits on surfaces of heating devices during fluxed iron ore pellet calcination comprising calcining iron ore pellets and treating the atmosphere of said heating device in which said calcination takes place with an aqueous solution containing from about 0.01-5% of a compound comprising a water soluble salt of magnesium, which salt is capable of undergoing thermal decomposition during calcination.
35. The method as recited in claim 34 further comprising subjecting the water soluble salt of magnesium to thermal decomposition to form magnesium oxide.
CA002150793A 1995-06-01 1995-06-01 Controlling deposits in the calcination of fluxed iron ore pellets Expired - Lifetime CA2150793C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA002150793A CA2150793C (en) 1995-06-01 1995-06-01 Controlling deposits in the calcination of fluxed iron ore pellets

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CA002150793A CA2150793C (en) 1995-06-01 1995-06-01 Controlling deposits in the calcination of fluxed iron ore pellets

Publications (2)

Publication Number Publication Date
CA2150793A1 CA2150793A1 (en) 1996-12-02
CA2150793C true CA2150793C (en) 2008-10-14

Family

ID=4155980

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002150793A Expired - Lifetime CA2150793C (en) 1995-06-01 1995-06-01 Controlling deposits in the calcination of fluxed iron ore pellets

Country Status (1)

Country Link
CA (1) CA2150793C (en)

Also Published As

Publication number Publication date
CA2150793A1 (en) 1996-12-02

Similar Documents

Publication Publication Date Title
US5656062A (en) Method for inhibiting deposits in the calcination of fluxed iron ore pellets
KR100816311B1 (en) Method of granulating sintering material for iron manufacturing
CN101396634A (en) Use of magnesium used refractory, preparation and use method of composite scale inhibitor
US5476532A (en) Method for producing reducible iron-containing material having less clustering during direct reduction and products thereof
US5294250A (en) Self-fluxing binder composition for use in the pelletization of ore concentrates
JP2763902B2 (en) Deicing composition containing alkaline earth or alkali metal carboxylate and method for producing the same
US8540816B2 (en) Aggregate and filler extracted from slag
CA2150793C (en) Controlling deposits in the calcination of fluxed iron ore pellets
US4062672A (en) Process for improving the fragmentation capability of metallurgical slags and cinders
US6063159A (en) Method for inhibiting deposits in the calcination of fluxed iron ore pellets
US2806776A (en) Method of strengthening iron ore agglomerates
AU2017373747A1 (en) Method for handling a slag pot or tank and pyrometallurgical tools
US5221320A (en) Controlling deposits in the calcination of fluxed iron ore pellets
CN100523225C (en) Method to improve iron production rate in a blast furnace
JPH0582447B2 (en)
CN100419100C (en) Treatment of iron-and-steel plant sludge in a multistage furnace
JPH0822781B2 (en) Surface coating for tundish and ladle ladle
US5372628A (en) Method for producing reducible iron-containing material having less clustering during direct reduction and products thereof
US7226495B1 (en) Method to increase the adherence of coating materials on ferrous materials
US2912319A (en) Method for desulphurizing iron
RU2464329C2 (en) Pellet manufacturing charge
US2880083A (en) Method of producing sponge iron
JP2755042B2 (en) Method for producing calcined agglomerate
KR0160753B1 (en) Production of acid soluble titania
KR100236197B1 (en) The method for preventing sticking of pellets or ores in coal based ironmaking process

Legal Events

Date Code Title Description
EEER Examination request
MKEX Expiry

Effective date: 20150601