CA2124420A1 - Projectiles - Google Patents

Projectiles

Info

Publication number
CA2124420A1
CA2124420A1 CA 2124420 CA2124420A CA2124420A1 CA 2124420 A1 CA2124420 A1 CA 2124420A1 CA 2124420 CA2124420 CA 2124420 CA 2124420 A CA2124420 A CA 2124420A CA 2124420 A1 CA2124420 A1 CA 2124420A1
Authority
CA
Canada
Prior art keywords
projectile
coating
projectile according
plastics material
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA 2124420
Other languages
French (fr)
Inventor
Keith John Edgson
Andrew Colston Hayward
Melvyn Eric Slater
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BAE Systems Global Combat Systems Munitions Ltd
Original Assignee
Royal Ordnance PLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Royal Ordnance PLC filed Critical Royal Ordnance PLC
Publication of CA2124420A1 publication Critical patent/CA2124420A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B12/00Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material
    • F42B12/72Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the material
    • F42B12/74Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the material of the core or solid body

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Powder Metallurgy (AREA)
  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)

Abstract

ABSTRACT

TITLE: IMPROVEMENTS IN OR RELATING TO PROJECTILES

A projectile, especially a small arms bullet, comprises a metal core (4) formed from a sintered metal powder and an adherent coating (6) eg of plastics material such as polyamide 11. The metal powder may be steel, tungsten, copper, bronze, or especially iron. The projectile may be rendered frangible by selection of appropriate particle size and sintering parameters, and is then suitable as practice ammunition. The coating can be applied by immersing the hot projectile in a fluidised bed containing particles of the plastics material.

Description

21~4~20 TITLE IMPROVEMENTS IN OR R3 :LATlING TO PROJECTILES
This invention relates to projectiles and especially but not exclusively to frangible training projectiles for small arms up to about 12.7mm calibre.
For training applications it is highly desirable to provide ammunition which is rclatively safe in use but resembles the performance of standard ammunition as closely as possible in a standard weapon without the need for any modification. For maximum realism, thei training round should be capable of normal operation of all automatic weapon functions such as single shot and automatic modes of fire and ejection, and should provide a realistic level of recoil. In addition the practice ammunition should have a projectile which can be fired at a target but should then rapidly lose energy so as to reduce the danger of ricochet or lethal fragments.
According to one prior proposal, a practice round of ammunition has a case of plastics material with an integrally moulded projectile, but a special design of weapon is required to simulate automatic operation, including extraction and reloading functions.
The user will experience a report, but the recoil force will be considerably less than with a standard system, and although a projectile can be fired at a target, its range is extremely limited. This system provides some basic practice in weapon handling but is relatively unrcalistic.
Efforts havc mainly in the past been directed to ammunition based on more conventional designs, but having a projectile of a plastic matrix filled with metal particles. By this means a projectile having a reasonably high density can be produced, which can be fired from a standard, unmodified weapon at a target to give realism.
2~ 2'~'120 Projectiles of this kincl have been successfully produced and used with copper or bronze particles in a plastics matrix. They are relatively expensive to produce, and the maximum density achievable with this type of material is of the or~ler of 4 gm/cc. These projcctiles can provide realistic operation with gas-operated automatic weapons (such as many 5.56mm wcapons) and also realistic recoil forces of the order of two-thirds that experienced with the standard ammunition. In addition these projectiles can be designed as frangible so that they break up with reduced ricochet on striking a hard target.
However, most 9mm automatic weapons and also a significant proportion of 7.62 and 5.56mm automatic weapons operate on the delayed blow-baclc or short recoil principle, and these weapons require a denser projectile mateAal for automatic operation.
Attempts have been made to produce a tungsten-filled plastics projectile (having a density up to 6gm/cc) for such applications, but these have been unsuccessful because tungsten generates unacceptable barrel wear.
There thus exists a need for a training projectile which is frangible but provides rcalistic automatic weapon operation in both standard, conventional gas-operated, dclayed blow-back and short recoil weapons and at lower cost then existing metal-filled plastics designs. In addition it would be highly desirable if means could be provided for enabling a projectile comprising tungsten or other relatively dense but abrasive material to be fired through a conventional barrel without causing excessive wear.
The present invention seeks to make possible a solution to some or all of these requirements.
According to the present invention there is provided a projectile comprising a metal core which is formed from a sintered metal powder and an adherent coating.
Preferably the coating is formed of a plastics material, although in some instances a metal coating may be suitable. Possible metal coating materials include copper, nickel and zinc, or alloys in which one or more of these materials is a major constituent. In many instances it will be advantageous for the coating material to be softer, having a lower hardness and/or ductility than the metal core material.
The metal powder is advantageously selected from the group comprising iron, stecl, tungsten, copper and bronze powders. By avoiding the use of lead, and especially thr0ugh use of an iron powder, environmental pollution causcd by the projectiles, eg on a training range, is substantially reduced.
Where the metal powder is of iron, the projectile is preferably formed from a coarse iron powder having a particle size range up to 200 microns when a frangible projectile is required. Preferably the particles are in the size range ~0 - 150 microns.

.

:- 2~2~-~2a Where the powder is of iron, and a frangible projectile is required, the projectile is formed by sintering a pressed preform at a temperature in the range 600 to 800C, prefcrably in the range 650-~S0C.
Projectiles which are not easily frangible are also within the scope of the invention, and such projectiles may be formed by sintering at higher temperatures, ie in excess of 800(~.
The plastics material should have a melting point in excess of about 170C, should form a non-brittle adherent coating on the projectile, and should be compatible with materials normally used in small arms propellant, including nitrocellulose and nitroglycerine.
Suitable plastics materials include polyamides, including especially polyamide 11.
Polycarbonates and polyesters may also be suitable as the plastics material.
The thickness of the coating of plastics material should exceed the depth of rifling cncountered by the projectile in the weapon from which it is to be fired, and thus a thickness in the range 0.05 to 0.40mm is desirable, and preferably the thickness should normally be in the range 0.08 to 0.15mm for most applications.
Most conveniently the coating is applied ~y heating the projectile to a temperature above the melting point of the plastics material, and immersing the projectile in a fluidised bed containing particles of the plastics material.
The use of a plastics coating can lead to several practical advantages. The plastics material bonds efficiently with the naturally irregular surface of the sintered projectile, so that the coating does not readily separate from the projectile during firing. The rifling of the gun barrel easily engraves the plastics coating which acts as a soft interface and protects the barrel from contact with the projectile, thus reducing barrel wear while enabling dense and/or abrasive projectile material to be used for the projectile. Where frangibility is desired, the projectile can be sintered by a sintering process in which the process parameters are selected so as to create a mechanically weak material which casily disintegrates on striking a hard target. The plastics coating assists in maintaining the intcgrity of the projectile during the firing cycle, and also can act as a seal which prcvents or resists corrosion of the projectile material.
The invention will now be described by way of examplc only with reference to theaccompanying drawing, which shows in sectional form a practice round of ammunition incorporating a projectile in accordance with ~he invention.
As shown in the figure, a round of ammunition comprises a conventional cartridgecase 1 having a conventional primcr 2 and containing a quantity of propellant material 3.

~, . ; .
: ::: . ~ , . . . . .

. :. ~ ., ~ : ~ :
.. . .

2124~20 A projectile 4 is received within the open end of the cartridge case 1, to a depth suitable for correct weapon feeding and operation.
The projectile 4 is provided on its outer surface with a coating 6 of a plasticsmaterial such as polyamide 11 (Nylon 11~.
On assembly the projectile 4 is inserted into the forward end 7 of the cartridge case.
The portion 7 is then cAmped on to the projectile in the conventional manner, so that the projectile is retained in position.
The projectile 4 is formed from a coarse iron powder by pressing and sintering.
The frangibility of the finished projectile can be controlled by control of the pressure used for producing the green preform, and the temperature and duration of the sintering process, as well as the particle size of the iron powder. A sintering temperature bctween about 600C and 800C can give satisfactory results when a projectile which disintegrates on impact with the target is required. The duration of the sintering process is bclicvcd to be lcss critical, but a period of about 1 to 5 hours within the stated tcmpcrature range should normally be satisfactory.
The sintered projectile may be coated with the plastics material in the following manner. The projectile is first heated to a temperature above the melting point of the plastics rrlaterial, and then is placed in a fluidised bed containing particles of the plastics material at room temperature. Particles of plastics material melt in contact with the hot projectile surface, and thus adhere to the surface. The thickness of the adherent layer will depend primarily upon the initial temperature of the projectile, and can thus be controlled by this means. In order to provide a smooth surface finish, the coated projectile can subsequently be subjected to infra red heating, to remelt the outer surface of the coating. The melting point of the plastics material should preferably be not less than about 170C, as temperatures up to this level can in certain circumstances be encountered within a gun chamber during use.
In practice the thickness of the plastic coating should preferably bc at least equal to thc depth of rifling in the barrel of the weapon for which the projectile is intended. A
thickness in the range 0.08 to 0.15mm will frequently be found satisfactory.
In use, when fired from a standard automatic weapon, the projectile can be designed having sufficient mass to ensure normal operation of the automatic weapon function. If a grcater mass is required than can be achieved within the available space envelope using iron powder, then other powder materials or mixtures thereof may be used, but iron is preferred on account of its low cost.
The projectile should normally have a minimum density of about 6gm/cc for use in a blow-back or short recoil operated weapon. A density of 4.5 to 5 gm/cc might be .
:: ~. . ~; . .
. . , " 212~l~20 adequate for a gas operated weapon, but it is unlikely any benefit would accrue from use of such low density.
The foregoing description applies principally to frangible training ammunition.
However, the invention also can be applied with advantage to enable the use of sintered mctals for warshot projectiles which may lead to cost savings and/or enable the use of materials which would normally cause unacceptable barrel wear on account of the abrasiveness or hardness of the mate}ial.
Thus also to be considered within the scope of the invention are projectiles in which the metal core is formed of sintered metal which has been sintered for a longer period and/or at a higher temperature than thoss speciFlc times or temperatures previously indicated herein, in order to produce a projectile which is not readily frangible.

~. :. , . ,. - : . . :
, . . . . .

, .

Claims (19)

1. A projectile comprising a metal core which is formed from a sintered metal powder and an adherent coating.
2. A projectile according to claim 1 wherein the coating material is metal.
3. A projectile according to claim 2 wherein the coating material is selected from copper, nickel, zinc and alloys in which one or more of these materials is a major constituent.
4. A projectile according to claim 1 wherein the coating is of a plastics material.
5. A projectile according to any one preceding claim wherein the metal powder isselected from the group comprising iron, steel, tungsten, copper and bronze powders.
6. A projectile according to claim 5 wherein the metal powder is a coarse iron powder having a particle size range up to 200 microns.
7. A projectile according to claim 6 wherein the metal powder is a coarse iron powder having a particle size in the range 20 - 150 microns.
8. A projectile according to claim 6 or claim 7 wherein the projectile is formed by sintering at a temperature in the range 600 to 800°C.
9. A projectile according to claim 4 wherein the plastics material has a melting point excess of 170°C.
10. A projectile according to claim 9 wherein the plastics material is selected from the group comprising polyamides, polycarbonates and polyesters.
11. A projectile according to claim 10 wherein the plastics material is polyamide 11.
12. A projectile according to any one of claims 4 to 11 wherein the thickness of the plastics coating is in the range 0.05 to 0.40mm.
13. A projectile according to claim 12 wherein the thickness of the plastics coating is in the range 0.08 to 0.15mm.
14. A projectile according to any one of claims 4 to 13 wherein the coating is applied by heating the projectile to a temperature above the melting point of the plastics material and immersing the projectile in a fluidised bed containing particles of the plastics material.
15. A projectile in accordance with any preceding claim which is a small arms projectile.
16. A projectile according to claim 15 which is to a calibre of 5.56 mm, 7.62mm or 9mm.
17. A projectile according to claim 1 and substantially as hereinbefore described.
18. A projectile substantially as hereinbefore described with reference to the accompanying drawing.
19. A round of ammunition incorporating a projectile in accordance with any preceding claim.
CA 2124420 1993-05-27 1994-05-26 Projectiles Abandoned CA2124420A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB9310915.5 1993-05-27
GB939310915A GB9310915D0 (en) 1993-05-27 1993-05-27 Improvements in or relating to projectiles

Publications (1)

Publication Number Publication Date
CA2124420A1 true CA2124420A1 (en) 1994-11-28

Family

ID=10736195

Family Applications (1)

Application Number Title Priority Date Filing Date
CA 2124420 Abandoned CA2124420A1 (en) 1993-05-27 1994-05-26 Projectiles

Country Status (5)

Country Link
EP (1) EP0626557A1 (en)
AU (1) AU6334494A (en)
CA (1) CA2124420A1 (en)
GB (2) GB9310915D0 (en)
NO (1) NO941935L (en)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0873494A4 (en) * 1996-01-25 2000-12-27 Remington Arms Co Inc Lead-free frangible projectile
US6074454A (en) * 1996-07-11 2000-06-13 Delta Frangible Ammunition, Llc Lead-free frangible bullets and process for making same
US6536352B1 (en) 1996-07-11 2003-03-25 Delta Frangible Ammunition, Llc Lead-free frangible bullets and process for making same
US6607692B2 (en) 1997-01-30 2003-08-19 Doris Nebel Beal Intervivos Patent Trust Method of manufacture of a powder-based firearm ammunition projectile employing electrostatic charge
US6551376B1 (en) 1997-03-14 2003-04-22 Doris Nebel Beal Inter Vivos Patent Trust Method for developing and sustaining uniform distribution of a plurality of metal powders of different densities in a mixture of such metal powders
WO1998040675A1 (en) * 1997-03-14 1998-09-17 Cove Corporation Plated projectile for use in subsonic ammunition
US6892647B1 (en) 1997-08-08 2005-05-17 Ra Brands, L.L.C. Lead free powdered metal projectiles
US5917143A (en) * 1997-08-08 1999-06-29 Remington Arms Company, Inc. Frangible powdered iron projectiles
US6090178A (en) 1998-04-22 2000-07-18 Sinterfire, Inc. Frangible metal bullets, ammunition and method of making such articles
EP1153261A4 (en) * 1998-12-23 2003-05-28 Harold F Beal Small bore frangible ammunition projectile
US6640724B1 (en) 1999-08-04 2003-11-04 Olin Corporation Slug for industrial ballistic tool
SE517797C2 (en) 1999-09-03 2002-07-16 Norma Prec Ab Projectile of sintered metal powder
DE10042711A1 (en) * 1999-09-08 2001-03-15 Dynamit Nobel Ag Bullet for hunting comprises core and mantle connected to it via deformation section
EP1186851A1 (en) * 2000-09-06 2002-03-13 Laser II, LLC Multiple-component projectile
US20040050285A1 (en) 2002-01-03 2004-03-18 Zozulya Vladimir Leonidovich Cartridge
ES2330223T3 (en) * 2003-07-04 2009-12-07 Industria Meccanica Zane' S.R.L. METHOD OF MANUFACTURE OF INERT BALISTIC DEVICES FOR TRAINING AND BALISTIC DEVICE MANUFACTURED IN ACCORDANCE WITH SUCH METHOD.
DE102004017464B4 (en) * 2004-04-08 2006-05-18 Nico-Pyrotechnik Hanns-Jürgen Diederichs GmbH & Co. KG Patronized exercise ammunition
US7690312B2 (en) * 2004-06-02 2010-04-06 Smith Timothy G Tungsten-iron projectile
US7555987B2 (en) 2004-11-23 2009-07-07 Precision Ammunition, Llc Frangible powered iron projectiles
US8393273B2 (en) 2009-01-14 2013-03-12 Nosler, Inc. Bullets, including lead-free bullets, and associated methods
DK2859299T3 (en) * 2012-06-06 2018-03-12 Saltech Ag Practice projectile and exercise cartridge
US9702679B2 (en) * 2012-07-27 2017-07-11 Olin Corporation Frangible projectile
WO2019079351A1 (en) 2017-10-17 2019-04-25 Smart Nanos, Llc Multifunctional composite projectiles and methods of manufacturing the same
US11821714B2 (en) 2017-10-17 2023-11-21 Smart Nanos, Llc Multifunctional composite projectiles and methods of manufacturing the same
DE102021112014A1 (en) 2021-05-07 2022-11-10 Ruag Ammotec Ag projectile for ammunition
DE102022109315A1 (en) 2022-04-14 2023-10-19 Ruag Ammotec Ag Coated bullet body
US20240035791A1 (en) * 2022-07-27 2024-02-01 Kevin Geist Polymer coated lead-free bullet

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1502925A (en) * 1918-07-30 1924-07-29 Gen Electric Projectile
FR853026A (en) * 1938-04-22 1940-03-08 Projectile improvements
GB538268A (en) * 1939-11-10 1941-07-28 Martin Littmann Improvements in projectiles for military weapons
US2409307A (en) * 1942-07-01 1946-10-15 Gen Motors Corp Projectile
DE1215028B (en) * 1964-07-18 1966-04-21 Diehl Fa Decay body and process for its production
DE1578109C3 (en) * 1966-07-16 1973-09-27 Fa. Diehl, 8500 Nuernberg Decay projectile
US4165692A (en) * 1977-10-25 1979-08-28 Calspan Corporation Frangible projectile for gunnery practice
US4328750A (en) * 1978-10-26 1982-05-11 Bangor Punta Corporation Plastic coated ammunition and methods of manufacture
DE3030072A1 (en) * 1980-08-09 1986-06-26 Rheinmetall GmbH, 4000 Düsseldorf MOLDING MOLD, MATERIAL FOR MAKING THE SAME AND METHOD FOR ARRANGING THE MOLDING MOLD IN THE EXTENSION AREA OF AN AIRBULLET MADE OF A HEAVY METAL SINTER ALLOY
EP0209548A1 (en) * 1985-01-03 1987-01-28 JOHNSON, Peter Ian Bullet
CA1327913C (en) * 1989-02-24 1994-03-22 Yvan Martel Non-ricocheting projectile and method of making same
US5078054A (en) * 1989-03-14 1992-01-07 Olin Corporation Frangible projectile
DE9209598U1 (en) * 1992-07-17 1992-11-12 Metallwerk Elisenhuette Gmbh, 5408 Nassau, De

Also Published As

Publication number Publication date
GB2278423A (en) 1994-11-30
GB9410023D0 (en) 1994-07-20
EP0626557A1 (en) 1994-11-30
AU6334494A (en) 1994-12-01
GB2278423B (en) 1997-04-16
NO941935D0 (en) 1994-05-25
NO941935L (en) 1994-11-28
GB9310915D0 (en) 1993-07-14

Similar Documents

Publication Publication Date Title
CA2124420A1 (en) Projectiles
US5665808A (en) Low toxicity composite bullet and material therefor
US6263798B1 (en) Frangible metal bullets, ammunition and method of making such articles
US6115894A (en) Process of making obstacle piercing frangible bullet
US5913256A (en) Non-lead environmentally safe projectiles and explosive container
EP0720662B1 (en) Lead-free bullet
EP1038151B1 (en) Lead-free tin projectile
US5299501A (en) Frangible armor piercing incendiary projectile
US6626114B2 (en) Projectile having a disc and multiple cores
US20020005137A1 (en) Lead-free frangible projectile
US20050008522A1 (en) Tungsten-containing articles and methods for forming the same
US20020178963A1 (en) Dual core ammunition
US20010050020A1 (en) Jacketed frangible bullets
EP1210551B1 (en) A projectile of sintered metal powder
WO2000062009A1 (en) Jacketed frangible bullets
WO1996041112A2 (en) Non-lead, environmentally safe projectiles and explosives containers
EP0970329A1 (en) Plated projectile for use in subsonic ammunition
WO2001069165A2 (en) A multi-part projectile and method of making
ZA200308436B (en) Dual core ammunition.
MXPA00010280A (en) Frangible metal bullets, ammunition and method of making such articles

Legal Events

Date Code Title Description
FZDE Dead