CA2097507A1 - Method of producing glass materials from ash-slag waste - Google Patents

Method of producing glass materials from ash-slag waste

Info

Publication number
CA2097507A1
CA2097507A1 CA002097507A CA2097507A CA2097507A1 CA 2097507 A1 CA2097507 A1 CA 2097507A1 CA 002097507 A CA002097507 A CA 002097507A CA 2097507 A CA2097507 A CA 2097507A CA 2097507 A1 CA2097507 A1 CA 2097507A1
Authority
CA
Canada
Prior art keywords
ash
glass material
tbe
melt
melted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002097507A
Other languages
French (fr)
Inventor
Vasily Filippovich Shabanov
Alexandr Georgievich Anshits
Sergei Gennadievich Bayakin
Vyacheslav Frolovich Pavlov
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CA002097507A priority Critical patent/CA2097507A1/en
Priority to AU91537/91A priority patent/AU9153791A/en
Priority to PCT/SU1991/000194 priority patent/WO1993007096A1/en
Priority claimed from PCT/SU1991/000194 external-priority patent/WO1993007096A1/en
Publication of CA2097507A1 publication Critical patent/CA2097507A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C1/00Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels
    • C03C1/002Use of waste materials, e.g. slags

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

A method for obtaining glass materials from ash waste consists in heating the charge up to the melting point and melting it in a reducing medium, after which the obtained melt is cooled down through thermoshock up to obtaining the glass material. Before heating the charge, the carbon content in it is brought to 3.0 - 8.0 %
by weight, and the structure of the glass material is formed in a controlled flow of a gas medium.

Description

2097~07 HOD OF PRODUCl1`~G G~ASS ~ 'RIALS FROI~. ~SE-S~AG 1.ihST_ Field of bhe InventiDn ~ he present invention relat3s to cDnstructirir ma-terials, and, p2rticularly, to a method c~ producing glass materials frDm ash-slai3 waste ~Jaich can alsD l'ind wide applicatiDn in chsmical industry, in radiD electronics and ~ther branches of industr~
3ac't;ground D~ the InverluiDn ~nDwa in the art is a ,~e~hod of prDd~cing ialasS ~ S~
terials cDnsist-in~ in that a ch2r~--a inclualn.J~ t : f~ ol.~fin~;
ingredients (wt ,~): 47.6 SiO2, 29.6 .~,l2C-, 15.~ ~2~
4.2 CaO, 0.6 1.--,0, 1.7 ls20, 0.5 1ia20 is be-.,ad !;c a .~.;e1t ;j pDint ter.lperature and mslted in a gr2?'ait3 crucii~La7 r-~ar~e_ upDn tbe melt Dbtairlsd is slDwl~ cDDled (_.J. ~3tJuire, S.E. Risbud. Journ2l Df ~ teri,e1s sciance, vo19~ 13 o (1',i~) . 176~0-17~6 "Cr~7stallisatiotl and ?ro~arti3s Df g1essas prepared frDm I~linDis coal fly ash.").
he ~nor~-n methDd gives a nDr,-transparenu ~aterial ~ with a large content Df irDn (15 wt ~) which substantially ; 20 reduces the field D~ its applicatipn, particularly, ma~es ; it applicable Dnly in constructiDn industr~ and gui.~e inappli-cable in Dptical device~.
. EIlDwn in tbe art is a ~thDd Df prepGratiDn D~ ~lass materials from asa-SlaO waste cDn3isting in that a cbarge of the -fDllDwing compositiDn ~t ,G~
CaO tDtal 5.0-.41.0 C:aO unbDund . 4.0~13.0 Si02 13.0-75.0 Al203 5.0-26.0 Carbon 1.0-2.0 F~203 1-24 r~go 2.0-6.0 : Na20 0.1-1.0 .. E20 0 . 2-1 . O
~. .
-; 35 S03 0.1-0.6 : ~i2 0,2 ~:
. i .

:.. ,.. ,. . - :
-20~7~07 is heated to a meltinO~ pDint in a redueing ~edium9whereupDn the Dbtained melt is eoDled by a t:"ermal shDe'~
till 2 gl2ss rnaterial i9 -`Dr~-d ('~rep~in~i 3~ tbe Institl1te Df Ph~sies D~ S'berian DivisiDr. D ~ t'D~ ~.e~csr.1y OL
~cienees Di tbe USSR, ;~ 7,~ 1',91 ~~rasnD~^,r5'.~, Pi~vlD~
et al. 'A t`eehnique DL ~r~cesslng ~Sh~S~CDa1S -~.AT~K") In practic9, ili is oDsql~ tiD D~t2 L -.i2SS 1,1~ ~i3ri~;L"
frDrL 211 L~nD~1n 2sh-sla, waste rnat-rIais ,~auurin.-cDr.iparativel~ 1D~J ccl1ductiviu~ ;~her~e`oy ihe~ e-re vzstly 0 2pnlic2ble 2S beat-l~-sui-.tli~; m.;t.~i ls. .i~;e~Jer, ~'ais thDd ~alls ~i D a~tai~ .~D.~?l~ lc~ L l; ~J ~ ~ 3 Lr~ _ sl~o waste beln,~ ?rDcassed ~D~ ?u i~i~s DL~ t~21 S' ;uiDn r.1etals, -.Jhic'a tD P grea'J evt~r~ red~es t'i-~- rar.se Df' ' applieatiDn ef the gl2ss m~2terials sil1ee t~e~ can nDu `'' - 15 be utilized in ~he manu~acture Df ~vic211, tranSpGrellt lass ma'ierials.
DiselDsure Df t'ne InventiDn It is an object Df the present invention tD prDvide a methDd of producing glass materials frDm asb-slag waste, wbich ~ill cDnsiderably improve th4 quality Df' the ' gla~s materials Dbtained due to cDmplete p~rificatiDn o~ the charge frDm admixtures Df transi~i~n metals znd ` binding D~ f'ree ealeiu~ ~xidsr : The Dbjeet ~f the invsntiDn is attained by tbat in a method o~ produeing glass m2terials -~rom as~-slaO
waste, eDnsisting in that a ehar~e Df tha fDllD~ing eompD-sitiDn, wt ~0:
CaO tDtal 5.0-41.0 ' CaO unbound 4.0-1,.0 30 SiO2 13.0-75.0 Al203 5~0-2~.0 ' carbon 1.0-2.0 Fe 0 1.0-24.0 ~IgO 2.0-~.0 Na20 0.1-1.0 0.2-1.0 ` .

.

: . :
. , :
' 20~77~7 3 0.1-o.6 TiO2 0.2 is he2ted tD a rllelting point talilper2ture and meltsd in a reducing madium, wberaupon the melt obtained is heated b~ 3 thsrmal shDck till a gl2ss material is ~ormed, accordina ~o the invantion, priDr to he3ting the c'naraa, ~: the carbDn conteLlt uhsrein is brDught tD 3.0-8.0 wt '~0, and the struf-turfd i`Drmation Dl the ~,lass m2tarial is - carris~ ~u'~ .r a.~ 7~11sd ~1D1J D~ a gaseDus medium.
In cases ~7~here it is re~uirad 'uD obtain ~ ~lass Ma1erial `' wit'n a ~.axi.mul~ pD:rDsit~,7 ad2~ d ~Dr US3 as a hs2u-insul2~
~' ting m~3'uarial, tbe ~a9eDus medium i5 in 'act s~ases resu~-~'~ tin.~ ~rDm decDmpositiDn Dl` eaS~ides in ~.~auer.
it is necessar, tD o'ouain a ~la~s materiai D~ a st~srical sha~e ~bish ~inc;s Jida applicatiDn in divsrse `ararci~es o~ industry, ~Dr instanca ~rom cbamical '` industry (as .ilters) to aircra t indusury (as a li~ht heat-insulating material), th~ gas medium should addi-~ tionally cDntain inert gas ~ad tbereto.
: 20 It is pDssible that the ga~eDus medium i9 essentially ~J . a mixbure Df the additiDnally fed inert g2S and the gases resulting ~rom decDmposition ol carbides in water.
his will enable ona to obtain glass materials ~rDm ash-sla~ wasta witb maximu~ porDSitST 2Pd 1 DW CDntent Df aliminium o~ides and calcium o,.ides.
: ~or tbe manu~acture OL lime bricks, wall lacing tiles used in construction industry, advantageousl~
: the obtained glass matarial i3 additiDnally. disintegrated and press-moulded with subseauent roasting.
~' 30 ~he obtained material ~ y be addi~ionally heated tD ~orm.a melb and then slo~lly cooled~
~' ~his helps obtain glass ceramic wear-resistant ma-.: terials.
:
~:~ To produce optical materials with a wide trans-.. 35 missivity and a bigh transparencv in the visible and .- ~

.

_4_ 209 750 7 infrared spectra of electromagnetic waves,tbe material Dbtained shDuld be addition211y heated tD ~3rm a melt and tban c3~1ed ~ subs quen~ ro3sting.
~ref red ~`r.b~diments Df ttle InventiDn '~e p~oD3sed !"' tL~Dd D~ producit~ ss mat~ri~ls fr~rLash-slaj ~ïaste cvrsists in that the cbârge Df the ~DllDWin, CDI_3D9itiD!l (~ o) CaO ~ al -5~ù-i~.0 U :' ' b D U tl~ it . ~ , . U
~ ~o Si~i !,.0~

c ar b 3 ~ . 0 ~ 3 i.0-2l.~
~I ~'; g O -- ~ U o ~
~Ta 20 C) . 1~
E20 U.2-1.ù
SOz 0.1-0.
~E!iO2 0.2 is heabed to a melting pDint temperaturs and mslted in a reducing medium, wbsreupDn tbe Dbtainsd mslt i9 c~oled by a thermal sboc~ witb simul~sneDus struc~tural fDrm3tion of t~e glass material in tbe cDntrolled ~aseDus ~edium flo~.
In asb-slag wasta formad as a result Df burninO
c~als D~ VariDUS deposits, carbDn-contsnt generally doas nDt exceed 5 ~vt ~0 which is nDt sufficient for carrying out tbe procass, completa racDvery ~f iron Dxides and ~ormation Df carbidas. ~sreI`Dre, ~Dr carryinl, out the `~ prDcess of direct recDvery Df irDn Dxides, prior to haating Df tbe chargs, tbs carbDn cDntsnt is brDught to 3.0-8.0 wt %.
~his quantity range Df tbs carbDn is dspendent upDn tbe percsr~taga content Df ~rDn Dxides in the initial ash-slag waste matarial.
~ , . ' .
. . ' ' .

, ~ ~ . . . .
: -' 2097~07 To prepare a ~lass material with a re~uisite struc~ e, used in the prDcess are gaseC resulting frDm decom~i~osiliiot1 ol czrbi~es, inert gases Dr the mixture o f bot h .
.
~; 5 ~iven `oelD-~i are specific e~amples oi `carrying out the r~e~hDd of DrDducin~ ~;lass ~teri21s l~D~. ~Sh~ - s1,3~i ~; vi& S l ~!, 3};a m?le '1 ~,~ 7~ ,; ol -~b-sl~g W2SuQ lOr.T.Qd by borL;i~_ coals o 13 ~he DllDl.~ii,r; CD~oDsi uion (~ru i~), ~, Cc~' t^uâl ~.0 Ca~ un`oDuild 4.0 , SiO2 ''v.47 2~ 3 carbon e 2 3 . ;~ . O
gO 0.31 ' Na20 0.31 ~2 ' 0.36 ;, 20 S03 ' 0,.13 '~ i2 0.2 is melted in a grapbite crucible at a te~paraturQ' o~
frDm 1350 tD 1450C fD~ two hDurs and a haIf. PriDr to heating, the carbon contant in the charge is brDught to 3.0 wt ~/0. ~he produced melt witb total iron cor.tent 0.15 wt ~ is cDoled under the conditions Df thermal , shoc~ b~ pouring into water.
;~ ' Tbi$ caus-es instantaneous foaming o~ the glass material. ~be obtained pDrous material is disirltegrated 3 to attain a required fineness a~d calcined,to strengthsn the '''~ pores by heating tD 853aG~ and the~ cooled. The Db~ained glass material bas a bulk densitv of 150 ~g/m3.
Example 2 500 g Df asb L4rmed by burning coals Df tbe cDmposi-tion similar to tbat DLD E~ample 1~ is melted in a grapbite .

,.,. ~.
.
::
:~ .
., :.
. .

? ~

crucible at a temperatura Df frDm 1350 to 145~C fDr tV;D
hDurs. '~he Dbtained melt having a tDtal irDn content Df 0. 1 ~t ~77 is cDoled under the CDndit ions of a thermal shDck b~ pDurinù intD water. ,~his causes instarltaneDus fDaminJi Df the ~lass material. ~he obtained ;,,Drous ~lass ma~erial is disintef;ra~ed to attain a re7auired f~ineness and rDastad by heatin~ ~D a uemperatUra Df 850C to stran~ben the pDres, ~.7hereupDn it is cDolsd. '~he rl,? ~erial ,` ~hus pre3ared has a bul`~ density DL' 120 k~ '13.
~'~arl?le 3 5J~ ~ Dl 3sh lDr~d b~r burnihg cDals D the CO~pOSitiD,l similar to that Df ~lxample 1 is melted in a uraphite cnucible at a te~per3~ura Df 1353-1450~C ,~Dr fDur hDurs.
~he ob~ained melt havin~ a tDtal irDn cDntent Df 0.05 -.-~t ~7 i9 C DDl ed under the conditiDns of a t'ner~al sbock b~7 pDurin~
;~ int~ water, whereby instantaneDus ~oa~ing Df the ~lass matarial takes place.,~he ~oamed glass material tbus prepared is disintegratad to attai~ a requisite fineness a~d haated to 850C bD stengtben the pDres, whereupon ib 20 i9 coDled. ~he prepared glass material bas a bulk density of 80 kg/m3.
~ample 4 500 ~ D* ash formed by burnin~ cDals of t~e fDllowing cDI~QDsitiDn (~It %):
' 25 CaO` tDtal' 20.5 CaO unbDund 11.7 SiO2 41.3 2 3 5~0 , carbo~ 3 3o Fe203 12.0 MoO 4.5 Na20 1.2 E20 0 . 4 3 0,2 ~i2 0.2 :`; .

.~, .

,: ~ .. : .
- . . .

,~

~; is heated and mslted in 3 ~raphite crucible at a tempera-~ure Df 1350-1450C fDr tWD hours and a h~lfo priDr tD
heatin~ Df tbe ct~arge, ~ho c&rbon cDr.~ent therein is brou~ht to 3 wt %. '~hs ~elt t~us obtained bavin,, a tot21 iror~ content Df 0.15 w~ ji, is cDDled under '~he co.:diti~lls ';; of a therm21 shock bv pDUl'in~ ir.tD w3ter. '~'nis cauSes ~'i irstantarleDus fDamin~ Di lhô .~S30 The Dbt2ined ?DrDUS
~l ss material is disintsj-,rated to attain a rsquisite ineness ?nd hsat-trOcited b7 the .r.1etbod depicted in ~^ 3xa.:ple 1. 'llbs prsp~ereai Jless mleteriel feaGures a qulk .~ de~nsit"7 Of 150 lij~
ample 5 500 j, o~ ^sb afJuer ~urnlng D coa'ls Df the comp~sill'3r indicatsd in ~ample 4 is meltOd in a ~raphite crLlcib1e ior ~ree hours. I~he Dbtained melt -~ith a tD~al iron cDntent cf 0.1 wt ,~u is cooled under the cDrldi~ions Df ai ubermal shock by pourin~ intD ~a~er, whereby instantaneous f D aminO of th-e ma9s takes place. ~he obtained porous ~lass material is heat-treated by the mathod of 3xample 1.
~be prepared ~lass material features a bulk de~!sit~ Df 100 k~
~xample 6 500 g of ash prepared by burnin~ coals OI the cDmpDsi-~ tion described in E~ample 4 is ~elted fbr fDur nours, the `'iJ 25 obtained melt' with the iron content o~ 0.05 wi~ %, chromium, ''` 0.02 wt % and titanium, 0.1 ~iit ;~, is cDDled in the similar ~`~ way as in Examples 4 and 5. ~he obtained glass m3terial hcas a bulk densit~ Df 50 ks~
Exampla 7 3o 500 g of asb after burning Df coals with the compDsi-tiDn, wt ~0:
CaO t Dtal 3.1 CaO unb D und ~D ~e ~i2 5.5 :

, ~ . .

... . .
:
:
:
;-2~75~7 . ,~, ~120~ 19.2 carbDn 5 ~e,O. 20.C
2 , 1.;,,0 0.
~.220 0.~
~'2 0~9 ) o 2 riDr tD he.iii.~ th-- ch.ar~s~ -~ihne car'~^l c~ a,i ~ :
~' 13 tke chrOe is br~u;bb tD ri .!t ,;~, tb~3rl ~be ^.~.ar~ e is .::el-ieu : ln a .ra?hite crucl~le ai a ta;~-,?L3r~-3~ul e D_' 1~J ~ i450~;, Dr tWD bDu~s anà i balf. Iïlhe ~21t tinus _ ~DL..UC9d L~GVir~
_ tD,ial iron co~ art o~ 0~15 ~ is cD~led under Tihe cD~Idi,iiDns Dl a therir.~il S!,DDC~ Dy pDuri?O n-io ,,;_-~
~'~is c.3uses instant2r!eDus LD~.r~inD Dl the .~!L~D9s. hL-3 û0ii8i:~3~i 0rDUs ~loss r~3,ierial is heat-trsc3ted sl..ilarly ii~ Exa:~le ~.
~'' .ba glass material prDducsd is characterized bù7 a bulk density'~f 150 kg/m .
~, ~xample 8 5 g of ash aLter burning Df cDals baving the cDmpDsi-tion lisbed in Example 7 is mslted and beat~treated similarly ~D Example 2. ~llhe prepared glass material. has a bu~k density ~` D~ 120 kg/m3.
: Example 9 : 25 500 Or D~ ash al~er burning o~ cDsls of- the comQ~sitiDn ~ indicated i~ Example 7 is melted and beat-trsateq similarly : ~D the ~xample 3. ~he pr~duced gl2ss materi&l fs2turss a bulk densiby of 80 kg/ ~ .
.:: .3xample 1 500 g Df ash a~ter burning Df coals havi~g ths fDllDwing cDmpDsi~ion (wt %) CaO total ' 20.0 :: CaO unbDund 4.0 ~ S~2 58 :~ 35 Al23 9.4 "
~, .
., .
'~; .
:"~

, - - . . .

.
;.' ., . ~ -, _g_ 3 . 1 . O
¦,~,?~,o ~ . 3 ' Ma 2 ' 3 2 C .
5 , 3 , 0 .1 , "' ~i2 0.2 ih-rain tha carboLl cDnt3n!~ iLl ub C'^.an','3 iS brDll:'~et ~ 3 ,:.t ,,7 '~ is heated 2nd melted in' a ;,râ?hita crucibla a1, a tsL3a ~,, , ratura D~ 33 tD 1450C lar arl i~Dur and a 'a21~.~ Tha l3 obtainad melt with a tc~tal lrDr cor,.art a 3untin~ tD
0.15 wt ,;0 is cDDlarl !i~ __r ':b~ c ,:di~i.,ti_ u_ .i ;s, ss~oci.~ by p3u~in~ intD :a'uar, ~ .a~abv instzetz;la3us ''Da~ ir Df tha ~,lass r~atarial 's 2used. ~';ha Dbta ned p.,rDus 5~1aSS material is disinte,,r2~,ad to at-tair. a raquisita 15 linenf3ss and r33s~ad tc a ta.~.~erature D~ &50~C, 2r~ sub-sequently cûDled. Tbe preparad Olass "lateri21 b3s a b ulk dens ity o~ 150 ks~/m3 .
; Example 11 500 g of ash after burning Df cDals of the co~ipOsition ,, 20- specified in :E~ample 1 is melted in a Oraphite crucible at a temperatura of 1340-1450C fDr tWD, ho'urs. The melt Dbtained witb a tDtal iron cDntent Df 0.1 WIJ (~o iS~ cDoled under tha conditiDns Df a tbarmal shoc'~ by ~DuriLl~ intD water, whereby instantaneous oaminO Df tha ma ,.erial is caused.
Tba Dbtained porDus glass material is prDcessad similarly to Example 10. The prepared ,12ss m2 teri31 is characteri -zed by a bulk dansity Df 120 ~;/m~.
~ al~ipla 12 500 g of as~ baving tha cDmDositiDn Df E~aml~le 1 is malted in a Oraphite ,crucible at a tampara"~e of 1350-1450e for tWD bDurs and a half.,The mel`t thus prepared with a tDtal iron contant Df 0.05 wt ~0 is coDlad undar t~e cDnditions Df a thermal shock by pDuring into water.
`' ~ This causes instantaneDus fDa.r2ing of the ~lass matarial.
.,~
~ . .
' ' , . , .

.i.

., .:

2~7~7 The obtained gl2sS Latierial iS prDcessed as in '~ample 1~'.
~ba densi7iy 3~~ tha glass malierial is 80 h~ii.n?.
3xamj?1a '1, 500 g D~ as~ af~er bursin,7 D'~ cs2ls i~ iLI;~ 'Jha CD Il7.p3SiuiDI~ i?eciii,?d iL'i Li;a'l!L~ i9 ~ uav fil~ aii~
treci7jed in ~ha ~-ia'y similar t5 tbali Di~ i~xa`i.l?1e 1. il'he Db~airled ~l~ss 'Q~. t~ i2~ di~7? ~ns~?~ tD u~ in~llf,vS
~, sized l Dl;i O ;i D ~Qv~1i 1L~ ~I L~v n cubes D l 1JO;~ 'i3JX'~ S i:~ ' lîfL b3rS 0~ ; siza ~ne ~ ss i~Dul~ r3...
the p D~i~d er. 7be EmiUl d ~a d L- ri;icl~ 'a are ~-~i?d _ne _7~.e S -li eà aii e : .~ l; e mj? a r a t u r e O ,- ~"~'Ot~ C ,`!' D '' ,~ !.~ i t~ J ;'3 S 1,l 7 c e c ue n u c v ~1 7 .n ;~, ! in tbe 'urnace. The prsaucvd sa:?las he-~je ih~7 '~ollo~in;
c b ~ rc7 c '~ e ~ ù i C 'à:
ultimate cGmpl~essiDn s~reng7ih, ~ a ~CI~
, 15 ultim~te bending stjrsng~'n r~2a 7-7 ~nXan~plv 1 ~' 500 o Df 3sh a~ter burning o~ cDals Df the compositiDn indica~ed,in 3xa,mple 1 is melted and heat-txveatied as in Example 2. ~he obtained Olass material is dispersed tD the finen~ss o~ frDm 0 tD 80Jum, then cuhes Df 100x100x100 mm size and bars of 40x40x160 nm7 size are7 press-moulded frDm th~ powder. 17he mo~lded ,rticles are dried and then rDastsd at a te~perature Df 950C ~or 30 min witb subseguent cDDling in the fur.tlace. 17he obtained samples have thtiv follDwing characteristics:
ultimate ccmpressiDn strength, `~a 40.0 ultim3te bending stren~th, ~l~a - 8.0 ~xa!~ple 15 500 ~ Df ash a~ter burning DL CDals D~ ~hf9 CDmpDSitiDtl indicated in tbe æ~ample 1 i9 melted and heat treatsd similarl~ to Example 3. ~he obtained glass mat4rial ... .
is dispfd~sed tD tbe fineness o~ ~rom 0 tD 80~ m, then ,mDulded and heat treated as in ~xample 10. ~he obtained ~ ~ samples ~ature tbe follDwing charactsristics:

,~' ' ': ' , , .
~ ~ .
; ~ :
.: , ` :
." ~

2 ~ 7 -11~
, ultim3ta compressiDn strength, l~a 4~.2 ultimate bending s~ren~tb, I~.~a 8.1 ~' ~xainpla 1v ~ 500 , Dl ash alJer b~rning oi COals baving the ~ 5 ccmpDsitiGn s?ecilied in E~;ai.;ple 4 is mrl~ed and heat~
:~ treated in tba -~ay slir!ilar tD that D^ ~zmple 1, tbs ~ a~ticles a-rs m~ulded ând rD~3ted 39 in 3~2r,pl3 1~ r~' : ~b~Jained.sa::pl3s have ~e -`Dllo-~ing characte~istics:
ulti:~ua C~:?~?3SS1GL. s'ua erg~ ,p a 3~9i~
ulu ii~^i U 3 ~ ;;, 5 `?
3;z~ 17 50~ g ~ _s.n a~r? ~urLiQ;. o: cGals .avin~ ubs cDmpGsi~iDn si.milar tD iba i v~ aipla il is ineltea and llea~-~rer;ted as in ~'Ya~!~le 2. ~hell the Lqa~eri3l ~; 15 is Gispe~seG, m~ulded arld beaii-trerated in the 92me mâllner as in ~`~ample 13. '.ne obtâined sâ~?les bave the fDllDwing charac~eristics:
ultimate compressiDn strengt25 ~a 43.0 : ultimaba bending strangbb, MPa 8.3 Exan~le 18 500 g Df ash fDr~med after `Durrling D~ cDals baving tbe cDmpDsitiDn indicated in Ex2!ple 4 is melted, heat-t~eated, mDulded 2nd roaste~ i~ the similar v~a~ as in Examples 3 ard 13. rrhe Gbtained samples have the ~ollD~Jing cbaracteristics ~: ultimate co~,pressiDn.s~rergth ræa 44.2 ultimate bar.ding strength, ~Pa 8.5 Example 19 500 g Df ash ~Dr~ed a~ter burning. G~ cDals having the compDsition indicated in ~xample 7 is melted, heat- -treated and rDasted similarly tD Examples 1 and 13. '~he :. : ` Dbtaina.d samples have the fDllDWitlg cbaracteristics:
~ ultimate compressiDn strength? L~Pa 19~1 `~` ultimate bending strength, Pæa 2.6 ~,.
~.~,.
,.~j' .
, ~ .
-~.

. . ...
:~

2~97707 E~ample 20 500 g Df ash after `ournin~ Df cDals DL the cDmp~sitiDn specified in ~xam-?ls 7 is melted, heat-trsated, mDuld3d and roast3à similarly tD ~'~amples 2 and 13. r~he obtained samples hav ..~ :~ollDv:iu~ characteristics:
ultimata co~pr3ssiDn streoO~h, l~a 1~.5 ultimate ben~ing stren3th "1~a ~.7 aml?1e, -1 5i~3 g D-L ash -.`orm3d a~ter burnin~ D~ cDals heVi!l~' he cor.posit1on speci;'ied in ~`xam?le 7 is inelted, beau traated~mDuld3d and rDasued in the v~a~ si~ilar tD tb2t O f ~2ilple S ,` and 1~.
I-lhe o`otal~Qd s2:~?l3s b~av3 th3 foll.-Tiin properti3~:
; ultimate compressiDr. sursn.Jtb, I.~a 23.'i uLtimate bendin~ s~rel~th ii~a 2.
~xample 22 530 g Df ash afier burning Df cDals havinO the ~' oDmposition similar to that of Example 7 is melted, beat-treated a~d moulded as in 3xample 3 and 13, uhile roasting ~0 is carried DUt at a temperature of 1o5ooc~fDr thirty minutes with subsequant cDDlinO in the furnace. The obtained samples have ~he ~Dllowing characteristics:
ultimate compressioll strength, I:~a 60.0 ultimate bendin~ strength, ~a 9.0 ' 25 Example 23 '~ 500 g Df ash fcrmed after burning Ol coals Df the cDmpositiDn of ~xample 1 is melted in a graphite crucible at a tempera~ure of frDm 1350 tD 1450C for two hours ana a half. The Dbtained msli having a total iron conte~t Df 0.15 wt ~ is poured. into graphite moulds preheatsd :~ tD 550C, the~ the temesrature is raised to 800-850C, : the melt stands at this temperature for an hDur and a half ~: with subsequent cDDling ln the elsctric furnace tD a rDom ''. t4mperature. '~he prepared Olass ceramic materials have ~' 35 the follo~inO c'naracteris~ics:
"

: . .: . .

. . .

~75Q7 light tr2nsmissiDn factDr, ,~o 3;).() tbermal cDrlductivit~f~ /m.~ 0.8 linear exp2tlsion coe~ficient C 1 0 x 10 ultimate barlaing strength, :;æa ?5-0 ~: 5 3xai:lple 2~
~ 500 -, of aS!n after burnin~, OL cDels oavin,~ th3 : cDI~lDDsi~iDn soeci~ied in ~iuola 1 is ;.: l'.,d~ ~-s il~ ~sa.Df,~ld ~.
~r~ ~o.~ir~ is ~3ulad in~D uh;3 l1LiUI_ an~ 3a~-. .,~a3.3~l ir t.~e iiaf~ similal lio thst Df ~ a.~la 2~ fr'ee ~`-`' 10 Or2?3rad .-1a3S ceramic mat rials have ~ DllD;~inJ
: ~ ?r~Dpert.ies li_hl; ~iranslll:issiDn :fC'GDn, ';'~ ~LO.C
~1arrI~U1 CD nductivit~, ;i/m~ .8 iin~ar exDatlsiDn cDeflicient~ oC~1 5 ~ 10 ultimaJe be~.din~ strength, ~a 75.0 ~xal~le 25 500~ of ash obtained after burnirlg of cDals bavin~a the composition indicated in Exam?le 1 is melted in tbe wa~ similar to tbat Df Example 3~ mDulded and 20 roasted as in Example 23. ~he produced gl~ass ceramic materials have the ~DllDwin., charactaristics~
ligh~ transmissiDn factDr, 9~0 50.0 tbarmal conductivity, ~i/m~ 0.7 .. linear expansiDn coefficient, C 1 5 x 10-~
ulbimabe bending stren~th, P.~a 80.0 E~ample 26 ~ 500 g o~ ash ob.tained a~ter burning of coals `. ol the compDsition specified in ~xample 4... is prDcessed :. as disclosed in 3xample 23. ~be ~lass ceramic mat.erials `` 30 produced have tbe.~ollDwing properti~s: .
light transmission factDr, ~0 30.0 thermal co~ductiYity, W/m~ 0.8 linear expansion coa~ficient, C 1 0 x 10-6 :. : ultimate bending strength, ~a 75.0 : . .

i . .
.
. . .
.

.

2~7507 ~xample 27 530 ~ Df asb after burning of ccals hzvin~ the cDI~pDsition specified in ;3xam?1a 4 is p.lDce3sed as in ~xample 24. The obtdined glas5 ceramic materials ha~e the ~llov/in~ characteristics:
ligbt transmissiDn factDr, :o 40.U
ther~al c~nductivity, Yijll h o 75 linear expansiDn coef~icient, C 1 5.5 x 10 ultimate bending strengtb, ii~2 ' 75.0 æxam.ple 28 500 g DL' ash obtained after `ourning D~ coals ~/itb ~he cDmpDsiti~: f Example ~ is prDcesssd in th~l way slmii^-r tD 3xample 25;. ~he obtained glass cera~lic ~aterials have ~he follDwin~ prDperties:
light transmissiDn factor, ~ 50.C
~i thermal cDnductivity, ~/m.L~ 0.7 ; linear expa~sion coefficient, C 1 5x10 6 ultimate bending strength, ~a 80.0 E~ampI0 29 500 g of ash obtained by burni~gDfcoals having the compDsition indicated i~ ~xampl~ 7 is heat-tr~ated in ~; tbe way similar to that Df Example 23.
The produced glass ceramic ~aterials feature the foll~wing characteristics: ~
light transmission factDr, ~ ` 30.0 tharmal cD!IduCt~YitY
linear expansion co~fficient, JC 1 5x10 ~- ultimat~ bending str2ngtb, ~.~a 90.0 Exampl~ 30 500 g of ash after ~burning Df cDals Df the compDsitiDn indicated in ~xampl~ 7 is beat-treat~d as in Example 24 ~` The Dbtaihed gl2ss ceramic materials h2vs tha fDllDwing ' characteristics:
. .
. .,' ,'"
.'' ' - , ,~'`
' - , 20~7~07 :~ `
-15~

.ght transmissiDn factor, % 4~.0 thermal cDnductivity W/m ~ 0~75 linear expatlsiDn cDe~ficient, o5~l 5 ~ -6 : ultirlate bending strengub, ~.2a 'j5.û
Exaiilple 31 : 530 g cf ash obtained after b~ri~inO 3L~ CD~lS havin~
: tbe compositi~n indic3tsd in ~xa~:-pla 7 is he_t--ure3Jed in tbe waV sir.ilar to tbat Df 3~aipl3 ,~5. '~'he .;lass ceram~ic meter i21s produced have thq f~lla~ n~ C.. ';'.5e'-10 ~-eris~-cs:
ii>~ht tra-sm ssion fac~Dr, ;~ 5:J~,_ thermal conductivity, ~ m ~ C.7 linear expansiDn coe~`licient5 C 1 , ~ 1J
ultimate bending strengtb, I~a 103 ~`xa.r.ple 32 - 500 g Df tbe pDrcus ~13ss m~erial D`atained in Exa~ple 1 is placed intD an aIundum crucible and melted at a bemperature Df from 1450 to 1500C for 2 bDurs, ~: pDured into graphite mDulds whicb have been preheated : 20 bD 550C, heated tD 850C, whereupDn tbe melt stands :: at tbis-teii~parature for tWD hDurs with subsequent cDDlin~
; in the ~uruace tD a roDm temperâture.
~'he transmissivity in the visible and infr3red spsctra of electrDma~netic waves Df tbe samplas is egual tD 75~.
Example 33 500 ~ of the porous ~lass material Dbtainad in Exampla ; is melted and beat-treated similarly tD tba prDcess Df xample 32. ~ba transmissivity in tbe visible and irfrared ` spectra of electrDmagnetic waves Df the Dbtainsd samples .`~ 30 i 9 85~
~ . Example 34 . . .
.~ 500 g Df tbe prrous glass ~aterial cbtain~d in : Example 3 is melted and heat-treated similarly to tbe .; prDcess Df ~gample 32. ~be transmissivitv in the visible and infrared specbra of electro~gnetic waves Df the samples prDduced amDunts to 95~0.

: ' .
.

^ 2~97~07 ~ 1 b--Exa mple 35 500 g~ o~ he PDrDUS ,~13SS m2tarial D:o~iailleà in :3xample 4 is mel',ia~ and hea u- ~sr~3at~3d as in 3;z~.?1e ;~2.
'~he transmissi~7iriy in the visible and infrared s~ecti7 ~ 5 Df elec,irDm~,netic w2veis Df the samr31es p ~D~uced is 7;~ 7.
Exa li~p le 36 5~0 = ~l ?DrDUS ~ 3s .rrAa "~3ri~31 ~_~3p~ 1q 5 i s me 1 ti ed e nd he at -lirea t ed as in ~x2 m pl e . Lih~ 'ire'._l-.. issivity in tib~ isiole e rlà i~- r are~- s ~;j ca s; c 1 e ~ ;7D.:e -10 aetic weves is ;~O,o.
~!'x a i-. p 1 e '7 5 .; D1~ 2~US _;1`SS ~2 terial Dl3~sai~1ed in ' G~S
is m31ted .~r~d heo u-tre~-'ied si~ rly .jD the ?roc~ss i3-~
xample 32. '~he lransmissivit~ in ~SL1- V is ~le er~d i;e~ar~3d 1;7 spectra olD electrDmaO~a ~ic ~aves Df t!~Se SGr~?1r-S ~roc.Aced . a ~ilD U nt s t o 9~70 .
~:~ Example 38 500 g of porous glass material obtained in ~xarnple 7 is meltad and- heat-treated as in Exampls 32. 'i~he transmissi-20 vity in th~ visible and imared spectra Df electro-magnetic waves Df the samples prDduced is ~0%.
~;: Ex a mp 1 e 3 9 500 g Df pDrous mat~rial Dbtainad in 3xample 8 is ::~ melted and beat--treated as in ~xample 32. he transmissivity 25 in the visible and inIrared spectra Df electromagne tic waves ~: of the glass seramic material Db uained is 80%.
E~amp le 40 : . 500 g Dî porDus ~ terial obtained in Example 9 is maltad and heat-treated similarly to the prDcess 30 of :E;xample 29. ~he transmi~sivit~ in ths visible and - in:e~ared spac~ra of electromagGetic waves of the glass . ceramic materials prDduced amDunts tD 95~o.
Example 41.
,~ ,.
500 g of ash sfter burni~g o~ cDals having ths cDmposition speci:Eied i~ Example 4 is mslted as in Example 4 . , , , ~' ' . ' "

2~7~7 . .

e Dbtained r!lelt is coolsd under the CDnditiDnS of a thermal shoch by pouxin,, it DlltO an ascending floY~
Df inert gas (CO2).
~his res~lts in that tbe 3bt2ined _les3 ma ~,erial 5 acquir7ss a bDl1~-~7 spberical s, cse wi'us the de .si'ty of its ~,^ranulas amDunuir~ tD 1'~ ) 'L{,,'/m~.
:E~ 2 ~ 2 500 g D-i` ag; f'-u;lsed afi, ar burni~ D f '' 321 S havi.n~
the c?r~pDslti~o indicated in ~ a ~ ?~ eli.ed es descrlbed 10 abDve. Tbe Db.air.ad ~ c~Dled u~ en tbe cûndi-ulr,~ss D:' a therrl~l sh3c~.^ 'by oou l~ ' ~D '.;at-_-~ 3cc3~penle~i b"J
blDwin" in o` ir.art ,as (~o;~ ïh3r9b~,7 .!:Dre th2n ~)0,-~of tha ,lass ~a~exial has 2 hOllD.; S!,'n~"`'ical S,-~zUQ ~o-?
var~Dus dia,,a'uars wiuh 'thg Oranulss dersitui Df ~JJ Lr~
~;~ 15 ~ S~a.:ple ~3 500 ~ Df asn after `aurl.i,S~ o-' coe.1s '; vin, thes cDmpDsi~iDn specil?ied in ~`~a~sla 4 is melted as in Example 4. ~he obtainad melt is cDoled undsr the cDndit ons Dl? a thermal shock by pouring the mel~ into ~ ater through 20 th~v foamed material. Consequently, lass than 50,0 Df the tDtal mass ol? the glass material produced has a hDllD~7 spherical shape of different diamsters wi:th the density of tbe granules from 130 to 300 L;o/~
Industrial hppli ca`oillty :.~ 25 ~he present inventiDn can be most efL3ctively used for tbe prDductlDn of Cc~!St~uCtiotl ~h~eri2ls DI diverse purposes (bricks, beat- ancl sound -insulatins . materials, ~acin~, and seramic ma,.erial$) filtexing materials, chamically stable materialsO McreDver, tbe 30 prDpDsed methDd halps. Dbtain ~lass materials featuring a high light transmissi~n factDr and utilized in magnetD-optics (ma~netDDptical memDry disks, liquid srystal ligbt mDdulators), as Yiell as in astronDmical DptiCS.

.
'' ' . , ' ' .

Claims (7)

- 18-
1. A method of producing glass materials from ash-slag waste consisting in that a charge having the following composition (wt %):
is heated to a melting point temperature and melted in a reducing medium, where upon the melt obtained is cooled by a "thermal shock" with simultaneous structural formation of the glass material, characterized in that prior to heating the charge, the carbon content therein is brought to 3.0 - 8.0 wt %, and the structural formation of the glass material is carried out in a controlled flow of a gaseous medium.
2. A method according to Claim 1, characterized in that the gaseous medium is in fact gases resulting from decomposition of carbides in water.
3. A method according to Claim 1, characterized in that the gaseous medium contains inert gas additionally fed thereto.
4. A method according to Claim 1, characterized in that the gaseous medium is essentially a mixture of the additionally fed inert gas and the gases resulting from decomposition of carbides in water.
5. A method according to Claim 1, characterized in that the obtained glass material is additionally disintegrated and press-moulded with subsequent roasting.
6. A method according to Claim 1, characterized in that the obtained glass material is additionally heated till a melt is formed, and then slowly cooled.
7. A method according to Claim 1, characterized in that the obtained glass material is additionally heated till a melt is formed, and then cooled with subsequent roasting.
CA002097507A 1991-10-01 1991-10-01 Method of producing glass materials from ash-slag waste Abandoned CA2097507A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CA002097507A CA2097507A1 (en) 1991-10-01 1991-10-01 Method of producing glass materials from ash-slag waste
AU91537/91A AU9153791A (en) 1991-10-01 1991-10-01 Method for obtaining glass materials from ash waste
PCT/SU1991/000194 WO1993007096A1 (en) 1991-10-01 1991-10-01 Method for obtaining glass materials from ash waste

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CA002097507A CA2097507A1 (en) 1991-10-01 1991-10-01 Method of producing glass materials from ash-slag waste
AU91537/91A AU9153791A (en) 1991-10-01 1991-10-01 Method for obtaining glass materials from ash waste
PCT/SU1991/000194 WO1993007096A1 (en) 1991-10-01 1991-10-01 Method for obtaining glass materials from ash waste

Publications (1)

Publication Number Publication Date
CA2097507A1 true CA2097507A1 (en) 1993-04-02

Family

ID=25641496

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002097507A Abandoned CA2097507A1 (en) 1991-10-01 1991-10-01 Method of producing glass materials from ash-slag waste

Country Status (2)

Country Link
AU (1) AU9153791A (en)
CA (1) CA2097507A1 (en)

Also Published As

Publication number Publication date
AU9153791A (en) 1993-05-03

Similar Documents

Publication Publication Date Title
US4021253A (en) Method for manufacturing glass frit
US4198224A (en) Process for making a cellulated vitreous material
US4448599A (en) Hollow spheres produced from natural zeolites
US4332907A (en) Granulated foamed glass and process for the production thereof
CA2354787A1 (en) Porous silicate granular material and method for producing it
Karamanov et al. Sintered glass-ceramics and foams by metallurgical slag with addition of CaF2
GB1593201A (en) Method of making a cellular body from a high silica borosilicate composition
US3441396A (en) Process for making cellular materials
JPH0613421B2 (en) Expanded mineral material manufacturing method and manufacturing equipment
US2758937A (en) Production of cellulated glass
CA2097507A1 (en) Method of producing glass materials from ash-slag waste
US2596669A (en) Process for making fortified cellular glass
RU2187473C2 (en) Method of manufacturing block expanded glass
Budnikov et al. Quartz ceramics
CN114341065B (en) Glass and method for producing same
DE102010021693A1 (en) Process for the preparation of quartz glass grains
EP0294046A2 (en) Process for making cellular glass nodules by means of a fluidized bed
CN115125620A (en) Preparation method of iron telluride
US5650129A (en) Light weight silica balls with a dense outer layer and method of making the same
US6395954B2 (en) Advanced vitrification system frit
JPS5921478B2 (en) Manufacturing method of glass ceramic heat exchanger core
RU2052400C1 (en) Method for production of glass material from ash-slag waste
US2775524A (en) Method of producing cellulated articles
CA1150506A (en) Prevention of thermal spalling in refractory products
KR101219460B1 (en) Method for manufacturing hollow micro glass spheres

Legal Events

Date Code Title Description
EEER Examination request
FZDE Discontinued