CA2063098C - Extendible-contractible, flexible, helical conduit and coupling assembly - Google Patents

Extendible-contractible, flexible, helical conduit and coupling assembly

Info

Publication number
CA2063098C
CA2063098C CA 2063098 CA2063098A CA2063098C CA 2063098 C CA2063098 C CA 2063098C CA 2063098 CA2063098 CA 2063098 CA 2063098 A CA2063098 A CA 2063098A CA 2063098 C CA2063098 C CA 2063098C
Authority
CA
Canada
Prior art keywords
conduit
helical
apex
assembly
duct
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CA 2063098
Other languages
French (fr)
Other versions
CA2063098A1 (en
Inventor
Charles B. Anderson
Charles R. Kenrick
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Builders Best Inc
Original Assignee
Builders Pride Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US07/669,772 external-priority patent/US5133579A/en
Application filed by Builders Pride Inc filed Critical Builders Pride Inc
Publication of CA2063098A1 publication Critical patent/CA2063098A1/en
Application granted granted Critical
Publication of CA2063098C publication Critical patent/CA2063098C/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Joints Allowing Movement (AREA)
  • Duct Arrangements (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)

Abstract

A flexible duct assembly having a thin peripheral wall formed with helical, i.e., spiral, ribs and adjacent grooves or valleys, the apex of each rib and valley advancing helically with axial extension of the duct, and a rotary joint on at least one end of the duct to relieve the torque otherwise resulting from the helical advancement.

Description

20~'309~

1 EXTENDIBLE-CONTRACTIBLE, FLEXIBLE, HELICAL
CONDUIT AND COUPLING ASSEMBLY
BACKGROUND OF THE INVENTION
This invention relates to flexible, expandable, helical, i.e., spiral, duct for use on household appliances such as clothes dryers, etc.
Flexible helical duct, as of metal, is presently marketed for use on household appliances such as clothes dryers. Installation of the duct can be a considerable chore, however. The duct should be attached to the dryer lo and to the wall exhaust pipe after the dryer is in its final location. If the duct is installed when the dryer is a distance from the final location, e.g., away from the wall or along the wall, subsequent movement of the dryer often results in kinking and/or twisting and buckling of the duct.
However, installation of the duct after the dryer is fully located can be extremely difficult, or even impossible, due to the lack of working space. Once helical duct is installed with the duct secured in place on both ends, subsequent movement of the dryer which causes extension or contraction or lateral movement of the flexible duct will cause twisting of the duct likely to result in buckling of the duct. This is a characteristic of helical duct. When helical duct is axially expanded, portions of the helical ridges and the helical valleys advance helically in a twisting motion. When the duct is contracted, the helical ridges and valleys twist in the opposite direction. While the duct could conceivably be made of annular segments rather than of helical character, and thereby not have the twisting tendency, such a duct would be much more expensive 20~309S

1 to fabricate and really is considered impractical for use as dryer duct or the like.
Use of the particular duct and elbow arrangements has been found to enable attachment of the duct to the wall and dryer before placement of the dryer in its ultimate location, and to enable movement of the dryer after placement, if necessary, without twisting and buckling of the duct. Indeed, these arrangements have been found to enable the helical duct to be axially expandable and contractible, and laterally shiftable without buckling. The arrangements disclosed in the above applications enable rotation between portions of the duct, which alleviates the torque that would otherwise occur to cause buckling of the fixed end ducts. This present development is an extension of the developments disclosed in these earlier applications.
SUMMARY OF THE INVENTION
An object of this invention is to provide a flexible, helically corrugated duct assembly capable of extension and contraction with alleviation of the torque and buckling tendencies otherwise resulting, whether the assembly incorporates an elbow connector or not. A
rotational torque alleviating coupling is provided on at least one end of the duct so that, when peripheral portions of the duct helically twist in one direction during expansion, or helically twist in the opposite direction during contraction, or twist during a lateral movement, the twist is accommodated by rotary movement of the coupling to alleviate any twisting torque over the length of the duct that would cause buckling of the duct.
BRIEF DESCRIPTION OF THE DRAWINGS
Fig. 1 is an elevational view of a combination 1 conduit and coupling assembly made in accordance with this invention;
Fig. 2 is an exploded elevational view of the combination in claim 1,-Fig. 3 is an enlarged fragmentary sectional view of a portion of the ,oint ta'~en Gn plane III-~II of Fig. 2;
Fig. 4 is a fragmentary elevational enlarged sectional view of a portion of the helical ridges or apices and adjacent valleys of the extendible duct taken on plane IV-IV of Fig. 2; and Fig. 5 is a view of the structure in illustrated Fig. 4 shown being expanded axially.
DESCRIPTION OF THE PREFERRED EMBODIMENT
Referring now specifically to the drawings, the assembly 10 there depicted comprises an extendible, flexible conduit 12, a rotary coupling 14, and here shown to be interconnected with a conventional peripheral compression clamp 16. This structure is suitable, for example, for connecting a clothes dryer air outlet to an outside vent or the like. It is formed of lightweight metal, notably aluminum, having a wall thickness of only a few thousandths of an inch. The duct is formed by conventional methods, e.g., such as those in U.S. Patent 3,435,852 and 3,621,884, such that the thin wall is provided with helically oriented, i.e., spiral, convolutions producing a multiple set of 2~ adjacent, helically extending ridges having successive helical turns at spaced intervals along the length of the duct, as shown. More specifically, the individual ridges in the set are parallel to each other along a helical path, with the helical pitch being at an angle causing the successive turns to be spaced by a generally smooth zone 21 2 0 ~ 8 1 that also has a helical pattern. When viewing these ridges and the valleys therebetween in section at any interval of the helix, they are seen as a series of adjacent, generally abutting ridges 20 (Fig. 4) and intermediate valleys 22.
The apices of these ridges and valleys serve as integral joints allowing linear expansion under tension, as depicted for example in Fig. 5, and if necessary, subsequent contraction of the flexible conduit under compression.
Preferably, the end portions of the duct have the ridges thereat subsequently flattened as by radial compression, to lo appear in the manner generally illustrated in Fig. 2, so that the inner surface of these end portions will readily slip over a male tube member 18 of coupling 14 or the like to be clamped in place, and the outer surface receives the clamp 16 thereover for readily clamping down on the telescopic joint. These end portions are provided with axially extending slots 24 to enable slight radial expansion of the end of the duct into a female fitting for easy fit over the male member, and subsequent contraction by the clamp.
23 Male member 18 is preferably provided with a slightly truncated shape to readily slidably interfit with the end of the duct. This configuration is achieved by crimping the male member in conventional fashion as with triangular shaped indentations as shown. This peripheral clamp 16 is shown to have the typical pair of flanges 26 biased toward each other by a screw or bolt fastener 28 to reduce the diameter of the clamp.
Coupling 14 has rotary joint 30 between the two end portions, namely male member 18 and female sleeve 32.
Conceivably, both of these could be male or female, as well 211~3q~`~

1 as one being male and the other being female. The rotary joint may be made by conventional techniques to have a structure, for example, like that depicted in Fig. 3.
Specifically, an end of male member 18 is radially outwardly deformed and axially compressed to form an annular outer pocket to receive an annular projection formed in the adjacent end of sleeve 32 by axially and radially deforming this end. These two are thereby interfitted to retain the two in fixed axial relationship while allowing rotary movement of one relative to the other. Sleeve 32, which is lo shown cylindrical and axially oriented in alignment with member 18, could be in the form of an elbow such as a forty five degree or ninety degree elbow, or other configuration.
Manufacture of the assembly components comprises the steps of forming helical sets of ridges and adjacent valleys in thin walled metal duct as depicted in Figs. 1 and 2, followed by radial compression of the end portions of the duct to form end connectors. The coupling 14 is formed by joining member 18 and sleeve 32 with the bend relationship depicted in Fig. 3, to form a rotary joint. Sleeve 32 preferably is formed with circumferentially spaced axial slots, and member 18 is crimped around its periphery to provide a slight taper thereto. Member 18 is then inserted into one end of duct 12 and clamped by tightening peripheral clamp 16. The second end of duct 12 can be attached by another peripheral clamp 40 to another fitting or pipe as necessary. Sleeve 32 is also secured as by a peripheral clamp 44 to another component as necessary. This can be done while the two items to be interconnected, e.g., clothes dryer and wall outlet, are at a distance from each other to provide effective working space. Subsequent movement of the 20630~8 two interconnected components will normally cause lateral shifting and expansion or contraction of duct 12. Axial expansion or contraction of duct 12, or lateral shifting thereof, will cause twisting due to the helical configuration imparted to it. However, instead of the duct kinking and buckling as a result, the rotary joint 30 enables accommodation of the twisting motion by relative rotation between members 18 and 32 in either direction, to maintain the periphery of the duct basically free of distortion-causing torque.
Conceivably, the components and exact configuration of the components of this combination could be modified in various ways to suit a particular installation of the combination. Hence, the invention is not intended to be limited specifically to the illustrative, exemplary embodiment, but only by the scope of the appended claims and the reasonably equivalent structures to those defined therein.

~ ~-

Claims

THE EMBODIMENTS OF THE INVENTION IN WHICH AN EXCLUSIVE
PROPERTY OR PRIVILEGE IS CLAIMED ARE DEFINED AS FOLLOWS:

A flexible helical conduit and coupling assembly comprising:
an elongated, flexible conduit having a thin peripheral wall about an elongated central axis, said wall formed of at least one outer helical ridge having an apex and at least one corresponding inner helical valley having an apex;
said conduit having two ends fixedly connectable to other components;
said conduit being extendible along said axis, resulting in the portions along said ridge apex advancing helically in a first direction, and the portions along said valley apex advancing helically in said first direction; and a rotary joint on at least one end of said conduit for permitting rotational movement of said at least one end to relieve torque otherwise resulting from said helical advancement when said ends are fixedly connected to other components.

The assembly as claimed in claim 1 wherein said conduit, when at least partially extended, is contractible along said axis, resulting in portions along said ridge apex retracting helically in a second direction opposite to said first direction, and portions along said valley apex retracting helically in said second direction;
said joint means relieving rotational torque otherwise resulting from said helical retraction.

The assembly as claimed in claim 2 wherein said joint means comprises a rotary coupling having a body defining a passage and two ends, a rotary joint between said two ends, and one end of said body being attached to said one conduit end.

The assembly as claimed in claim 3 wherein said rotary coupling comprises one body portion having a radially directed annular female groove and another body portion having a radially directed annular male projection in said annular groove.

A flexible helical conduit assembly comprising:
an elongated, flexible conduit having a thin peripheral wall about an elongated central axis, said wall having at least one set of adjacent parallel helical ridges;
each said ridge having an outer apex;
a set of valleys between said ridges;
said conduit having two ends fixedly connectable to other components;
said conduit being extendible along said axis, resulting in the portions along each said apex advancing helically in a first direction; and rotary joint means on at least one end of said conduit for relieving torque otherwise resulting from said helical advancement.

The assembly as claimed in claim 6 wherein said rotary joint means comprises a rotary coupling having a body defining a passage and two ends, a rotary joint between said two ends, and one end of said body being attached to said one conduit end.

The assembly as claimed in claim 6 wherein said rotary joint comprises one body portion having a radially directed annular female groove and another body portion having a radially directed annular male projection in said annular groove.
CA 2063098 1991-03-15 1992-03-16 Extendible-contractible, flexible, helical conduit and coupling assembly Expired - Lifetime CA2063098C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US07/669,772 US5133579A (en) 1990-12-04 1991-03-15 Extendible-contractible, flexible, helical conduit and coupling assembly
US07/669,772 1991-03-15

Publications (2)

Publication Number Publication Date
CA2063098A1 CA2063098A1 (en) 1992-09-16
CA2063098C true CA2063098C (en) 1995-08-29

Family

ID=24687666

Family Applications (1)

Application Number Title Priority Date Filing Date
CA 2063098 Expired - Lifetime CA2063098C (en) 1991-03-15 1992-03-16 Extendible-contractible, flexible, helical conduit and coupling assembly

Country Status (1)

Country Link
CA (1) CA2063098C (en)

Also Published As

Publication number Publication date
CA2063098A1 (en) 1992-09-16

Similar Documents

Publication Publication Date Title
US5133579A (en) Extendible-contractible, flexible, helical conduit and coupling assembly
US2913009A (en) Internal and internal-external surface heat exchange tubing
IE48202B1 (en) A pipe socket
US4852616A (en) Corrugated pipe
RU2006137698A (en) THREADED TUBE CONNECTION RESISTANT TO BENDING VOLTAGES
US5074138A (en) Method of making bellows pipe
US5158115A (en) Bellows pipe construction
WO1997025561B1 (en) Subsea flexible pipe
US3635255A (en) Corrugated flexible hose with integral socket and apparatus for forming same
TW200305697A (en) Coiled hose
CA2063098C (en) Extendible-contractible, flexible, helical conduit and coupling assembly
CA2299989C (en) Dryer duct and swivel connection therefor
JPH0348094A (en) Coupling for connecting corrugated pipe
IE46560B1 (en) Socket part for a spigot and socket pipe connection
CA2584886A1 (en) Corrugated pipe made of thermoplastic plastic
EP1281904A3 (en) Helically wound corrugated tubular structure
CA2246978A1 (en) End-slotted flexible metal hose
KR200339758Y1 (en) connection for bellows
EP0486962A1 (en) Multi-purpose flexible sleeve
GB2227803A (en) Split collar end fitting for a hose
JPH0640394Y2 (en) Spiral type flexible tube socket joint
JPH0449428Y2 (en)
EP0664862B1 (en) Manufacture of helically corrugated conduit
JPH0336798Y2 (en)
CN210770757U (en) Explosion-proof rubber hose

Legal Events

Date Code Title Description
EEER Examination request
MKEX Expiry