CA2126992A1 - Absorbent units for chemical heat pumps and process for their production - Google Patents

Absorbent units for chemical heat pumps and process for their production

Info

Publication number
CA2126992A1
CA2126992A1 CA002126992A CA2126992A CA2126992A1 CA 2126992 A1 CA2126992 A1 CA 2126992A1 CA 002126992 A CA002126992 A CA 002126992A CA 2126992 A CA2126992 A CA 2126992A CA 2126992 A1 CA2126992 A1 CA 2126992A1
Authority
CA
Canada
Prior art keywords
zeolite
thermally conductive
blocks
binder
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002126992A
Other languages
French (fr)
Inventor
Serge Nicolas
Jean-Louis Reymonet
Jean-Jacques Guillemont
Francis Meunier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Societe National Elf Aquitaine
Carbonisation et Charbons Actifs CECA SA
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CA2126992A1 publication Critical patent/CA2126992A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • B01J20/18Synthetic zeolitic molecular sieves
    • B01J20/183Physical conditioning without chemical treatment, e.g. drying, granulating, coating, irradiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • B01J20/18Synthetic zeolitic molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/2803Sorbents comprising a binder, e.g. for forming aggregated, agglomerated or granulated products
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • C09K5/047Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for absorption-type refrigeration systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B35/00Boiler-absorbers, i.e. boilers usable for absorption or adsorption
    • F25B35/04Boiler-absorbers, i.e. boilers usable for absorption or adsorption using a solid as sorbent

Abstract

Units consisting of a thermoconductive mesh, for example, a metallic sponge, and hydrophilic zeolite agglomerated using a zeolite-based binder. The gas-permeable units have excellent heat conductivity and are moldable to the dimensions of chemical heat pump reactors with rapid adsorption/desorption cycles, said units being the active element thereof.

Description

,~" ""~"" , . ~ ..... ~ . ' . 1 ' ! . ` . '. . ~ ' i ' ' - ' ~ ' ` ' ' ' ' ' " ' " ' ' WO9~/11457 ~ 9 ~ ~ PCT/FR~3/~110~

Blocs adsorbants pour pompes à chaleur chimiques et leur procédé d'obtention La présente invention vise à la préparation de nouveaux adsorbants à base de zéolite pour l'équipement des pompes à
chaleur chimiques.
Les systèmes de réfrigération sont entrés en pleine mutation suite à la remise en cause des fluides frigorig~nes du type chlorofluorocarbones (CFC) désignés comme responsables d'une partie de la destruction de la couche d'ozone et de l'effet de serre. L'industrie chimique a réagi en mettant au point des fluides de remplacement réputés inoffensifs envers l'environnement ; une autre voie de recherche est le developp2ment de techniques alternatives à la technologie éprouvée des compresseur~.
Parmi ces technologies alternativès, les systèmes à
sorption paraissent bien placés pour la production de froid à partir d'énergie thermique (et non pas électrique). On y distingue les systèmes ~ aksorption et les systèmes ~
adsorption. Les systèmes à absorption mettent en ~euvre les transformations physiques d'un couple liguide/gaz (ou vapeur). Les systemes à adsorption s'en différentient par la mise en oeuvre de couples solide/gaz (ou vapeur), comme par exemple le couple chlorure de calcium~méthylamine décrit dans une forme perfectionnee dans le brevet français n2547512 (SNEA) ou le couple zeolite/eau décrit dans le brevet français n 2.489.488 (Blaizat). Ils ont l'avantage de fonctionner sur un gamme élargie de temp~ratures, mais aussi sont-ils affect~s par rapport aux systèmes absorption liquide du gros handicap d'une mauvaise qualité
du transfert thermique entre le fluide caloporteur et l'adsorbant solide, généralement sous forme de billes ou 3~ d'extrudes. Il faut compenser par un encombrement plus important des machines, dont les co~t d'installation et d'exploitation sont forcement plus elevés.
La resistance thermique des adsorbants solides pour systèmes ~ adsorption est due d'une part ~ la r~sistance t~L~ F~ r:~?~;

W094/11457 PCT/FR93/011~)~
~,~2~9 ~ 2 propre du lit d~adsorbant (par exemple zéolite et liant), et d'autre part, au mauvais contact entre la surface metallique de l'échangeur et le lit fixe granulaire.

On n'a pas reussi à améliorer de façon concluante les transferts thermiques au sein d'un lit granulaire en multipliant le nombre de points de contact entre ses particules, que ce soit en diminuant la taille de ces particules, ou le composant de matériaux de granulometries différentes (cf. Guilleminot J.-J., Internat:ional Solar Ener~y Conference, American Society of Mechanical Engineers, Miami, Floride, avril 1990). Par ailleurs, pour réduire la contribution d'un espace à très grande porosité
~ proximite de la paroi d'échange ~ la resistance thermique des lits granulaires, on a proposé l'utilisation de zéolites agglomér~es en blocs ~ surfaces lisses ~ la dimension du réacteur qu'elles doivent remplir. Cette mise en forme de l'adsorbant destinée à améliorer les transferts thermiques aux parois (cf. Cacciola G., italian patent
, ~ """~"",. ~ ..... ~. '. 1'!.`. '.. ~' I '' - '~'`'''''"'"'' WO9 ~ / 11457 ~ 9 ~ ~ PCT / FR ~ 3 / ~ 110 ~

Adsorbent blocks for chemical heat pumps and their process of obtaining The present invention aims at the preparation of new zeolite-based adsorbents for the equipment of chemical heat.
Refrigeration systems entered full mutation following the questioning of fluids Chlorofluorocarbons (CFCs) of refrigerants designated as responsible for part of the destruction of the ozone layer and the greenhouse effect. Chemical industry reacted by developing replacement fluids deemed harmless to the environment; another way of research is the development of techniques alternatives to proven compressor technology ~.
Among these alternative technologies, systems with sorption seem well placed for the production of cold from thermal (not electric) energy. We distinguishes between ~ aksorption systems and ~ systems adsorption. The absorption systems implement the physical transformations of a liquid / gas couple (or steam). Adsorption systems are differentiated by the implementation of solid / gas (or vapor) couples, such as for example the couple calcium chloride ~ methylamine described in an improved form in the French patent n2547512 (SNEA) or the zeolite / water pair described in the French Patent No. 2,489,488 (Blaizat). They have the advantage to operate over a wider range of temperatures, but so are they affected in relation to systems liquid absorption of the big handicap of a poor quality heat transfer between the heat transfer fluid and the solid adsorbent, generally in the form of beads or 3 ~ of studies. You have to compensate for this by taking up more space important machines, including installation costs and are necessarily higher.
The thermal resistance of solid adsorbents for systems ~ adsorption is due on the one hand ~ the resistance t ~ L ~ F ~ r: ~? ~;

W094 / 11457 PCT / FR93 / 011 ~) ~
~, ~ 2 ~ 9 ~ 2 clean of the adsorbent bed (for example zeolite and binder), and on the other hand, to the bad contact between the surface metallic exchanger and fixed granular bed.

We have failed to improve conclusively heat transfers within a granular bed in multiplying the number of points of contact between its particles, whether by decreasing the size of these particles, or the component of particle size materials different (cf. Guilleminot J.-J., Internat: ional Solar Ener ~ y Conference, American Society of Mechanical Engineers, Miami, Florida, April 1990). Furthermore, for reduce the contribution of a very porous space ~ near the exchange wall ~ thermal resistance granular beds, the use of agglomerated zeolites ~ in blocks ~ smooth surfaces ~ the size of the reactor they must fill. This bet in the form of the adsorbent intended to improve transfers walls thermal (cf. Cacciola G., italian patent

2~ n48591A/88 et Tcherney D. I., Ashraae Transactions, 1988, vol 94, pt.2) ne sont cependant pas suffisantes, car elles ne remédient pas à la résistance propre de l'adsorbant.

On n ~ a pas mieux resolu le probl~me par utilisation de lits granulaires melang~s d'adsorbants avec des particules métalliques, tels que ceux dont traite la thèse de J.M. Gurguel (Universite Pierre et Marie Curie, Paris VI, 4 décembre 1989).

La pr~sente invention porte rem~de ~ ces inconvénients avec la r~alisation de blocs de z~olite comportant une trame de mat~riau bon conducteur de la chaleur et une zéolite hydrophile a~glomérées par un liant silico-alumineux zéolitisable. Ces nouveaux adsorbants, qui se présentent sous forme de cylindres de plusieurs centimètres de diamatre, rendent possible l'augmentation de la puissance des machines thermiques ~ adsorption utilisant le couple WO94/114~7 2 1 2 6 9 9 ~ PCTtFR93/011~

zeolite/eau grâce à la dim~nution de la duree des cycles d'adsorption/désorption, machines qui dès lors deviennent compétitives vis-à-vis des systèmes utilisant la compression des fluides frigorigènes.
s Les zeolites utiles pour la realisation de l'invention sont les zeolites très hydrophiles et presentant une exothermicite d'hydratation notable, en particulier les zéolites A, X ou Y et certaines zeolites naturelles comme la clinoptilolite.

Les trames thermoconductrices utiles pour la r~alisation de 1'invention sont d'une part des structures coherentes comme les éponges ou les mousses métalliques de cuivre, fer ou lS nickel, et plus gen~ralement de métal bon conducteur de la chaleur, et dlautre part les laines, mats ou feutres de fils métalliques ou de fibres de carbone.

Les liants utilisables dans la pr~sente invention sont des p~tes silico-alumineuses zéolitisables, en particulier, le mélange de sol de silice et de solution d'aluminate de sodium dont les constituants se transforment par ~éolitisation en zéolite A. On conna~t le principe de l'utilisation de tels liants l'agglomeration de poudres de zeolite en grains, billes ou extrudés (voir par exemple 1 brevet français publi~ sous le n 2.632.944, CECA S.A.).
L'utilisation d'un liant zéolitisable s'est rév~lée tr~s avantageuse, non seulement par une meilleure cohesion des blocs et l'augmentation de leur ~eneur en zéolite active au detriment du liant inerte, mais encore, ce qui est plus inattendu, par l'am~lioration du transfert thermique et des transferts de mati~re dans leur masse.

Pour r~aliser les blocs selon l'invention, on empâte une poudre de z~olite, avec le liant amene à consistance désirable par de l'eau et dont les proprietes rheologiques ont ete r~glees ~ l'aide d'agents habituels en la mati~re, WO9~/114~7 PCT/FR93/0~

6g9 2 comme les celluloses modifiées. Avec cette pâte, on remplit une trame thermoconductrice disposée dans un moule de compression dont la géométrie et les dimensions internes reproduisent les caractéristiques de l'intérieur du S réacteur qui recevra l'adsorbant. L'ensemble est compressé
à l'aide d'un piston pendant quelques minutes. Quand le liant choisi est un liant zéolitisable, le bloc ainsi conformé est consolidé dans son moule par zéolitisation du gel de silico-aluminate de sodium à environ 100C. Le bloc est alors démoulé avec précaution, séché, puis calciné sous courant d'air à haute température (environ 550C).

Les proportions relatives des divers constituants des blocs selon l'invention résultent d'un juste équilibre entre les lS propriétés thermoconductrices attachées à la trame, la capacit~ thermique attachée aux composantes zéolitiques, et la cohésion assurée par le liant. C~s proportions ne sont pas très contraignantes. Dans le cas des blocs obtenus par agglomération avec un liant zéolitisable, on recommande de se maintenir dans les limites de pourcentage en poids suivantes :
10~ < zéolite A < 95~, 0 < autre zeolite < 85%, 5% c substance thermoconductrice < 50%, où la proportion de zeolite A comprend à la fois la zéolite introduite sous forme de poudre et celle qui provient de la zéolitisation du liant, et la denomination autre zeolite englobe les z~olites hydrophiles autres que la zéolite A
introduites sous forme de poudre, en particulier des zéolites X ou Y ou les z~olites naturelles comme la clinoptilolite.

Les blocs selon l'invention offrent une conductivité
thermique bien superieure ~ celle des blocs constitu~s, selon l'art anterieur, de z~olite additionnee de particules métalliques, sans doute parce que le simple contact entre particules de zeolite et particules m~talliques constitue WO 94/11457 21 ~ ~ 9 ~ PCr/FR93/011~

un obstacle à la conduction thermique sensiblement équivalent au contact entre particules de zéolites. Alors que la conductivité thermique de blocs formés de poudre de zéolite et de billes de cuivre ne dépasse guère 0,3 W/m/C, S on atteint des valeurs plus de vingt fois supérieures avec des blocs resultant de l'agglomération de mousse de cuivre et de poudre de zéolite.

Outre leur bonne conductibilite thermique, ces blocs sont caractérisés par une distribution poreuse centrée autour de 0,8 ~ 1,2 ~m, avec un volume poreux compris entre 0,25 et 0,80 cm3/g, dont la conséquence est une excellente perméabilité, de l'ordre de 10-12 m2~ caractéristiques assurant la rapidité des transferts de matière nécessaire lS pour l'exécution de cycles courts adsorption/désorption.

Les exemples non limitatifs suivants illustrent l'invention.

EXEMPLE 1 : préparation d'un bloc d'adsorbant à base de z~olite 4A contenant des billes de cuivre (exemple comparatif).

a) - On prépare 200 ml d'une solu~ion contenant 30 grammes de NaOH à partir de soude en paille~tes ou de lessive de soude. On porte ~ l'ébullition, et on y disperse petit à
petit 50 grammes d'alumine hydratee. Quand la solution est devenue claire, on la complate ~ 200 ml avec de l'eau et on laisse refroidir ~ la température ambiante.
b) - Par ailleurs, on mélange pendant 10 minutes dans un malaxeur ~ meules, 800 grammes de poudre de zeolite 4A
(~quivalent anhydre) avec 25 ~rammes de carboxymethyl-cellulose et l50 grammes de sol de silice ~ 30% en poids.
On obtient ainsi une pâte homogène.
c) - On ajoute ~ la pate pr~c~dente la solution d'aluminate de soude préparee en a) et on malaxe environ l0 minutes, WO94~114~7 PCT/FR93t0110~

6~ 6 ~ puis on ajoute 350 grammes de ~illes de cuivre de 1 mm de diamètre. On malaxe à nouveau pendant une dizaine de minutes pour bien disperser les billes au sein de la pâte.
d) - On introduit 40 grammes du mélange précédent dans un moule de 4 cm de diamètre, et on comprime pendant trois minutes ~ 300 bars.
e) - Le bloc encore humide est consolidé dans son moule par zéolitisation à 100C pendant 4 heures en étuve ventilée.
f) - Le bloc est démoulé, puis activé à 550C pendant 1 heure sous balayage d'air ; cette opération permet en outre de débarrasser le bloc de son contenu en carboxy-méthylcellulose.

La conductivité thermique d'un tel bloc contenant 35~ en poids de cuivre n'est que de 0,3 WJmlC.

EXEMPLE 2 : preparation d'un bloc d'adsorbant à base de zéolite 4A et de mousse de cuivre.

Les phases a), b) et c) sont identiques ~ celles de l'exemple 1.

d) - On ajuste l'humidité de la p~te par addition 340 grammes d'eau de façon ~ obtenir une pâte dont la perte au feu à 900C sera proche de 50%.
e) - Dans le fond d'un moule de 4 cm de diamètre, on dispose trois feuilles de mousse de cuivre (réf. Resocell~
MN045 de Soratec/Nitech). On recouvre ces feuilles d'une couche de 6,4 grammes de la pâte obtenue en d), puis 6 feuilles de mousse de cuivre, puis 6,4 grammes de p~te et ainsi de suite jusqu'~ une hauteur de 4,5 cm.
f) - On comprime le tout avec un piston à une pression de 300 bars.
g) - Le bloc est consolid~ dans son moule par z~olitisation à 100C pendant 4 heures.
h) - Le bloc consolidé est demoulé puis activ~ à 550~C
pendant 1 heure.

W094/114~7 2 ~ ~ ~ 9 9 2 PC~`/FR93/0110~

La conductivité thermique d'un tel bloc contenant 35% de cuivre est de 8 W/m/C.

On reproduit les modalités de l'exemple 2, à la différence que la zéolite 4A est remplacée par une zéolite NaX
(zeolite Siliporite~ G5 de CECA S.A.). On obtient ainsi un bloc dont la conductivité thermique esl: également de 8 W/m/C.

On reproduit les modalités de l'exemple 3, à la différence que la mousse de cuivre est remplacée par une mousse de nickel. On obtient ainsi un bloc dont la conductivite thermique est de 5,5 W/m/C.
2 ~ n48591A / 88 and Tcherney DI, Ashraae Transactions, 1988, vol 94, pt.2) are not sufficient, however, because they does not remedy the inherent resistance of the adsorbent.

We have not solved the problem better by using beds granular melang ~ s of adsorbents with particles metallic, such as those dealt with in the thesis of JM Gurguel (Pierre and Marie Curie University, Paris VI, December 4, 1989).

The present invention bears a rem of these disadvantages with the realization of z ~ olite blocks comprising a frame of mat ~ riau good conductor of heat and a zeolite hydrophilic a ~ glomerated by a silico-aluminous binder zeolitisable. These new adsorbents, which arise in the form of cylinders several centimeters in diameter, make it possible to increase the power thermal machines ~ adsorption using torque WO94 / 114 ~ 7 2 1 2 6 9 9 ~ PCTtFR93 / 011 ~

zeolite / water thanks to the decrease in cycle time adsorption / desorption machines which then become competitive with systems using compression of refrigerants.
s The zeolites useful for carrying out the invention are very hydrophilic zeolites with a notable hydration exothermicity, especially zeolites A, X or Y and certain natural zeolites such as clinoptilolite.

Thermally conductive frames useful for the realization of The invention are on the one hand coherent structures such as sponges or metallic foams of copper, iron or lS nickel, and more generally metal good conductor of the heat, and on the other hand wools, mats or felts of metallic or carbon fiber wires.

The binders which can be used in the present invention are p ~ your zeolitic silico-aluminous, in particular, the mixture of silica sol and aluminate solution sodium whose constituents are transformed by ~ Eolitization in zeolite A. We know the principle of the use of such binders the agglomeration of powders of zeolite in grains, beads or extrusions (see for example 1 French patent published under No. 2,632,944, CECA SA).
The use of a zeolitisable binder has been revealed.
advantageous, not only by better cohesion of blocks and increasing their activity in active zeolite at detriment of the inert binder but again which is more unexpected, by the improvement in heat transfer and mass transfers in their mass.

To achieve the blocks according to the invention, a z ~ olite powder, with binder brings consistency desirable by water and whose rheological properties have been regulated using the usual agents in the matter, WO9 ~ / 114 ~ 7 PCT / FR93 / 0 ~

6g9 2 like modified celluloses. With this paste, we fill a thermally conductive frame placed in a mold compression including geometry and internal dimensions reproduce the characteristics of the interior of the S reactor which will receive the adsorbent. The whole is compressed using a plunger for a few minutes. When the chosen binder is a zeolitisable binder, the block thus conformed is consolidated in its mold by zeolitization of the sodium silico-aluminate gel at approximately 100C. The block is then carefully removed from the mold, dried and then calcined under high temperature air flow (about 550C).

The relative proportions of the various constituents of the blocks according to the invention result from a fair balance between the lS thermoconductive properties attached to the frame, the thermal capacit ~ attached to the zeolitic components, and the cohesion ensured by the binder. These proportions are not not very restrictive. In the case of blocks obtained by agglomeration with a zeolitisable binder, it is recommended to stay within the weight percentage limits following:
10 ~ <zeolite A <95 ~, 0 <other zeolite <85%, 5% c heat-conducting substance <50%, where the proportion of zeolite A includes both the zeolite introduced in powder form and that which comes from the zeolitization of the binder, and the denomination other zeolite includes hydrophilic z ~ olites other than zeolite A
introduced in powder form, in particular X or Y zeolites or natural z ~ olites such as clinoptilolite.

The blocks according to the invention offer a conductivity thermal much higher than that of the blocks made up, according to the prior art, z ~ olite with added particles metallic, probably because the simple contact between zeolite particles and metallic particles constitutes WO 94/11457 21 ~ ~ 9 ~ PCr / FR93 / 011 ~

an obstacle to heat conduction substantially equivalent to contact between particles of zeolites. So that the thermal conductivity of blocks formed of powdered zeolite and copper beads hardly exceeds 0.3 W / m / C, If we reach values more than twenty times higher with blocks resulting from the agglomeration of copper foam and zeolite powder.

In addition to their good thermal conductivity, these blocks are characterized by a porous distribution centered around 0.8 ~ 1.2 ~ m, with a pore volume between 0.25 and 0.80 cm3 / g, the consequence of which is excellent permeability, of the order of 10-12 m2 ~ characteristics ensuring the speed of material transfers required lS for the execution of short adsorption / desorption cycles.

The following nonlimiting examples illustrate the invention.

EXAMPLE 1 Preparation of a block of adsorbent based on z ~ olite 4A containing copper beads (example comparative).

a) - 200 ml of a solu ~ ion containing 30 grams are prepared NaOH from soda straw ~ tes or lye welded. We bring to the boil, and we disperse little by little small 50 grams of hydrated alumina. When the solution is become clear, fill it up ~ 200 ml with water and let cool to room temperature.
b) - Furthermore, it is mixed for 10 minutes in a mixer ~ grindstones, 800 grams of zeolite powder 4A
(~ anhydrous equivalent) with 25 ~ rammes de carboxymethyl-cellulose and 150 grams of silica sol ~ 30% by weight.
A homogeneous paste is thus obtained.
c) - Add the paste ~ c ~ dente aluminate solution of soda prepared in a) and knead for approximately 10 minutes, WO94 ~ 114 ~ 7 PCT / FR93t0110 ~

6 ~ 6 ~ then we add 350 grams of ~ 1 mm copper illes diameter. We mix again for ten minutes to disperse the beads well within the dough.
d) - 40 grams of the above mixture are introduced into a mold 4 cm in diameter, and it is compressed for three minutes ~ 300 bars.
e) - The still wet block is consolidated in its mold by zeolitization at 100C for 4 hours in a ventilated oven.
f) - The block is removed from the mold, then activated at 550C for 1 hour under air sweep; this operation allows besides ridding the block of its carboxy content methylcellulose.

The thermal conductivity of such a block containing 35 ~ in copper weight is only 0.3 WJmlC.

EXAMPLE 2 Preparation of a block of adsorbent based on zeolite 4A and copper foam.

Phases a), b) and c) are identical to those of Example 1.

d) - The humidity of the dough is adjusted by addition 340 grams of water so ~ get a paste whose loss at fire at 900C will be close to 50%.
e) - In the bottom of a 4 cm diameter mold, we has three sheets of copper foam (ref. Resocell ~
MN045 from Soratec / Nitech). We cover these leaves with a 6.4 gram layer of the dough obtained in d), then 6 sheets of copper foam, then 6.4 grams of paste and so on up to a height of 4.5 cm.
f) - We compress everything with a piston at a pressure 300 bars.
g) - The block is consolidated in its mold by z ~ olitization at 100C for 4 hours.
h) - The consolidated block is removed from the mold and then activated ~ at 550 ~ C
for 1 hour.

W094 / 114 ~ 7 2 ~ ~ ~ 9 9 2 PC ~ `/ FR93 / 0110 ~

The thermal conductivity of such a block containing 35% of copper is 8 W / m / C.

We reproduce the modalities of example 2, unlike that zeolite 4A is replaced by a NaX zeolite (Siliporite ~ G5 zeolite from CECA SA). We thus obtain a block with thermal conductivity esl: also 8 W / m / C.

We reproduce the modalities of example 3, unlike that the copper foam is replaced by a foam of nickel. A block is thus obtained whose conductivity thermal is 5.5 W / m / C.

Claims (6)

REVENDICATIONS 1. Blocs d'adsorbants pour pompes à chaleur chimiques constitués d'une trame thermoconductrice et de poudre de zéolite hydrophile agglomérées par un liant, caractérisés en ce que le liant est une composition silicoalumineuse zéolitisée. 1. Blocks of adsorbents for chemical heat pumps consisting of a thermally conductive mesh and powder hydrophilic zeolite agglomerated by a binder, characterized in that the binder is a composition zeoliticized silicoaluminous. 2. Blocs selon la revendication l, caractérisés en ce que leur volume poreux est compris entre 0,25 et 0,80 cm3/g. 2. Blocks according to claim l, characterized in that that their pore volume is between 0.25 and 0.80 cm3/g. 3. Blocs selon la revendication l, caractérisés en ce que la poudre de zéolite est une poudre d'une zéolite hydrophile prise dans le groupe constitué par les zéolites A, X, Y et les zéolites naturelles telle que la clinoptilolite. 3. Blocks according to claim l, characterized in that that zeolite powder is a powder of a zeolite hydrophilic taken from the group consisting of zeolites A, X, Y and natural zeolites such as clinoptilolite. 4. Blocs selon la revendication l, caractérisés en ce que leur trame thermoconductrice est constituée d'une mousse métallique. 4. Blocks according to claim l, characterized in that that their thermally conductive fabric consists of a metal foam. 5. Blocs selon la revendication l, caractérisés en ce que leur trame thermoconductrice est constituée de laines, mats ou feutres de fils métalliques ou de fibres de carbone. 5. Blocks according to claim l, characterized in that that their thermally conductive fabric consists of wools, mats or felts of metallic threads or carbon fibers. 6. Procédé pour l'obtention de blocs d'adsorbants constitues d'une zéolite hydrophile liée par un liant zéolitisé dans une trame thermoconductrice, comprenant les opérations suivantes .
- emptage d'une poudre de zéolite au moyen d'une pâte silicoalumineuse zéolitisable, - dispersion de la pâte dans une trame thermoconductrice au sein d'un moule, - compression du système trame/pâte, - consolidation par zéolitisation à environ 100°C, - démoulage séchage, - calcination à environ 550°C.
6. Process for obtaining blocks of adsorbents consist of a hydrophilic zeolite bound by a binder zeolite in a thermally conductive grid, comprising the following operations.
- emptage of a zeolite powder by means of a paste zeolitisable silicoaluminous, - dispersion of the paste in a weft thermally conductive within a mould, - compression of the weft/dough system, - consolidation by zeolitization at around 100°C, - demolding drying, - calcination at around 550°C.
CA002126992A 1992-11-13 1993-11-10 Absorbent units for chemical heat pumps and process for their production Abandoned CA2126992A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR92/13682 1992-11-13
FR9213682A FR2698098B1 (en) 1992-11-13 1992-11-13 Adsorbent blocks for chemical heat pumps and their production process.

Publications (1)

Publication Number Publication Date
CA2126992A1 true CA2126992A1 (en) 1994-05-26

Family

ID=9435524

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002126992A Abandoned CA2126992A1 (en) 1992-11-13 1993-11-10 Absorbent units for chemical heat pumps and process for their production

Country Status (6)

Country Link
EP (1) EP0623161A1 (en)
JP (1) JPH07504360A (en)
KR (1) KR950700377A (en)
CA (1) CA2126992A1 (en)
FR (1) FR2698098B1 (en)
WO (1) WO1994011457A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9502292D0 (en) * 1995-02-06 1995-03-29 Bratton Graham J Adsorbent material
DE19730136A1 (en) * 1997-07-14 1999-01-21 Electrolux Leisure Appliances Air conditioning device and its components
US7003979B1 (en) * 2000-03-13 2006-02-28 Sun Microsystems, Inc. Method and apparatus for making a sorber
WO2010068326A1 (en) * 2008-12-10 2010-06-17 Uop Llc Adsorbent media

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2103509B (en) * 1982-06-02 1985-01-23 Exxon Research Engineering Co Adsorbents or sorbents for heat pumps
DE3347700C2 (en) * 1983-12-31 1994-07-07 Zeolith Tech Zeolite molding with high heat conduction and process for its production
FR2632944B1 (en) * 1988-06-17 1990-10-12 Ceca Sa PROCESS FOR THE PREPARATION OF ZEOLITIC MOLECULAR SIE AGGLOMERES WITH ZEOLITIC BINDER
US5120694A (en) * 1989-07-28 1992-06-09 Uop Method of coating aluminum substrates with solid adsorbent
DE4112358A1 (en) * 1991-04-16 1992-10-22 Bayerische Motoren Werke Ag Latent heat store zeolite moulding - has metal foam substrate permeable to adsorbate with impermeable boundary surface
JPH1048194A (en) * 1996-08-03 1998-02-20 Horiba Ltd Elemental analyzer

Also Published As

Publication number Publication date
EP0623161A1 (en) 1994-11-09
KR950700377A (en) 1995-01-16
JPH07504360A (en) 1995-05-18
FR2698098A1 (en) 1994-05-20
WO1994011457A1 (en) 1994-05-26
FR2698098B1 (en) 1994-12-16

Similar Documents

Publication Publication Date Title
Srivastava et al. A review of adsorbents and adsorbates in solid–vapour adsorption heat pump systems
Liu et al. Developing hierarchically ultra-micro/mesoporous biocarbons for highly selective carbon dioxide adsorption
Yuan et al. Inorganic composite sorbents for water vapor sorption: A research progress
Qian et al. Octadecane/C-decorated diatomite composite phase change material with enhanced thermal conductivity as aggregate for developing structural–functional integrated cement for thermal energy storage
Rocky et al. Recent advances of composite adsorbents for heat transformation applications
CN108079934B (en) A kind of composite material and preparation method
US7456131B2 (en) Increased thermal conductivity monolithic zeolite structures
Biloe et al. Characterization of adsorbent composite blocks for methane storage
US6113673A (en) Gas storage using fullerene based adsorbents
Shigeishi et al. Solar energy storage using chemical potential changes associated with drying of zeolites
Maher et al. Silica gel-MIL 100 (Fe) composite adsorbents for ultra-low heat-driven atmospheric water harvester
Shi et al. Surface modification effects in phase change material-infiltrated attapulgite
JPH04506631A (en) Active complexes and their use as reaction media
US7094276B2 (en) Hydrogen storage material and hydrogen storage apparatus
Jiang et al. Thermal conductivity, permeability and reaction characteristic enhancement of ammonia solid sorbents: A review
CN109351327A (en) A kind of active carbon graphene composite material, preparation method and application
JPH10286460A (en) Adsorbent for forming, and adsorption heat exchanger having integrally formed structure
CN101961644A (en) Chloride-carbonaceous skeleton composite adsorbent and preparation method thereof
Najafi et al. Effect of binder on CO2, CH4, and N2 adsorption behavior, structural properties, and diffusion coefficients on extruded zeolite 13X
Vasiliev et al. New sorbent materials for the hydrogen storage and transportation
Zhou et al. Synthesis and CO2 adsorption performance of TEPA-loaded cellulose whisker/silica composite aerogel
Mohapatra et al. Salt in matrix for thermochemical energy storage-A review
JPH07257917A (en) Preparation of active composite and active composite manufactured by said method
CA2126992A1 (en) Absorbent units for chemical heat pumps and process for their production
JP4663044B2 (en) Heat transfer accelerator for gas adsorption / desorption reaction material and gas adsorption / desorption reaction material with excellent heat transfer

Legal Events

Date Code Title Description
EEER Examination request
FZDE Dead