CA2007248C - Meningococcal class 1 outer-membrane protein vaccine - Google Patents

Meningococcal class 1 outer-membrane protein vaccine Download PDF

Info

Publication number
CA2007248C
CA2007248C CA 2007248 CA2007248A CA2007248C CA 2007248 C CA2007248 C CA 2007248C CA 2007248 CA2007248 CA 2007248 CA 2007248 A CA2007248 A CA 2007248A CA 2007248 C CA2007248 C CA 2007248C
Authority
CA
Canada
Prior art keywords
class
protein
amino acid
group
acid sequence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CA 2007248
Other languages
French (fr)
Other versions
CA2007248A1 (en
Inventor
Peter R. Paradiso
Robert C. Seid, Jr.
Jan T. Poolman
Peter Hoogerhout
Emmanuel J. H. J. Wiertz
Peter Van Der Ley
John Edward Heckels
Ian Nicholas Clarke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nederlanden Welzijn Volksgezondheid en Cultuur Minister van
Wyeth Holdings LLC
Original Assignee
Nederlanden Welzijn Volksgezondheid en Cultuur Minister van
Wyeth Holdings LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from NL8900036A external-priority patent/NL8900036A/en
Application filed by Nederlanden Welzijn Volksgezondheid en Cultuur Minister van, Wyeth Holdings LLC filed Critical Nederlanden Welzijn Volksgezondheid en Cultuur Minister van
Publication of CA2007248A1 publication Critical patent/CA2007248A1/en
Application granted granted Critical
Publication of CA2007248C publication Critical patent/CA2007248C/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Peptides Or Proteins (AREA)

Abstract

Outer-membrane vesicles, Class 1 outer membrane proteins of Neisseria meningitidis, fragments or oligopeptides containing epitopes of the Class I OMP
can be used to immunize against meningococcal disease.

Description

-----------------------------------------------------------------Descri tion ----- p-----Background_of the Invention ----- -------------------Bacterial meningitis is an inflammatory disease of the central nervous system caused by the growth of bacteria in and adjacent to the leptomeninges.
Meningitis is an acute infectious disease which affects children and young adults and is caused by the Neisseria meninqitidis, amongst other agents ---------------------------including other bacterial and viral pathogens.
Meningococci are subdivided into serological groups depending on the presence of either capsular or cell wall antigens. Currently recognized sero-groups include A, B, C, D, W-135, X, Y, Z, and 29E
as segregated by seroagglutination. The polysac-charides responsible for the serogroup specificity of the groups A, B, C, X, W-135 and Y have been purified.
The carrier rate for meningococci is much higher than the incidence of the disease. Some persons are temporary carriers, while others are chronic carriers, discharging meningococci either more or less continuously or in a sporadic fashion.
The meningococcal carrier state is an immunizing process, and within two weeks of colonization, production of antibodies to meningococci can be identified. It appears that bactericidal antibodies are directed against both the capsular polysaccha-ride and other cell wall antigens.

1 ~
Studies have shown that meningococcal outer membranes have three to five major proteins, with the predominant 41,000Mr or 38,000Mr proteins carrying the serotype specific determinants. There is a considerable degree of interstrain hetero-geneity in the profiles of the outer membrane proteins on sodium dodecyl sulfate-polyacrylamide electrophoretic gels (SDS-PAGE). As defined by peptide mapping studies, the proteins comprise five classes, designated 1 through 5, based upon common peptide structures. Bactericidal monoclonal anti-bodies have been produced against the 46,000 Mr Class 1 proteins which are shared to some extent among strains of different serotypes. (Frasch, C.E.
et al., (1985) pg. 633,"New Developments in Meningococcal Vaccines", in G.K. Schoolnik et al.
(ed.) The Pathogenic-Neisseriae, American Society for Microbiology, Washington, D.C.).
The capsular polysaccharides of groups A, C, W-135 and Y meningococci have been used to develop vaccines against the organism. Although these vaccines have been effective in the short term, they do not induce immunological memory and subjects must be revaccinated within approximately 3 years to maintain their resistance. The group B polysaccha-ride is poorly immunogenic and successful vaccines have not been produced. A possible explanation for the low activity may be due to tolerance to the group B polysaccharide induced by crossreactive antigens found in. human tissues such as the brain.
Furthermore, studies show that most of the bacter-icidal antibodies in the convelescent sera of patients who have had group B meningococcal disease are directed against outer membrane proteins.
Vaccines for protecting against group B menin-gococcal disease have been developed in which non-covalent complexes of outer membrane proteins (OMP) and group B polysaccharide were administered.
.Beuvery,.et al. (1983) Infect. Immun. 40:369-380.
However, the B polysaccharide is known to induce a transient IgM antibody response, which does not confer immunoprotection. Furthermore, there is great antigenic diversity and variability in the meningococci outer membrane proteins from strain to strain. Additionally, lipopolysaccharides are present in the OMP and exhibit antigenic variability as well.
There is a need for safe and effective vaccines against meningococcal disease which provide immunity from infection, particularly in infants and the elderly.
SummarY-of-the Invention ---------------------This invention pertains to isolated outer membrane vesicles (OMV's), to substantially purified Class 1 outer membrane protein (OMP) of Neisseria meningitidis, to fragments of the Class I OMP and to oligopeptides derived from the Class I OMP which contain continuous or discontinuous, immunogenic and protective B cell epitopes reactive with bactericidal antibodies against N. meningitidis and to the use of isolated OMV's, the meningococcal Class I OMP, fragments or oligopeptides for vaccination against N. menin~itidis.
The isolated OMV's, meningococcal Class I OMP, fragments or oligopeptides derived therefrom can be used in univalent or multivalent subunit vaccines alone, in mixtures, or as chemical conjugates or genetic fusions. In preferred vaccines, epitopes from different epidemiologically relevant meningococcal strains are used. In addition, isolated OMV's, the Class I OMP, fragments or oligopeptides can be used in conjunction (as mixtures, fusions or conjugates) with other antigens of N. meningitidis. For example, they can be used in conjunction with capsular polymers or oligomers (or fragments thereof) of N. meninqitidis or with Class I outer membrane proteins (or epitopes thereof) of different subtypes. In addition, they can be used with antigens of other infectious bacteria, viruses, fungi or parasites. Class I OMP
T cell epitopes also are defined and these can be used in conjunction with other vaccine components to enhance the protective immune response to the vaccines.
This invention also pertains to the methods of producing isolated OMV's, the Class I OMP, fragments and oligopeptides and to various vaccine formulations containing them. The isolated OMV's Class I OMP can be produced by mutant meningococcal strains which do not express the Class 2/3 outer membrane protein. Fragments can be produced by cyanogen bromide cleavage and subsequent purification.
Isolated OMV's, the Class I OMP, fragments or oligopeptides can be produced by recombinant DNA
techniques, chemical synthesis or chemical or enzymatic cleavage. These materials, in turn, can be conjugated or fused to carrier peptides or proteins, to other antigens of N. meningitidis or to antigens of other microorganisms by chemical or genetic coupling techniques to produce multivalent antigenic conjugates and fusion peptides or proteins. They can be modified for conjugation such as by the addition of amino acids or other coupl:Lng groups. For vaccination, isolated OMV's, the Class I OMP, fragments or oligopeptides, in any of the forms described, can be formulated in pharmaceutically acceptable vehicles with optional additives such as adjuvants.
This invention also pertains to isolated nucleic acids which encode Class I OMP, fragments or oligopeptides. The nucleic acids can be incorporated into appropriate expression systems for production of isolated OMV's, Class I OMP, fragments or any oligopeptides derived therefrom. These nucleic acids can be modified as genetic fusions to contain sequences encoding additional polypeptides useful in enhancing the immune response to the vaccine formulation containing the expressed fusion polypeptides. In addition, Class I OMP of N. meningitidis is homologous in amino acid sequence and structure to porin proteins of other gram negative pathogens and thus the Class I OMP, fragments and oligopeptides of this invention allow for the development of vaccines for other gram negative pathogens.

More particularly, in one aspect the invention provides a vaccine effective against meningococcal disease, comprising an outer-membrane vesicle which comprises Class 1 outer-membrane protein and which is isolated from Neisseria meningitidis strain HIII-5 deposited as CBS 636.89.

In another aspect, the invention provides substantially purified CNBr fragment of Class 1 outer-membrane protein of Neisseria meningitidis, the fragment having a molecular weight of 25 kD, wherein the Class 1 outer-membrane protein has an amino acid sequence selected from the group consisting of:
DVSLYGEIKAGVEGRNIQAQLTEQPQVTNGVQGNQVKVTKAKSRIRTKISDFGSFIGFKGSE
DLGEGLKAVWQLEQDVSVAGGGASQWGNRESFIGLAGEFGTLRAGRVANQFDDASQAINPWD
SNNDVASQLGIFKRHDDMPVSVRYDSPEFSGFSGSVQFVPAQNSKSAYKPAYYTKDTNNNLT
LVPAVVGKPGSDVYYAGLNYKNGGFAGNYAFKYARHANVGRNAFELFLIGSATSDEAKGTDP
LKNHQVHRLTGGYEEGGLNLALAAQLDLSENGDKAKTKNSTTEIAATASYRFGNAVPRISYA
HGFDLIERGKKGENTSYDQIIAGVDYDFSKRTSAIVSGAWLKRNTGIGNYTQINAASVGLRH
KF;

DVSLYGEIKAGVEGRNFQLQLTEPPSKSQPQVKVTKAKSRIRTKISDFGSFIGFKGSEDLGE
GLKAVWQLEQDVSVAGGGATQWGNRESFVGLAGEFGTLRAGRVANQFDDASQAIDPWDSNND
VASQLGIFKRHDDMPVSVRYDSPDFSGFSGSVQFVPIQNSKSAYTPAHYTRQNNTDVFVPAV
VGKPGSDVYYAGLNYKNGGFAGSYAFKYARHANVGRDAFELFLLGSTSDEAKGTDPLKNHQV
HRLTGGYEEGGLNLALAAQLDLSENGDKAKTKNSTTEIAATASYRFGNAVPRISYAHGFDLI
ERGKKGENTSYDQIIAGVDYDFSKRTSAIVSGAWLKRNTGIGNYTQINAASVGLRHKF;
DVSLYGEIKAGVEGRNYQLQLTEAQAANGGASGQVKVTKVTKAKSRIRTKISDFGSFIGFKG
SEDLGDGLKAVWQLEQDVSVAGGGATQWGNRESFIGLAGEFGTLRAGRVANQFDDASQAIDP
WDSNNDVASQLGIFKRHDDMPVSVRYDSPEFSGFSGSVQFVPIQNSKSAYTPAYYTKNTNNN
LTLVPAVVGKPGSDVYYAGLNYKNGGFAGNYAFKYARHANVGRNAFELFLIGSGSDQAKGTD
PLKNHQVHRLTGGYEEGGLNLALAAQLDLSENGDKTKNSTTEIAATASYRFGNAVPRISYAH
GFDFIERGKKGENTSYDQIIAGVDYDFSKRTSAIVSGAWLKRNTGIGNYTQINAASVGLRHK
F; and -6a-DVSLYGEIKAGVEGRNIQLQLTEPLQNIQQPQVTKAKSRIRTKISDFGSFIGFKGSEDLGEGLKA
VWQLEQDVSVAGGGATRWGNRESFVGLAGEFGTLRAGRVANQFDDASKAIDPWDSNNVVASQLGI
FKRMDDMPVSVRYDSPEFSGFSGSVQFVPAQNSKSAYTPAHFVQQTPQQSPTLVPAVVGKPGSDV
YYAGLNYKNGGFAGNYAFKYAKHANVGRDAFELFLLGSGSDEAKGTDPLKNHQVHRLTGGYEEGG
LNLALAAQLDLSENADKTKNSTTEIAATASYRFGNAVPRISYAHGFDFIERGKKGENTSYDQIIA
GVDYDFSKRTSAIVSGAWLKRNTGIGNYTQINAASVGLRHKF.

In another aspect, the invention provides a substantially purified oligopeptide having an amino acid sequence selected from the group consisting of YYTKNTNNNL, HFVQQTPQSQP, YYTKDTNNNL, YTKDTNNNLT, TKDTNNNLTL, KDTNNNLTLV, AQAANGGASG, QAANGGASGQ, AANGGASGQV, ANGGASGQVK, NGGASGQVKV, GGASGQVKVT, GASGQVKVTK, ASGQVKVTKV, SGQVKVTKVT, PAHYTRQNNT, AHYTRQNNTD, HYTRQNNTDVF, TRQNNTDVFV, RQNNTDVFVP, QNNTDVFVP, QNNTDVFVPA, NNTDVFVPAV, ANVGRNAFELFLIGSATSDEAKG, NIQAQLTEQPQVTNGVQGN, TKISDFGSFIGFK, VSVAGGGASQWGN, TLRAGRVANQFDDASQAIN, DSNNDVASQLGIFK, GGFSGFSG, LSENGDKAKTKNSTTE and VPRISYAHGFDLIERGKKG.

In another aspect, the invention provides a genetic fusion peptide or protein, comprising a peptide to which an anti-meningococcal outer-membrane protein antibody binds, fused to a carrier polypeptide, wherein the peptide is selected from the group consisting of QPQVTNGVQGN, PPSKSQP, AQAANGGASG, YYTKDTNNNLTL, YYTKNTNNNLTL, YYTKDTNNNL, YYTKNTNNNL, HFVQQTPQSQP
and HYTRQNNTDVF.

In another aspect, the invention provides a vaccine effective against meningococcal disease, comprising an outer-membrane vesicle isolated from Neisseria meningitidis strain HIII-5 deposited as CBS 636.89 that has been genetically modified to express more than one subtype of meningococcal Class 1 outer-membrane protein, the vesicle comprising meningococcal Class 1 outer-membrane proteins of more than one subtype.

-6b-In still another aspect, the invention provides a vaccine comprising a pharmaceutically acceptable vehicle and a fragment of a meningococcal Class 1 outer-membrane protein obtained by use of a reagent selected from the group consisting of:

a. cyanogen bromide, b. endoproteinase Lys-C;
c. endoproteinase Arg-C; and d. endoproteinase Glu-C;
wherein the meningococcal Class 1 outer-membrane protein has an amino acid sequence selected from the group consisting of:
DVSLYGEIKAGVEGRNIQAQLTEQPQVTNGVQGNQVKVTKAKSRIRTKISDFGSFIGFKGSEDLG
EGLKAVWQLEQDVSVAGGGASQWGNRESFIGLAGEFGTLRAGRVANQFDDASQAINPWDSNNDVA
SQLGIFKRHDDMPVSVRYDSPEFSGFSGSVQFVPAQNSKSAYKPAYYTKDTNNNLTLVPAVVGKP
GSDVYYAGLNYKNGGFAGNYAFKYARHANVGRNAFELFLIGSATSDEAKGTDPLKNHQVHRLTGG
YEEGGLNLALAAQLDLSENGDKAKTKNSTTEIAATASYRFGNAVPRISYAHGFDLIERGKKGENT
SYDQIIAGVDYDFSKRTSAIVSGAWLKRNTGIGNYTQINAASVGLRHKF;
DVSLYGEIKAGVEGRNFQLQLTEPPSKSQPQVKVTKAKSRIRTKISDFGSFIGFKGSEDLGEGLK
AVWQLEQDVSVAGGGATQWGNRESFVGLAGEFGTLRAGRVANQFDDASQAIDPWDSNNDVASQLG
IFKRHDDMPVSVRYDSPDFSGFSGSVQFVPIQNSKSAYTPAHYTRQNNTDVFVPAVVGKPGSDVY
YAGLNYKNGGFAGSYAFKYARHANVGRDAFELFLLGSTSDEAKGTDPLKNHQVHRLTGGYEEGGL
NLALAAQLDLSENGDKAKTKNSTTEIAATASYRFGNAVPRISYAHGFDLIERGKKGENTSYDQII
AGVDYDFSKRTSAIVSGAWLKRNTGIGNYTQINAASVGLRHKF;
DVSLYGEIKAGVEGRNYQLQLTEAQAANGGASGQVKVTKVTKAKSRIRTKISDFGSFIGFKGSED
LGDGLKAVWQLEQDVSVAGGGATQWGNRESFIGLAGEFGTLRAGRVANQFDDASQAIDPWDSNND
VASQLGIFKRHDDMPVSVRYDSPEFSGFSGSVQFVPIQNSKSAYTPAYYTKNTNNNLTLVPAVVG
KPGSDVYYAGLNYKNGGFAGNYAFKYARHANVGRNAFELFLIGSGSDQAKGTDPLKNHQVHRLTG
GYEEGGLNLALAAQLDLSENGDKTKNSTTEIAATASYRFGNAVPRISYAHGFDFIERGKKGENTS
YDQIIAGVDYDFSKRTSAIVSGAWLKRNTGIGNYTQINAASVGLRHKF, and -6c-DVSLYGEIKAGVEGRNIQLQLTEPLQNIQQPQVTKAKSRIRTKISDFGSFIGFKGSEDLGEGLKA
VWQLEQDVSVAGGGATRWGNRESFVGLAGEFGTLRAGRVANQFDDASKAIDPWDSNNVVASQLGI
FKRMDDMPVSVRYDSPEFSGFSGSVQFVPAQNSKSAYTPAHFVQQTPQQSPTLVPAVVGKPGSDV
YYAGLNYKNGGFAGNYAFKYAKHANVGRDAFELFLLGSGSDEAKGTDPLKNHQVHRLTGGYEEGG
LNLALAAQLDLSENADKTKNSTTEIAATASYRFGNAVPRISYAHGFDFIERGKKGENTSYDQIIA
GVDYDFSKRTSAIVSGAWLKRNTGIGNYTQINAASVGLRHKF.

In another aspect, the invention provides a vaccine comprising a pharmaceutically acceptable vehicle and a peptide having an amino acid sequence selected from the group consisting of QPQVTNGVQGN, PPSKSQP, AQAANGGASG, YYTKDTNNNLTL, YYTKNTNNNLTL, YYTKDTNNNL, YYTKNTNNNL, HFVQQTPQSQP and HYTRQNNTDVF.

In another aspect, the invention provides a vaccine effective against Neisseria meningitidis, comprising a pharmaceutically acceptable vehicle and a peptide having an amino acid sequence selected from the group consisting of QPQVTNGVQGN, EAQAANGGASGQ, YYTKDTNNNLTL and YYTKNTNNNLT.

In still another aspect, the invention provides a vaccine comprising a pharmaceutically acceptable vehicle, and a conjugate of Neisseria meningitidis Class 1 outer-membrane protein and meningococcal polysaccharide selected from the group consisting of A, B, W-135 and Y polysaccharide, wherein the Class 1 outer-membrane protein has an amino acid sequence selected from the group consisting of:

-6d-DVSLYGEIKAGVEGRNIQAQLTEQPQVTNGVQGNQVKVTKAKSRIRTKISDFGSFIGFKGSEDLG
EGLKAVWQLEQDVSVAGGGASQWGNRESFIGLAGEFGTLRAGRVANQFDDASQAINPWDSNNDVA
SQLGIFKRHDDMPVSVRYDSPEFSGFSGSVQFVPAQNSKSAYKPAYYTKDTNNNLTLVPAVVGKP
GSDVYYAGLNYKNGGFAGNYAFKYARHANVGRNAFELFLIGSATSDEAKGTDPLKNHQVHRLTGG
YEEGGLNLALAAQLDLSENGDKAKTKNSTTEIAATASYRFGNAVPRISYAHGFDLIERGKKGENT
SYDQIIAGVDYDFSKRTSAIVSGAWLKRNTGIGNYTQINAASVGLRHKF;

DVSLYGEIKAGVEGRNFQLQLTEPPSKSQPQVKVTKAKSRIRTKISDFGSFIGFKGSEDLGEGLK
AVWQLEQDVSVAGGGATQWGNRESFVGLAGEFGTLRAGRVANQFDDASQAIDPWDSNNDVASQLG
IFKRHDDMPVSVRYDSPDFSGFSGSVQFVPIQNSKSAYTPAHYTRQNNTDVFVPAVVGKPGSDVY
YAGLNYKNGGFAGSYAFKYARHANVGRDAFELFLLGSTSDEAKGTDPLKNHQVHRLTGGYEEGGL
NLALAAQLDLSENGDKAKTKNSTTEIAATASYRFGNAVPRISYAHGFDLIERGKKGENTSYDQII
AGVDYDFSKRTSAIVSGAWLKRNTGIGNYTQINAASVGLRHKF;

DVSLYGEIKAGVEGRNYQLQLTEAQAANGGASGQVKVTKVTKAKSRIRTKISDFGSFIGFKGSED
LGDGLKAVWQLEQDVSVAGGGATQWGNRESFIGLAGEFGTLRAGRVANQFDDASQAIDPWDSNND
VASQLGIFKRHDDMPVSVRYDSPEFSGFSGSVQFVPIQNSKSAYTPAYYTKNTNNNLTLVPAVVG
KPGSDVYYAGLNYKNGGFAGNYAFKYARHANVGRNAFELFLIGSGSDQAKGTDPLKNHQVHRLTG
GYEEGGLNLALAAQLDLSENGDKTKNSTTEIAATASYRFGNAVPRISYAHGFDFIERGKKGENTS
YDQIIAGVDYDFSKRTSAIVSGAWLKRNTGIGNYTQINAASVGLRHKF, and DVSLYGEIKAGVEGRNIQLQLTEPLQNIQQPQVTKAKSRIRTKISDFGSFIGFKGSEDLGEGLKA
VWQLEQDVSVAGGGATRWGNRESFVGLAGEFGTLRAGRVANQFDDASKAIDPWDSNNVVASQLGI
FKRMDDMPVSVRYDSPEFSGFSGSVQFVPAQNSKSAYTPAHFVQQTPQQSPTLVPAVVGKPGSDV
YYAGLNYKNGGFAGNYAFKYAKHANVGRDAFELFLLGSGSDEAKGTDPLKNHQVHRLTGGYEEGG
LNLALAAQLDLSENADKTKNSTTEIAATASYRFGNAVPRISYAHGFDFIERGKKGENTSYDQIIA
GVDYDFSKRTSAIVSGAWLKRNTGIGNYTQINAASVGLRHKF.

In still another aspect, the invention provides an antigenic conjugate, said conjugate comprising an antigenic carrier polypeptide, and a meningococcal Class 1 outer-membrane protein, wherein said Class 1 outer-membrane protein has an amino acid sequence selected from the group consisting of:

-6e-DVSLYGEIKAGVEGRNIQAQLTEQPQVTNGVQGNQVKVTKAKSRIRTKISDFGSFIGFKGSEDLG
EGLKAVWQLEQDVSVAGGGASQWGNRESFIGLAGEFGTLRAGRVANQFDDASQAINPWDSNNDVA
SQLGIFKRHDDMPVSVRYDSPEFSGFSGSVQFVPAQNSKSAYKPAYYTKDTNNNLTLVPAVVGKP
GSDVYYAGLNYKNGGFAGNYAFKYARHANVGRNAFELFLIGSATSDEAKGTDPLKNHQVHRLTGG
YEEGGLNLALAAQLDLSENGDKAKTKNSTTEIAATASYRFGNAVPRISYAHGFDLIERGKKGENT
SYDQIIAGVDYDFSKRTSAIVSGAWLKRNTGIGNYTQINAASVGLRHKF;

DVSLYGEIKAGVEGRNFQLQLTEPPSKSQPQVKVTKAKSRIRTKISDFGSFIGFKGSEDLGEGLK
AVWQLEQDVSVAGGGATQWGNRESFVGLAGEFGTLRAGRVANQFDDASQAIDPWDSNNDVASQLG
IFKRHDDMPVSVRYDSPDFSGFSGSVQFVPIQNSKSAYTPAHYTRQNNTDVFVPAVVGKPGSDVY
YAGLNYKNGGFAGSYAFKYARHANVGRDAFELFLLGSTSDEAKGTDPLKNHQVHRLTGGYEEGGL
NLALAAQLDLSENGDKAKTKNSTTEIAATASYRFGNAVPRISYAHGFDLIERGKKGENTSYDQII
AGVDYDFSKRTSAIVSGAWLKRNTGIGNYTQINAASVGLRHKF;

DVSLYGEIKAGVEGRNYQLQLTEAQAANGGASGQVKVTKVTKAKSRIRTKISDFGSFIGFKGSED
LGDGLKAVWQLEQDVSVAGGGATQWGNRESFIGLAGEFGTLRAGRVANQFDDASQAIDPWDSNND
VASQLGIFKRHDDMPVSVRYDSPEFSGFSGSVQFVPIQNSKSAYTPAYYTKNTNNNLTLVPAVVG
KPGSDVYYAGLNYKNGGFAGNYAFKYARHANVGRNAFELFLIGSGSDQAKGTDPLKNHQVHRLTG
GYEEGGLNLALAAQLDLSENGDKTKNSTTEIAATASYRFGNAVPRISYAHGFDFIERGKKGENTS
YDQIIAGVDYDFSKRTSAIVSGAWLKRNTGIGNYTQINAASVGLRHKF; and DVSLYGEIKAGVEGRNIQLQLTEPLQNIQQPQVTKAKSRIRTKISDFGSFIGFKGSEDLGEGLKA
VWQLEQDVSVAGGGATRWGNRESFVGLAGEFGTLRAGRVANQFDDASKAIDPWDSNNVVASQLGI
FKRMDDMPVSVRYDSPEFSGFSGSVQFVPAQNSKSAYTPAHFVQQTPQQSPTLVPAVVGKPGSDV
YYAGLNYKNGGFAGNYAFKYAKHANVGRDAFELFLLGSGSDEAKGTDPLKNHQVHRLTGGYEEGG
LNLALAAQLDLSENADKTKNSTTEIAATASYRFGNAVPRISYAHGFDFIERGKKGENTSYDQIIA
GVDYDFSKRTSAIVSGAWLKRNTGIGNYTQINAASVGLRHKF.

In another aspect, the invention provides a recombinant microorganism which expresses a peptide selected from the group consisting of QPQVINGVQCN, PPSKSQP, QAANOGASG, YYTKUINZRII,TL, YY'I'fQVIDNNLTL, YYTfOINNNL, YYTKNIMM, HFVQQTPQSQP and HYTRQDIIaI'DVF.

-6f-In still another aspect, the invention provides a recombinant microorganism capable of expressing a fusion protein comprising a modified flagellin protein and an epitope which binds to antibodies specific to a Neisseria meningitidis Class 1 outer-membrane protein, wherein the epitope is defined by an amino acid sequence selected from the group consisting of YYTKNTNNNL, HFVQQTPQSQP, YYTKDTNNNL, YTKDTNNNLT, TKDTNNNLTL, KDTNNNLTLV, AQAANGGASG, QAANGGASGQ, AANGGASGQV, ANGGASGQVK, NGGASGQVKV, GGASGQVKVT, GASGQVKVTK, ASGQVKVTKV, SGQVKVTKVT, PAHYTRQNNT, AHYTRQNNTD, HYTRQNNTDVF, TRQNNTDVFV, It~tTIIn7FVP, QWIDVFVP, QWIi7VFVPA, NgIi7VFVPAV, ANVGRNAFELFLIGSATSDEAKG, NIQAQLTDQPQV'TNGVQGN, TKISDFGSFIGFK, VSVACOC-A.SQWGQ, TLRAGRVANQFDDASQAIN, DSNN7VASQLGIFK, GGFSGFSG, LSENGDKAKTKNSTTE and VPRISYAHGFDLIERGKKG.

In another aspect, the invention provides the Neisseria meningitidis strain consisting of HIII-5, deposit number CBS
636.89.

In another aspect, the invention provides a strain of Neisseria meningitidis which is transformed with a gene encoding a Class 1 outer-membrane protein of Neisseria meningitidis or a fusion protein thereof, wherein the Class 1 outer-membrane protein has a molecular weight of 42 kD to 46 kD and comprises an amino acid sequence selected from the group consisting of:

DVSLYGEIKAGVEGRNIQAQLTEQPQVTNGVQGNQVKVTKAKSRIRTKISDFGSFIGFKGSEDLG
EGLKAVWQLEQDVSVAGGGASQWGNRESFIGLAGEFGTLRAGRVANQFDDASQAINPWDSNNDVA
SQLGIFKRHDDMPVSVRYDSPEFSGFSGSVQFVPAQNSKSAYKPAYYTKDTNNNLTLVPAVVGKP
GSDVYYAGLNYKNGGFAGNYAFKYARHANVGRNAFELFIGSATSDEAKGTDPLKNHQVHRLTGGY
EEGGLNLALAAQLDLSENGDKAKTKNSTTEIAATASYRFGNAVPRISYAHGFDLIERGKKGENTS
YDQIIAGVDYDFSKRTSAIVSGAWLKRNTGIGNYTQINAASVGLRHKF;

-6g-DVSLYGEIKAGVEGRNFQLQLTEPPSKSQPQVKVTKAKSRIRTKISDFGSFIGFKGSEDLGEGLK
AVWQLEQDVSVAGGGATQWGNRESFVGLAGEFGTLRAGRVANQFDDASQAIDPWDSNNDVASQLG
IFKRHDDMPVSVRYDSPDFSGFSGSVQFVPIQNSKSAYTPAHYTRQNNTDVFVPAVVGKPGSDVY
YAGLNYKNGGFAGSYAFKYARHANVGRDAFELFLLGSTSDEAKGTDPLKNHQVHRLTGGYEEGGL
NLALAAQLDLSENGDKAKTKNSTTEIAATASYRFGNAVPRISYAHGFDLIERGKKGENTSYDQII
AGVDYDFSKRTSAIVSGAWLKRNTGIGNYTQINAASVGLRHKF;

DVSLYGEIKAGVEGRNYQLQLTEAQAANGGASGQVKVTKVTKAKSRIRTKISDFGSFIGFKGSED
LGDGLKAVWQLEQDVSVAGGGATQWGNRESFIGLAGEFGTLRAGRVANQFDDASQAIDPWDSNND
VASQLGIFKRHDDMPVSVRYDSPEFSGFSGSVQFVPIQNSKSAYTPAYYTKNTNNNLTLVPAVVG
KPGSDVYYAGLNYKNGGFAGNYAFKYARHANVGRNAFELFLIGSGSDQAKGTDPLKNHQVHRLTG
GYEEGGLNLALAAQLDLSENGDKTKNSTTEIAATASYRFGNAVPRISYAHGFDFIERGKKGENTS
YDQIIAGVDYDFSKRTSAIVSGAWLKRNTGIGNYTQINAASVGLRHKF; and DVSLYGEIKAGVEGRNIQLQLTEPLQNIQQPQVTKAKSRIRTKISDFGSFIGFKGSEDLGEGLKA
VWQLEQDVSVAGGGATRWGNRESFVGLAGEFGTLRAGRVANQFDDASKAIDPWDSNNVVASQLGI
FKRMDDMPVSVRYDSPEFSGFSGSVQFVPAQNSKSAYTPAHFVQQTPQQSPTLVPAVVGKPGSDV
YYAGLNYKNGGFAGNYAFKYAKHANVGRDAFELFLLGSGSDEAKGTDPLKNHQVHRLTGGYEEGG
LNLALAAQLDLSENADKTKNSTTEIAATASYRFGNAVPRISYAHGFDFIERGKKGENTSYDQIIA
GVDYDFSKRTSAIVSGAWLKRNTGIGNYTQINAASVGLRHKF.

In still another aspect, the invention provides a recombinant microorganism capable of expressing Neisseria meningitidis Class 1 outer-membrane proteins of more than one subtype, wherein at least one of the Class 1 outer-membrane proteins has a molecular weight of 42 kD to 46 kD and comprises an amino acid sequence selected from the group consisting of:

DVSLYGEIKAGVEGRNIQAQLTEQPQVTNGVQGNQVKVTKAKSRIRTKISDFGSFIGFKGSEDLG
EGLKAVWQLEQDVSVAGGGASQWGNRESFIGLAGEFGTLRAGRVANQFDDASQAINPWDSNNDVA
SQLGIFKRHDDMPVSVRYDSPEFSGFSGSVQFVPAQNSKSAYKPAYYTKDTNNNLTLVPAVVGKP
GSDVYYAGLNYKNGGFAGNYAFKYARHANVGRNAFELFLIGSATSDEAKGTDPLKNHQVHRLTGG
YEEGGLNLALAAQLDLSENGDKAKTKNSTTEIAATASYRFGNAVPRISYAHGFDLIERGKKGENT
SYDQIIAGVDYDFSKRTSAIVSGAWLKRNTGIGNYTQINAASVGLRHKF;

-6h-DVSLYGEIKAGVEGRNFQLQLTEPPSKSQPQVKVTKAKSRIRTKISDFGSFIGFKGSEDLGEGLK
AVWQLEQDVSVAGGGATQWGNRESFVGLAGEFGTLRAGRVANQFDDASQAIDPWDSNNDVASQLG
IFKRHDDMPVSVRYDSPDFSGFSGSVQFVPIQNSKSAYTPAHYTRQNNTDVFVPAVVGKPGSDVY
YAGLNYKNGGFAGSYAFKYARHANVGRDAFELFLLGSTSDEAKGTDPLKNHQVHRLTGGYEEGGL
NLALAAQLDLSENGDKAKTKNSTTEIAATASYRFGNAVPRISYAHGFDLIERGKKGENTSYDQII
AGVDYDFSKRTSAIVSGAWLKRNTGIGNYTQINAASVGLRHKF;

DVSLYGEIKAGVEGRNYQLQLTEAQAANGGASGQVKVTKVTKAKSRIRTKISDFGSFIGFKGSED
LGDGLKAVWQLEQDVSVAGGGATQWGNRESFIGLAGEFGTLRAGRVANQFDDASQAIDPWDSNND
VASQLGIFKRHDDMPVSVRYDSPEFSGFSGSVQFVPIQNSKSAYTPAYYTKNTNNNLTLVPAVVG
KPGSDVYYAGLNYKNGGFAGNYAFKYARHANVGRNAFELFLIGSGSDQAKGTDPLKNHQVHRLTG
GYEEGGLNLALAAQLDLSENGDKTKNSTTEIAATASYRFGNAVPRISYAHGFDFIERGKKGENTS
YDQIIAGVDYDFSKRTSAIVSGAWLKRNTGIGNYTQINAASVGLRHKF; and DVSLYGEIKAGVEGRNIQLQLTEPLQNIQQPQVTKAKSRIRTKISDFGSFIGFKGSEDLGEGLKA
VWQLEQDVSVAGGGATRWGNRESFVGLAGEFGTLRAGRVANQFDDASKAIDPWDSNNVVASQLGI
FKRMDDMPVSVRYDSPEFSGFSGSVQFVPAQNSKSAYTPAHFVQQTPQQSPTLVPAVVGKPGSDV
YYAGLNYKNGGFAGNYAFKYAKHANVGRDAFELFLLGSGSDEAKGTDPLKNHQVHRLTGGYEEGG
LNLALAAQLDLSENADKTKNSTTEIAATASYRFGNAVPRISYAHGFDFIERGKKGENTSYDQIIA
GVDYDFSKRTSAIVSGAWLKRNTGIGNYTQINAASVGLRHKF.

In another aspect, the invention provides an isolated nucleic acid encoding a Neisseria rneningitidis Class 1 outer-membrane protein, said protein having an amino acid sequence selected from the group consisting of:

DVSLYGEIKAGVEGRNIQAQLTEQPQVTNGVQGNQVKVTKAKSRIRTKISDFGSFIGFKGSEDLG
EGLKAVWQLEQDVSVAGGGASQWGNRESFIGLAGEFGTLRAGRVANQFDDASQAINPWDSNNDVA
SQLGIFKRHDDMPVSVRYDSPEFSGFSGSVQFVPAQNSKSAYKPAYYTKDTNNNLTLVPAVVGKP
GSDVYYAGLNYKNGGFAGNYAFKYARHANVGRNAFELFLIGSATSDEAKGTDPLKNHQVHRLTGG
YEEGGLNLALAAQLDLSENGDKAKTKNSTTEIAATASYRFGNAVPRISYAHGFDLIERGKKGENT
SYDQIIAGVDYDFSKRTSAIVSGAWLKRNTGIGNYTQINAASVGLRHKF;

-6i-DVSLYGEIKAGVEGRNFQLQLTEPPSKSQPQVKVTKAKSRIRTKISDFGSFIGFKGSEDLGEGLK
AVWQLEQDVSVAGGGATQWGNRESFVGLAGEFGTLRAGRVANQFDDASQAIDPWDSNNDVASQLG
IFKRHDDMPVSVRYDSPDFSGFSGSVQFVPIQNSKSAYTPAHYTRQNNTDVFVPAVVGKPGSDVY
YAGLNYKNGGFAGSYAFKYARHANVGRDAFELFLLGSTSDEAKGTDPLKNHQVHRLTGGYEEGGL
NLALAAQLDLSENGDKAKTKNSTTEIAATASYRFGNAVPRISYAHGFDLIERGKKGENTSYDQII
AGVDYDFSKRTSAIVSGAWLKRNTGIGNYTQINAASVGLRHKF;

DVSLYGEIKAGVEGRNYQLQLTEAQAANGGASGQVKVTKVTKAKSRIRTKISDFGSFIGFKGSED
LGDGLKAVWQLEQDVSVAGGGATQWGNRESFIGLAGEFGTLRAGRVANQFDDASQAIDPWDSNND
VASQLGIFKRHDDMPVSVRYDSPEFSGFSGSVQFVPIQNSKSAYTPAYYTKNTNNNLTLVPAVVG
KPGSDVYYAGLNYKNGGFAGNYAFKYARHANVGRNAFELFLIGSGSDQAKGTDPLKNHQVHRLTG
GYEEGGLNLALAAQLDLSENGDKTKNSTTEIAATASYRFGNAVPRISYAHGFDFIERGKKGENTS
YDQIIAGVDYDFSKRTSAIVSGAWLKRNTGIGNYTQINAASVGLRHKF; and DVSLYGEIKAGVEGRNIQLQLTEPLQNIQQPQVTKAKSRIRTKISDFGSFIGFKGSEDLGEGLKA
VWQLEQDVSVAGGGATRWGNRESFVGLAGEFGTLRAGRVANQFDDASKAIDPWDSNNVVASQLGI
FKRMDDMPVSVRYDSPEFSGFSGSVQFVPAQNSKSAYTPAHFVQQTPQQSPTLVPAVVGKPGSDV
YYAGLNYKNGGFAGNYAFKYAKHANVGRDAFELFLLGSGSDEAKGTDPLKNHQVHRLTGGYEEGG
LNLALAAQLDLSENADKTKNSTTEIAATASYRFGNAVPRISYAHGFDFIERGKKGENTSYDQIIA
GVDYDFSKRTSAIVSGAWLKRNTGIGNYTQINAASVGLRHKF.

In still another aspect, the invention provides an isolated nucleic acid having a nucleotide sequence selected from the group consisting of GGCAGGAACTACCAGCTGCAATTGACTGAAGCACAAGCCGCTAACGGTGGAGCGAGCGGTCAGGT
AAAAGTTACTAAAGTTACTAAGGCCAAAAGCCGCATCAGGACGAAAATCAGT;
GGCAGGAACATCTAGGCGCAATTGACCGAGCAGCCCCAAGCAACTAACGGTGTGCAAGGCGGTCG
GCAAGGCAATCAGGTAACAGTTACTAAGGTCAAAAGCCGCATCAGGACGGAAATCAGC;
GGCAGGAACTTCCAGCTGCAGTTGACCGAACCGCCCTCAAAGAGTCAACCTCAGGTAAAAGTTAC
TAAGGCCAAAAGCCGCATCAGGACGAAAATCAGT;

-6j-GGCAACAACATTCAGCTGCAATTGACCGAACCACCCTCAAAAGGTCAGACGGGCAATAAAGTTAC
TAAGGCCAAAAGCCGCATCAGGACGAAAATCAGT;
GGCAGGAACTACCAGCTGCAATTGACTGAACAACCCTCAAGAACTCAAGGTCAAACGAGCAATCA
GGTAAAAGTTACTAAGGCCAAAAGCCGCATCAGGACGAAAATCAGT; and GGCAGGAACATCCAGCTGCAGTTGACCGAACCGCTCCCAAATATTCAACCTCAGGTTACTAAGCG
CAAAAGCCGCATCAGGACGAAAATCAGC.

In still another aspect, the invention provides an isolated nucleic acid, having a nucleotide sequence selected from the group consisting of ACGCTGCGCGCCGGTCGCGTTGCGAATCAGTTTGACGATGCCAGCCAAGCCATTGATCCTTGGGA
CAGCAATAATGATGTGGCTTCGCAATTGGGTATTTTCAAACGCCACGACGACATGCCGGTTTCTG
TACGCTACGATTCCCCCGAATTTTCCGGTTTCAGCGGCAGCGTTCAATTCGTTCCGATCCAAAAC
AGCAAGTCCGCCTATACGCCGGCTTATTATACTAAGGATACAAACAATAATCTTACTCTCGTTCC
GGCTGTTGTCGGCAAGCCCGGATCGGATGTGTATTATGCCGGTCTGAATTACAAAAATGGCGGTT
TTGCCGGGAACTATGCCTTTAAATATGCGAGACACGCCAATGTCGGACGTAATGCTTTTGAGTTG
TTC;

ACGCTGCGCACCGGTCGCGTTGCGAATCAGTTTGACGATGCCAGCCAAGCCATTGATCCTTGGGA
CAGCAATAATGATGTGGCTTCGCAATTGGGTATTTTCAAACGCCACGACGATATGCCGGTTTCTG
TACGCTACGACTCTCCGGACTTTTCCGGTTTCAGCGGCAGCGTCCAATTCGTTCCGGCTCAAAAC
AGCAAGTCCGCCTATACGCCGGCTTATGTGGCGGTGGAAAATGGCGTAGCTAAAAAAGTTGCGGC
TGTTGTCGGCAAGCCCGGATCGGATGTGTATTATGCCGGTCTGAATTATAAGAATGGCGGTTTTG
CCGGGAACTATGCCTTTAAATATGCGAAACACGCCAATGTCGGACGTGATGCTTTTGAGTTGTTC
ACGCTGCNNNNNGGTCGCGTCGCGAATCAGTTTGACGATGCCAGCCAAGCCATTGATCCTTGGGA
CAGCAACAATGATGTGGCTTCGCAATTGGGTATTTTCAAACGCCACGACGATATGCCGGTTTCTG
TACGCTACGACTCTCCGGACTTTTCCGGTTTCAGCGGCAGCGTCCAATTCGTTCCGATCCAAAAC
AGCAAGTCCGCCTATACGCCGGCTCATAATACTAGGCAGAACAATGCTGATGTTTTCGTTCCGGC
TGTTGTCGGCAAGCCCGGATCGGATGTGTATTATGCCGGTCTGAATTACAAAAATGGCGGTTTTG
CCGGGCGCTATGCCTTTAAATATGCGAGACACGCCAATGTCGGACGTGATGCTTTTGAGTTGTTC

-6k-CGCTACGACTCTCCGGACTTTTCCGGTTTCAGCGGCAGCGTCCAATTCGTTCCGGCCCAAAACAG
CAAATCCGCCTATACGCCGGCTACTTATACTGTGGATAGTAGTGGTGTTGTTACTCCCGTTCCTG
CTGTTGTCGGCAAGCCCGGATCGGATGTGTATTATGCCGGTCTGAATTACAAAAATGGCGGTTTT
GCCGGGAACTATGCCTTTAAATACGCGAAACACGCCAATGTGGGCCGTGATGCTTTTAATTTGTT
C;

CGCTACGACTCTCCGGACTTTTCCGGTTTCAGCGGCAGCGTCCAATTCGTTCCGGCTCAAAACAG
CAAGTCCGCCTATAAGCCGGCTTATGTGGATGAGAAGAAAATGGTTCATGCGGCTGTTGTCGGCA
AGCCCGGATCGGATGTGTATTATGCCGGTCTGAATTACAAAAATGGCGGTTTTGCCGGGAACTAT
GCCTTTAAATATGCGAAACACGCCAATGTGGGCCGTGATGCTTTTAATTTGTTC; and ACGCTGCGCACCGGTCGCGTTGCAAATCAGTTTGACGATGCCAGCCAAGCCATTGATCCTTGGGA
CAGCAATAATGATGTGGCTTCGCAATTGGGTATTTTCAAACGCCACGACGATATGTCGGTTTCTG
TACGCTACGATTCCCCCGAATTTTCCGGTTTTAGCGGCAGCGTCCAATTCGTTCCGGCCCAAAAC
AGCAAGTCCGCCTATACGCCGGCTCATTTTGTTCAGAATAAGCAAAATCAGCGGCCTACTCTCGT
TCCGGCTGTTGTCGGCAAGCCGGGGTCGGATGTGTATTATGCCGGTCTGAATTACAAAAATGGCG
GTTTTGCCGGGAACTATGCCTTTAAATACGCGAAACACGCCAATGTGGGCCGTGATGCTTTTGAG
TTGTTC.

In another aspect, the invention provides an expression vector comprising a nucleic acid encoding a Class 1 outer-membrane protein of Neisseria meningitidis or a fusion protein thereof comprising Class 1 outer-membrane protein of Neisseria meningitidis under the control of transcription signals and linked to appropriate translation signals for expression in a suitable host cell, wherein the Class 1 outer-membrane protein has a molecular weight of 42 kD to 46 kD and an amino acid sequence selected from the group consisting of:

DVSLYGEIKAGVEGRNIQAQLTEQPQVTNGVQGNQVKVTKAKSRIRTKISDFGSFIGFKGSEDLG
EGLKAVWQLEQDVSVAGGGASQWGNRESFIGLAGEFGTLRAGRVANQFDDASQAINPWDSNNDVA
SQLGIFKRHDDMPVSVRYDSPEFSGFSGSVQFVPAQNSKSAYKPAYYTKDTNNNLTLVPAVVGKP
GSDVYYAGLNYKNGGFAGNYAFKYARHANVGRNAFELFLIGSATSDEAKGTDPLKNHQVHRLTGG
YEEGGLNLALAAQLDLSENGDKAKTKNSTTEIAATASYRFGNAVPRISYAHGFDLIERGKKGENT
SYDQIIAGVDYDFSKRTSAIVSGAWLKRNTGIGNYTQINAASVGLRHKF;

DVSLYGEIKAGVEGRNFQLQLTEPPSKSQPQVKVTKAKSRIRTKISDFGSFIGFKGSEDLGEGLK
AVWQLEQDVSVAGGGATQWGNRESFVGLAGEFGTLRAGRVANQFDDASQAIDPWDSNNDVASQLG
IFKRHDDMPVSVRYDSPDFSGFSGSVQFVPIQNSKSAYTPAHYTRQNNTDVFVPAVVGKPGSDVY
YAGLNYKNGGFAGSYAFKYARHANVGRDAFELFLLGSTSDEAKGTDPLKNHQVHRLTGGYEEGGL
NLALAAQLDLSENGDKAKTKNSTTEIAATASYRFGNAVPRISYAHGFDLIERGKKGENTSYDQII
AGVDYDFSKRTSAIVSGAWLKRNTGIGNYTQINAASVGLRHKF;

DVSLYGEIKAGVEGRNYQLQLTEAQAANGGASGQVKVTKVTKAKSRIRTKISDFGSFIGFKGSED
LGDGLKAVWQLEQDVSVAGGGATQWGNRESFIGLAGEFGTLRAGRVANQFDDASQAIDPWDSNND
VASQLGIFKRHDDMPVSVRYDSPEFSGFSGSVQFVPIQNSKSAYTPAYYTKNTNNNLTLVPAVVG
KPGSDVYYAGLNYKNGGFAGNYAFKYARHANVGRNAFELFLIGSGSDQAKGTDPLKNHQVHRLTG
GYEEGGLNLALAAQLDLSENGDKTKNSTTEIAATASYRFGNAVPRISYAHGFDFIERGKKGENTS
YDQIIAGVDYDFSKRTSAIVSGAWLKRNTGIGNYTQINAASVGLRHKF; and DVSLYGEIKAGVEGRNIQLQLTEPLQNIQQPQVTKAKSRIRTKISDFGSFIGFKGSEDLGEGLKA
VWQLEQDVSVAGGGATRWGNRESFVGLAGEFGTLRAGRVANQFDDASKAIDPWDSNNVVASQLGI
FKRMDDMPVSVRYDSPEFSGFSGSVQFVPAQNSKSAYTPAHFVQQTPQQSPTLVPAVVGKPGSDV
YYAGLNYKNGGFAGNYAFKYAKHANVGRDAFELFLLGSGSDEAKGTDPLKNHQVHRLTGGYEEGG
LNLALAAQLDLSENADKTKNSTTEIAATASYRFGNAVPRISYAHGFDFIERGKKGENTSYDQIIA
GVDYDFSKRTSAIVSGAWLKRNTGIGNYTQINAASVGLRHKF.

In yet another aspect, the invention provides a method for producing Neisseria meningitidis Class 1 outer-membrane protein, said method comprising maintaining a host cell containing a recombinant nucleic acid encoding Neisseria meningitidis Class 1 outer-membrane protein under conditions suitable for expression thereof, whereby the Class 1 outer-membrane protein is expressed and thereby produced, wherein the Neisseria meningitidis Class 1 outer-membrane protein has a molecular weight of 42 kD to 46 kD
and comprises an amino acid sequence selected from the group consisting of:

-6m-DVSLYGEIKAGVEGRNIQAQLTEQPQVTNGVQGNQVKVTKAKSRIRTKISDFGSFIGFKGSEDLG
EGLKAVfnTQLEQDVSVAGGGASQWGNRESFIGLAGEFGTLRAGRVANQFDDASQAINPWDSNNDVA
SQLGIFKRHDDMPVSVRYDSPEFSGFSGSVQFVPAQNSKSAYKPAYYTKDTNNNLTLVPAVVGKP
GSDVYYAGLNYKNGGFAGNYAFKYARHANVGRNAFELFLIGSATSDEAKGTDPLKNHQVHRLTGG
YEEGGLNLALAAQLDLSENGDKAKTKNSTTEIAATASYRFGNAVPRISYAHGFDLIERGKKGENT
SYDQIIAGVDYDFSKRTSAIVSGAWLKRNTGIGNYTQINAASVGLRHKF;

DVSLYGEIKAGVEGRNFQLQLTEPPSKSQPQVKVTKAKSRIRTKISDFGSFIGFKGSEDLGEGLK
AVWQLEQDVSVAGGGATQWGNRESFVGLAGEFGTLRAGRVANQFDDASQAIDPWDSNNDVASQLG
IFKRHDDMPVSVRYDSPDFSGFSGSVQFVPIQNSKSAYTPAHYTRQNNTDVFVPAVVGKPGSDVY
YAGLNYKNGGFAGSYAFKYARHANVGRDAFELFLLGSTSDEAKGTDPLKNHQVHRLTGGYEEGGL
NLALAAQLDLSENGDKAKTKNSTTEIAATASYRFGNAVPRISYAHGFDLIERGKKGENTSYDQII
AGVDYDFSKRTSAIVSGAWLKRNTGIGNYTQINAASVGLRHKF;

DVSLYGEIKAGVEGRNYQLQLTEAQAANGGASGQVKVTKVTKAKSRIRTKISDFGSFIGFKGSED
LGDGLKAVWQLEQDVSVAGGGATQWGNRESFIGLAGEFGTLRAGRVANQFDDASQAIDPWDSNND
VASQLGIFKRHDDMPVSVRYDSPEFSGFSGSVQFVPIQNSKSAYTPAYYTKNTNNNLTLVPAVVG
KPGSDVYYAGLNYKNGGFAGNYAFKYARHANVGRNAFELFLIGSGSDQAKGTDPLKNHQVHRLTG
GYEEGGLNLALAAQLDLSENGDKTKNSTTEIAATASYRFGNAVPRISYAHGFDFIERGKKGENTS
YDQIIAGVDYDFSKRTSAIVSGAWLKRNTGIGNYTQINAASVGLRHKF; and DVSLYGEIKAGVEGRNIQLQLTEPLQNIQQPQVTKAKSRIRTKISDFGSFIGFKGSEDLGEGLKA
VWQLEQDVSVAGGGATRWGNRESFVGLAGEFGTLRAGRVANQFDDASKAIDPWDSNNVVASQLGI
FKRMDDMPVSVRYDSPEFSGFSGSVQFVPAQNSKSAYTPAHFVQQTPQQSPTLVPAVVGKPGSDV
YYAGLNYKNGGFAGNYAFKYAKHANVGRDAFELFLLGSGSDEAKGTDPLKNHQVHRLTGGYEEGG
LNLALAAQLDLSENADKTKNSTTEIAATASYRFGNAVPRISYAHGFDFIERGKKGENTSYDQIIA
GVDYDFSKRTSAIVSGAWLKRNTGIGNYTQINAASVGLRHKF.

-6n-In another aspect, the invention provides an isolated peptide having an amino acid sequence selected from the group consisting of: QPQVTNGVQGN, EAQAANGGASGQ, YYTKDTNNNLTL or YYTKNTNNNLT.

In still another aspect, the invention provides a fusion protein comprising a flagellin protein having an amino acid sequence for an epitope of a meningococcal Class 1 outer-membrane inserted within it, wherein the amino acid sequence is selected from the group consisting of:

YYTKNTNNNL, HFVQQTPQSQP, YYTKDTNNNL, YTKDTNNNLT, TKDTNNNLTL, KDTNNNLTLV, AQAANGGASG, QAANGGASGQ, AANGGASGQV, ANGGASGQVK, NGGASGQVKV, GGASGQVKVT, GASGQVKVTK, ASGQVKVTKV, SGQVKVTKVT, PAHYTRQNNT, AHYTRQNNTD, HYTRQNNTDVF, TRQNNTDVFV, RQNNTDVFVP, QNNTDVFVP, QNNTDVFVPA, NNTDVFVPAV, ANVGRNAFELFLIGSATSDEAKG, NIQAQLTEQPQVTNGVQCV, TKISDFGSFIGFK, VSVAGGGA.SQVGN, TLRAG2VANQFDDASQAIN, DMIDVASQIGIFK, GGFSGFSG, LSENGDKAKTKNSTTE and VPRISYAHGFDLIERGKKG.
In another aspect, the invention provides a Neisseria meningitidis Class 1 outer-membrane protein which is substantially free from Neisseria meningitidis Class 2 and Class 3 outer-membrane proteins, wherein the Class 1 outer-membrane protein comprises an amino acid sequence selected from the group consisting of:

DVSLYGEIKAGVEGRNIQAQLTEQPQVTNGVQGNQVKVTKAKSRIRTKISDFGSFIGFKGSEDLG
EGLKAVWQLEQDVSVAGGGASQWGNRESFIGLAGEFGTLRAGRVANQFDDASQAINPWDSNNDVA
SQLGIFKRHDDMPVSVRYDSPEFSGFSGSVQFVPAQNSKSAYKPAYYTKDTNNNLTLVPAVVGKP
GSDVYYAGLNYKNGGFAGNYAFKYARHANVGRNAFELFLIGSATSDEAKGTDPLKNHQVHRLTGG
YEEGGLNLALAAQLDLSENGDKAKTKNSTTEIAATASYRFGNAVPRISYAHGFDLIERGKKGENT
SYDQIIAGVDYDFSKRTSAIVSGAWLKRNTGIGNYTQINAASVGLRHKF;

-6o-DVSLYGEIKAGVEGRNFQLQLTEPPSKSQPQVKVTKAKSRIRTKISDFGSFIGFKGSEDLGEGLK
AVWQLEQDVSVAGGGATQWGNRESFVGLAGEFGTLRAGRVANQFDDASQAIDPWDSNNDVASQLG
IFKRHDDMPVSVRYDSPDFSGFSGSVQFVPIQNSKSAYTPAHYTRQNNTDVFVPAVVGKPGSDVY
YAGLNYKNGGFAGSYAFKYARHANVGRDAFELFLLGSTSDEAKGTDPLKNHQVHRLTGGYEEGGL
NLALAAQLDLSENGDKAKTKNSTTEIAATASYRFGNAVPRISYAHGFDLIERGKKGENTSYDQII
AGVDYDFSKRTSAIVSGAWLKRNTGIGNYTQINAASVGLRHKF;

DVSLYGEIKAGVEGRNYQLQLTEAQAAIJGGASGQVKVTKVTKAKSRIRTKISDFGSFIGFKGSED
LGDGLKAVWQLEQDVSVAGGGATQWGNRESFIGLAGEFGTLRAGRVANQFDDASQAIDPWDSNND
VASQLGIFKRHDDMPVSVRYDSPEFSGFSGSVQFVPIQNSKSAYTPAYYTKNTNNNLTLVPAVVG
KPGSDVYYAGLNYKNGGFAGNYAFKYARHANVGRNAFELFLIGSGSDQAKGTDPLKNHQVHRLTG
GYEEGGLNLALAAQLDLSENGDKTKNSTTEIAATASYRFGNAVPRISYAHGFDFIERGKKGENTS
YDQIIAGVDYDFSKRTSAIVSGAWLKRNTGIGNYTQINAASVGLRHKF; and DVSLYGEIKAGVEGRNIQLQLTEPLQNIQQPQVTKAKSRIRTKISDFGSFIGFKGSEDLGEGLKA
VWQLEQDVSVAGGGATRWGNRESFVGLAGEFGTLRAGRVANQFDDASKAIDPWDSNNVVASQLGI
FKRMDDMPVSVRYDSPEFSGFSGSVQFVPAQNSKSAYTPAHFVQQTPQQSPTLVPAVVGKPGSDV
YYAGLNYKNGGFAGNYAFKYAKHANVGRDAFELFLLGSGSDEAKGTDPLKNHQVHRLTGGYEEGG
LNLALAAQLDLSENADKTKBTSTTEIAATASYRFGNAVPRISYAHGFDFIERGKKGENTSYDQIIA
GVDYDFSKRTSAIVSGAWLKRNTGIGNYTQINAASVGLRHKF.

In still another aspect, the invention provides a substantially purified meningococcal Class 1 outer-membrane protein having an amino acid sequence selected from the group consisting of:

DVSLYGEIKAGVEGRNIQAQLTEQPQVTNGVQGNQVKVTKAKSRIRTKISDFGSFIGFKGSEDLG
EGLKAVWQLEQDVSVAGGGASQWGNRESFIGLAGEFGTLRAGRVANQFDDASQAINPWDSNNDVA
SQLGIFKRHDDMPVSVRYDSPEFSGFSGSVQFVPAQNSKSAYKPAYYTKDTNNNLTLVPAVVGKP
GSDVYYAGLNYKNGGFAGNYAFKYARHANVGRNAFELFLIGSATSDEAKGTDPLKNHQVHRLTGG
YEEGGLNLALAAQLDLSENGDKAKTKIJSTTEIAATASYRFGNAVPRISYAHGFDLIERGKKGENT
SYDQIIAGVDYDFSKRTSAIVSGAWLKRNTGIGNYTQINAASVGLRHKF;

-6p-DVSLYGEIKAGVEGRNFQLQLTEPPSKSQPQVKVTKAKSRIRTKISDFGSFIGFKGSEDLGEGLK
AVWQLEQDVSVAGGGATQWGNRESFVGLAGEFGTLRAGRVANQFDDASQAIDPWDSNNDVASQLG
IFKRHDDMPVSVRYDSPDFSGFSGSVQFVPIQNSKSAYTPAHYTRQNNTDVFVPAVVGKPGSDVY
YAGLNYKNGGFAGSYAFKYARHANVGRDAFELFLLGSTSDEAKGTDPLKNHQVHRLTGGYEEGGL
NLALAAQLDLSENGDKAKTKNSTTEIAATASYRFGNAVPRISYAHGFDLIERGKKGENTSYDQII
AGVDYDFSKRTSAIVSGAWLKRNTGIGNYTQINAASVGLRHKF;

DVSLYGEIKAGVEGRNYQLQLTEAQAANGGASGQVKVTKVTKAKSRIRTKISDFGSFIGFKGSED
LGDGLKAVWQLEQDVSVAGGGATQWGNRESFIGLAGEFGTLRAGRVANQFDDASQAIDPWDSNND
VASQLGIFKRHDDMPVSVRYDSPEFSGFSGSVQFVPIQNSKSAYTPAYYTKNTNNNLTLVPAVVG
KPGSDVYYAGLNYKNGGFAGNYAFKYARHANVGRNAFELFLIGSGSDQAKGTDPLKNHQVHRLTG
GYEEGGLNLALAAQLDLSENGDKTKNSTTEIAATASYRFGNAVPRISYAHGFDFIERGKKGENTS
YDQIIAGVDYDFSKRTSAIVSGAWLKRNTGIGNYTQINAASVGLRHKF; and DVSLYGEIKAGVEGRNIQLQLTEPLQNIQQPQVTKAKSRIRTKISDFGSFIGFKGSEDLGEGLKA
VWQLEQDVSVAGGGATRWGNRESFVGLAGEFGTLRAGRVANQFDDASKAIDPWDSNNVVASQLGI
FKRMDDMPVSVRYDSPEFSGFSGSVQFVPAQNSKSAYTPAHFVQQTPQQSPTLVPAVVGKPGSDV
YYAGLNYKNGGFAGNYAFKYAKHANVGRDAFELFLLGSGSDEAKGTDPLKNHQVHRLTGGYEEGG
LNLALAAQLDLSENADKTKNSTTEIAATASYRFGNAVPRISYAHGFDFIERGKKGENTSYDQIIA
GVDYDFSKRTSAIVSGAWLKRNTGIGNYTQINAASVGLRHKF.

In another aspect, the invention provides a vaccine comprising a pharmaceutically acceptable vehicle and a Neisseria meningitidis Class 1 outer-membrane protein(s) of one or more subtypes, said Class 1 outer-membrane protein(s) being free of meningococcal Class 2 and Class 3 outer-membrane protein, wherein at least one of the Class 1 outer-membrane proteins comprises an amino acid sequence selected from the group consisting of:

DVSLYGEIKAGVEGRNIQAQLTEQPQVTNGVQGNQVKVTKAKSRIRTKISDFGSFIGFKGSEDLG
EGLKAVWQLEQDVSVAGGGASQWGNRESFIGLAGEFGTLRAGRVANQFDDASQAINPWDSNNDVA
SQLGIFKRHDDMPVSVRYDSPEFSGFSGSVQFVPAQNSKSAYKPAYYTKDTNNNLTLVPAVVGKP
GSDVYYAGLNYKNGGFAGNYAFKYARHANVGRNAFELFLIGSATSDEAKGTDPLKNHQVHRLTGG
YEEGGLNLALAAQLDLSENGDKAKTKNSTTEIAATASYRFGNAVPRISYAHGFDLIERGKKGENT
SYDQIIAGVDYDFSKRTSAIVSGAWLKRNTGIGNYTQINAASVGLRHKF;

-6q-DVSLYGEIKAGVEGRNFQLQLTEPPSKSQPQVKVTKAKSRIRTKISDFGSFIGFKGSEDLGEGLK
AVWQLEQDVSVAGGGATQWGNRESFVGLAGEFGTLRAGRVANQFDDASQAIDPWDSNNDVASQLG
IFKRHDDMPVSVRYDSPDFSGFSGSVQFVPIQNSKSAYTPAHYTRQNNTDVFVPAVVGKPGSDVY
YAGLNYKNGGFAGSYAFKYARHANVGRDAFELFLLGSTSDEAKGTDPLKNHQVHRLTGGYEEGGL
NLALAAQLDLSENGDKAKTKNSTTEIAATASYRFGNAVPRISYAHGFDLIERGKKGENTSYDQII
AGVDYDFSKRTSAIVSGAWLKRNTGIGNYTQINAASVGLRHKF;

DVSLYGEIKAGVEGRNYQLQLTEAQAANGGASGQVKVTKVTKAKSRIRTKISDFGSFIGFKGSED
LGDGLKAVWQLEQDVSVAGGGATQWGNRESFIGLAGEFGTLRAGRVANQFDDASQAIDPWDSNND
VASQLGIFKRHDDMPVSVRYDSPEFSGFSGSVQFVPIQNSKSAYTPAYYTKNTNNNLTLVPAVVG
KPGSDVYYAGLNYKNGGFAGNYAFKYARHANVGRNAFELFLIGSGSDQAKGTDPLKNHQVHRLTG
GYEEGGLNLALAAQLDLSENGDKTMSTTEIAATASYRFGNAVPRISYAHGFDFIERGKKGENTS
YDQIIAGVDYDFSKRTSAIVSGAWLKRNTGIGNYTQINAASVGLRHKF, and DVSLYGEIKAGVEGRNIQLQLTEPLQNIQQPQVTKAKSRIRTKISDFGSFIGFKGSEDLGEGLKA
VWQLEQDVSVAGGGATRWGNRESFVGLAGEFGTLRAGRVANQFDDASKAIDPWDSNNVVASQLGI
FKRMDDMPVSVRYDSPEFSGFSGSVQFVPAQNSKSAYTPAHFVQQTPQQSPTLVPAVVGKPGSDV
YYAGLNYKNGGFAGNYAFKYAKHANVGRDAFELFLLGSGSDEAKGTDPLKNHQVHRLTGGYEEGG
LNLALAAQLDLSENADKTKNSTTEIAATASYRFGNAVPRISYAHGFDFIERGKKGENTSYDQIIA
GVDYDFSKRTSAIVSGAWLKRNTGIGNYTQINAASVGLRHKF.

In yet another aspect, the invention provides a vaccine effective against a meningococcal disease, comprising a pharmaceutically acceptable vehicle and a meningococcal Class 1 outer-membrane protein which is free of Neisseria meningitidis Class 2 and Class 3 outer-membrane protein, wherein the Class 1 outer-membrane protein comprises an amino acid sequence selected from the group consisting of:

DVSLYGEIKAGVEGRNIQAQLTEQPQVTNGVQGNQVKVTKAKSRIRTKISDFGSFIGFKGSEDLG
EGLKAVWQLEQDVSVAGGGASQWGNRESFIGLAGEFGTLRAGRVANQFDDASQAINPWDSNNDVA
SQLGIFKRHDDMPVSVRYDSPEFSGFSGSVQFVPAQNSKSAYKPAYYTKDTNNNLTLVPAVVGKP
GSDVYYAGLNYKNGGFAGNYAFKYARHANVGRNAFELFLIGSATSDEAKGTDPLKNHQVHRLTGG
YEEGGLNLALAAQLDLSENGDKAKTKNSTTEIAATASYRFGNAVPRISYAHGFDLIERGKKGENT
SYDQIIAGVDYDFSKRTSAIVSGAWLKRNTGIGNYTQINAASVGLRHKF;

-6r-DVSLYGEIKAGVEGRNFQLQLTEPPSKSQPQVKVTKAKSRIRTKISDFGSFIGFKGSEDLGEGLK
AVWQLEQDVSVAGGGATQWGNRESFVGLAGEFGTLRAGRVANQFDDASQAIDPWDSNNDVASQLG
IFKRHDDMPVSVRYDSPDFSGFSGSVQFVPIQNSKSAYTPAHYTRQNNTDVFVPAVVGKPGSDVY
YAGLNYKNGGFAGSYAFKYARHANVGRDAFELFLLGSTSDEAKGTDPLKNHQVHRLTGGYEEGGL
NLALAAQLDLSENGDKAKTKNSTTEIAATASYRFGNAVPRISYAHGFDLIERGKKGENTSYDQII
AGVDYDFSKRTSAIVSGAWLKRNTGIGNYTQINAASVGLRHKF;

DVSLYGEIKAGVEGRNYQLQLTEAQAANGGASGQVKVTKVTKAKSRIRTKISDFGSFIGFKGSED
LGDGLKAVWQLEQDVSVAGGGATQWGNRESFIGLAGEFGTLRAGRVANQFDDASQAIDPWDSNND
VASQLGIFKRHDDMPVSVRYDSPEFSGFSGSVQFVPIQNSKSAYTPAYYTKNTNNNLTLVPAVVG
KPGSDVYYAGLNYKNGGFAGNYAFKYARHANVGRNAFELFLIGSGSDQAKGTDPLKNHQVHRLTG
GYEEGGLNLALAAQLDLSENGDKTKNSTTEIAATASYRFGNAVPRISYAHGFDFIERGKKGENTS
YDQIIAGVDYDFSKRTSAIVSGAWLKRNTGIGNYTQINAASVGLRHKF, and DVSLYGEIKAGVEGRNIQLQLTEPLQNIQQPQVTKAKSRIRTKISDFGSFIGFKGSEDLGEGLKA
VWQLEQDVSVAGGGATRWGNRESFVGLAGEFGTLRAGRVANQFDDASKAIDPWDSNNVVASQLGI
FKRMDDMPVSVRYDSPEFSGFSGSVQFVPAQNSKSAYTPAHFVQQTPQQSPTLVPAVVGKPGSDV
YYAGLNYKNGGFAGNYAFKYAKHANVGRDAFELFLLGSGSDEAKGTDPLKNHQVHRLTGGYEEGG
LNLALAAQLDLSENADKTKNSTTEIAATASYRFGNAVPRISYAHGFDFIERGKKGENTSYDQIIA
GVDYDFSKRTSAIVSGAWLKRNTGIGNYTQINAASVGLRHKF.

In another aspect, the invention provides a vaccine against Neisseria meningitidis comprising a peptide-carrier protein conjugate, wherein the peptide has an amino acid sequence selected from the group consisting of:

YYTKNTNNNL, HFVQQTPQSQP, YYTKDTNNNL, YTKDTNNNLT, TKDTNNNLTL, KDTNNNLTLV, AQAANGGASG, QAANGGASGQ, AANGGASGQV, ANGGASGQVK, NGGASGQVKV, GGASGQVKVT, GASGQVKVTK, ASGQVKVTKV, SGQVKVTKVT, PAHYTRQNNT, AHYTRQNNTD, HYTRQNNTDVF, TRQNNTDVFV, RQNNTDVFVP, QNNTDVFVP, QNNTDVFVPA, NNTDVFVPAV, ANVGRNAFELFLIGSATSDEAKG, NIQP,QLTEQPQVINGVQGU, TKISDFGSFIGFK, VSVAGOGASQWGN, TLRAG2VANQFDDASQAIN, DSTIIVDVASQLGIFK, GGFSGFSG, LSENMKAKTMSTTE and VPRISYAHGFDLIEI2GIQtG.

-6s-In another aspect, the invention provides a vaccine against Neisseria meningitidis comprising a peptide-carrier protein conjugate, wherein the peptide has an amino acid sequence selected from the group consisting of QPQVTNGVQGN, PPSKSQP, QAANGGASGQV, PLQNIQQPQ, YYTKDTNNNLTL, HYTRQNNTDVF, YYTKNTNNNLTL
and HFVQQTPQQSPT.

In still another aspect, the invention provides an antigenic composition comprising a pharmaceutically acceptable vehicle and a conjugate of a peptide linked to a carrier protein, wherein the peptide has amino acid sequence selected from the group consisting of: YYTKNTNNNL, HFVQQTPQSQP, YYTKDTNNNL, YTKDTNNNLT, TKDTNNNLTL, KDTNNNLTLV, AQAANGGASG, QAANGGASGQ, AANGGASGQV, ANGGASGQVK, NGGASGQVKV, GGASGQVKVT, GASGQVKVTK, ASGQVKVTKV, SGQVKVTKVT, PAHYTRQNNT, AHYTRQNNTD, HYTRQNNTDVF, TRQNNTDVFV, RQNN'IDVFVP, QNNTDVFVP, QNVZTIVF'VPA, NNTDVFVPAV, IGSATSDEAKG, NIQP.QLTEQPQV'INGVQCU, TKISDFGSFIGFK, VSVAGGCASQWM, TLRAC2VANQFDDASQAIlV, DSNNDVASQLGIFK, GGFSGFSG, LSEN KAKTKNSTI'E and VPRISYAHGFDLIERGKKG.

In still another aspect, the invention provides an antigenic composition comprising a pharmaceutically acceptable vehicle and a hybrid protein, said protein comprising one or more peptides fused internally or terminally to a Salmonella flagellin, wherein the peptide has an amino acid sequence selected from the group consisting of: YYTKNTNNNL, HFVQQTPQSQP, YYTKDTNNNL, YTKDTNNNLT, TKDTNNNLTL, KDTNNNLTLV, AQAANGGASG, QAANGGASGQ, AANGGASGQV, ANGGASGQVK, NGGASGQVKV, GGASGQVKVT, GASGQVKVTK, ASGQVKVTKV, SGQVKVTKVT, PAHYTRQNNT, AHYTRQNNTD, HYTRQNNTDVF, TRQNNTDVFV, RQNNTDVFVP, QNNTDVFVP, QNN'IflVFVPA, NV'MVF'VPAV, ANVGRIMF'ELFLIGSATSDEAKG, NIQAQLTEQPQVTNGVQGN, TKISDFGSFIGFK, VSVAZ3GASQWQN, TLRAC2VANQFDDASQPAM, DSNIIVDVASQIGIFK, GGFSGFSG, LSIINGDKAKTKNSTTE and VPRISYAHGFDLIERGKKG.

-6t-In another aspect, the invention provides an antigenic composition comprising a pharmaceutically acceptable vehicle and a hybrid protein, said protein comprising one or more peptides fused internally or terminally to a Salmonella flagellin, wherein the peptide has an amino acid sequence consisting from the group consisting of: QPQVTNGVQGN, PPSKSQP, QAANGGASGQV, PLQNIQQPQ, YYTKDTNNNLTL, HYTRQNNTDVF, YYTKNTNNNLTL and HFVQQTPQQSPT.

In still another aspect, the invention provides an antigenic composition which elicits antibodies against Neisseria meningitidis, said composition comprising a pharmaceutically acceptable vehicle and a meningococcal capsular polysaccharide or oligosaccharide derived therefrom, conjugated to a hybrid protein comprising a carrier protein and a peptide having an amino acid sequence selected from the group consisting of: YYTKNTNNNL, HFVQQTPQSQP, YYTKDTNNNL, YTKDTNNNLT, TKDTNNNLTL, KDTNNNLTLV, AQAANGGASG, QAANGGASGQ, AANGGASGQV, ANGGASGQVK, NGGASGQVKV, GGASGQVKVT, GASGQVKVTK, ASGQVKVTKV, SGQVKVTKVT, PAHYTRQNNT, AHYTRQNNTD, HYTRQNNTDVF, TRQNNTDVFV, RQNNTDVFVP, QNNTDVFVP, QNNTDVFVPA, NNTDVFVPAV, ANVGRNAFELFLIGSATSDEAKG, NIQAQLTEQPQVTNGVQGN, TKISDFGSFIGFK, VSVACK3GASQWM, TLRAGf2VANQFDDASQAIlV, DS=VASQLGIFK, GGFSGFSG, LSE[JGDKAECI'KNSTTE and VPRISYAHGFDLIERGKFCG.

In another aspect, the invention provides an antigenic composition which elicits antibodies against Neisseria meningitidis, said composition comprising a pharmaceutically acceptable vehicle, and a meningococcal capsular polysaccharide or oligosaccharide derived therefrom, wherein the polysaccharide or oligosaccharide is conjugated to a hybrid protein comprising a carrier protein and a peptide having an amino acid sequence selected from the group consisting of: QPQVTNGVQGN, PPSKSQP, QAANGGASGQV, PLQNIQQPQ, YYTKDTNNNLTL, HYTRQNNTDVF, YYTKNTNNNLTL
and HFVQQTPQQSPT.

-6u-In still another aspect, the invention provides a vaccine comprising one or more peptides, in liposomes or microspheres, wherein the peptide has an amino acid sequence selected from the group consisting of:

YYTKNTNNNL, HFVQQTPQSQP, YYTKDTNNNL, YTKDTNNNLT, TKDTNNNLTL, KDTNNNLTLV, AQAANGGASG, QAANGGASGQ, AANGGASGQV, ANGGASGQVK, NGGASGQVKV, GGASGQVKVT, GASGQVKVTK, ASGQVKVTKV, SGQVKVTKVT, PAHYTRQNNT, AHYTRQNNTD, HYTRQNNTDVF, TRQNNTDVFV, RQNNTDVFVP, QNNTDVFVP, QNNTDVFVPA, NNTDVFVPAV, ANVGRNAFELFLIGSATSDEAKG, NIQIAQLTEQPQV'INGVQCN, TKISDFGSFIGFK, VSVACGGA~, TLRAGRVANQFDDASQAIN, DSNNDVASQLGIFK, GGFSGFSG, LSENGDKAKTKNSTTE and VPRISYAHGFDLIERGKKG.
In another aspect, the invention provides a vaccine comprising meningococcal Class 1 outer-membrane protein(s) of one or more subtypes, wherein said proteins are substantially free from Class 2 and 3 outer membrane proteins, in liposomes or microspheres, wherein at least one of the meningococcal Class 1 outer-membrane proteins comprises an amino acid sequence selected from the group consisting of:

DVSLYGEIKAGVEGRNIQAQLTEQPQVTNGVQGNQVKVTKAKSRIRTKISDFGSFIGFKGSEDLG
EGLKAVWQLEQDVSVAGGGASQWGNRESFIGLAGEFGTLRAGRVANQFDDASQAINPWDSNNDVA
SQLGIFKRHDDMPVSVRYDSPEFSGFSGSVQFVPAQNSKSAYKPAYYTKDTNNNLTLVPAVVGKP
GSDVYYAGLNYKNGGFAGNYAFKYARHANVGRNAFELFLIGSATSDEAKGTDPLKNHQVHRLTGG
YEEGGLNLALAAQLDLSENGDKAKTKNSTTEIAATASYRFGNAVPRISYAHGFDLIERGKKGENT
SYDQIIAGVDYDFSKRTSAIVSGAWLKRNTGIGNYTQINAASVGLRHKF;

DVSLYGEIKAGVEGRNFQLQLTEPPSKSQPQVKVTKAKSRIRTKISDFGSFIGFKGSEDLGEGLK
AVWQLEQDVSVAGGGATQWGNRESFVGLAGEFGTLRAGRVANQFDDASQAIDPWDSNNDVASQLG
IFKRHDDMPVSVRYDSPDFSGFSGSVQFVPIQNSKSAYTPAHYTRQNNTDVFVPAVVGKPGSDVY
YAGLNYKNGGFAGSYAFKYARHANVGRDAFELFLLGSTSDEAKGTDPLKNHQVHRLTGGYEEGGL
NLALAAQLDLSENGDKAKTKNSTTEIAATASYRFGNAVPRISYAHGFDLIERGKKGENTSYDQII
AGVDYDFSKRTSAIVSGAWLKRNTGIGNYTQINAASVGLRHKF;

-6v-DVSLYGEIKAGVEGRNYQLQLTEAQAANGGASGQVKVTKVTKAKSRIRTKISDFGSFIGFKGSED
LGDGLKAVWQLEQDVSVAGGGATQWGNRESFIGLAGEFGTLRAGRVANQFDDASQAIDPWDSNND
VASQLGIFKRHDDMPVSVRYDSPEFSGFSGSVQFVPIQNSKSAYTPAYYTKNTNNNLTLVPAVVG
KPGSDVYYAGLNYKNGGFAGNYAFKYARHANVGRNAFELFLIGSGSDQAKGTDPLKNHQVHRLTG
GYEEGGLNLALAAQLDLSENGDKTKNSTTEIAATASYRFGNAVPRISYAHGFDFIERGKKGENTS
YDQIIAGVDYDFSKRTSAIVSGAWLKRNTGIGNYTQINAASVGLRHKF, and DVSLYGEIKAGVEGRNIQLQLTEPLQNIQQPQVTKAKSRIRTKISDFGSFIGFKGSEDLGEGLKA
VWQLEQDVSVAGGGATRWGNRESFVGLAGEFGTLRAGRVANQFDDASKAIDPWDSNNVVASQLGI
FKRMDDMPVSVRYDSPEFSGFSGSVQFVPAQNSKSAYTPAHFVQQTPQQSPTLVPAVVGKPGSDV
YYAGLNYKNGGFAGNYAFKYAKHANVGRDAFELFLLGSGSDEAKGTDPLKNHQVHRLTGGYEEGG
LNLALAAQLDLSENADKTKNSTTEIAATASYRFGNAVPRISYAHGFDFIERGKKGENTSYDQIIA
GVDYDFSKRTSAIVSGAWLKRNTGIGNYTQINAASVGLRHKF.

In another aspect, the invention provides an antigenic composition comprising a pharmaceutically acceptable vehicle and a Class 1 N. meningitidis outer-membrane protein, wherein said Class 1 outer-membrane protein is substantially free from Class 2 or Class 3 outer-membrane proteins, and wherein said Class 1 outer-membrane protein comprises an amino acid sequence selected from the group consisting of:

DVSLYGEIKAGVEGRNIQAQLTEQPQVTNGVQGNQVKVTKAKSRIRTKISDFGSFIGFKGSEDLG
EGLKAVWQLEQDVSVAGGGASQWGNRESFIGLAGEFGTLRAGRVANQFDDASQAINPWDSNNDVA
SQLGIFKRHDDMPVSVRYDSPEFSGFSGSVQFVPAQNSKSAYKPAYYTKDTNNNLTLVPAVVGKP
GSDVYYAGLNYKNGGFAGNYAFKYARHANVGRNAFELFLIGSATSDEAKGTDPLKNHQVHRLTGG
YEEGGLNLALAAQLDLSENGDKAKTKNSTTEIAATASYRFGNAVPRISYAHGFDLIERGKKGENT
SYDQIIAGVDYDFSKRTSAIVSGAWLKRNTGIGNYTQINAASVGLRHKF;

DVSLYGEIKAGVEGRNFQLQLTEPPSKSQPQVKVTKAKSRIRTKISDFGSFIGFKGSEDLGEGLK
AVWQLEQDVSVAGGGATQWGNRESFVGLAGEFGTLRAGRVANQFDDASQAIDPWDSNNDVASQLG
IFKRHDDMPVSVRYDSPDFSGFSGSVQFVPIQNSKSAYTPAHYTRQNNTDVFVPAVVGKPGSDVY
YAGLNYKNGGFAGSYAFKYARHANVGRDAFELFLLGSTSDEAKGTDPLKNHQVHRLTGGYEEGGL
NLALAAQLDLSENGDKAKTKNSTTEIAATASYRFGNAVPRISYAHGFDLIERGKKGENTSYDQII
AGVDYDFSKRTSAIVSGAWLKRNTGIGNYTQINAASVGLRHKF;

-6w-DVSLYGEIKAGVEGRNYQLQLTEAQAANGGASGQVKVTKVTKAKSRIRTKISDFGSFIGFKGSED
LGDGLKAVWQLEQDVSVAGGGATQWGNRESFIGLAGEFGTLRAGRVANQFDDASQAIDPWDSNND
VASQLGIFKRHDDMPVSVRYDSPEFSGFSGSVQFVPIQNSKSAYTPAYYTKNTNNNLTLVPAVVG
KPGSDVYYAGLNYKNGGFAGNYAFKYARHANVGRNAFELFLIGSGSDQAKGTDPLKNHQVHRLTG
GYEEGGLNLALAAQLDLSENGDKTKNSTTEIAATASYRFGNAVPRISYAHGFDFIERGKKGENTS
YDQIIAGVDYDFSKRTSAIVSGAWLKRNTGIGNYTQINAASVGLRHKF, and DVSLYGEIKAGVEGRNIQLQLTEPLQNIQQPQVTKAKSRIRTKISDFGSFIGFKGSEDLGEGLKA
VWQLEQDVSVAGGGATRWGNRESFVGLAGEFGTLRAGRVANQFDDASKAIDPWDSNNVVASQLGI
FKRMDDMPVSVRYDSPEFSGFSGSVQFVPAQNSKSAYTPAHFVQQTPQQSPTLVPAVVGKPGSDV
YYAGLNYKNGGFAGNYAFKYAKHANVGRDAFELFLLGSGSDEAKGTDPLKNHQVHRLTGGYEEGG
LNLALAAQLDLSENADKTKNSTTEIAATASYRFGNAVPRISYAHGFDFIERGKKGENTSYDQIIA
GVDYDFSKRTSAIVSGAWLKRNTGIGNYTQINAASVGLRHKF.

In another aspect, the invention provides an antigenic composition comprising a polysaccharide or oligosaccharide, and a peptide having an amino acid sequence selected from the group consisting of YYTKNTNNNL, HFVQQTPQSQP, YYTKDTNNNL, YTKDTNNNLT, TKDTNNNLTL, KDTNNNLTLV, AQAANGGASG, QAANGGASGQ, AANGGASGQV, ANGGASGQVK, NGGASGQVKV, GGASGQVKVT, GASGQVKVTK, ASGQVKVTKV, SGQVKVTKVT, PAHYTRQNNT, AHYTRQNNTD, HYTRQNNTDVF, TRQNNTDVFV, RQNNTDVFVP, QNNTDVFVP, QNNTDVFVPA, NNTDVFVPAV, ANVGRNAFELFLIGSATSDEAKG, NIQAQLTEQPQVINGVQCN, TKISDFGSFIGFK, VSVAGGGASQWCN, TLRAGRVANQFDDASQAIlN, DSTIIVDVASQLGIFK, GGFSGFSG, LSE[JGDKAK=STTE and VPRISYAHGFDLIERGKKG.

In yet another aspect, the invention provides an antigenic composition, said composition comprising a pharmaceutically acceptable vehicle and a polysaccharide or oligosaccharide conjugated to a peptide having an amino acid sequence selected from the group consisting of YYTKNTNNNL, HFVQQTPQSQP, YYTKDTNNNL, YTKDTNNNLT, TKDTNNNLTL, KDTNNNLTLV, AQAANGGASG, QAANGGASGQ, AANGGASGQV, ANGGASGQVK, NGGASGQVKV, GGASGQVKVT, GASGQVKVTK, ASGQVKVTKV, SGQVKVTKVT, PAHYTRQNNT, AHYTRQNNTD, HYTRQNNTDVF, TRQNNTDVFV, RQNNTDVFVP, QNNTDVFVP, QNN'IDVFVPA, NN'lDVFVPAV, IGSATSDEAKG, -6x-NIQAQLTEQPQVTNWQCN, TKISDFGSFIGFK, VSVACGC''~ASQWCN, 'I'LRAQ2VANQFDDASQAIN, DStZ]DVASQLGIFK, GGFSGFSG, LSE[JMKAKTTKDTSTIE and VPRISYAHGFDLIERGKKG.

In still another aspect, the invention provides a recombinant microorganism that expresses a fusion protein comprising a carrier protein and an immunogenic portion of subtype P1.15, P1.7.16, or P1.2 meningococcal Class 1 outer-membrane protein, wherein said meningococcal Class 1 outer-membrane protein comprises an amino acid sequence selected from the group consisting of:

DVSLYGEIKAGVEGRNIQAQLTEQPQVTNGVQGNQVKVTKAKSRIRTKISDFGSFIGFKGSEDLG
EGLKAVWQLEQDVSVAGGGASQWGNRESFIGLAGEFGTLRAGRVANQFDDASQAINPWDSNNDVA
SQLGIFKRHDDMPVSVRYDSPEFSGFSGSVQFVPAQNSKSAYKPAYYTKDTNNNLTLVPAVVGKP
GSDVYYAGLNYKNGGFAGNYAFKYARHANVGRNAFELFLIGSATSDEAKGTDPLKNHQVHRLTGG
YEEGGLNLALAAQLDLSENGDKAKTKNSTTEIAATASYRFGNAVPRISYAHGFDLIERGKKGENT
SYDQIIAGVDYDFSKRTSAIVSGAWLKRNTGIGNYTQINAASVGLRHKF;

DVSLYGEIKAGVEGRNFQLQLTEPPSKSQPQVKVTKAKSRIRTKISDFGSFIGFKGSEDLGEGLK
AVWQLEQDVSVAGGGATQWGNRESFVGLAGEFGTLRAGRVANQFDDASQAIDPWDSNNDVASQLG
IFKRHDDMPVSVRYDSPDFSGFSGSVQFVPIQNSKSAYTPAHYTRQNNTDVFVPAVVGKPGSDVY
YAGLNYKNGGFAGSYAFKYARHANVGRDAFELFLLGSTSDEAKGTDPLKNHQVHRLTGGYEEGGL
NLALAAQLDLSENGDKAKTKNSTTEIAATASYRFGNAVPRISYAHGFDLIERGKKGENTSYDQII
AGVDYDFSKRTSAIVSGAWLKRNTGIGNYTQINAASVGLRHKF;

DVSLYGEIKAGVEGRNYQLQLTEAQAANGGASGQVKVTKVTKAKSRIRTKISDFGSFIGFKGSED
LGDGLKAVWQLEQDVSVAGGGATQWGNRESFIGLAGEFGTLRAGRVANQFDDASQAIDPWDSNND
VASQLGIFKRHDDMPVSVRYDSPEFSGFSGSVQFVPIQNSKSAYTPAYYTKNTNNNLTLVPAVVG
KPGSDVYYAGLNYKNGGFAGNYAFKYARHANVGRNAFELFLIGSGSDQAKGTDPLKNHQVHRLTG
GYEEGGLNLALAAQLDLSENGDKTKNSTTEIAATASYRFGNAVPRISYAHGFDFIERGKKGENTS
YDQIIAGVDYDFSKRTSAIVSGAWLKRNTGIGNYTQINAASVGLRHKF, and -6y-DVSLYGEIKAGVEGRNIQLQLTEPLQNIQQPQVTKAKSRIRTKISDFGSFIGFKGSEDLGEGLKA
VWQLEQDVSVAGGGATRWGNRESFVGLAGEFGTLRAGRVANQFDDASKAIDPWDSNNVVASQLGI
FKRMDDMPVSVRYDSPEFSGFSGSVQFVPAQNSKSAYTPAHFVQQTPQQSPTLVPAVVGKPGSDV
YYAGLNYKNGGFAGNYAFKYAKHANVGRDAFELFLLGSGSDEAKGTDPLKNHQVHRLTGGYEEGG
LNLALAAQLDLSENADKTKNSTTEIAATASYRFGNAVPRISYAHGFDFIERGKKGENTSYDQIIA
GVDYDFSKRTSAIVSGAWLKRNTGIGNYTQINAASVGLRHKF.

In still another aspect, the invention provides a recombinant microorganism that is transformed with a gene that expresses a Class 1 meningococcal outer-membrane protein comprising an amino acid sequence selected from the group consisting of:

DVSLYGEIKAGVEGRNIQAQLTEQPQVTNGVQGNQVKVTKAKSRIRTKISDFGSFIGFKGSEDLG
EGLKAVWQLEQDVSVAGGGASQWGNRESFIGLAGEFGTLRAGRVANQFDDASQAINPWDSNNDVA
SQLGIFKRHDDMPVSVRYDSPEFSGFSGSVQFVPAQNSKSAYKPAYYTKDTNNNLTLVPAVVGKP
GSDVYYAGLNYKNGGFAGNYAFKYARHANVGRNAFELFLIGSATSDEAKGTDPLKNHQVHRLTGG
YEEGGLNLALAAQLDLSENGDKAKTKNSTTEIAATASYRFGNAVPRISYAHGFDLIERGKKGENT
SYDQIIAGVDYDFSKRTSAIVSGAWLKRNTGIGNYTQINAASVGLRHKF;

DVSLYGEIKAGVEGRNFQLQLTEPPSKSQPQVKVTKAKSRIRTKISDFGSFIGFKGSEDLGEGLK
AVWQLEQDVSVAGGGATQWGNRESFVGLAGEFGTLRAGRVANQFDDASQAIDPWDSNNDVASQLG
IFKRHDDMPVSVRYDSPDFSGFSGSVQFVPIQNSKSAYTPAHYTRQNNTDVFVPAVVGKPGSDVY
YAGLNYKNGGFAGSYAFKYARHANVGRDAFELFLLGSTSDEAKGTDPLKNHQVHRLTGGYEEGGL
NLALAAQLDLSENGDKAKTKNSTTEIAATASYRFGNAVPRISYAHGFDLIERGKKGENTSYDQII
AGVDYDFSKRTSAIVSGAWLKRNTGIGNYTQINAASVGLRHKF;

DVSLYGEIKAGVEGRNYQLQLTEAQAANGGASGQVKVTKVTKAKSRIRTKISDFGSFIGFKGSED
LGDGLKAVWQLEQDVSVAGGGATQWGNRESFIGLAGEFGTLRAGRVANQFDDASQAIDPWDSNND
VASQLGIFKRHDDMPVSVRYDSPEFSGFSGSVQFVPIQNSKSAYTPAYYTKNTNNNLTLVPAVVG
KPGSDVYYAGLNYKNGGFAGNYAFKYARHANVGRNAFELFLIGSGSDQAKGTDPLKNHQVHRLTG
GYEEGGLNLALAAQLDLSENGDKTKNSTTEIAATASYRFGNAVPRISYAHGFDFIERGKKGENTS
YDQIIAGVDYDFSKRTSAIVSGAWLKRNTGIGNYTQINAASVGLRHKF, and -6z-DVSLYGEIKAGVEGRNIQLQLTEPLQNIQQPQVTKAKSRIRTKISDFGSFIGFKGSEDLGEGLKA
VWQLEQDVSVAGGGATRWGNRESFVGLAGEFGTLRAGRVANQFDDASKAIDPWDSNNVVASQLGI
FKRMDDMPVSVRYDSPEFSGFSGSVQFVPAQNSKSAYTPAHFVQQTPQQSPTLVPAVVGKPGSDV
YYAGLNYKNGGFAGNYAFKYAKHANVGRDAFELFLLGSGSDEAKGTDPLKNHQVHRLTGGYEEGG
LNLALAAQLDLSENADKTKNSTTEIAATASYRFGNAVPRISYAHGFDFIERGKKGENTSYDQIIA
GVDYDFSKRTSAIVSGAWLKRNTGIGNYTQINAASVGLRHKF.

In still another aspect, the invention provides a vaccine comprising one or more fragments of meningococcal Class 1 outer-membrane protein, said fragment comprising one or more amino acid sequences selected from the group consisting of:

YYTKNTNNNL, HFVQQTPQSQP, YYTKDTNNNL, YTKDTNNNLT, TKDTNNNLTL, KDTNNNLTLV, AQAANGGASG, QAANGGASGQ, AANGGASGQV, ANGGASGQVK, NGGASGQVKV, GGASGQVKVT, GASGQVKVTK, ASGQVKVTKV, SGQVKVTKVT, PAHYTRQNNT, AHYTRQNNTD, HYTRQNNTDVF, TRQNNTDVFV, RQNNTDVFVP, QNNTDVFVP, QNNTDVFVPA, NNTDVFVPAV, ANVGRNAFELFLIGSATSDEAKG, NIQAQLTEQPQVTNGVQGN, TKISDFGSFIGFK, VSVACOC'zASQWCN, TLRAGRVANQFDDASQAIN, DSNNDVASQLGIFK, GGFSGFSG, LSENGDKAKTKNSTTE and VPRISYAHGFDLIERGKKG.
In another aspect, the invention provides a recombinant microorganism that expresses a fusion protein comprising a carrier protein and an immunogenic portion of a meningococcal Class 1 outer-membrane protein, wherein the Class 1 outer-membrane protein has an amino acid sequence selected from the group consisting of:

DVSLYGEIKAGVEGRNFQLQLTEPPSKSQPQVKVTKAKSRIRTKISDFGSFIGFKGSEDLGEGLK
AVWQLEQDVSVAGGGATQWGNRESFVGLAGEFGTLRAGRVANQFDDASQAIDPWDSNNDVASQLG
IFKRHDDMPVSVRYDSPDFSGFSGSVQFVPIQNSKSAYTPAHYTRQNNTDVFVPAVVGKPGSDVY
YAGLNYKNGGFAGSYAFKYARHANVGRDAFELFLLGSTSDEAKGTDPLKNHQVHRLTGGYEEGGL
NLALAAQLDLSENGDKAKTKNSTTEIAATASYRFGNAVPRISYAHGFDLIERGKKGENTSYDQII
AGVDYDFSKRTSAIVSGAWLKRNTGIGNYTQINAASVGLRHKF;

-6aa-DVSLYGEIKAGVEGRNYQLQLTEAQAANGGASGQVKVTKVTKAKSRIRTKISDFGSFIGFKGSED
LGDGLKAVWQLEQDVSVAGGGATQWGNRESFIGLAGEFGTLRAGRVANQFDDASQAIDPWDSNND
VASQLGIFKRHDDMPVSVRYDSPEFSGFSGSVQFVPIQNSKSAYTPAYYTKNTNNNLTLVPAVVG
KPGSDVYYAGLNYKNGGFAGNYAFKYARHANVGRNAFELFLIGSGSDQAKGTDPLKNHQVHRLTG
GYEEGGLNLALAAQLDLSENGDKTKNSTTEIAATASYRFGNAVPRISYAHGFDFIERGKKGENTS
YDQIIAGVDYDFSKRTSAIVSGAWLKRNTGIGNYTQINAASVGLRHKF; and DVSLYGEIKAGVEGRNIQLQLTEPLQNIQQPQVTKAKSRIRTKISDFGSFIGFKGSEDLGEGLKA
VWQLEQDVSVAGGGATRWGNRESFVGLAGEFGTLRAGRVANQFDDASKAIDPWDSNNVVASQLGI
FKRMDDMPVSVRYDSPEFSGFSGSVQFVPAQNSKSAYTPAHFVQQTPQQSPTLVPAVVGKPGSDV
YYAGLNYKNGGFAGNYAFKYAKHANVGRDAFELFLLGSGSDEAKGTDPLKNHQVHRLTGGYEEGG
LNLALAAQLDLSENADKTKNSTTEIAATASYRFGNAVPRISYAHGFDFIERGKKGENTSYDQIIA
GVDYDFSKRTSAIVSGAWLKRNTGIGNYTQINAASVGLRHKF.

Finally, in another aspect the invention provides an antigenic composition comprising a pharmaceutically acceptable vehicle and a peptide having an amino acid sequence selected from the group consisting of:

YYTKNTNNNL, HFVQQTPQSQP, YYTKDTNNNL, YTKDTNNNLT, TKDTNNNLTL, KDTNNNLTLV, AQAANGGASG, QAANGGASGQ, AANGGASGQV, ANGGASGQVK, NGGASGQVKV, GGASGQVKVT, GASGQVKVTK, ASGQVKVTKV, SGQVKVTKVT, PAHYTRQNNT, AHYTRQNNTD, HYTRQNNTDVF, TRQNNTDVFV, RQNNTDVFVP, QNNTDVFVP, QNNTDVFVPA, NNTDVFVPAV, ANVGRNAFELFLIGSATSDEAKG, NIQAQLTEQPQV'ING\TQCN, TKISDFGSFIGFK, VSVAGGCASQWM, TLRAGRVANQFDDASQAIN, DSNNDVASQLGIFK, GGFSGFSG, LSENGDKP,K'IIQNSTTE and VPRISYAHGFDLIERGKKG.
Brief-Description-of-the Fiqures --------------------------------Figure 1. Scheme for amplification of genes encoding meningococcal Class I outer membrane protein by PCR (Polymerase Chain Reaction).

-6bb-Figure 2. 5' gene sequences encoding VR1 (first variable region) of Class I outer membrane proteins of several N.
meninqitidis subtypes.
Figure 3. 3' gene sequences encoding VR2 (second variable region) of Class I outer membrane proteins of several N.
meninqitidis subtypes.
Figure 4. Epitope scanning by reaction of monoclonal antibodies with solid phase decapeptides spanning the predicted amino acid sequences of Class I proteins from strains P1.7,16, P1.16 and P1.15. Adjacent decapeptides differ by five amino acid residues. Annotations show the strain from which the sequence was derived, the mAb used and its subtype specificity.
Figure S. Reaction of the monoclonal antibodies with a series of overlapping decapeptides corresponding to variable regions VR1 and VR2, with adjacent peptides differing by a single amino acid residue. Annotations show the strain from which the sequence was derived, the mAb used and its subtype specificity.

Figure 6. Construction of recombinant flagellins expressing variable region epitopes of N.
menin~itidis Class I OMP subtype P1.6,16.
Figure 7. Structure of recombinant flagellins expressing variable region epitopes of N.
meningitidis Class I OMP subtype P1.6,16.
----------------Figure 8. Representative chromatogram of high performance liquid chromatography of a recombinant flagellin.
Figure 9. Representative analysis by SDS-PAGE
of recombinant flagellin.
Figure 10. Representative Western blot analyses of a conjugate comprising an epitope of N.
meninqitidis Class I OMP conjugated to CRM197' Figure 11. Putative conformation of N.
meninqitidis Class I OMP subtype P1.16.
Detailed Descrip---- tion of the Invention ------------------- ----------------------This invention pertains to vaccines comprising isolated OMV's, meningococcal Class 1 OMP, fragments of the OMP (e.g., prepared by the application of cyanogen bromide)and oligopeptides bearing epitopes of the OMP; the preparation of isolated OMV's, pure Class 1 outer-membrane proteins, using mutant strains which do not express the Class 2/3 outer-membrane protein; the preparation of isolated OMV's pure Class 1 outer-membrane proteins with the aid of cloned DNA in recombinant DNA expression vectors.
This invention also comprises the application of genetic engineering with the object of producing isolated OMV's, Class I OMP or portions thereof, genetic fusions of Class I OMP, portions or epitopes thereof; and the preparation of multivalent Class 1 outer-membrane protein vaccine through peptide synthesis, as the epitopes with a short peptide chain can be synthetically prepared.
It has emerged that meningococcal Class 1 outer-membrane proteins induce a strong bactericidal immune response to the strains containing the appropriate subtype epitopes, irrespective of whether these are from group A,B,C,W-135,and Y
strains. The polysaccharide vaccine can be enhanced or replaced by a vaccine according to the invention as a vaccine with broad, extensive action against most serotypes, The protective bactericidal mono-clonal antibodies specific for the Class 1 outer-membrane protein react strongly with fragments that have been split off and short synthetic peptides which have been prepared using the amino acid sequence of Class 1 outer-membrane proteins. Since meningococcal disease is currently caused chiefly by group B meningococci and because the Class 1 outer-membrane proteins occurring in group B meningococci also occur in group A, C, W-135 and Y meningococci, vaccines of this invention which comprise one or more Class 1 OMP epitopes derived from N.
meninqitidis group B should be effective in preventing disease caused by group A, C, W-135 and Y. Preferably, the preparation of such a vaccine starts from at least two different immunogenic and protective epitopes which have been selected on epidemiological grounds. Vaccines according to the invention comprise, for example, at least one protein which is obtained either in OMV formulation or by purification from mutant strains producing one or more Class I OMP or at least two fragments prepared through a cyanogen bromide fragmentation or at least two synthetic peptides, chosen from about 10 major epitopes, or products obtained by gene expression via recombinant DNA technology, which contain the desired epitopes. To maximize efficacy to a broad range. of meningococcal strains, the greater number of different protective epitopes in the vaccine the better. In addition, the vaccines according to the invention may advantageously contain meningococci A and C or optionally W-135 and Y polysaccharides and/or detergents. Preferably, the A and C polysaccharides are covalently coupled to a protein or polypeptide carrier. These carriers include, for example, isolated OMV, the Class I OMP protein, T-helper epitopes, bacterial toxins, toxoids, nontoxic mutants (CRM's), recombinant Salmonella flagellin and viral particles such as rotavirus VP6 protein, Hepatitis B surface antigen or parvovirus VP1 and VP2 proteins. Both Zwitterionogenic, cationogenic, anionogenic and nonionogenic detergents can be used. ExamplesIx of such detergents are Zwi.ttergent 3-10, Zwittergent 3--14 (N-tetradecyl-N, N-dimethyl-3-ammonia-l-propane sulphonate), Tween-20*, sodium deoxycholate, sodium cholate and octylglucoside. The vaccines according to the invention may also contain an adsorbent such XTrade-mark as aluminium hydroxide, calcium phosphate; or advantageously, aluminium phosphate. The fragments, proteins, peptides can also be processed in immuno-stimulating complexes (ISCOMS), liposomes or microspheres for delivering and/or use as an adjuvant or in connection with other adjuvants so that greater immunogenicity is obtained.
This invention encompasses isolated OMV, substantially pure meningococcal class 1 outer membrane proteins (of any subtype) and fragments of the proteins containing epitopes thereof. The fragments can be any portions of the molecular weight of 25kD or less which contain epitopes which are bound by protective bactericidal antibodies against N. meningitidis. These include proteolytic fragments and synthetic oligopeptides which are comprised of amino acid sequences which correspond, at least in part, to epitopes of a Class I OMP.
The isolated. OMV's, Class I OMP, fragments or epitope-containing oligopeptides derived therefrom can be comprised of amino acid sequences which are different, but essentially biologically equivalent to-the natural sequences. These sequences can include sequences in which functionally equivalent amino acid residues are substituted for residues within the sequerice resulting in a silent change.
For example, one or more amino acid residues within the sequence can be substituted by another amino acid of a similar polarity which acts as a func-tional equivalent, resulting in a silent alteration.

Substitutes for an amino acid within the sequence may be selected from other members of the class to which the amino acid belongs. For example, the nonpolar (hydrophobic) amino acids include glycine, alanine, leucine, isoleucine, valine, proline, phenylalanine, tryptophan and methionine. The polar neutral amino acids include serine, threonine, cysteine, tyrosine, asparagine, and glutamine. The charged (basic) amino acids include arginine, lysine arid hi-sti"dine. The negatively charged (acidic) amino-acids include aspartic and glutamic acids.
Additionally, isolated OMV's, the class I-0MP, fragments or the oligopeptides can be modified for conjugation to other molecules (e.g., by the attachment of coupling groups such as the amino acids cysteine and/or lysine or other linking groups and/or -spac-er-~groups) including other class 1 OMP of a different subtype, T cell epitopes, B cell epitopes, carrier peptidesor proteins or adjuvanting molecules.
As described in detail below, the Class I OMP.
fragtnents or olIgopep.t-i.des can be used in many different forms (e.g., alone, in mixtures, or as conjugates and genetic fusions produced from recom-binant DNA vectors) in vaccines. For these pur-poses, the materials can be produced by isolation from N. meningitidis, by proteolytic digestion, by chemical synthesis, or by expression as recombinant molecules. The methods of production and use of the isolated OMV's, the class I OMP and the fragments and the oligopeptides of class 1 OMP are described below.

Protein modeling and structure analysis of the Class I OMPs were performed using the principles for several E. coli outer membrane proteins. (Vogel, H.
et al., J. Mol. Bio., 190:191 (1986); Ference, T. et ---------------al., J. Mol. Bio., 201:493 (1988) and Tommassen, J.
in "Membrane Biogenesis", NATO ASI Series H16, ------------------------pp. 351, Springer-Verlag, NY (1988)). The derived amino acid sequences of the Class I OMPs were used for the modeling studies and comparison. The amino acid sequence homology was compared to other gram negative bacterial porin proteins and similarity was established for the protein structure. Exposed surface loops and transmembrane structures were very similar for these porin proteins. With the information revealed concerning variable and constant region protective epitopes of N.
meninqitidis and their structure, one can predict based upon the amino acid sequence where protective epitopes may reside for other pathogenic gram negative bacteria to be evaluated and included in vaccines for the same.

Production of isolated OMV's ----------------------------------OMV's can be produced either from the culture supernatant or from the bacterial cells after fragmentation as described by Beuvery et al. (1983) Infect. Immun. 40: 369-380. OMV's carrying proteins from more than one meningococcus can be isolated from strains manipulated to express heterologous proteins.

200'7248 Production and Purification of Class I OMP and CNBr fragmentsthereof Class 1 and Class 3 outer membrane proteins can be isolated as described by Beuvery, E.C. et al., Antonie wan Leeuvenhoek J. Microbiol. 52:232 (1986).
------- --- ----------- - --------- The production o:E substantially pure Class I OMP

free of Class 2 or 3 OMP's is achieved by this method using mutant meningococcal strains which do not express Class 2/3 OMP. A preferred strain for production of Class I OMP is the H1115 strain, deposited as CBS 636.89.
Fragments can be produced by cyanogen bromide cleavage as described by Teerlink T. et al., J. Exp.
Med. 166:63 (1987) for a gonococcal protein. The N-terminal fragment is referred to as CB-1 and the C-terminal fragment is referred to as CB-2. These CNBr fragments can be purified via reverse phase HPLC on a VydaxTM C4 or an AquaporTM R-300 column using a water/acetonitrile gradient. Alternatively, the fragment can be purified by multiple cold trichloroacetic acid precipitations. These proce-dures remove greater than 95% of interferring contaminants (e.g., buffer salts, detergents and fragment contaminants).

PreparationoffraZments_and_oligopeptides containing_epitopesofclassIOMP
A. Preparation by proteolytic digestion Oligopeptides containing epitopes reactive with bactericidal antibodies against N. meninZitidis can be produced by digestion of the class I OMP, CB-1 or CB-2 fragments with proteinases such as endoLys-C, endoArg-C, endoGlu-C and staphylococcins V8-protease.
The digested fragments can be purified by, for example, high performance liquid chromatographic (HPLC) techniques.

B. Preparation by chemical synthesis Oligopeptides of this invetionb can be synthesized by standard solid peptide synthesis (Barany, G. and Merrifield, R.B., The Peptides 2:1-284, Gross, E. and Meienhofer, J., Eds., Academic Press,.New York) using tert-butyloxycarbonyl amino acids and phenylacetamidomethyl resins (Mitchell, A.R. et al. J.
Org. Chem. 43:2845-2852 (1978)) or 9-fluor-enylmethyloxycarbonyl amino acids on a polyamide support (Dryland, A. and Sheppard, R.C., J. Chem. So.
Perkin Trans. I, 125-137 (1986)). Alternatively, synthetic peptides can be prepared by pepscan synthesis (Geysen, H.M. et al., J. Immunol. Methods 03:259 (1987); Proc. Natl. Acad. Sci. USA 81:3998 (1984)), Cambridge Research Biochemicals, Cambridge, U.K. or by standard liquid phase peptide synthesis. The deletion or substitution of amino acids (and including extensions and additions to amino acids) in other ways which do not substantially detract from the immunological properties of the oligopeptide.

C. Preparation by recombinant DNA techniques The Class I OMP, fragments and oligopeptides which exhibit epitopes of the Class I OMP can be ~~.

produced by recombinant DNA techniques. In general, these entail obtaining DNA sequences which encode the desired OMP, [Barlow et al., (1989) Mol. Micro., 3:131) fragment or oligopeptide sequences and intro-ducing into an appropriate vector/host expression system one or more similar or different DNA se-quences of Class I OMP's where it is expressed. The DNA cari consist of the gene encoding the Class I OMP
or any segment of the gene which encodes a function-al epitope of the OMP. The DNA can be fused to DNA
encoding other antigens of N. meninRitidis (such as other outer membrane proteins either of the same or different class) or antigens of other bacteria, viruses, parasites or fungi to create genetically fused (sharing a common peptide backbone), multi-valent antigens. For example, Class I OMP fragments can be fused to another class 1 outer membrane protein of a different subtype (or fragments or epitopes thereof) of N. meningitidis to yield fusion proteins comprising multiple class 1 outer membrane protein subtype determinants.
Genetic engineering techniques can also be used to characterize, modify and/or adapt the encoded peptides or proteins. For example, site directed mutagenesis to modify an OMP fragment in regions outside the protective domains, for example, to increase the solubility of the subfragment to allow easier purification. DNA can also be manipulated to effect superproduction of OMP fragments or combina-tions thereof in various organisms.

20 '7248 DNA encoding a Class I OMP, fragments or oligo-peptides can be synthesized or isolated and sequenc-ed as described 'by Barlow, A.K. et al. Infect.
Immune 55:2734-40 (1987) and Barlow, A.K. et al., Mol.Micro. 3:131 (1989). Class I OMP genes can be amplified from bacterial DNA by the methods of Mullis and Faloona, (1987) Method. Enzym.
155:335-350, using the primer sequences disclosed 'herein. Related DNA sequences for class 1 OMP of different subtypes can be obtained by the procedures described and the amino acid sequences deduced.
A variety of host-vector systems can be used.to express the oligopeptides of this invention.
Primarily the vector system must be compatible with the host cell used. Host-vector systems include but are not limited to the following: bacteria trans-formed with bacteriophage DNA, plasmid DNA or cosmid DNA; microorganisms such as yeast containing yeast vectors; mammalian cell systems infected with virus (e.g., vaccinia virus, adenovirus, etc.); insect cell systems inf:ected with virus (e.g., baculo-virus). The expression elements of these vectors vary in their strength and specificities. Depending upon the host-vector system utilized, any one of a -number oÃsuitable transcription and translation elements can be used.
In order to obtain efficient expression of the cloned DNA, a promoter must be present in the expression vector. RNA polymerase normally binds to the promoter and initiates transcription of a gene 200'7248 or a group of linked genes and regulatory elements (called an operon). Promoters vary in their "strength", i.e., their ability to promote tran-scription. It is desirable to use strong promoters in order to obtain a high level of transcription and, hence, a high level of DNA expression. Depend-ing upon the host cell system any one of a number of suitable promoters can be used. For instance, for E. coli, its bacteriophages or plasmids, promoters such as the lac promoter, trp promoter, recA pro-moter, ribosomal RNA promoter, and PR or PL pro-moters of coliphage lambda and others including but not limited to lacUV5, ompF, bla, lpp and the like, may be used to d:irect high levels of transcription of adjacent DNA segments. Additionally, a hybrid trp-1acUV5 (tac) promoter or other E. coli promoters produced by recombinant DNA or other synthetic DNA
techniques may be used to provide for transcription of the inserted DNA.
Bacterial host cells and expression vectors may be chosen which inhibit the action of the promoter unless specifically induced. In certain operons the addition of -specific inducers is necessary for ef-ficient transcription of the inserted DNA; for exam-ple, the lac operon is induced by the addition of lactose or IPTG (isopropylthio-beta-D-galactoside).
A variety of other operons, such as trp, etc., are under different controls. The trp operon is induced when tryptophan is absent in the growth media; and the PL promoter of lambda can be induced by an '2U0'7248 -18_ increase in temperature in host cells containing a temperature sensitive lambda repressor, e.g., cI857.
In this way, greater than 95% of the promoter--directed transcription may be inhibited in unin-duced cells. Thus, expression of the recombinant peptide or protein can be controlled. This is important if the expression product of the DNA is lethal or detrimental to the host cells. In such cases, transformants may be cultured under condi-tions such that the promoter. is not induced; then, when the cells reach a suitable density in the growth medium, the promoter can be induced for production of the protein.
One such promoter/operator system is the "tac"
or trp-lac promoter/operator system (Russell and Bennett, 1982, Gene 20:2312-243; DeBoer, European Patent Application, 67, 540 filed May 18, 1982).
This hybrid promoter is constructed by combining the -35 b.p. (-35 region) of the trp promoter and the -10 b.p. (-10 region or Pribnow box) of the lac promoter (the sequences of DNA which are the RNA
polymerase binding site). In addition to main-taining the strong promoter characteristics of the tryptophan promoter, tac is also controlled by the lac repressor.
When cloning in a eukaryotic host cell, en-hancer sequences (e.g., the 72 bp tandem repeat of SV40 DNA orthe retroviral long terminal repeats or LTRs, etc.) may be inserted to increase transcrip-tional efficiency. Enhancer sequences are a set of ~~..

eucaryotic DNA elements that appear to increase transcriptional efficiency in a manner relatively independent of their position and orientation with respect to a nearby gene. Unlike the classic promoter elements (e.g., the polymerase binding site and the Goldberg-Hogness "TATA" box) which must be located immediately 5' to the gene, enhancer se-quences have a remarkable ability to function upstream from, within, or downstream from eucaryotic genes; therefore, the position of the enhancer sequence with respect to the inserted DNA is less critical.
Specific initiation signals are also required for efficient gene transcription and translation in procaryotic cells. These transcription and transla-tion initiation signals may vary in "strength" as measured by the quantitiy of gene specific messenger RNA and protein synthesized, respectively. The DNA
expression vector, which contains a promoter, may also contain any combination of various "strong"
transcription and/or translation initiation signals.
For instance, efficient translation in E. coli requires a Shine-Dalgarno (SD) sequence about 7-9 bases 5' to the initiation codon (ATG) to provide a ribosome binding site. Thus, any SD-ATG combination that can be utilized by host cell ribosomes may be employed. Such combinations include but are not limited to the SD-ATG combination from the cro gene or the N gene of coliphage lambda, or from the E.
coli tryptophan E, D, C, B or A genes.

Additionally, any SD-ATG combination produced by recombinant DNA or other techniques involving incorporation of synthetic nucleotides may be used.
Any of the methods described for the insertion of DNA into an expression vector can he used to ligate a promoter and other genetic control elements into specific sites within the vector. N. meninqi-tidis sequences for expression can be ligated into an expression vector at a specific site in relation to the vector promoter and control elements so that when the recombinant DNA molecule is introduced into a host cell the foreign genetic sequence can be expressed (i,e., transcribed and translated) by the host cell.
The recombinant DNA vector can be introduced into appropriate host cells (bacteria, virus, yeast, mammalian cells or the like) by transformation, transduction or transfection (depending upon the vector/host cell system). Host cells containing the vector are selected based upon the expression of one or more appropriate gene markers normally present in the vector, such as ampicillin resistance or tetra-cycline resistance in pBR322, or thymidine kinase activity in eucaryotic host systems. Expression vectors may be derived from cloning vectors, which usually contain a marker function. Such cloning vectors may include, but are not limited to the following: SV40 and adenovirus, vaccinia virus vectors, insect viruses such as baculoviruses, yeast vectors, bacteriophage vectors such as lambda gt-WES-00'72.48 lambda B, Charon 28, Charon 4A, lambda gt-l-lambda BC, lambda gt-l-lambda B, M13mp7, M13mp8, M13mp9, or plasmid DNA vectors such as pBR322, pAC105, pVA51, pACYC177, pKH47, pACYC184, pUB110, pMB9, pBR325, Col El, pSC101, pBR313, pML21,.RSF2124, pCR1, RP4, pBR328 and the like.
Expression vectors containing the DNA inserts can be.identified by three.general approaches: (1) DNA-DNA hybridization using probes comprising se-quences that are homologousto the inserted gene;
(2) presence or absence of "marker" gene functions resistance to antibiotics, transformation phenotype, thymidine kinase activity, etc.); and (3) expression of inserted sequences based on the physical immunological or functional properties of the gene product.
Once a putative recombinant clone which ex-.
presses a desired Class I OMP amino acid sequence is identified, the gene product can be analyzed as follows. Immunological analysis is especially important because the ultimate goal is to use the gene products in vaccine formulations and/or as antigens in.dia.gnostic immunoassays. The expressed peptide or protein should be immunoreactive with bactericidal antibodies against N. meningitidis.
This reactivity may be demonstrated by standard immunological techniques, such as radioimmuno-precipitation, radioimmune competition, ELISA or immunoblots.

-Once the gene product is identified as a Class I
OMP fragment or an oligopeptide containing a functional epitope thereof, it can be isolated and purified by standard methods including chromatography (e.g., ion exchange, affinity, and sizing column chromatography), centrifugation, differential solubility, or by any other standard techniques for the purification of proteins. Several techniques exist for purification of heterologous protein from prokaryotic cells. See e.g., Olson, U.S. Patent No. 4,518,526, Wetzel, U.S. Patent No. 4,599,197 and Hung et al., U.S. Patent No.
4,734,362. The purified preparation however produced should be substantially free of host toxins which might be harmful to humans. In particular, when expressed in gram negative bacterial host cells such as E. coll or Salmonella, the purified peptide, or protein should be substantially free of endotoxin contamination.
Class I()MP, fragments and oligopeptides of this invention can be formulated as univalent and multivalent vaccines. These materials can be used as produced or isolated by the methods described above.
They can be mixed, conjugated or fused with other antigens, including B or T cell epitopes of other antigens. In addition, they can be conjugated to a carrier protein as described below for oligopeptides.
When a 3iaptenic oligopeptide is used (i.e., a peptide which reacts with. cognate antibodies, but cannot itself elicit an immune response), it can be conjugated to an immunogenic carrier molecule.
Conjugation to an immunogenic carrier can render the oligopeptide immunogenic. The conjugation can be performed by standard procedures. Preferred carrier proteins for the haptenic oligopeptides are toxins, toxoids or any mutant crossreactive material (CRM) of the toxin from tetanus, diphtheria, pertussis, Pseudomonas, E. coli, Staphylococcus, and Streptococcus. A particularly preferred carrier is CRM197 of diphtheria toxin, derived from P.
diphtheriae strain C7(3 197) which produces CRM197 protein. This strain has ATCC accession no. 53281.
Alternatively, a fragment or epitope of the carrier protein or other immunogenic protein can be used.
For example, the hapten can be coupled to a T cell epitope of a bacterial toxin, toxoid or CRM. See U.S. Patent Application Serial No. 150, 688, filed February 1, 1988, entitled "Synthetic Peptides Representing a T-Cell Epitope as a Carrier Molecule For Conjugate Vaccines", the teachings of which are incorporated herein. Other carriers include viral particles composed of Rotavirus VP6, Hepatitis B
surface antigen or parvovirus VP1 and VP2.
The peptides or proteins of this invention can be administered as multivalent subunit vaccines in combination with antigens of N. meninqitidis or antigens of other organisms. Some of the other organisms include the pathogenic bacteria H.
influenzae, N. meninqitidis, B. catarrhalis, N.

gonorrhoeae, E. coli, S. pneumoniae, etc. For example, they may be administered in conjunction with oligo- or polysaccharide capsular components of N. meningitidis.
The capsular components can be derived from any of the serological groups, including A, B', C, D, X, Y, Z, 29E
and W135.
Class 1 outer-membrane protei~,ns of different subtypes can be used. These may be used in combination to evoke bactericidal antibodies against N.
meningitisdis. For example, a fragment derived from Class 1 outer-membrane protein of the P1.7.16 subtype can be used together with outer-membrane proteins or fragments of outer-membrane proteins of other subtypes, such as P1.1; P1.1.16; P1.2; P1.6; P1.9; P1.15; P1.16;
or P1.4 (Abdillahi, H. et al. Micro. Pathog. 4:27 (1988)) or with meningococcal polysaccharides in mixtures or as chemical conjugates. For combined administration with epitopes of other outer membrane proteins, they can be administered separately, as a mixture or as a. conjugate or genetic fusion peptide or protein. The conjugates can be formed by standard techniques for coupling proteinaceous materials or techniques for coupling saccharide polymers to proteins. Fusions can. be expressed from fused gene constructs prepared by recombinant DNA techniques as described.
As mentioned, Class I OMP, fragment or any oligopeptides derived therefrom can be used in conjunction with antigens (e.g., polymer capsules or saccharide units, envelope or surface proteins) of õl ~

other pathogenic organisms (e.g. bacteria (encap-sulated or nonencapsulated), viruses, fungi and parasites). Additional examples of other organisms include respiratory syncytial virus, rotavirus, malaria parasites, and Cr~tococcus neoformans.
In formulating the vaccine compositions with the peptide or protein, alone or in the various combinations described, the immunogen is adjusted to an appropriate concentration and formulated with any suitable vaccine adjuvant. Suitable adjuvants in-clude, but are not limited to: surface active sub-stances, e.g., hexadecylamine, octadecylamine, octadecyl amino acid esters, lysolecithin, dimethyl-dioctadecylammonium bromide, methoxyhexadecylglyce-rol, and pluronic polyols; polyamines, e.g., pyran, dextransulfate, poly IC, carbopol; peptides, e.g., muramyl dipeptide and derivatives, dimethylglycine, tuftsin; oil emulsions; and mineral gels, e.g., aluminum hydroxide, aluminum phosphate, etc., lymphokines and immune stimulating complexes (ISCOMS). The immunogen may also be incorporated into liposomes, microspheres, or conjugated to polysaccharides and/or other polymers for use in a vaccine formulation.
The vaccines can be administered to a human or animal in a variety of ways. These include intradermal, intramuscular, intraperitoneal, intravenous, subcutaneous, oral and intranasal routes of administration.

Live vaccines -----------------The peptides and proteins of this invention can be administered as live vaccines. To this end, recombinant microorganisms are prepared that express the peptides or proteins. The vaccine recipient is inoculated with the recombinant microorganism which multiplies in the recipient, expresses the Class I
OMP, fragment or oligopeptide thereof and evokes an immune response to N. meninqitidis. Live vaccine vectors include: adenovirus, cytomegalovirus and preferably, pox viruses such as vaccinia (Paoletti and Panicali, U.S. Patent No. 4,603,112) and atten-uated Salmonella strains (Stocker, U.S. Patent No.
-------------4,550,081 and Curtiss et al., Vaccine 6:155-160 (1988)). In addition, Class I OMP epitopes can be incorporated into the flagella of attenuated bacterial strains.
Live vaccines are particularly advantageous because they lead to a prolonged stimulus which can confer substantially long-lasting immunity. When the immune response is protective against subsequent N. meningitidis infection, the live vaccine itself may be used in a preventive vaccine against N.
menin2i------.
-------tidis~
Multivalent live vaccines can be prepared from a single or a few recombinant microorganisms that express different epitopes of N. meningitidis (e.g., other outer membrane proteins from other subtypes or epitopes thereof). In addition, epitopes of other pathogenic microorganisms can be incorporated into the vaccine. For example, a vaccinia virus can be engineered to contain coding sequences for other epitopes in addition to those of N. meningitidis.
Such a recombinant virus itself can be used as the immunogen in a mulivalent vaccine. Alternatively, a mixture of vaccinia or other viruses, each expres-sing a different gene encoding for different epi-topes of outer membrane proteins of N. meningitidis and/or epitopes of other disease causing organisms can be formulated as a multivalent vaccine.
An inactivated virus vaccine may be prepared.
Inactivated vaccines are "killed", i.e., infecti-vity has been destroyed, usually by chemical treat-ment (e.g., formaldehyde treatment). Ideally, the infectivity of the virus is destroyed without affecting the proteins which carry the immunogeni-city of the virus. In order to prepare inactivated vaccines, large quanitites of the recombinant virus expressing the desired epitopes are grown in culture to provide the n cessary quantity of relevant antigens. A mixture of inactivated viruses express different epitopes may be used for the formulation of "multivalent" vaccines. In certain instances, these "multivalent" inactivated vaccines may be preferable to live vaccine formulation because of potential difficulties arising from mutual in-terference of live viruses administered together.
In either case, the inactivated virus or mixture of viruses may be formulated in a suitable adjuvant in order to enhance the immunological response to the antigens. Suitable adjuvants include: surface active substances, e.g., hexadecylamine, octadecyl amino acid esters, octadecylamine, lysolecithin, dimethyl-dioctadecylammonium bromide, N, N-diocta-decyl-N', N'bis (2-hydroxyethyl-propane diamine), methoxyhexadecylglycerol, and pluronic polyols;
polyamines, e.g., pyran, dextransulfate, poly IC, carbopol; peptides, e.g., muramyl dipeptide and derivatives thereof, dimethylglycine, tuftsin; oil emulsions; and mineral gels, e.g., aluminum hydroxide, aluminum phosphate, and lymphokines.

EXEMPLIFICATION
EXAMPLE 1: Monoclonal Antibodies Against Class I
------------ ---------------------------------------------OMP's and TheirBiological_Activit~
------------------Type specific monoclonal antibodies were prepared against various meningococcal Class 1 outer-membrane proteins. These monoclonal anti-bodies recognize the following subtypes: P1.1;
P1.2; P1.6; P1.7; P1.9; P1.10; P1.15; P1.16 and P1.17 (now called P1.14). The monoclonal antibodies are available as "Monoclonal Kit Serotyping Meningo-cocci" from the RIVM, Bilthoven, The Netherlands.
All these monoclonal antibodies react with the SDS
(sodium dodecyl sulphate) denatured protein when tested by Western blotting. It also emerged that a number of these monoclonal antibodies reacted with a 25Kd CNBr fragment of the 42Kd Class 1 outer-membrane protein (see below). This result implied that the Class 1 outer-membrane protein epitopes are mainly, of linear type and can therefore be copied with synthetic peptides. The epidemiological results of tests carried out by the Applicant's show that the described monoclonal antibodies can subtype most of the group A, B, C meningococci which suggests a limited heterogenity. Each Class 1 outer-membrane proteiin also appears to contain two individual type specific epitopes (Abdi:Llahi and Poolman, Microb. Pathogen, 4:27-32 (1988); idem FEMS Microbiol. Immunol. 47:139-144).
The purified Class 1 outer-membrane protein (see below) subtype P1.7.16, originating from the culture of the Class 2/3 free mutant (H1115) appeared to induce a bactericidal antibody response of 1:64 serum dilution in a dose of 2.5 g in mice. The monoclonal antibodies against meningococci Class 1 outer-membrane proteins, Class 2/3 outer-membrane proteins and lipopolysaccharides were compared as to bactericidal effect. The monoclonal ant'ibodies against the Class 1 outer-membrane proteins appeared to possess the strongest bactericidal activity (see Table 1). The bactericidal response was determined as per Poolman, J.T. (f985), in Schoolnik, G.K. et al. Eds. 'The Pathogenic Neisseriae' ASM Publications, Washington, D.C:, page 562.

L ~. :

Bactericidal activity of a collection of monoclonal antibodies,, directed against the Class 1 (Cl 1), Class 2/3 (Cl 2/3) and lipopolysaccharide (LPS) of meningococci. (ND -not determined).

Test strain Bactericidal activity of antibody pool (ititre strain (Gp:serotype: Cl 2/3 pool Cl 1 pool LPS pool subtype:LPS type 3006 (B:26:P1.2:;L2) 1000 8000 ND
M981 (B:4Pl.-:L5) 10 ND 2000 M990 (B.6:P1.6:L/) 10 2000 ND
M978 (B:8:Pl.l:Ll.8) ND 8000 1000 M982 (B:9:P1.9L3.7) 500 2000 1000 H355 (B:15:P1.15:L1.8) 1000 8000 1000 H44/76 (B:15:P1.7.16:L3.7) 1000 8000 4000 ~ '.

The bactericidal activity of these monoclonal antibodies appears to correlate well with the in vivo protective activity as measured in the rat meningitis model of Saukkonen et al., Micro-bial Pathogen 3:261 (1987).

EXAMPLE lA: Construction of meningococcal strains carrying multiple Class 1 genes Replacement of chromosomal genes by clones, slightly different versions has been described for Neisseria gonorrhoeae (Stein, D.C., Clin. Microbiol.
Rev. 2 (Suppl.), S146-S149 (1989)). We have found that this method can be applied to the Class 1 gene in Neisseria meningitidis. This was done in the following way:

(i) The Class 1 gene of strain 2996 (subtype P1.2) was cloned into the vector pTZ19R, (Mead, D.A.
et al. Protein Engineering 1:67 (1986)). The complete gene is located on a 2.2 kb XbaI
fragment that was ligated to XbaI digested vector DNA.

(ii) The resulting plasmid was used for transforination of strain H44/76 (subtype P1.7.16). Cells of the acceptor strain were incubated with plasmid DNA in the presence of Mg2+ and normal meningoccal medium; they were subsequently diluted and plated, and the ~

resulting colonies were tested for their ability to bind P1.2-specific monoclonal antibody. Such transformants were found with a frequency of approximately 10-3. Further characterization showed that replacement of the H44/76 Class 1 gene had indeed occurred.
An essential feature of the method is the presence of the donor gene on a circular plasmid DNA molecule that is not able to replicate in N. meningitidis, since the use of linearized DNA yielded no transformants at all.
Construction of a strain with two Class 1 genes was done by a modification of the method described above. For this purpose, the P1.2 Class 1 gene was inserted into a cloned Class 5 gene. The Class 5 gene family has two features which make it particularly suitable for this construction.
(Meyer, T.F. and Van Putten, J.P.M., Clin.
Microbiol_-Rev_, 2 (Suppl.) S139-S145 (1989): (i) there are four or five Class 5 genes present in the meningococcal genome, and (ii) expression of these genes is not necessary for growth under laboratory conditions. A Class 5 gene was cloned from strain H44/76 and the P1.2 gene was inserted into an SphI
site located in or very close to the Class 5 gene.
The resulting hybrid plasmid, pMC22, was used for transformation of strain HIII5, a Class 3-deficient mutant of H44.76. Colonies reacting with the P1.2-specific monoclonal antibody were isolated and '2Q0'7248 characterized. Out of 10 such transformants, nine were found to have lost the P1.16 epitope of the acceptor strain. This indicates that in all these cases recombination has only occurred between the Class 1 genes, resulting in subtype replacement.
However, one transformant was found which made both Class l subtypes, i.e., P1.7,16 and P1.2, suggesting that recombination between the Class 5. gene sequences on plasmid and chromosome must have occurred. This was confirme.d by Western blottingõ
which revealed the presence of both types of Class 1 protein and by Southern blotting, which demonstrated the acquisition of a second Class l gene.
By continuirig this construction with other Class 1 subtypes, it is possible to make a strain with four or five different Class 1 genes. The same Class 5 gene can be used in each subsequent transformation step, the different Class 5 genes can be clones and used separately. These recombinant strains can be used to prepare mixtures of different purified Class I OMPs.

EXAMPLE 1B: Purification of isolated OMV's from ---------- bacteriological culture The purification is carried out according to Beuvery et al. (1983) loc. cit.
This culture can be done with the desired wild type strains, mutant meningococci strains without Class 2/3 outer-membrane proteins and/or homologeous 2Q i 24$

and heterologeous recombinant microorganisms which express one or more of the desired meningococci Class 1 outer-membrane protein and/or epitopes by overproducing vectors either through or not through existing open reading frames and/or manipulated reading frames so that fusion proteins or proteins with exchanged epitopes can be prepared.
Readily available of wild strains are:
H44/76 (B:15:P1,7.16) (Holten E., Norway, deposited as CBS 635-89); 187 (B:4:Pl,.7) (Etienne J., France);
M1080 (B:1:P1,1.7) (Frasch C., USA); Swiss4 (B:4:Pl,15) (Hirschel B., Switzerland); B2106I
(B:4:Pl,2) (Berger U., West-Germany); 395 (B:NT:Pl,9) (Jonsdottir K., Iceland): M990 (B:6:Pl,6) (Frasch C., USA); 2996 (B:2b:Pl,2) RIVM, The Netherlands; M982 (B:9:Pl,9) (Frasch C., USA);
S3446 (B:14:P1,6;) (Frasch C., USA); H355 (B:15:P1,15) (Ho:Lten E., Norway); 6557 (B:17:Pl,17) (Zollinger W., USA) and B40 (A:4:Pl,10) (Achtman M., West-Germany). An example of a Class 3 negative mutant is HIII5 (B:-:Pl.16) deposit # CBS 636.89.
These strains were inoculated from precultures at -70 C into shake flasks and transferred from these into 40, 150 or 350 litre fermenter cultures.
The semisynthetic medium had the following composi-tion: L-glutamic acid 1.3 g/l, L-cysteine.HC1 0.02 g/l, Na2HP04.2H20 10 g/l, KC1 0.09 g/l, NaCl 6 g/l, NH4C1 1.25 g/l, MgSO4.7H20 0.6 g/l, glucose 5 g/l, Fe(N03)3 100 M, yeast dialysate.

During culturing in the fermenter, the pH and P02 were monitored and automatically regulated to a pH of 7.0-7.2 and an air saturation of 10%. The cells were grown to early stationary phase harvested by means of centrifuging and washing with sterile 0.1 M NaCl and stored at -20 C or freeze-dried.
EXAMPLE 2: Purification of Class 1 outer-membrane proteinsfrombacteriologicalculture This culture can be done with the desired wild type strains, mutant meningococci strains without Class 2/3 outer-niembrane proteins and/or homologeous and heterologeous recombinant microorganisms which express one or more of the desired meningococci Class 1 outer-menibrane protein and/or epitopes by overproducing vectors either through or not through existing open reading frames and/or manipulated reading frames so that fusion proteins or proteins with exchanged epitopes can be prepared.
Readily available of wild strains are:
H44/76 (B:15:P1,7.16) (Holten E., Norway, deposited as CBS 635-89); 187 (B:4:Pl,7) (Etienne J., France);
M1080 (B:I:P1,l.7) (Frasch C., USA); Swiss4 (B:4:P1,15) (Hirschel B., Switzerland); B2106I
(B:4:Pl,2) (Berger U., West-Germany); 395 (B:NT:Pl,9) (Jonsdottir K., Iceland): M990 (B:6:P1,6) (Frasch C., USA); 2996 (B:2b:Pl,2) RIVM, The Netherlands; M982 (B:4:P1,9) (Frasch C., USA);
S3446 (B:14:Pl,6) (Frasch C., USA); H355 (B:15:Pl,15) (Holten E., Norway); 6557 (B:17:Pl,17) (Zollinger W., USA) and B40 (A:4:P1,10) (Achtman M., West-Germany). An example of a Class 3 negative mutant is H1115 (B:-:P1.16) deposit # CBS 636.89.
These strains were inoculated from precultures at -70 C into shake flasks and transferred from these into 40, 150 or 350 litre fermenter cultures.
The semisynthetic medium had the following composi-tion: L-glutamic acid 1:3 g/l, L-cysteine.HC1 0.02 g/l, Na2HP04.2H20 10 g/l, KC1 0.09 g/1, NaC1 6 g/l, NH4C1 1.25 g/l, MgSO4.7H20 0.6 g/l, glucose 5 g/l, Fe(N03)3 100 MY yeast dialysate.
During culturing in the fermenter, the pH and P02 were monitored and automatically regulated to a pH of 7.0-7.2 anci an air saturation of 10%. The cells were grown to early stationary phase harvested by means of centrifuging and washing with sterile 0.1 M NaCl and stored at -20 C or freeze-dried.
The bacterial mass was for example extracted.
with.the aid of 0.5 M CaCl2, 1% (w/v) Zwittergent 3-14 (Zw 3-14) and 0.14 M NaCl, pH 4.0, using 100 ml per gram of freeze-dried bacterial mass. The suspension was stirred for 1 hour at room temperature and then centrifuged (1 hour, 3000 x g), after which the supernatant was collected in a sterile manner. 20% ethanol (v/v) was added to the supernatant and after stirring for 30 min. the product was centrifuged (30 min., 10,000x g), after which the supernatant was collected aseptically.
The supernatant was then concentrated by means of 20 '7248 diafiltration in an Amicon Hollow Fiber System (HID
x 50, cut off 50,000) and CaCl 2 and ethanol were removed. The concentrate was diluted with 0.1 M
sodium acetate, 25 mm EDTA, 0.05% Zw 3-14 having a pH of 6.0 to the original volume and then concentrated again by means of diafiltration. This procedure was repeated five times. The pH of the final concentrate was adjusted to a value of 4Ø
20% (v/v) ethanol. was added to the concentrate and, after stirring for 30 min., the product was centrifuged (30 min., 10,000 x g). The whole proteins are purified with the aid of column chrom-atography in the presence of detergent, for example Zw 3-14. Often gel filtration over Sephacryl S-300 as well as the ion exchange over DEAE Sepharose is applied (Beuvery et al. (1986) supra). The used extraction method, detergents, column chromatography are not the only applicable method yet only serve as examples and must not be regarded as restrictive.
EXAMPLE_3: Preparaton andCharacterizationofClass I_OMP._Peptide_Fragments Cyanogen bromide was used to prepare fragments of meningococci Class l outer-membrane proteins.
The purified Class 1 or mixtures of Class 1 or 3 outer-membrane proteins were taken up in 70% (v/v) formic acid and treated with a 10-fold excess of CNBr for 16 hours at room temperature. The CNBr and the formic acid were removed by means of evaporation and replaced by 0.2 M Tris.HC1, 6 M urea solution, pH
7.2. The supernatant was prepurified by means of gel filtration over Sephacryl* 'S-200 and subsequently purified with the aid of TSK-2000_% ge1 filtration via HPLC (Bouvery et al., (1986) supra).

Enzymatic digestion of CB2 fragments To further delineate the epitopes, the meningococcal CB2 fragment was subjected to digestion with EndoArg-C, EndoGlu-C or V-8 and the resulting fragments isolated by HPLC. Briefly, 20 nMoles of CB2 fragment in 1 ml of 25 mM phosphate/0 1 mM tris buffer (pH 8.0) containing 3M urea was digested at 37 C with 0.2 nMoles of EndoArg-C (1 mg/ml in distilled water) or 0.22 nMoles of EndoGlu-C or V-8 (1 mg/ml in distilled water) for 14-18 hours. The resulting digested fragments y#ere separated by reverse phase HPLC using a Vydac-C4column and a trifluoroacetic acid-acetonitrile gradient. The main peak eluted from the EndoArg-C
digestion had an apparent molecular weight of 7-9 Kdal while the main peak observed following EndoGlu-C or V-8 had an apparent molecular weight of 4-6 Kdals. The isolated peaks were subsequently shown by Western blot to react to a pool of monoclonal antibodies (Adam I, 62-D12-8, MN5-C11G and MN14-C116).

*Trade-mark . . f.+a"~w,.,,. . . . .

The P1.16 epitope appears to be present on the C-terminal CNBr f'ragment of the Class 1 outer-mem-brane protein of strain H44/76 (B:15: P1,7.16).
Further characterisation of the P1,16 epitope was carried out through amino acid sequence determina-tion of the 17Kd (N-terminal) and 25Kd (C-terminal) _CNBr_fragments. The C-terminal 25Kd is further fragmented with V8 protease, endoLysC, endoGlu-C and endoArg-C. Fragnients which were positive with the P1,16 monoclonal antibody were sequenced as far as possible. The sequences which were obtained are as follows:

N-terminus of whole protein:
DVSLYGEIKAGVEDRNYQLQLTEAQUAAGN...
N-terminus of 25Kd C-terminal CNBr fragment (M) PVSVRYDSPEFSGFSGSVQFVPIONS-KSAYTPAYYTKDTNNN...
Fragments which react with P1,16 monoclonal anti-bodies were isolated using V8 protease and endoArg-C
fragmentation with a molecular weight of 7-9Kd and 4-6Kd respectively. The N-terminal sequences hereof are as follows:

V8 7-9Kd fragment: FSGFSGSVQFVPIQNSK.SAYTPAYYTKDTN...

,~.

Arg-C 4-6Kd fragment: PVSVRYDSPEFSGFSGSVQFVPI-QNSKSAYTPAYYTK...

EXAMPLE 4:::.-ONA Seguences of Class I OMP Genes Amino acid sequences of Class I OMP were deduced from the nucleotide sequence of the struc-tural genes of four meningococci Class 1 OMP's with various subtypes. Comparison with four amino acid sequences enabled a prediction of the composition and the location of these epitopes. Further, the P1,7 and P1,16 epitopes were confirmed with the ai.d of peptide synthesis and the demonstration of binding of the respective monoclonal antibodies.
Class I OMP genes were cloned into lambda gtll (as described for P1, 16 in Barlow et al., (1987) Infect. Immun. 55: 2743-2740)and subcloned in M13 sequencing vectors and the DNA sequence was deter-mined by standard chain termination dideoxynucleo-tide techniques.
The complete derived amino acid sequence for P1,16; P1,15, P1,7.16; and P1,2 proteins are as follows:

P1.16: DVSLYGEIRAGVEGRNIQAQLTEQPQVTNGVQGNQV--KVTKAKSRIR'Y'KYS
*****~k********** * ~k**~kdr*it9e~t*tk~lr4ellr!* .

P1.15: DVSLYGEIKAGVEGRNFQLQLTEPP-SKSQP~--QV--KVTRAKSRIRTKIS
*********~~r*~~*~ ~ +~*,~* **,~****~***~~
P1.7.16; DVSLYGEIKgGVEGRNYQLQLTE.AQAANGGASGQVRVTRVTRARSRIRTRIS
~*~*~******~**** ~ **** *****~******,t P1-2: DVSLYGEIKAGVEGRNIQLQLTEPLQNIQQPQ--------VTRARSRIRTRIS

=41-DFGSFIGFKGSEI7LGEGLKAVWQI,EQDVSVAGGGASQWGNRESFIGLAGEFGTLRAGRVA
DFGSFIGFKGSEDLGEGLKAVWQLEQDVSVAGGGATQWGNRESFVGLAGEFGTLRAGRVA
******~***~,~,t.t* *+~rt***~.t*.~**~,~**,rtfi,~,~~~*,~ ************~*~
DFGSFIGFRGSEDLGDGLK.AVWQLEQDVSVAGGGATQWGNRESFIGLAGEFGTLRAGRVA
~***~*~***~~~~* ~*~***~****~~**~*** **r**** ~~*~*~~~~~,~**,~*
DFGSFIGFKGSEDLGEGLKAVWQLEQDVSVAGGGATRWGNRESFV'GLAGEFGTLRAGRVA
,~,~*~~~~,~~~~*~** *~r~*~****~~******~r,~ ~~~*t~* ***************

NQFDDASQAINPWDSNN-DVASQLGIFKRHDDM-PVSVRYDSPEFSGFSGSVQFVPAQNSKS
*~~***,r *+*********~~~**~*~*****x******x ~r**r~******** *****
NQFDDASQAIDPWDSNNDVASQLGIFKRF?DDMPVSVRYDSPDFSGFSGSVQFVPIQNSKS
~~~~~~~ ** ~*~**,~~**********~*******~~c*~r* ***********~ ***,**
NQFDDASQAIDPWDSNNDVASQLGIFFiRADDMPVSVRYDSPEFSGFSGSVQFVPIQNSKS

. t1t9ckfr~c.ic* ~cic ic**#*iFrkiiYeYrYc~c**kicttic**ir***t****
****.7k*t1r*7k*.* 7C*7t*t NQFDDASKAIDPWDSNNVVASQLGIFKRMDDMPVSVRYDSPEFSGFSGSVQFVPAQNSKS

*~~t**** ** ***x,rx~~c~~c~r*~*#*************** ***xc**~c~c*~** ~r****

AYKPAYYTKDTNNNLTLVPAVVGR.PGSDVYYAGLNYKNGGFAGNYAFKYAAFiANVGRNAF
*t ~r* ****~r**t*~************~*** ******f,r***** **
AYTPAHYTRQNNTDV-I'VPAVVGKPGSDVYYAGLNYRNGGFAGSYAPKYAREANVGRDAF
*{** Y~*ir~klc***ic4c*F#lcflr~k*~t~t'!t**tk*~c~k ***"*ic*dc*it~tlctk* *~fc AYTPAYYTKNTNNNLTLVPAVVGKPGSDVYYAGLNYKNGGFAGNYAFKYARHANVGRNAF
*t ** ,r**~****~r*****~****~~e***~~ *~t~*~***~**** **
AYTPAHFVQQTPQQPTLVPAVVGKPGSDVYYAGLNYKNGGFAGNYAFKYAKBANVGRDAP
S =+-~* ** *~*****~~~******~*****~*** x*#******~~*~ **

.~, ~LFLIGSATSDEAKGTDPLKNI3QVHRLTGGYEEGGLNLALAAQI.DLSENGDKAKTKNSTT
**** ** ** ***~*~************~c*,t*~************** * ~**~***
ELFLLGS--TSDFAKGTDPLKNHQVIiRLTGGYEEGGLNLALA.AQLDLSENGDR.A.KTRNSTT
,t**~ ** ,~* ~**~~*~********~*~******,t**~r~,t****~t,t* ~ *t****,t ELFLIGS-GSDQAKGTDPL,KNHQVHRLTGGYEEGGLNLALAAQLDLSENGD--KTKNSTT
*~** ** ** ,~~***~~~~***~****~*~~***~~**~***~**~* * ,~x***,~x ELFLLGS-GSDEARGTDPLKNHQVHRLTGGYEEGGLNLALAP,QLDLSENAD--RTKNSTT
*~~* *~ ** ~*****~~*****~,~**~*~~e,t*************** * *****,~*

300 3:L0 320 330 340 350 EIAATASYRFGNAVPRISYAgGEDLIERGRRGENTSYDQIIAGVDYDFSKRTSAIVSGAW
*~*~tf*******~~***t ~~**** **~*,t*~r*f*t~~*,t**~*~*~~****~***#*~ex EZAATASYRFGNAVPRISYAHGFDLIERGKKGENTSYDQIIAGVDYDFSKRTSAIVSGAW
*********~**~***~~=~~,t#~* ~**~~******~*****~***,t**~r~********~
EIAATASYRFGNAVPRIS'YAHGFDFIERGKRG~NTSYDQIIAGVDYDFSKRTSAIVSGAW
*,~#~*x*********~~**~*~** *~~~~**~~*~**~********,~***~*x~~**~,~
EIAATASYRFGNAVPRISYAHGFDFIERGKKGENTSYDQIIAGVDYDFSRRTSAIVSGAW
~**~~~******~r***~~**~*** **t*~***~~~~*~*x~~*~~~****~~t*t~~*,t~

LKRNTGIGNYTQINAASVGLRHKF
***IC*ft*iI******ih~r~ef***airati~ . .
LKRNTGIGNYTQINA.ASVGLRHRF
*************,~*~*~~*~*~~

***t****~r**f****~*,~*~~~,t LRRNTGIGNYTQINAASV'GLRFiKF
*******,rw******~c*~r***~~~
+ Note this amino acid 15 is located between A.A.S.184 and 185 of this sequence EXAMPLE 5: 'DNA,Seguencinp~of_ClassIoMPGenesfrom differentN.meningitidisSerosubtypes --------The Polymerase Chain Reaction (PCR) technique of Mullis and Faloona (Methods in Enzymol. 155:335--50, 1987) was used to amplify the entire Class I
OMP gene and specific fragments according to the scheme shown in figure 1.
Primers were synthesized on an Applied Biosys-tems 380B DNA synthesizer and used in standard PCR
30 cycle amplification reactions using Taq poly-merase in a Thermal Cycler (Perkin-Elmer Cetus, Norwalk, CT) according to the recommendations of the Supplier. Amplified fragments of about 1300, 900 and 450bp were generated from each serosubtype genomic DNA preparation from the primer combinations shown in Figure 1. The primers used had the follow-ing sequences:,._.

PR1: (41 bases with universal primer extension) TGT AAA ACG ACG GCC AGT TTG AAC ACG TAT CGG GRG TTT GC
PR2: (42 bases with universal primer extension) TGT AAA ACG ACG GCC AGT GGC GAA TTC GGT ACG CTG CGC GCC
PR3: (42 bases with universal primer extension) TGT AAA ACG ACG GCC AGT CAT CAG GTA CAC CGC CTG ACG GGC
PR4: (40 bases with universal primer extension) 20 '7248 TGT AAA ACG ACG GCC AGT GCA GAT TGG CAG TCA GAT TGC A
PR5: (40 bases with universal primer extension) TGT AAA ACG ACG GCC AGT GGG ATC GGT ACC TTT GGC TTG A
PR6: (40 bases with universal primer extension) TGT AAA ACG ACG GCC AGT AAC TGA TTC GCA ACG CGA CCG G
FWD: (24 bases) TTG AAG GAC GTA TCG GGT GTT TCG
REV: (23 bases) GCA GAT TGG CAC; TCA GAT TGC TT

Excess single stranded template for sequencing was synthesized in an 'asymmetric PCR' amplification using 100x excess of primer carrying an 18 base extension at the 5' end corresponding to the univer-sal fluorescent sequencing primers used with an Model 370A Automated DNA Sequencer (Applied Biosy-stems, Foster City, CA). Taq polymerase was used in a Standard dideoxynucleotide chain termination sequencing reaction with the PCR generated single stranded Class I gene fragments as templates.
Derived sequences for gene segments of strains H44/76 (P1.7,16), M1080 (P1.1,7), H355 (P1.15), 6940 (P1.6), 6557 (P1.14), 870227 (P1.10) and B40 (P1.10) are shown in Figures 2 and 3.

EXAMPLE 6: Confi.rmation of Amino Acid Sequences of ClassIOMPSubtYpe_Epitopes From these gene sequences confirmed by direct sequencing of Class I OMP genes, it was deduced that the sequences corresponding to amino acids 24-34 and 176-187 of P1.16 are markedly variable in the four Class I OMP sequences. Three amino acid sequences N-terminal or C-terminal from these positions should also be considered.for possible inclusion in these epitopes to allow for maximizing epitope stability presentation and unexpected insertions or deletions in the native protein sequence. Further the DNA and amino acid sequerices of other Class I OMPs should be compared with the P1.7,16 sequence to allow for maximum allignment and epitope prediction. The first variable region epitope and second variable region epitope are called VR1 and VR2 respectively.
These regions encode the subtype epitopes as was confirmed with the aid of peptide synthesis and the reaction of the peptides with P1.2; P1.7; P1.15 and P1.16 specific monoclonal antibodies.
A complete set of overlapping decapeptides staggered by 5 amino ac.i.ds were prepared using the P1.16 protein sequence. The anti- P1.16 monoclonal antibody reacted with the decapeptide YYTKDTNNNL
from P1.16 reacted as expected and no other decapeptide. (Figure 4).
Of overlapping decapeptides provided with a one (1) amino acid sequence shift in the region 24-34 20Q-'7248 and 176-187 of the Class I OMP of strains H44/76 (P1.7,16), MC50 (P1.16) and MC51 (P1.15) more than one peptide reacted with the subtype specific monoclonal antibody. In most cases one or more of the group of these overlapping peptides reacted with the subtype specific monoclonal antibody more strongly than ottiers (Figure 5).
These peptides are designated as the VRl and VR2 epitopes. In the P1.7,16 strain, the sequence YYTKNTNNNL is present, the change D to N at residue 180 does have some effect on reducing antibody bind-ing. The sequence HYTRQNNTDVF in P1.15 in the same relative position in the protein as the P1.16 epitope and is responsible for binding to the anti-Pl.15 monocaonal antibody. AQAANGGASG.shows some binding and peptides 1-3 amino acids downstream show far greater binding to the P1.7 monoclonal antibody. Sequence HFVQQTPQSQP of VR2 is responsible for binding to the anti-P1.2 monoclonal antibody. It is probable that the sequences QPQVTNGVQGN and PPSKSQP in the P1.16 and P1.15 proteins also represent epitopes.

Example_6A: Class I OMPConstant_Region_Epitope Identification Peptides forming surface loops were prepared and conjugated to tetanus toxoid. A Biolynx 4170 automated peptide synthesizer (Pharmacia/LKB) was used for continuous flow solid-phase synthesis with the following exception. In the last cycle of the synthesis SAMA-OPfp (0.5 mmol) (Drijfhout, J.W., Ph.D.
Thesis, Leiden, The Netherlands (1989)) was coupled in the presence of 1-hydroxybenzotriazole (0.5 mmol) for 30 min., using a standard protocol with omission of the piperidine-trea=tment (i.e., the "Fmoc-deblocking step"
which in this case would cause undesirable S-deacetylation). These are referred to as SAMA-peptides.

'2Oa'7248 The peptides and their surface region location uhich vere conjugated to TT are as follows;

Name Peptide Region LBV 017 XGGYYTKDTNNNL P1.16, loop 4 018 XGGAQAANGGASG P1.7, loop 1 024 XGGLSENGDKARTKNSTTE P1.16, loop 6 24$
025a XGGNAFELFLIGSATSDEAKG P1.16, loop 5 025b )MNVGRNAFELFLIGSATSDEAKG P1.16, loop 5 026 XGGDS1vNDVASQLQIFR P1.16, loop 3 627 XADLNTDAERVAVNTArIASPV Class 2, loop 5 028a XGGGKKGENTSYDQ Class 1, loop 7 028b XGGERGRRGENTSYDQ Class 1, loop 7 029 RGGVKDAGTYRAQGGRSKTATQ Class 2, loop 1 030 xGGwSVA.EGGASQVGrt P1.16, loop 2 031 XKRNTGZGNYTQINAA P1.16, loop 8 032 XGG.NIQAQLTEQPQV7'NGVQGN P1.16, loop 1 Conjugation of SAMA-peptides to tetanus toxoid was performed as follows. A solution of N-succinimidyl bromoacetate (4.7 mg, 10 mol) in DMF (100 l) was mixed with a solution of tetanus toxoid (TT) (20mg) in 0.1 M. sodium phosphate buffer pH 7.8 (3.5 ml). After 1 h, 1.8 ml of the reaction mixture was subjected to gel filtration using a Sephadex PD-10 column (Pharmacia) equilibrated in 0.1 M sodium phosphate, containing 5 mm EDTA (PE buffer) pH 6.1. The bromoacetylated tetanus toxoid was eluted with the same buffer and collected in 3.5 ml. The solution of bromoactylated tetanus toxoid (1.2 ml) was added to the SAMA peptide (4.5 mg. 3 mol) and deaerated with helium. Next, 150 l of 0.2 M hydroxylamine (in PE
buffer, pH 6.1) was added. After 16h remaining bromoacetyl groups were blocked by addition of 2-aminoethanethiol hydrochloride (4 mol) in buffer, pH
6.1 (150 l). After a further period of 16 h, the peptide-TT conjugate was purified by gel filtration over a PD-10 column using PE buffer, pH 6.1, as the aluant. The appropriate fractions were combined and stored at 4 C.
To determine the immunological activity, 25 g (total protein) per dose of a peptide-TT conjugate was injected subcutaneously at weeks 0 and 4 into 6-8 week old NIH outbred mice. (Note: Vaccine LBV 017-TT and LBV 018-TT were used at 10 g total protein/dose.) Sera were collected 6 weeks following the first dose and evaluated for antibody ,~~~

response in an ELISA assay (Beuvery, E.C. et al.
Infect. and Immun. 40:369-380 (1983)). The following antigens were coated into the microtiter wells: outer-membrane protein (OMP), purified Class I OMP (Poolman, J.T. et al. Infect. and Immun. 57:1005 (1989)) and the unconjugated peptides. Bactericidal activity (BC) of sera was also measured (Poolman, J.T. et al. (1985) supra).
The results are presented in Table 2 below.
,'~L ~

Bactericidal Vaccine OMC Class 1 0MP Synth.Peptide Test LBV 018-TT 1:900 (0.05)* 1:2700 ND <1:64 LBV 017-TT 1:900 (1) 1:900 ND <1:64 LBV 024-TT 1s100 1:100 1:900 (homol.) <1:64 LBV 025a-TT - 1:100 1:2700 (homol.) <1:64 LBV 025b-TT 1:2700 (4) 1:300 1:8100 (homol.) <1:64 LBV 026-TT - - - (homol.) <1:64 LBV 027-TT - 1:300 1:300 (homol.) <1:64 LBV 028a-TT 1:100 - 1:2700 (homol.) <1:64 LBV 028b-TT 1:100 1:100 1:900 (homol.) <1:64 LBV 029-TT - 1:100 1:8100 (homol.) <1:64 LBV 030-TT - 1:100 1:2700 (homol.) <1:64 LBV 031-TT .1:100 - (homol.) <1:64 LBV 032-TT - 1:100 1:900 (homol.) <1:64 * numbers in O indicate O.D. level showing this tite.r These data suggest that of the constant surface loops tested of Class 1 and 2 OMPs of N.
meningitidis loop 5 appears to represent at least one region that will produce antibodies which will cross-react with Class l and Class 2 OMP of many strains of N. meningitidis.

2U0'7248 EXAMPLE 7: Const:ruction-of recombinant flagellins ---------- -----=-----------------------expressing_menin~ococcal_epitopes To create hybrid flagella containing epitopes from class I meningococcal epitopes, a series of oligonucleotides was designed based on primary protein sequence data and epitope mapping data. Two oligonucleotides based on VR1 or VR2 epitopes of outer membrane P1.7.16 were designed so that_ the.y could be cloned in single or. multiple copies into a cloning region within the gene for S. muenchen flagellin. Translation termination signals were included on the non-coding strand of the oligo-nucleotide to facilitate screening by expression of the cloned inserts.
The plasmid vector pPX1650 containing the entire coding region and promoter regions for the structural gene for flagellin H1-d of Salmonella meunchen (deposited at the ATCC, accession #67685) was modified to contain several unique cloning sites suitable for the insertion of either oligonucleo-tides or gene fragments in each of the three reading frames of the flagellin gene (Figure 6). First, pPX1650 was digested with EcoRV, which cleaves pPX1650 twice, 48 base pairs apart, and religated to yield a plasmid, pPX1651, which has a unique EcoRV
cloning site and which results in a 16 amino acid deletion in the flagellin protein. pPX1651 was identified by screening E_ coli recombinants on Western blots probed with polyclonal antibody directed against Hl-d flagellin. pPX1651 was identified amongst several candidates having flagellins smaller than wild type flagellin (of 1650) and was verified by sequencing. Second, pPX1651 was restricted with BamHI and religated after filling out the overhanging ends with Klenow enzyme to remove the unique BamHI restriction enzyme site in the polylinker region of the vector. As a final step, the resulting vector was digested with EcoRV and the following oligonucleotide linker was inserted:
5' ATG ATC CAT GGA TTC 3' 3' TAG TAG CTA CCT AAG 5' Candidates were screened for the newly created BamHI
sites and several candidates having BamHI sites were screened for orientation of the linker by double strand DNA sequencing methodology. One candidate having the linker in the above orientation was retained as pPX1647:

5'.... GAT ATC ATC GAT GGA TTC ATC....
EcoRV Clal BamHI
Plasmid pPK1647 (Figure 7) was digested with BamHI and either oligonucleotides for VR1 or VR2 were cloned into E. coli cells, Screening for desired recombinants was accomplished by digesting plasmid minilysate DNA with appropriate diagnostic restriction enzymes and screening for expression by probing hybrid flagella for decreased mobility on SDS-PAGE gels with specific flagellar antiserum (Hl-d). A number of the resultant clones showed decreased mobility on SDS-PAGE, indicating proper insertion of one or more of the oligonucleotides for VR1 or VR2. Seve:ral of each were retained for analysis by DNA sequencing. Clone CB1-2 results from tandem insertion of two copies of the VRi oligonucleotide and clone CBl-4 results from inser-tion of four oligonucleotides. Likewise CB2 P
contained a single insert of the VR2 oligonucleotide and CB2 W showed the expected trimeric insert, CB2 P
clone contained a single base pair change which resulted in a change from Leu to Phe in the expres-sed VR2 fusion protein and was not retained for further study. The recombinant flagellin clones in E. coli were probed with monoclonal antibodies (Abdillahi and Poolman, Microbiol. Pathogenesis 4:27-32, 1988; RIVM, The Netherlands) known to react with either VR1 or VR2 epitopes. Monoclonals Adam-1 (P1.7) and Mn14-C11-6 (P1.7) react with hybrid flagellin containing 2 or 4 tandem inserts of VR1, but do not react with clones containing VR2. The weaker reaction of both monoclonals with CB1-2 than with CB1-4 is lilcely due to epitope density. By the same token, monoclonals 62 (P1,16) and Mn5-cll-G
(P1.16) react with CB2 W clone, but not with the VR1 inserts. The CB2 P clone fails to react with either VR=2 antibody, probably due to the Leu to Phe change.

Each of these clones was transformed into an aroA S. dublin strain (SL5927), having a TnlO
insertion in the Hl-d locus, to examine the functioning of the hybrid flagella. Each of the four clones resulted in motile bacteria; motility of the transformants was inhibited by the corresponding monoclonal antibody, including clone CB2 P, indicating affinity of the VR2 monoclonal for the epitope in intact flagella. This result indicates that epitopes are exposed at the cell surface and are accessible to antibody.
Hybrid flagellin containing both VR1 and VR2 epitopes were created by cleaving either CB1-2, CB1-4, or CB2 W with BamHI and cloning the heterologous epitope. Clones CB12-7 and CB12-10 result from the in-frame insertion of a single copy of the VR2 oligonucleotide behind either 2 or 4 VR1 tandem inserts, respectively; clone CB21-F arose from the insertion of one copy of the VR1 epitope behind 3 tandem copies of VR2. CB12-7 and CB12-10 are recognized only by VR1 monoclonal antibody and CB21-F is recognized only by VR2 monoclonal. These results, taken together with DNA analysis revealing predicted sequences, indicate epitope density is too low in the combined hybrids. To create a hybrid flagellin with increased density of both VR1 and VR2 epitopes, CB12-10 was digested with BamHI and VR2 encoding oligonucleotides were inserted. Clone 12-10-6 contains two further tandem inserts of the VR2 epitope, resulting in a hybrid flagellin molecule in which four tandem copies of VR1 are followed by three copies of VR2. As is shown in Figure 3a and b, three of the hybrid flagellin vaccine candidates have the expected molecular properties. The flagellin (pCB1 x 4) containing 4 copies of VR1 reacts with anti-Hl-d (anti-flagellin) and anti-VR1 monoclonal antibodies, but not with anti-VR2 monoclonal antibodies; the flagellin (pCB2-W) containing 3 tandem copies of VR2 reacts with anti-Hl-d and anti-VR2 antibodies, but not with anti-VR1; the combined hybrid containing copies of VR1 and 3 copies of VR2 reacts with both anti-VRl and anti-VR2 monoclonal antibodies. The combined hybrid specified motility when introduced into a non-motile recipient S. dublin strain.
As a subunit vaccine, the goal is to obtain suitable initial vaccine candidates in high quantity and high purity. A suitable vaccine candidate can be chosen from the above type constructions based on reactivity to monoclonal antibodies and function of flagella in non-motile Salmonella host strains. A
subunit flagellin vaccine may not need to retain all functional aspects of a parental flagellin, but should at least retain surface localization for purification purposes. Several subunit flagellin meningococcal vaccines were chosen from the above described hybrid molecules based on reactivity to monoclonal antibodies and implied surface localiz-ation based on restoration of bacterial motility.

Three flagellin vaccine candidates contained either 4 tandem inserts of VR1, 3 tandem inserts of VR2, or 4 VRl.inserts followed by 3 VR2 inserts. Because flagellin is a major protein of Salmonella, it is possible to easily purify sufficient material for vaccination studies using techniques established for flagella purification (Logan et al., J. Bacteriol.
169: 5072-5077, 1987).

EXAMPLE 8: Initial Purification of recombinant ---------- .
flaBL-llin molecules The three hybrid flagellin vaccine candidates and a wild type (derived from pPX1650) were inocula-ted into four-liter baffled Fernbach flasks contain-ing 1 liter of LB broth. Bacterial cultures were incubated-.a.t _37 C w-ith shaking -(200 rpm) for -22-24 hr. Under these conditions of culturing, the bulk of the flagella were sloughed from the bacterial cell surface and were localized in the supernatant culture medium. To obtain suitable material, tlagella were isolated from 6-8 liters of culture medium. To obtain purified flagellin preparations for.vaccination studies, flagellar filaments were harvested from bacterial culture supernatants by the following procecLure: Ammonium sulfate was added to culture supernatant so that final solution was 50%
saturated; the solution was stirred gently at 4 C
for several hours and the precipitated material was collected by centrifugation in a GSA rotor at 5000 rpm for 30 minutes. The collected ammonium-sulfate precipitated material was reconstituted in PBS and dialyzed against PBS at 4 C for 12-15 hrs. The dialyzed material was subjected to high speed centrifugation at 100,000 x g for 1 hour in an SW-27 rotor to pellet the flagellar filaments. The pelleted material, which consisted primarily of flagellin, was subjected to further purification by the following method.

EXAMPLE 9: HPLC Purification of recombinant ------------- ----------------------------------------flaqellins To prepare highly purified flagellins, Salmonella expressing the constructions, in particu-lar pCB12-10-6, was grown as described above and the cells pelleted at 10,000G. The culture supernatant was then precipitated with 50% ammonium sulfate, centrifuged at 10,000G and resuspended in 30 ml PBS.
The resuspended pellet was dialyzed against 10mM
Tris buffer (pH=8.0) containing GM urea, 1mM PMSF, 2mM NEM, and 5mM EDTA overnight at 4 C. Dialyzed material was then passed over two DEAE Sepharose*
minicolumns (3.0 ml volume, 4,0 ml eluent over each). The columns were eluted (5X) with 50mM NaCl in 10mM tris (pH=8.0) containing 6M urea and then with 1M NaCl in 10mM tris (pH=8.0) containing 6M
urea. The first four elution collections (20 ml) of the 50mM NaCl were pooled and dialyzed against 1.0 liter 10mM acetate buffer (pH=4.0) in 6M urea at *Trade-mark room temperature. The dialyzed fractions were then loaded onto a TSK SP PW* cation exchange HPLC column (75mm x 300mm). The column was eluted with a mobile phase consisting of 10 mM acetate (pH=4.0) containing 6 M urea. A gradient 0 - 300 mM NaCl was established in 10 mM acetate (pH=4.0) containing 6 M
urea over the 5- 30 min interval. After 30 min the gradient went from 300 mM to 1 M NaCl in 10 mM
acetate in 6 M urea over the next 5 min. The flagellin construct was collected at approximately 24 min. which corresponds to about 200 mM NaCl. The fraction was dialyzed against PBS and purity determined on the material was established by Western blots using anti-flagellin antibody. A
representative HPLC analysis and SDS-PAGE are shown in Figures 8 and 9 respectively.

EXAMPLE 10: Preparation of meningococcal-flagellin --------------glycoconjugate Group C meningococcal capsular polysaccharide (GCM CPS: lot # 86 NM 01) was prepared essentially according to Bundle et al. Bundle et al., J. Biol.
-Chem. 249: 4797-801, 1974).
Neisseria menin itidis strain Cli was obtained ----------- ------~ -------from the Walter Reed Army Institute (Washington, DC). The strain was precultured twice on sheep blood agar plates, then used for the inoculation of a liquid seed culture medium Neisseria chemically defined medium, NCDM) Kenney et. al _, Bul l_- W. H_ 0_ *Trade-mark 37 469-73, 1967). Finally, 40 1 of liquid medium (NCDM) in a fermentor was inoculated with the liquid preculture. The purity of the strain was checked at each stage. After centrifugation, the supernatant was precipitated by addition of Cetavlon to a final concentration of 0.1%, and the insoluble complex re-dissolved in cold 1 M calcium chloride (CaC12) (Gotschlich et al ., J.Exp_Med_ 129:1349-65, 1969).
Ethanol (96%) was added to a final concentration of 25% (v/v). After 1 h, the suspension was centrifuged (1 h, 50,000 g), the supernatant was collected, and its ethanol concentration was increased to 80% (v/v). After 1 h, centrifugation (20 mi.n, 5,000 g) yielded a precipitate which was washed successively with absolute ethanol, acetone, and diethylether, and then dried in a vacuum dessicator over phosphorus pentoxide (P205) to constant weight. This crude CPS was stored at -20 C.
In order to obtain a purer preparation, the CPS
was then dissolved in sodium acetate buffer (1.10 dilution of a saturated solution, pH 7.0) and extracted four times with hot phenol (Westphal et al., Z. Naturforsch. 7b:148-55, 1952). After dialysis of the combined aqueous phases against 0.1 M CaC12, followed by centrifugation (3-5 h, 100,000 g), a final ethanol precipitation was performed on the clear supernatant, and the resulting precipitate washed with organic solvents and dried, as described above. The pure CPS was then stored at -'20 C.
At each stage of the purification process, the CPS was analyzed for c.arbohydrate N-acetyl-neuraminic acid, NANA) (Svennerhold, Biochim.
Biophys__Acta 24:604, 957), 0-acetyl (Hestrin, J.
Biol.Chem. 180:249, 1949), and protein (260 nm detection) content, and its molecular weight checked by gel filtration.
Group C meningococcal capsular polysaccharide (GCM CPS) was simultaneously depolymerized and activated via sodium periodate (NaI04) oxidation in aqueous buffer (Anderson et al., J.Immunol.
137:1181-6, 1986; Eby et al., Pediat.Res. 20:308A, 1986, Anderson et al., J._Pediatr. 111(5):644-50, -- --- -- -------1987; Anderson, U.S._Pat. 4,762,713; 1988). The reaction was monitored by high performance gel per-meation chromatography (HPGPC) in aqueous eluent, using ultraviolet (UV) and refractive index (RI) detection. The reaction was stopped and the activated oligosaccharides (GCM OS) were desalted by low pressure gel permeation (GPC) in water, and then lyophilized. A solution was then prepared in water and subsequently frozen for temporary storage. GCM
OS and flagellin pCB12-10-6 were mixed in aqueous neutral buffer and the conjugation was initiated by addition of sodium cyanoborohydride (NaBH3CN) (Anderson, U.S. Patent 4,762,713, 1988; U.S.-Patent 4,673,574, 1987; U.S. Patent 4,761,283, 1988). The reaction was carried out for 5 days, while being ~-. :0 7248 monitored by HPGPC. It was finally stopped by dialysis/concentration on centrifugal microconcen-trators. The final preparation was stored in the cold, in the presence of thimerosal to prevent bacterial growth. The resulting glycoconjugate not only provides a mechanism to present the expressed VR1 and VR2 meningococcal epitopes to the immune system but also serves as a carrier molecule for the presentation of a meningococcal oligosaccharide.
In preparation of the conjugate, the following conditions were employed. Purified flagellin pCB12-10-6 was dissolved in 15% sucrose (3.5 mg/ml) and then stored at -20 C. GCM CPS (9.7 mg; final concentration: 5 mg/ml) was oxidized by 100 mM NaIO 4 in 0.05 M sodium phosphate buffer (pH 6.2 - 6.5) at RT, in the dark, with agitation. Aliquots (100 l) were withdrawn at regular intervals, the reaction stopped by addition of ethylene glycol (10 l), and analysis was performed by HPGPC on Waters (Milford, MA) UltrahydrogelTM 250 + 120 (2 columns coupled; 2 x 300 mm x 7.8 mm) in 0.2 M phosphate-saline buffer (PBS; 0.2 M sodium phosphate, 0.9% NaCl, pH 7.8), at a flow rate of 0.8 ml/min, using UV (206 nm) and RI
detection. After 2 h 30 min, the reaction was stopped by addition of ethylene glycol (1/10 of the reaction volume), and the GCM OS were desalted by GPC on Bio-Rad (Richmond, CA) Bio-Ge1R P-2 (200-400 mesh, 30 cm x 1.5 cm) in water, at about 18 ml/h.
Fractions were collected (1.2 ml) and analyzed for the presence of NANA the carbohydrate N-acetyl-20 '7248 neuraminic acid (NANA) (Barry et al., J._Gen.
Microbiol. 29:335-52, 1962) and aldehydes (Porro et al., Anal. Biochem 118:301-306, 1981). Positive fractions were pooled and lyophilized. Desalted GCM
OS (4.7 mg) were then dissolved in water (10 mg/ml) and frozen at -20 C.
Both GCM OS and pCB12-10-6 solutions were analyzed by HPGPC (UV at 206 and 280 nm respec-tively) before being frozen, and prior to the conjugation. No degradation occurred during stor-age, as ascertained by the exact similarity of the elution profiles.
GCM OS (2 mg; final concentration: 2.6 mg/ml) and flagellin pCB12-10-6 (2.3 mg; final concentra-tion: 3 mg/ml) were mixed in a polypropylene tube in 0.4 M sodium phosphate buffer (pH 7.0), and NaBH3CN was added (12 moles) to initiate the conjugation (Anderson, U.S. Patent 4,762,713, 1988;
U.S. Patent 4,673,574; U.S. Patent 4,761,283). The reaction mixture was left one day at RT, then 4 days at 35 C, without agitation. The reaction was monitored by HPCPG (UV at 280 nm) at different stages, and finally stopped by dialysis/concentra-tion on microconcentrators. The final preparation was analyzed for NANA (Barry et al., J. Gen. Micro-biol. 29:335-353, 1962) (0.09 mg at 0.12 mg/ml) and protein (Lowry et al., J. Biol. Chem. 193:265-275, 1951) (1.12 mg; 1.45 mg/ml) content. It was then stored at 4 C in the presence of thimerosal (0.01%, w/v) to prevent bacterial growth.

The conjugate preparation was also checked by SDS-PAGE (silver nitrate stain) and Western blot analyses. Several high molecular weight bands appeared on the gel above the pure pCB12-10-6 band and near the stacking well, the latter being an evidence that cross-linking occurred during conjugation. Western blot analyses showed that each band was reactive with the antisera used (anti-GCM, -VR1, and -VR2), proving covalency of the conjugate bonds.

EXAMPLE 11: Conlu~ation_of_Meningococcal_peptides to CRM and bovine serum albumin ---------------------------------------Peptides designated as M20 and M21 were pro-duced on an ABI model-peptide synthesizer by solid phase synthesis using the tBoc chemistry and were coupled to CRM197 (prepared as described by Ander-sen, U.S. Patent No. 4,762,713) using a bifunctional crosslinking agent, sulfosuccinimidyl (4-iodoacetyl) amino benzoate (Sulfo SIAB; purchased from Pierce) following the modification of a published procedure (Weltman, J.K. et al_, (1983) Bio Techniques 1, 148-152). Briefly CRM197 was activated by sulfo SIAB resulting in the formation of an amide bond between SIAB and amino groups of CRM197. After the removal of unreacted crosslinker from the activated CRM197 by gel filtration, peptide (M20 or M21) containing linking spacer (represented in underlined letters) with carboxy terminal cysteine residue was mixed with activated CRM and incubated at room temperature for 2-4 hours. Following the reaction, the conjugated material was dialyzed extensively against PBS at 4 C.

The sequence of M20 peptide (VR2 epitope) is as follows:

H-Tyr-Tyr-Thr-Lys-Asp-Thr-Asn-Asn-Asn-Leu-Thr-Leu-Val-Pro-Ala_G1y_Ala_Cys_OH
The sequence of M21(VR1 epitope) peptide is:
H-Ala-Gln-Ala-Ala-Asn-Gly-Gly-Ala-Ser-Gly-Gln-Val-Lys_ Ala_ Gly_Ala_Cys_OH _ Conjugated materials were subjected to SDS
PAGE, transferred to PVDF membranes (Immobilon, Millipore) and reacted with specific monoclonals which recognize VR1 and VR2 epitopes. Figure l0a and lOb show the western blot analysis of M20 and M21 CRM197 conjugates, against a pool of VR1 and VR2 specific monoclonals (Adam I, G2-D12-8 (P1.7), MN5-C11-G (P1.16) and MN14-Cll-6 (P1.7)).
In order to assay the antibody response to M20 and M21 peptide by enzyme linked immunoassay procedure, BSA conjugates were prepared by using a different bifunctional crosslinking agent, N-suc-cinimidyl bromoacetate as described by Bernatowicz and Matsueda (Anal. Biochem. 155, 95-102 (1986)).

Covalent coupling of peptide to the protein was confirmed by western blotting of electrophoresed samples as described for CRM197 conjugates.

EXAMPLE 12:- Retention of T cellactivitY_bY_M20 andM21_CRM}q_,_conj.ugates To determine whether conjugation of the VR1 and VR2 epitopes to CRM197 adver,sely affect the T cell recognition of the CRM197 protein a T cell proli-ferative assay was performed as previously described by Bixler and Atassi (Immunol. Commun. 12:593, 1983). Briefly, SJL/j mice were immunized with 50 g of native CRM197 emulsified in CFA. Seven days later, lymph nodes were removed, cultured in RPMI
and challenged with various concentrations of proteins (0.05-100.0 pg/ml) and peptides. After 3 days incubation, cultures were pulsed with [3H]-thy-midine for 16 hours and then harvested for counting.

T.cell responses to meningococcal peptide-CRM197 conjugates.
In Vitro Challenge Maximum observea (3H) Incorporation ,ug/m ACPM SI
-------------------------------------------------------------Diphtheria toxoid 5 27,510 57 CRM197 50 108,631 221 CRM197 - mock conjugate 100 116,326 236 M21-CRM197 100 182,499 370 M20-CRM197 10 89,972 183 CON A 1 34,316 70 LPS 50 61,579 126 Tetanus toxoid 10 515 2 Background (cpm) - 494 1 -------------------------------------------------------------As shown in Table 3, a comparison of CRM197 with the CRM197-mock conjugate shows that the conjugation procedure by itself did not alter the T
cell recognition of the protein. The T cell respon-ses induced by the M20 and M21-CRM197 conjugates were essentially equivalent to or greater than the response elicited by CRM197 itself indicating that the recognition of the T cell epitopes on the CRM197 is not adversely affected by the peptide conjugation. The responses to the control materials Con A, LPS and tetanus toxoid were as expected.
-EXAMPLE-13: -Immunoqenicit of--con'-u~ate -and ------------ --------------~'-------~--------recombinant meningococcal B vaccines --------------------------------------------Recombinant flagellin expressing the meningococcal VR1 and/or VR2 epitopes were prepared and purified as described in Examples 7, 8 and 9.
In addition, synthetic peptides representing the meningococcal epitopes VR1 and VR2 were synthesized, covalently coupled to the carrier molecule CRM197 and purified as in Example 12. Vaccines were formulated with each of these materials at protein concentrations of 10 or 100 g/ml for each of the components. The vaccine compositions also included aluminum phosphate at 1 mg/ml or except as noted were compounded with Freund's complete adjuvant or without supplemental material.
To evaluate immunogenicity, outbred Swiss Webster mice were immunized intramuscularly at weeks 0 and 2 with 1 or 10 g protein/dose. Sera were collected at two week intervals, pooled for assay, and screened for antibody activity by ELISA to outer membrane complex (OMC), purified OMP (P1.16), VR1 peptide coupled to bovine serum albumin (M21-BSA), VR2 peptide coupled to BSA (M20-BSA), wildtype flagellin, and to CRM197. The results of the ELISA
performed on sera obtained at 6 weeks are shown in Table 4.

Immunogenicity_of recombinnnt or CRM197 conjugate_vaccinee_ containing the meningococcal P1.16*OMP epitopea VR1 and VR2. ----------------------------- ---------- -------------------DOSE ELISA TITERS.4 WEEKS AFTER SECONDARY BOOSTi Ng OMC P1.16 M21-BSA M20-BSA FLAGELLIN CRM
-----------------------------------------------------------------pPx1650 (control wildtype flagellin)2 1 <150 <100 171 100 427,781 ND
<150 100 154 <100 468,385 ND
pCB1-4 1 532 4,376 4,525 ND 787,120 ND
10 2,034 12,387 17,565 ND 887,861 ND
pCB2-W
1 150 308 ND 501 263,143 ND
10 1,350 12,190 ND 5,476 1,493,216 ND
pCB12-10-6 1 615 3,374 4,651 824 299,889 ND
10 1,423 3,666 3,882 2,253 497,622 ND
pCB12-10-6 without aluminum phosphate 1 409 739 505 597 139,147 ND
10 450 1,533 817 1,611 358,033 ND

1 <150 <100 217 <100 ND 42.27 10 50 <100 150 <100 ND 95.31 1 68 249 10,494 100 ND 17.41 10 110 31.1 26,807 191 ND 20.92 1 50 100 40,000 187 ND 37.32 10 50 227 15,539 132 ND 184.27 OMP P1.16 1 12,630 17,714 100 764 ND ND
10 23,178 67,565 162 3,276 ND ND
pCB1-4 in CFA
10 1,665 10,606 19,945 ND 1,841,852 ND
pCB2-W in CFA
10 1,157 6,869 ND 17,749 1,217,063 ND
-------------------------------------------------------------------1 All pre-bleed values at or below the lower limit of assay of 1/100 C~ilution.
' All vaccines were formulated with 1 mg/ml aluminum phosphate except as noted.

2Q0'724$
..~.

Alternatively, the various vaccines were evaluated for immunogenicity in 6-8 week old NIH
outbred mice. Ttie mice were immunized with 100 g (total protein)/dasesubcutaneously on week 0 and 4 with vaccine and sera was collected on week 6. The sera were evaluated in an ELISA assay and using antigens as described in Example 6. Bactericidal activity was measured as in Example 6. The results are found in Tabae 5.

TABLE S
ELISA (titer > 0.5 OD) Bactericidal Vaccine OHC Class 1 0MP Synth. Peptide Test FLAGELLIN
<1:64 pi654 pCB12.10.6 - 1:900 - <1:64 PCB2_Q - 1:300 1:100 <1:64 pGB1-4 1:300 (.25) 1:2700 - <1:64 CRli197 - - - <1:64 H20-CRH197 1:00 1:8100 - <1:64 K21-CRM197 1:300 (.125) 1:8100 - <1:64 The recombinant flagellins containing either a VR1, VR2 or a cassette of both VR1 and VR2 were effective in eliciting an antibody response which was cross-reactive to the purified P1.16 and to a lesser extent to OMC. Sera from animals immunized with 10 g of either pCB1-4 or pCB2-w induced antibodies which bound to their respective peptide--BSA conjugates as well as cross reacted with the P1.16 and OMC. Similar results were obtained with the constructed pCB12-10-6 which contains both meningococcal epitopes. In addition, each con-struction induced significant anti-flagellin titers as well. In contrast, the control wildtype fla-gellin only induced an antibody response to fla-gellin itself. Sera collected prior to immunization showed no pre-existing response to the materials being evaluated.
The data also demonstrate the benefits of formulating the recombinant flagellins with alum or other adjuvants such as CFA. The construction pCB12-10-6 was formulated with and without the addition of aluminum phosphate. As shown in Table 2, pCB12-10-6 alone was capable of inducing an antibody response which reacts to the peptide con-jugates as well as to the purified P1.16 as well as to OMC. In comparison, the same construction when formulated with alum was able to elicit greater antibody response at an equivalent dose. Similarly, the recombinant flagellins pCB1-4 and pCB2-w were also formulated with CFA. Again, equivalent or higher antibody titers were observed in the presence of CFA.
The results of the immunogenicity studies with the meningococcal VR1 and VR2 conjugates are also shown in Table 4. Both the M20 and the M21-CRM197 conjugates as well as a mixture containing equal amounts of both conjugates were capable of inducing an anti-CRM197 response as well as an anti-Class I
OMP response.
These preliminary data indicate a Class I OMP
variable region epitope either chemically conjugated to a carrier or genetically fused to a carrier elicits an immune response. New epitope-carrier conjugates can be made using standard techniques to enhance the immune response to the vaccine, for example, use of 1) larger epitopes, 2) peptides with multiple epitbpe repeats andJor 3) different carriers.

EXAMPLE 14: Preparation of Meningococcal-human -------------- ---------------- ------------serum albumin glycoconjuqate -----------------GCM CPS was depolymerized by acid hydrolysis and GCM OS obtained were subsequently activated via NaIO 4 oxidation in aqueous buffer. The reactions were monitored by HPGPC in aqueous eluent, using W
and RI detection. The reactions were each followed by GPC desalting in water. GCM OS and human albumin (HA) were mixed and conjugated essentially as described in Example 10 for the meningococcal-flagellin glycoconjugate. The final preparation was stored in the cold, in the presence of thimerosal to prevent bacterial growth.:,:.
In preparation of the conjugate, the following experimental conditions were employed. Human albumin (HA; SigmaR, St. Louis, MO) was dissolved in 15% sucrose (10 mg/ml) and then stored at -20 C.
GCM CPS (lot # 86 NM 01; 106 mg; final concen-tration: 10 mg/ml was hydrolyzed in 0.1 N HC1 at 50 C with agitation. Aliquo.ts (25 l) were with-drawn at regular intervals, the reaction stopped by addition of sodium hydroxide (NaOH) and analysis was performed by HPGPC as described. After 3 h 40 min., the reaction was stopped by addition of NaOH, and the GCM OS were ciesalted by GPC. Fractions were collected (1.2 ml) and analyzed as described before.
Positive fractions were pooled and lyophilized.
Desalted GCM OS (89 mg) were then stored at -20 C.
Activated OS were prepared by oxidation of GCM OS
(11.8 mg; final concentration: 5mg/ml) with 2 mM
NaIO4 in 0.05 M sodium _phosphate buffer (pH 6.2-6.5) at RT, in the dark, with agitation. The reaction w a s s t o p p e-d.- a f=t-e'r %-3=0 m-i=n. ~b-y- ~a:d.d i t i o.n_. o,f e t h.y l e n e glycol. HPGPC analyzes showed no degradation of the molecular weight of the OS during activation.
Desalting and colorimetric anaylzes were then performed as described above. The resulting activated GCM OS (8.8 mg) were dissolved in water (10 mg/ml) and frozen at -20 C.

,__Both GCM-OS and HA sol.utions were analyzed by HPGPC (UV at 206 and 280 nm respectively) before being frozen, and prior to the conjugation. No degradation occurred during storage, as ascertained by the exact similarity of the elution profiles.
GCM OS (6 mg; final concentration: 2.5 mg/ml) and HA (12 mg; final concentration: 5mg/ml) were mixed in a polypropylene tube in 0.4 M sodium phosphate buffer (pH 7.0), and NaBH3CN was added (60 moles) to initiate the conjugation (Anderson, U.S.
Patent 4,762,713, 1988; U.S. Patent 4,673,574, 1987;
U.S. Patent 4,761,283, 1988). The reaction mixture was left one day at RT, then 4 days 15 35 C, without agitation. The reaction was monitored by HPGPC (UV
at 280 nm) at different stages, and finally stopped by dialysis/concentration on microconcentrators.
The final preparation was analyzed for NANA (Barry et a1., J.Gen.Microbiol. 29P335-51, 1962) (2.07 mg at 0.86 mg/ml) and protein (Lowry et al., J.Biol.
Chem. 193265-75, 1951) (9.51 mg at 3.96 mg/ml) content. It was then stored at 4 C in the presence of thimerosal (0.01$, w/v) to prevent bacterial growth.
The conjugate preparation was also checked by SDS-PAGE (silver nitrate stain) and Western blot analyzes. A diffuse band appeared on the gel which covered a significantly wider molecular weight range than the pure HA. Western blot analyzes showed that this band was reactive with the antiserum used 20 '7248 (anti-GCM), proving covalency of the conjugate bonds.

EXAMPLE_15: Immunogen.icitY_of-meningococcal ------- --- ------ - - -----oliRosaccharide_recombinant_flagellin vaccines A meningococcal oligosaccharide-recombinant flagellin vaccine was prepared as described above and formulated at: 100 g pro.tein/ml. Vaccine compositions were also prepared which contained aluminum phosphate (1 mg/ml) or complete Freund's adjuvant in addition to the glycoconjugate.
To evaluate the immunogenicity, outbred Swiss Webster mice were immunized intramuscularly with 10 pg protein at week 0 and 2. Sera were collected at weeks 0, 2 and then weekly intervals thereafter to 6 weeks. After collection, pooled sera samples were assayed for antibody activity by ELISA to meningococcal C oligosaccharide conjugate to human serum albumin, OMC, P1.16, CB1 and CB2-BSA con-jugates and flagellin.
The MenC-CB12-10-6 glycoconjugate was effective at eliciting an immune response which was reactive with both the oligosaccharide and the meningococcal B.OMP epitopes expressed in the recombinant flagellin. As shown in Table 5B, as little as three weeks into the study, mice immunized with 1 pg of MenC-CB12-10-6 conjugate in complete Freund's adjuvant had detectable antibody to MenC-HSA, OMP

and to both the CB1 and CB2 epitopes. Further, all of the MenC-CB12-10-6 preparations, regardless of adjuvant, elicited antibody response to MenC-HSA
which were greater than the response observed following immunization with MenC-CRM197.

Table 5B. Immunogenicity of Meningococcal C-recombinant flagellin vaccine one week after secondary immunization.

-------------------------=-----------_-----------------------------------ELISA TITERS!
IMMtJNOGEN Dose MenC-HSA OMP CB1-BSA CB2-BSA FLAGELLIN
-----------------------------------------------------------------------MenC-CB12-10-6 -CFA 10 24,530 608 5,240 432 541,467 1 5,069 5,614 5,375 12,685 526,593 alum2 10 11,845 253 835 673 472,766 1 4,415 136 242 244 214,263 None 10 11,497 920 626 2,382 233,307 1 4,920 483 1,123 1,210 135,625 MenC-CRrt197 alum 10 4,905 ND ND ND ND
1 8,505 ND ND ND ND
OMP (P1.1-6) alum 10 ND 12,907 <100 <100 ND
I ND 10,405 <100 3,377 ND
------------------------------------------------------------------------1 Titers for initial prebleed samples (week 0) samples were <100.
2 Aluminum phvsphate was used as adjuvant at 1 mg/ml.

r~... . .. . . . . . . -78-EXAMPLE 16: T-cell-epitopes_of-Class I OMPand ----------- ------- ----------- -their identification --------------------An effective vaccine must contain one or more T-cell epitopes. T-cell epitopes within a protein can be predicted as described by Margalit et al., J.
Immunol_ 138:2213, (1987) or Rothbard and Taylor, EMBO_J. 7:93.,.(1988). These predictive methods were applied to the amino acid sequence of the Class I
OMP of N. meningitidis strains P1.7,16, P1.16 and P1.15. The segments of the seque.nce containing_ potential T cell epitopes identified__by_these methods are shown in Tables 6 and 7. The predicted peptides were synthesized by standard FMOC
procedures, purified by standard methods and were identified as shown in Table 8.
To determine which of the predicted peptides actual contain T cell epitopes, their capacity to stimulate human peripheral blood lymphocytes (PBL) was tested by lymphocyte proliferative assay.
Briefly, peripheral blood was collected from HLA
typed normal volunteers or from volunteers who were previously immunized with MPC-2 (Poolman, J.T. et al., Antonievan Leeuwenhoek, 53:413-419, 1987) --- ------- --------------- which contained P1.16, 15, Class 4 OMP and Group C

polysaccharide. Lymphocytes were isolated from the peripheral blood by isolation on Ficoll-Hypaque (Pharmacia Fine Chemicals AB, Uppsala, Sweden) and cultured at 1 X 105 cells/well in supplemented RPMI
1640 (Gibco Laboratories, Paisly, Scotland) containing 10% heat-inactivated pooled human AB
serum. Cultures were challenged with various concentrations of the predicted T cell epitopes (0.05 - 10 g/ml). After in vitro challenge, the cultures were incubated for six days and then pulsed (18 hours) with 0.5 Ci of [3H]-thymidine. Cultures were then harvested and counted by liquid scintillation. Data are expressed as stimulation indices which were calculated as a ratio of the CPM
obtained in the presence of antigen to the CPM
obtained in the absence of antigen.
As shown in Table 9, 10 of the 16 predicted peptides showed some capacity to stimulate T-cells.
These include the peptides identified at 16-34, 47-59, 78-90, 103-121, 124-137, 151-158, 176-185, 223-245, 276-291 and 304-322. In some instances, peptides stimulated a response in both immunized as well as non-immune individuals. The response in the non-immune individuals may be attributed to a previous asymptomatic infection.
In the case of the T cell epitope identified as region 176-185, enhancement of the T cell response was observed following addition of the monoclonal antibody MN5C11G (P1.16). Briefly, PBL were challenged in vitro with a synthetic peptide containing the region 175-185 or with this peptide mixed with varying dilutions of MN5C11G. As shown in Table 10, enhancement of the T cell response was observed following addition of MN5C11G indicating that monoclonal antibody recognized a B cell epitope within the region 176-185 and facilitates the presentation of the peptide to the immune system.
Thus, it was established that the T and B cell epitopes either coincide or are found on contiguous sequences within the Class I OMP.
In several cases, T cell lines and clones were established from individuals responding to various peptides. Briefly, T cell lines were obtained by culturing isolated lymphocytes in 24 well plates at 1 x 106 cells/ml. The culture medium, supplemented RPMI-1640 with 10% human serum, also contained 12 U/ml recombinant IL-2 (Boehringer). In addition, 5.
x 104 homologous, irradiated (3,000R) antigen presenting cells (APC) were also added to each well.
In some cases, APC were obtained from HLA compatible donors. From the lines, T cell clones were isolated by limiting dilution at a frequency of 0.5 cells/well. Cloiies were maintained by bi-weekly stimulation with antigen in the presence of irradiated APC and IL-2 (2 U/ml). Clones were tested by lymphocyte proliferation assay essentially as described above except that clones were cultured at 1 x 104 cells/well in the presence of irradiated APC.
Clones obtained as described were challenged in vitro with OMP from 7 different strains of meningococci. As shown in Table 11, the clones recognized a T cell epitope or epitopes common to the seven OMPs examined. Although the reactivity of these clones to the various peptides remains to be determ.ined, the data, neverthel.es.s,: does indicate the commonality of T cell epitopes among the various strains. Now that these clones have- been established and identified their peptide reactivity will indicate T-cell epitopes for vaccine use.

Table 6:. ANALYSIS OF THE SEQUENCE OF N. MENINGITIDIS P1.16 OMP
FOR THE PRESENCE OF AMPHIPATHIC a-HELICIES ACCORDING
TO THE METHOD OF MARGALIT ET AL. (J. IMMUNOL. 138:2213, 1987) ----------------------------------------------------------------------MID POINTS ' OF BLOCKS ANGLES AS
---------------------------------------------------------------------..
P 47-50 85-105 9.4 69-74 105-135 16.0 K 79-88 90-120 23.0 127-135 100-120 22.4 * 199-202 90-120 8.4 P 208-211 85-95 8.7 260-263 90-125 8.8 P 265-269 90-120 11.3 274-277 105-120 9.8 297-300 100-135 9.1 P 320-324 80-100 10.9 * 338-342 105-135 12.3 * 346-351 80-115 11.9 * 376-379 85-120 9.5 -----------------------------------------------------------------------Table 7. PRESENCE OF MOTIFS (UNDERLINED REGIONS) REPRESENTING
POTENTIAL. T CELL EPITOPES:- WITHTN.THE SEQUENCES OF N=.'MENINGITIDIS
P1.16 OMP AS DETECTED BY THE METHOD OF
ROTHBARD AND TAYLOR (EMBO J 7:93, 1988).

M R K K L T A L V L S A L P L A A V A D V S L Y G E I K A G V E G R N I
Q A Q L T E Q P Q V T N G V Q G N Q V K V T K A K S R I R T K I S DF G
S F I G F K G S E D L G E G L K A V W Q L E Q D V S V A G G G A S Q W G
N R E S F I G L A G E F G T L R A G R V A N Q F D D A S Q A I N P W D S
N N D V A S Q L G I f K R H D D M P V S V R Y D S P E F S G F S G S V Q
F V P A Q N S K S A Y K P A Y Y T K D T N N N L T L V P A V V G K P G S
D V Y Y A G L N Y K N G G F A G N Y A F K Y A R H A N V G R N A F E L F
L I G S A T S D E A K G T D P L K N H Q V H R L T G G Y E E G G L N L A
L A A Q L D L S E N G D K A K T K N S T T.E I A A T A S Y R F G N A V P
R I S Y A H G F D L I E R G K K G E N T S Y D Q I I A G V D Y D F S K R
T S A I V S G A 1+T L K R N T G I G N Y T Q I N A A S V G L R H K F

TABLE 8. SUMMARY OF PREDICTED T CELL EPITOPES SYNTHESIZED.
-------------------------------------------------------------RESIDUE NO. SEQUENCE
------------------------------------------------------------S.. 16-34 NIQAQLTEQPQVTNGVQGI+1 2. 47-59 TKISDFGSFIGFK
3. 57-71 GFKGSEDLGEGLRAV
4. 78-90 VSVAGGGASQWGN
. 103-121 TLRAGRVANQFDDASQAI2it 6. 124-137 DSNNDVASQLGIFR
7. 151-158 GGFSGFSG
8. 176-185 YYTKDTNNNL
9. 190-202 AVVGKPGSDVYYA
10. 215-2 2 8 YAFKYARNAHVGRN
11. 223-245 ANVGRNAFELFLIGSATSDEAKG
12. 241-261 DEAKGTDPLKNHQVHRLTGGY
13. 276-291 LSENGDKAKTKNSTTE
14. 304-322 VPRISYAHGFDLIERGKKG
15. 317-329 ERGKKGENTSYDQ
16. 352-366 KRNTGIGNYTQINAA
------------------------------------------------------------200'7248 Table 9. SUMMARY OF LYMPHOCYTE RESPONSES TO MENINGOCOCCAL SYNTHETIC
-P=EPT'3DES- IN -HL-A - TYPED VOLUNTEERS.

RESPONSE TO SYNTHETIC PEPTIDE

---------------------------------------------------------------------------IMMUNIZED VOLUNTEERS
1. DR4,W10,W53 - - + - - - - -2. DR3,W52 - + + - +
3. DR3,7,W52,W53 - - - + - - - - - + -4. DR2,W6,W13,W15,W52 + - - + - - -5. DR5,W11,7,W52,W53 + - + - - + - + +
6. DR5,W11,W10,W52 NON-IMMUNIZED CONTROL VOLUNTEERS
7. NOT TYPED - - - + - + - - - - + - - -8. DRW13,W6,W52 - - - - - - - - - - - - - - - -9. DR2,W15,4,w53 - - - - - - - - - -10. NOT TYPED - - - - - - - - - - - - - - -11. NOT TYPED - - - + - - - - -12. DR2,W15,3,W52 - + - - - - - - - + - - - - -13. DR5,W11,W52 - - - - - + - - - - - - - -14. DR3,7,W52,W53 - - - - + - - - - - + - -15. DR3,4,W52,W53 - - - - + - - - - - - - - - -16. DR3,w12;5,W52 17. DR2,w15,7,W53 +
18. DR1,3,W52 19. DR3,4,W52,W53 + +
20. DR1,7,W53 -21. DR4,W8,W52,W53 22. DR1,W13,W6,W52 23. DR2,W16,5,W11,W52 +
24. DR5,W11,W6,W13,W52 - -25. DR1,3 W52 +
26. DR1,W6,W13,W52 + +
27. DRW6,W13,W52 28. DRW6,W13,W52 +
---------------------------------------------------------------------------The responses were scored as follows -, SI<2; , 2<SI<3 and +, SI > 3.

20Q-'7248 Table 10. PRESENTATION OF A SYNTHETIC PEPTIDE TO PERIPHERAL BLOOD
LYMPHOCYTES IS ENHANCED BY A MONOCLONAL ANTIBODY RECOGNIZING REGION
179-184 OF MENINGOCOCCAL CLASS I OMP.
----------------------------------------------------------------------__.
IN VITRO CHALLENGE CPM
----------------------------------------------------------------------GGYYTKDTNNNL 3,017 GGYYTKDTNNNL* + MN5C11G (1.200) 22,836 GGYYTKDTNNNL + MN5C11G (1:1000) 12,608 ----------------------------------------------------------------------* Underline region indicates sequence recognized by monoclonal antibody MN5C11G.

Table 11. RECOGNITION OF OMP FROM DIFFERENT MENINGOCOCCAL STRAINS
BY HUMAN T-CELL CLONES
--------------------=-----------------------------------------RESPONSE OF HUMAN T CELL CLONES (CPM X 10-3) ------------------------------------- - -------------------------------H44-76 P1.16 6.0 1.2 6.8 2.6 2.3 9.5 1.5 SWISS 4 P1.15 4.9 1.0 10.1 6.9 3.6 10.5 1.4 395 P1.9 5.2 1.5 4.8 1.5 6.1 13.1 1.4 2996 P1.2 5.4 1.0 3.7 2.3 3.4 11.8 1.0 M990 P1.6 3.6 0.4 3.5 2.5 0.9 4.7 0.6 187 P1.1 4.4 0.7 4.5 3.1 1.6 6.2 1.4 6557 P1.17 3.7 2.0 8.2 4.2 1.7 6.2 0.8 MEDIA -- <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 -----------------------------------------------------------------------EXAMPLE 17: Construction of Protein Model for -------------- -----------------------------------------Membrane Topoloqy of-Class I OMP and Comparison-to Other-Pathoqenic-Gram Neqative Porin Proteins for Vaccine -------------------------------------------Development -------------A model was constructed using the principles recognized for the structure of several Escherichia coli outer membrane proteins (Vogel, H. et al.
(1986) supra Ferenci, T. et al-._ (1988) supra; and Tommassen, J. (1988) supra). The central assumption is that protein segments spanning the outer membrane form beta-sheets. Specifically, in the case of Class 1 protein, the division in exposed and trans-membrane segments was arrived at in the following way:

1. A comparison of the amino acid sequence of Class 1 protein (subtype P1.16) with those of the gonococcal PIA and PIB proteins (Carbonetti, N.H. et al. (1967) PNAS 84:9084;
Carbonetti, N.H. et al., (1988) PNAS 85:6841;
and Gotschlich, E.C. et al. (1987) PNAS 84:
8135) reveals 34% identity. In the model, the variable sequences form the surface-exposed parts, whereas the conserved regions are placed mostly in the outer membrane and periplasm.
Thus, the latter two areas consist of 58% of residues that are conserved among all proteins, 2. The hydrophilic maxima observed in a hydropathy profile (Kyte, J. et al. (1982) J.-Mol_- Biol _ 157:105) to correspond to exposed regions.

3. The transmembrane segments should preferen-tially be able to form amphipathic beta-strands of 9-12 residues, with at least one side consisting entirely of hydrophobic residues.
These conditions are met in 12 of the 16 membrane-spanning segments.

4. The number of residues at the periplasmic side is minimized.

Figure 11 shows the model for the folding of Class 1 protein in the outer membrane. The sequence shown is for subtype P1.16. The top part of the figure shows the surface-exposed regions, whereas the central part indicates the presumed trans-membrane segments, whose length is set at ten.
Amino acid are shown alternating where they can form an amphipathic beta-strand. This model contains eight surface loops, whereby the first and the fourth loop contain the type-specific and protective variable region epitopes. These epitopes, as has been shown when formulated into a vaccine, can elicit a protective immune response. Loop 5 is constant and has been shown to elicit cross-reactive antibodies to other OMPs and is useful for vaccine formulation.

The one or two variable epitope regions of the individual proteins are located on so called surface loops of these membrane proteins. Such porin outer-membrane proteins contain more than two surface loops. This implicates that there are surface loops which have near identical amino acid sequence in the different Class 1 outer-membrane proteins as well.
This opens the way to use of common peptides of the Class 1 outer-membrane protein for vaccine objectives as well. More especially a schematic two-dimensional model of the meningococci Class 1 outer-membrane protein P1,16 is illustrated in Figure 11. This model contains eight surface loops, whereby the first and the fourth loop contain the type specific epitopes as shown on the basis of strain subtyping results. The fifth surface loop represents the constant region described above.
Antibody to the constant region of loop 5 appears to react with N. meninqitidis OMP complex. The amino acid sequence of Class I OMP, as derived, was compared to the Class OMP of N. meninqitidis (Murakami, K. et al., (1989), Infect. Immun., 57:2318) and the porin PIA and PIB proteins of N.-qonorrhoeae. With similar principles as used for the Class I OMP modeling, the sequences were aligned as follows:

~~...

LOOP

Class I .. DVSLYGEIKAG VEGRNIQAQLTEQp~VTNGVQGN
Class IB DVTLYGAIKAG V------------- QTYRSVEHT
tk tk k~e ir !r ~t ic ~ ~c Class IA DVTLYGTIKAG VEGRNIQAQLTEQPETSRSVAUg ** *** **xoT

Class II DVTLYGTIKAGV EGRNIQAQLTEQPEVSRVKDAG
~~ ~~* ***~c*

QVKVTKAKSRIRTKI SDFGSTIGFKGSEDLGEGL
* ,t ** ~~~~~ ***,t ** -DGKVSRVET--GSEI ADFGSKIGFKGQEDLGNGL
GAQADRVKT--A.TEI ADLGSRIGFKGQEDLGNGL
TYKAQGGKSKTATQ IADFGSKIGFKGQEDLGNGL
* * ~~ **~** ** * ~~

KAVWQLEQD VSVAGGGASQWGN FtESFIGLAGEFG
KAVWQLEQG ASVAGTNTG-WGN ftQSFVGLRGGFG
** ***~rx * ~r,~* ~* t~ * t*
KAYWQLEQK AYVSGTDTG-WGN RQSFIGLKGGFG
** ***** * *** ~* ,r* * *#
KAIWQLEQ KASIAGTNSG-WGNRQSFIGLRGGFG
,r,t *~e*** * ~*f ~~ ~~ ~k ,t*
- L4oP 3 TLRAGRVANQFDDIASQAINFWIISNNDVASQLQI-* *
TIRAGSLNSPLF{N TGANVNAWESGKFTGNVI,EIS
* *
KVRVGRLNSYLKD TGGFNPWEGKSYYLPLSNIAQ
TVRPsGNLNTVLKDaGDNVNAWESGSNTEDVLGLG
* *

-FKRSDD MPV SVRYDSPEFSGFSGSVQFV PAQNS
~x***~~ ~~ ,~ * ~~t GMAQREB RYL SVRYDSPEFAGFSGSVQY'A PKDNS
PEERPiV-- -- SVRYDSPEFAGFR:AV-QYV PNDNS
~ ****~** ~,~ * ~ ~,~

TIGRVESREI SVR.YDSPVFAGFaGSVQ YVPRDNA
* ~c ~c k x +~ dt dr ,t 9r * atr ~s KSAYRPAYYTKDTDINNLTLVPAVVGKPGSDVYYA
I*
GS--------------------- --_NG ESYHV
~
ESYHA
ND---------,-- ---VDKYKHTKSSR ESYEiA
*

LOOP S
GLNYKNGGFAGNYAFKYA RHANVGRNAFELFLIG
GLNYQNSGFFAQYAGLFQ RYGEGTKK---. IE

*

GLKYENAGFFGQYA GSFARYADLNTD-----AE
,t ** * t * *.~

N
SATSDEAKGTIPPLKFi QVHRLTGGYEEGGLNLALA
DDQTYSIPSLFVERL QVHRLVGGYDNNALYVSVA
~~*** ~~t~ ,~ *
------L QVHRLVGGYDHDALYASVA
~~*** *~e~c * *

RVAVNTANAHPVKDY QVHAVVAGYDANDLYVSVA
**~** w,t* * #

AQLD LSE--NGDFCAKI'KNSTTE zAATASYRFGNA
AQQQ DYGAMSGNSQTE VAATAAYRFGNV
~ ~ ~*** *****
VQQQ DAKLTPTRND=NSFiNSQTE VAAATAAYRFGNV
GQ YEAAKNNEVGSTKGKKHQTQ VAATAAYRFGNV

VPRISYAEGFDLI ERGRRGENTSYDQ IIAGVDYD
.. . .A 1 7C 7t 7C 3q....
TPRVSYAHGFKGT'VDSANbNT-YDQ VVVG.AEYD
~r* ****** ~r * * *~
TPRVSY'AgGFKGS VYDADNDNT-YDQ VVVGAEYD
** ~*,~*,~* ~ ~ # **
TPRVSYAHGF IC'AKVNGVKDANYQQDQ VIVGADYD
** *~r~r*** ~ ~r * **

FSKRTvAIVSGAWL KRNTGIGNYTQIN AASVGLRHKF
FSKRTSALVSAGWL QGGKGA.DKIV-ST ASAVVLRHRF
FSKRTSALVSAGWLJQRGKGTEKFV-AT~VGGVGLRHKF
******* ** * * L * * *****
e FSKR''SALVSAGWL KQGKGTGKVEQ-TASM VGLRFiKF

~.~ -93-Structural similarities are indicated with transmembrane and surface loop regions. With the information now available for Class I OMP and information based on surface loop size, location, intraspecies amino acid homology or heterology of the loop regions of the particular porin protein, predictions.of epitopes for incorporation into vaccines for other pathogenic gram negative bacteria including N gonorrohoeae are possible. Using the same methods employed for Class I OMP, these epi-topes can be evaluated for vaccine purposes.

Deposit of Microorganisms The N. meningitidis strain H4476 (B:15:P1.7,16) was deposited on December 12, 1989 in the Centraal Bureau voor Schimmelculturen (CBS), Baarn, The Netherlands and has deposit number CBS 635.89. The N. meningitidis Class 2/3 OMP deficient mutant HIII-5 was deposited on December 12, 1989 in the CBS, Baarn, The Netherlands and has deposit number CBS 636.89.

Equivalents Those skilled in the art will recognize, or be able to ascertain using no more than routine experi-mentation, many equivalents to the specific embodi-ments of the invention described herein. Such equivalents are intended to be encompassed by the following c:Laims.

...

Claims (59)

1. Vaccine effective against meningococcal disease, comprising an outer-membrane vesicle which comprises Class 1 outer-membrane protein and which is isolated from Neisseria meningitidis strain HIII-5 deposited as CBS 636.89.
2. Substantially purified CNBr fragment of Class 1 outer-membrane protein of Neisseria meningitidis, the fragment having a molecular weight of 25 kD, wherein the Class 1 outer-membrane protein has an amino acid sequence selected from the group consisting of:

DVSLYGEIKAGVEGRNIQAQLTEQPQVTNGVQGNQVKVTKAKSRIRTKISDFGSFIGFKGSEDLGEGLK
AVWQLEQDVSVAGGGASQWGNRESFIGLAGEFGTLRAGRVANQFDDASQAINPWDSNNDVASQLGIFKR
HDDMPVSVRYDSPEFSGFSGSVQFVPAQNSKSAYKPAYYTKDTNNNLTLVPAVVGKPGSDVYYAGLNYK
NGGFAGNYAFKYARHANVGRNAFELFLIGSATSDEAKGTDPLKNHQVHRLTGGYEEGGLNLALAAQLDL
SENGDKAKTKNSTTEIAATASYRFGNAVPRISYAHGFDLIERGKKGENTSYDQIIAGVDYDFSKRTSAI
VSGAWLKRNTGIGNYTQINAASVGLRHKF;

DVSLYGEIKAGVEGRNFQLQLTEPPSKSQPQVKVTKAKSRIRTKISDFGSFIGFKGSEDLGEGLKAVWQ
LEQDVSVAGGGATQWGNRESFVGLAGEFGTLRAGRVANQFDDASQAIDPWDSNNDVASQLGIFKRHDDM
PVSVRYDSPDFSGFSGSVQFVPIQNSKSAYTPAHYTRQNNTDVFVPAVVGKPGSDVYYAGLNYKNGGFA
GSYAFKYARHANVGRDAFELFLLGSTSDEAKGTDPLKNHQVHRLTGGYEEGGLNLALAAQLDLSENGDK
AKTKNSTTEIAATASYRFGNAVPRISYAHGFDLIERGKKGENTSYDQIIAGVDYDFSKRTSAIVSGAWL
KRNTGIGNYTQINAASVGLRHKF;

DVSLYGEIKAGVEGRNYQLQLTEAQAANGGASGQVKVTKVTKAKSRIRTKISDFGSFIGFKGSEDLGDG
LKAVWQLEQDVSVAGGGATQWGNRESFIGLAGEFGTLRAGRVANQFDDASQAIDPWDSNNDVASQLGIF
KRHDDMPVSVRYDSPEFSGFSGSVQFVPIQNSKSAYTPAYYTKNTNNNLTLVPAVVGKPGSDVYYAGLN
YKNGGFAGNYAFKYARHANVGRNAFELFLIGSGSDQAKGTDPLKNHQVHRLTGGYEEGGLNLALAAQLD
LSENGDKTKNSTTEIAATASYRFGNAVPRISYAHGFDFIERGKKGENTSYDQIIAGVDYDFSKRTSAIV
SGAWLKRNTGIGNYTQINAASVGLRHKF; and DVSLYGEIKAGVEGRNIQLQLTEPLQNIQQPQVTKAKSRIRTKISDFGSFIGFKGSEDLGEGLKAVWQL
EQDVSVAGGGATRWGNRESFVGLAGEFGTLRAGRVANQFDDASKAIDPWDSNNVVASQLGIFKRMDDMP
VSVRYDSPEFSGFSGSVQFVPAQNSKSAYTPAHFVQQTPQQSPTLVPAVVGKPGSDVYYAGLNYKNGGF
AGNYAFKYAKHANVGRDAFELFLLGSGSDEAKGTDPLKNHQVHRLTGGYEEGGLNLALAAQLDLSENAD

KTKNSTTEIAATASYRFGNAVPRISYAHGFDFIERGKKGENTSYDQIIAGVDYDFSKRTSAIVSGAWLK
RNTGIGNYTQINAASVGLRHKF.
3. The fragment of Claim 2, wherein the Class 1 outer-membrane protein is of the subtype P1.7.16.
4. A substantially purified oligopeptide having an amino acid sequence selected from the group consisting of YYTKNTNNNL, HFVQQTPQSQP, YYTKDTNNNL, YTKDTNNNLT, TKDTNNNLTL, KDTNNNLTLV, AQAANGGASG, QAANGGASGQ, AANGGASGQV, ANGGASGQVK, NGGASGQVKV, GGASGQVKVT, GASGQVKVTK, ASGQVKVTKV, SGQVKVTKVT, PAHYTRQNNT, AHYTRQNNTD, HYTRQNNTDVF, TRQNNTDVFV, RQNNTDVFVP, QNNTDVFVP, QNNTDVFVPA, NNTDVFVPAV, ANVGRNAFELFLIGSATSDEAKG, NIQAQLTEQPQVTNGVQGN, TKISDFGSFIGFK, VSVAGGGASQWGN, TLRAGRVANQFDDASQAIN, DSNNDVASQLGIFK, GGFSGFSG, LSENGDKAKTKNSTTE and VPRISYAHGFDLIERGKKG.
5. A genetic fusion peptide or protein, comprising a peptide to which an anti-meningococcal outer-membrane protein antibody binds, fused to a carrier polypeptide, wherein the peptide is selected from the group consisting of QPQVTNGVQGN, PPSKSQP, AQAANGGASG, YYTKDTNNNLTL, YYTKNTNNNLTL, YYTKDTNNNL, YYTKNTNNNL, HFVQQTPQSQP and HYTRQNNTDVF.
6. Vaccine effective against meningococcal disease, comprising an outer-membrane vesicle isolated from Neisseria meningitidis strain HIII-5 deposited as CBS 636.89 that has been genetically modified to express more than one subtype of meningococcal Class 1 outer-membrane protein, the vesicle comprising meningococcal Class 1 outer-membrane proteins of more than one subtype.
7. A vaccine comprising a pharmaceutically acceptable vehicle and a fragment of a meningococcal Class 1 outer-membrane protein obtained by use of a reagent selected from the group consisting of:
a. cyanogen bromide, b. endoproteinase Lys-C;
c. endoproteinase Arg-C; and d. endoproteinase Glu-C;
wherein the meningococcal Class 1 outer-membrane protein has an amino acid sequence selected from the group consisting of:
DVSLYGEIKAGVEGRNIQAQLTEQPQVTNGVQGNQVKVTKAKSRIRTKISDFGSFIGFKGSEDLGEGLK
AVWQLEQDVSVAGGGASQWGNRESFIGLAGEFGTLRAGRVANQFDDASQAINPWDSNNDVASQLGIFKR
HDDMPVSVRYDSPEFSGFSGSVQFVPAQNSKSAYKPAYYTKDTNNNLTLVPAVVGKPGSDVYYAGLNYK
NGGFAGNYAFKYARHANVGRNAFELFLIGSATSDEAKGTDPLKNHQVHRLTGGYEEGGLNLALAAQLDL
SENGDKAKTKNSTTEIAATASYRFGNAVPRISYAHGFDLIERGKKGENTSYDQIIAGVDYDFSKRTSAI
VSGAWLKRNTGIGNYTQINAASVGLRHKF;

DVSLYGEIKAGVEGRNFQLQLTEPPSKSQPQVKVTKAKSRIRTKISDFGSFIGFKGSEDLGEGLKAVWQ
LEQDVSVAGGGATQWGNRESFVGLAGEFGTLRAGRVANQFDDASQAIDPWDSNNDVASQLGIFKRHDDM
PVSVRYDSPDFSGFSGSVQFVPIQNSKSAYTPAHYTRQNNTDVFVPAVVGKPGSDVYYAGLNYKNGGFA
GSYAFKYARHANVGRDAFELFLLGSTSDEAKGTDPLKNHQVHRLTGGYEEGGLNLALAAQLDLSENGDK
AKTKNSTTEIAATASYRFGNAVPRISYAHGFDLIERGKKGENTSYDQIIAGVDYDFSKRTSAIVSGAWL
KRNTGIGNYTQINAASVGLRHKF;

DVSLYGEIKAGVEGRNYQLQLTEAQAANGGASGQVKVTKVTKAKSRIRTKISDFGSFIGFKGSEDLGDG
LKAVWQLEQDVSVAGGGATQWGNRESFIGLAGEFGTLRAGRVANQFDDASQAIDPWDSNNDVASQLGIF
KRHDDMPVSVRYDSPEFSGFSGSVQFVPIQNSKSAYTPAYYTKNTNNNLTLVPAVVGKPGSDVYYAGLN
YKNGGFAGNYAFKYARHANVGRNAFELFLIGSGSDQAKGTDPLKNHQVHRLTGGYEEGGLNLALAAQLD
LSENGDKTKNSTTEIAATASYRFGNAVPRISYAHGFDFIERGKKGENTSYDQIIAGVDYDFSKRTSAIV
SGAWLKRNTGIGNYTQINAASVGLRHKF, and DVSLYGEIKAGVEGRNIQLQLTEPLQNIQQPQVTKAKSRIRTKISDFGSFIGFKGSEDLGEGLKAVWQL
EQDVSVAGGGATRWGNRESFVGLAGEFGTLRAGRVANQFDDASKAIDPWDSNNVVASQLGIFKRMDDMP
VSVRYDSPEFSGFSGSVQFVPAQNSKSAYTPAHFVQQTPQQSPTLVPAVVGKPGSDVYYAGLNYKNGGF
AGNYAFKYAKHANVGRDAFELFLLGSGSDEAKGTDPLKNHQVHRLTGGYEEGGLNLALAAQLDLSENAD
KTKNSTTEIAATASYRFGNAVPRISYAHGFDFIERGKKGENTSYDQIIAGVDYDFSKRTSAIVSGAWLK
RNTGIGNYTQINAASVGLRHKF.
8. A vaccine comprising a pharmaceutically acceptable vehicle and a peptide having an amino acid sequence selected from the group consisting of QPQVTNGVQGN, PPSKSQP, AQAANGGASG, YYTKDTNNNLTL, YYTKNTNNNLTL, YYTKDTNNNL, YYTKNTNNNL, HFVQQTPQSQP and HYTRQNNTDVF.
9. A vaccine effective against Neisseria meningitidis, comprising a pharmaceutically acceptable vehicle and a peptide having an amino acid sequence selected from the group consisting of QPQVTNGVQGN, EAQAANGGASGQ, YYTKDTNNNLTL and YYTKNTNNNLT.
10. A vaccine comprising a pharmaceutically acceptable vehicle, and a conjugate of Neisseria meningitidis Class 1 outer-membrane protein and meningococcal polysaccharide selected from the group consisting of A, B, W-135 and Y polysaccharide, wherein the Class 1 outer-membrane protein has an amino acid sequence selected from the group consisting of:

DVSLYGEIKAGVEGRNIQAQLTEQPQVTNGVQGNQVKVTKAKSRIRTKISDFGSFIGFKGSEDLGEGLK
AVWQLEQDVSVAGGGASQWGNRESFIGLAGEFGTLRAGRVANQFDDASQAINPWDSNNDVASQLGIFKR
HDDMPVSVRYDSPEFSGFSGSVQFVPAQNSKSAYKPAYYTKDTNNNLTLVPAVVGKPGSDVYYAGLNYK
NGGFAGNYAFKYARHANVGRNAFELFLIGSATSDEAKGTDPLKNHQVHRLTGGYEEGGLNLALAAQLDL
SENGDKAKTKNSTTEIAATASYRFGNAVPRISYAHGFDLIERGKKGENTSYDQIIAGVDYDFSKRTSAI
VSGAWLKRNTGIGNYTQINAASVGLRHKF;

DVSLYGEIKAGVEGRNFQLQLTEPPSKSQPQVKVTKAKSRIRTKISDFGSFIGFKGSEDLGEGLKAVWQ
LEQDVSVAGGGATQWGNRESFVGLAGEFGTLRAGRVANQFDDASQAIDPWDSNNDVASQLGIFKRHDDM
PVSVRYDSPDFSGFSGSVQFVPIQNSKSAYTPAHYTRQNNTDVFVPAVVGKPGSDVYYAGLNYKNGGFA
GSYAFKYARHANVGRDAFELFLLGSTSDEAKGTDPLKNHQVHRLTGGYEEGGLNLALAAQLDLSENGDK
AKTKNSTTEIAATASYRFGNAVPRISYAHGFDLIERGKKGENTSYDQIIAGVDYDFSKRTSAIVSGAWL
KRNTGIGNYTQINAASVGLRHKF;

DVSLYGEIKAGVEGRNYQLQLTEAQAANGGASGQVKVTKVTKAKSRIRTKISDFGSFIGFKGSEDLGDG
LKAVWQLEQDVSVAGGGATQWGNRESFIGLAGEFGTLRAGRVANQFDDASQAIDPWDSNNDVASQLGIF
KRHDDMPVSVRYDSPEFSGFSGSVQFVPIQNSKSAYTPAYYTKNTNNNLTLVPAVVGKPGSDVYYAGLN
YKNGGFAGNYAFKYARHANVGRNAFELFLIGSGSDQAKGTDPLKNHQVHRLTGGYEEGGLNLALAAQLD
LSENGDKTKNSTTEIAATASYRFGNAVPRISYAHGFDFIERGKKGENTSYDQIIAGVDYDFSKRTSAIV
SGAWLKRNTGIGNYTQINAASVGLRHKF, and DVSLYGEIKAGVEGRNIQLQLTEPLQNIQQPQVTKAKSRIRTKISDFGSFIGFKGSEDLGEGLKAVWQL
EQDVSVAGGGATRWGNRESFVGLAGEFGTLRAGRVANQFDDASKAIDPWDSNNVVASQLGIFKRMDDMP
VSVRYDSPEFSGFSGSVQFVPAQNSKSAYTPAHFVQQTPQQSPTLVPAVVGKPGSDVYYAGLNYKNGGF
AGNYAFKYAKHANVGRDAFELFLLGSGSDEAKGTDPLKNHQVHRLTGGYEEGGLNLALAAQLDLSENAD
KTKNSTTEIAATASYRFGNAVPRISYAHGFDFIERGKKGENTSYDQIIAGVDYDFSKRTSAIVSGAWLK
RNTGIGNYTQINAASVGLRHKF.
11. The vaccine according to Claims 8 or 9, wherein the peptide is conjugated to a carrier molecule comprising a T-cell epitope of a carrier protein.
12. Use of a vaccine according to any one of Claims 1, 6, 7, 8, 9, or 11 to elicit a protective immune response against Neisseria meningitidis.
13. An antigenic conjugate, said conjugate comprising an antigenic carrier polypeptide, and a meningococcal Class 1 outer-membrane protein, wherein said Class 1 outer-membrane protein has an amino acid sequence selected from the group consisting of:

DVSLYGEIKAGVEGRNIQAQLTEQPQVTNGVQGNQVKVTKAKSRIRTKISDFGSFIGFKGSEDLGEGLK
AVWQLEQDVSVAGGGASQWGNRESFIGLAGEFGTLRAGRVANQFDDASQAINPWDSNNDVASQLGIFKR
HDDMPVSVRYDSPEFSGFSGSVQFVPAQNSKSAYKPAYYTKDTNNNLTLVPAVVGKPGSDVYYAGLNYK
NGGFAGNYAFKYARHANVGRNAFELFLIGSATSDEAKGTDPLKNHQVHRLTGGYEEGGLNLALAAQLDL
SENGDKAKTKNSTTEIAATASYRFGNAVPRISYAHGFDLIERGKKGENTSYDQIIAGVDYDFSKRTSAI
VSGAWLKRNTGIGNYTQINAASVGLRHKF;

DVSLYGEIKAGVEGRNFQLQLTEPPSKSQPQVKVTKAKSRIRTKISDFGSFIGFKGSEDLGEGLKAVWQ
LEQDVSVAGGGATQWGNRESFVGLAGEFGTLRAGRVANQFDDASQAIDPWDSNNDVASQLGIFKRHDDM
PVSVRYDSPDFSGFSGSVQFVPIQNSKSAYTPAHYTRQNNTDVFVPAVVGKPGSDVYYAGLNYKNGGFA
GSYAFKYARHANVGRDAFELFLLGSTSDEAKGTDPLKNHQVHRLTGGYEEGGLNLALAAQLDLSENGDK
AKTKNSTTEIAATASYRFGNAVPRISYAHGFDLIERGKKGENTSYDQIIAGVDYDFSKRTSAIVSGAWL
KRNTGIGNYTQINAASVGLRHKF;

DVSLYGEIKAGVEGRNYQLQLTEAQAANGGASGQVKVTKVTKAKSRIRTKISDFGSFIGFKGSEDLGDG
LKAVWQLEQDVSVAGGGATQWGNRESFIGLAGEFGTLRAGRVANQFDDASQAIDPWDSNNDVASQLGIF

KRHDDMPVSVRYDSPEFSGFSGSVQFVPIQNSKSAYTPAYYTKNTNNNLTLVPAVVGKPGSDVYYAGLN
YKNGGFAGNYAFKYARHANVGRNAFELFLIGSGSDQAKGTDPLKNHQVHRLTGGYEEGGLNLALAAQLD
LSENGDKTKNSTTEIAATASYRFGNAVPRISYAHGFDFIERGKKGENTSYDQIIAGVDYDFSKRTSAIV
SGAWLKRNTGIGNYTQINAASVGLRHKF; and DVSLYGEIKAGVEGRNIQLQLTEPLQNIQQPQVTKAKSRIRTKISDFGSFIGFKGSEDLGEGLKAVWQL
EQDVSVAGGGATRWGNRESFVGLAGEFGTLRAGRVANQFDDASKAIDPWDSNNVVASQLGIFKRMDDMP
VSVRYDSPEFSGFSGSVQFVPAQNSKSAYTPAHFVQQTPQQSPTLVPAVVGKPGSDVYYAGLNYKNGGF
AGNYAFKYAKHANVGRDAFELFLLGSGSDEAKGTDPLKNHQVHRLTGGYEEGGLNLALAAQLDLSENAD
KTKNSTTEIAATASYRFGNAVPRISYAHGFDFIERGKKGENTSYDQIIAGVDYDFSKRTSAIVSGAWLK
RNTGIGNYTQINAASVGLRHKF.
14. An antigenic conjugate of Claim 13, wherein the antigenic carrier polypeptide is a bacterial toxin or a portion of a bacterial toxin which can elicit an immune response.
15. A recombinant microorganism which expresses a peptide selected from the group consisting of QPQVTNGVQGN, PPSKSQP, QAANGGASG, YYTKDTNNLTL, YYTKNTNNNLTL, YYTKDTNNNL, YYTKNTNNNL, HFVQQTPQSQP and HYTRQNNTDVF.
16. A recombinant microorganism of Claim 15 which is a vaccinia virus, adenovirus, cytomegalovirus or a bacterium of the genus Salmonella.
17. A recombinant microorganism capable of expressing a fusion protein comprising a modified flagellin protein and an epitope which binds to antibodies specific to a Neisseria meningitidis Class 1 outer-membrane protein, wherein the epitope is defined by an amino acid sequence selected from the group consisting of YYTKNTNNNL, HFVQQTPQSQP, YYTKDTNNNL, YTKDTNNNLT, TKDTNNNLTL, KDTNNNLTLV, AQAANGGASG, QAANGGASGQ, AANGGASGQV, ANGGASGQVK, NGGASGQVKV, GGASGQVKVT, GASGQVKVTK, ASGQVKVTKV, SGQVKVTKVT, PAHYTRQNNT, AHYTRQNNTD, HYTRQNNTDVF, TRQNNTDVFV, RQNVTDVFVP, QNNTDVFVP, QNNTDVFVPA, NNTDVFVPAV, ANVGRNAFELFLIGSATSDEAKG, NIQAQLTEQPQVTNGVQGN, TKISDFGSFIGFK, VSVAGGGASQWGN, TLRAGRVANQFDDASQAIN, DSNNDVASQWIFK, GGFSGFSG, LSENGDKAKTKNSTTE
and VPRISYAHGFDLIERGKKG.
18. The Neisseria meningitidis strain consisting of HIII-5, deposit number CBS 636.89.
19. A strain of Neisseria meningitidis which is transformed with a gene encoding a Class 1 outer-membrane protein of Neisseria meningitidis or a fusion protein thereof, wherein the Class 1 outer-membrane protein has a molecular weight of 42 kD to 46 kD and comprises an amino acid sequence selected from the group consisting of:

DVSLYGEIKAGVEGRNIQAQLTEQPQVTNGVQGNQVKVTKAKSRIRTKISDFGSFIGFKGSEDLGEGLK
AVWQLEQDVSVAGGGASQWGNRESFIGLAGEFGTLRAGRVANQFDDASQAINPWDSNNDVASQLGIFKR
HDDMPVSVRYDSPEFSGFSGSVQFVPAQNSKSAYKPAYYTKDTNNNLTLVPAVVGKPGSDVYYAGLNYK
NGGFAGNYAFKYARHANVGRNAFELFIGSATSDEAKGTDPLKNHQVHRLTGGYEEGGLNLALAAQLDLS
ENGDKAKTKNSTTEIAATASYRFGNAVPRISYAHGFDLIERGKKGENTSYDQIIAGVDYDFSKRTSAIV
SGAWLKRNTGIGNYTQINAASVGLRHKF;

DVSLYGEIKAGVEGRNFQLQLTEPPSKSQPQVKVTKAKSRIRTKISDFGSFIGFKGSEDLGEGLKAVWQ
LEQDVSVAGGGATQWGNRESFVGLAGEFGTLRAGRVANQFDDASQAIDPWDSNNDVASQLGIFKRHDDM
PVSVRYDSPDFSGFSGSVQFVPIQNSKSAYTPAHYTRQNNTDVFVPAVVGKPGSDVYYAGLNYKNGGFA
GSYAFKYARHANVGRDAFELFLLGSTSDEAKGTDPLKNHQVHRLTGGYEEGGLNLALAAQLDLSENGDK
AKTKNSTTEIAATASYRFGNAVPRISYAHGFDLIERGKKGENTSYDQIIAGVDYDFSKRTSAIVSGAWL
KRNTGIGNYTQINAASVGLRHKF;

DVSLYGEIKAGVEGRNYQLQLTEAQAANGGASGQVKVTKVTKAKSRIRTKISDFGSFIGFKGSEDLGDG
LKAVWQLEQDVSVAGGGATQWGNRESFIGLAGEFGTLRAGRVANQFDDASQAIDPWDSNNDVASQLGIF
KRHDDMPVSVRYDSPEFSGFSGSVQFVPIQNSKSAYTPAYYTKNTNNNLTLVPAVVGKPGSDVYYAGLN
YKNGGFAGNYAFKYARHANVGRNAFELFLIGSGSDQAKGTDPLKNHQVHRLTGGYEEGGLNLALAAQLD
LSENGDKTKNSTTEIAATASYRFGNAVPRISYAHGFDFIERGKKGENTSYDQIIAGVDYDFSKRTSAIV
SGAWLKRNTGIGNYTQINAASVGLRHKF; and DVSLYGEIKAGVEGRNIQLQLTEPLQNIQQPQVTKAKSRIRTKISDFGSFIGFKGSEDLGEGLKAVWQL
EQDVSVAGGGATRWGNRESFVGLAGEFGTLRAGRVANQFDDASKAIDPWDSNNVVASQLGIFKRMDDMP
VSVRYDSPEFSGFSGSVQFVPAQNSKSAYTPAHFVQQTPQQSPTLVPAVVGKPGSDVYYAGLNYKNGGF
AGNYAFKYAKHANVGRDAFELFLLGSGSDEAKGTDPLKNHQVHRLTGGYEEGGLNLALAAQLDLSENAD

KTKNSTTEIAATASYRFGNAVPRISYAHGFDFIERGKKGENTSYDQIIAGVDYDFSKRTSAIVSGAWLK
RNTGIGNYTQINAASVGLRHKF.
20. A recombinant microorganism capable of expressing Neisseria meningitidis Class 1 outer-membrane proteins of more than one subtype, wherein at least one of the Class 1 outer-membrane proteins has a molecular weight of 42 kD to 46 kD and comprises an amino acid sequence selected from the group consisting of:

DVSLYGEIKAGVEGRNIQAQLTEQPQVTNGVQGNQVKVTKAKSRIRTKISDFGSFIGFKGSEDLGEGLK
AVWQLEQDVSVAGGGASQWGNRESFIGLAGEFGTLRAGRVANQFDDASQAINPWDSNNDVASQLGIFKR
HDDMPVSVRYDSPEFSGFSGSVQFVPAQNSKSAYKPAYYTKDTNNNLTLVPAVVGKPGSDVYYAGLNYK
NGGFAGNYAFKYARHANVGRNAFELFLIGSATSDEAKGTDPLKNHQVHRLTGGYEEGGLNLALAAQLDL
SENGDKAKTKNSTTEIAATASYRFGNAVPRISYAHGFDLIERGKKGENTSYDQIIAGVDYDFSKRTSAI
VSGAWLKRNTGIGNYTQINAASVGLRHKF;

DVSLYGEIKAGVEGRNFQLQLTEPPSKSQPQVKVTKAKSRIRTKISDFGSFIGFKGSEDLGEGLKAVWQ
LEQDVSVAGGGATQWGNRESFVGLAGEFGTLRAGRVANQFDDASQAIDPWDSNNDVASQLGIFKRHDDM
PVSVRYDSPDFSGFSGSVQFVPIQNSKSAYTPAHYTRQNNTDVFVPAVVGKPGSDVYYAGLNYKNGGFA
GSYAFKYARHANVGRDAFELFLLGSTSDEAKGTDPLKNHQVHRLTGGYEEGGLNLALAAQLDLSENGDK
AKTKNSTTEIAATASYRFGNAVPRISYAHGFDLIERGKKGENTSYDQIIAGVDYDFSKRTSAIVSGAWL
KRNTGIGNYTQINAASVGLRHKF;

DVSLYGEIKAGVEGRNYQLQLTEAQAANGGASGQVKVTKVTKAKSRIRTKISDFGSFIGFKGSEDLGDG
LKAVWQLEQDVSVAGGGATQWGNRESFIGLAGEFGTLRAGRVANQFDDASQAIDPWDSNNDVASQLGIF
KRHDDMPVSVRYDSPEFSGFSGSVQFVPIQNSKSAYTPAYYTKNTNNNLTLVPAVVGKPGSDVYYAGLN
YKNGGFAGNYAFKYARHANVGRNAFELFLIGSGSDQAKGTDPLKNHQVHRLTGGYEEGGLNLALAAQLD
LSENGDKTKNSTTEIAATASYRFGNAVPRISYAHGFDFIERGKKGENTSYDQIIAGVDYDFSKRTSAIV
SGAWLKRNTGIGNYTQINAASVGLRHKF; and DVSLYGEIKAGVEGRNIQLQLTEPLQNIQQPQVTKAKSRIRTKISDFGSFIGFKGSEDLGEGLKAVWQL
EQDVSVAGGGATRWGNRESFVGLAGEFGTLRAGRVANQFDDASKAIDPWDSNNVVASQLGIFKRMDDMP
VSVRYDSPEFSGFSGSVQFVPAQNSKSAYTPAHFVQQTPQQSPTLVPAVVGKPGSDVYYAGLNYKNGGF
AGNYAFKYAKHANVGRDAFELFLLGSGSDEAKGTDPLKNHQVHRLTGGYEEGGLNLALAAQLDLSENAD
KTKNSTTEIAATASYRFGNAVPRISYAHGFDFIERGKKGENTSYDQIIAGVDYDFSKRTSAIVSGAWLK
RNTGIGNYTQINAASVGLRHKF.
21. An isolated nucleic acid encoding a Neisseria meningitidis Class 1 outer-membrane protein, said protein having an amino acid sequence selected from the group consisting of:
DVSLYGEIKAGVEGRNIQAQLTEQPQVTNGVQGNQVKVTKAKSRIRTKISDFGSFIGFKGSEDLGEGLK
AVWQLEQDVSVAGGGASQWGNRESFIGLAGEFGTLRAGRVANQFDDASQAINPWDSNNDVASQLGIFKR
HDDMPVSVRYDSPEFSGFSGSVQFVPAQNSKSAYKPAYYTKDTNNNLTLVPAVVGKPGSDVYYAGLNYK
NGGFAGNYAFKYARHANVGRNAFELFLIGSATSDEAKGTDPLKNHQVHRLTGGYEEGGLNLALAAQLDL
SENGDKAKTKNSTTEIAATASYRFGNAVPRISYAHGFDLIERGKKGENTSYDQIIAGVDYDFSKRTSAI
VSGAWLKRNTGIGNYTQINAASVGLRHKF;

DVSLYGEIKAGVEGRNFQLQLTEPPSKSQPQVKVTKAKSRIRTKISDFGSFIGFKGSEDLGEGLKAVWQ
LEQDVSVAGGGATQWGNRESFVGLAGEFGTLRAGRVANQFDDASQAIDPWDSNNDVASQLGIFKRHDDM
PVSVRYDSPDFSGFSGSVQFVPIQNSKSAYTPAHYTRQNNTDVFVPAVVGKPGSDVYYAGLNYKNGGFA
GSYAFKYARHANVGRDAFELFLLGSTSDEAKGTDPLKNHQVHRLTGGYEEGGLNLALAAQLDLSENGDK
AKTKNSTTEIAATASYRFGNAVPRISYAHGFDLIERGKKGENTSYDQIIAGVDYDFSKRTSAIVSGAWL
KRNTGIGNYTQINAASVGLRHKF;

DVSLYGEIKAGVEGRNYQLQLTEAQAANGGASGQVKVTKVTKAKSRIRTKISDFGSFIGFKGSEDLGDG
LKAVWQLEQDVSVAGGGATQWGNRESFIGLAGEFGTLRAGRVANQFDDASQAIDPWDSNNDVASQLGIF
KRHDDMPVSVRYDSPEFSGFSGSVQFVPIQNSKSAYTPAYYTKNTNNNLTLVPAVVGKPGSDVYYAGLN
YKNGGFAGNYAFKYARHANVGRNAFELFLIGSGSDQAKGTDPLKNHQVHRLTGGYEEGGLNLALAAQLD
LSENGDKTKNSTTEIAATASYRFGNAVPRISYAHGFDFIERGKKGENTSYDQIIAGVDYDFSKRTSAIV
SGAWLKRNTGIGNYTQINAASVGLRHKF; and DVSLYGEIKAGVEGRNIQLQLTEPLQNIQQPQVTKAKSRIRTKISDFGSFIGFKGSEDLGEGLKAVWQL
EQDVSVAGGGATRWGNRESFVGLAGEFGTLRAGRVANQFDDASKAIDPWDSNNVVASQLGIFKRMDDMP
VSVRYDSPEFSGFSGSVQFVPAQNSKSAYTPAHFVQQTPQQSPTLVPAVVGKPGSDVYYAGLNYKNGGF
AGNYAFKYAKHANVGRDAFELFLLGSGSDEAKGTDPLKNHQVHRLTGGYEEGGLNLALAAQLDLSENAD
KTKNSTTEIAATASYRFGNAVPRISYAHGFDFIERGKKGENTSYDQIIAGVDYDFSKRTSAIVSGAWLK
RNTGIGNYTQINAASVGLRHKF.
22. Isolated nucleic acid having a nucleotide sequence selected from the group consisting of GGCAGGAACTACCAGCTGCAATTGACTGAAGCACAAGCCGCTAACGGTGGAGCGAGCGGTCAGGTAAAA
GTTACTAAAGTTACTAAGGCCAAAAGCCGCATCAGGACGAAAATCAGT;
GGCAGGAACATCTAGGCGCAATTGACCGAGCAGCCCCAAGCAACTAACGGTGTGCAAGGCGGTCGGCAA
GGCAATCAGGTAACAGTTACTAAGGTCAAAAGCCGCATCAGGACGGAAATCAGC;
GGCAGGAACTTCCAGCTGCAGTTGACCGAACCGCCCTCAAAGAGTCAACCTCAGGTAAAAGTTACTAAG
GCCAAAAGCCGCATCAGGACGAAAATCAGT;

GGCAACAACATTCAGCTGCAATTGACCGAACCACCCTCAAAAGGTCAGACGGGCAATAAAGTTACTAAG
GCCAAAAGCCGCATCAGGACGAAAATCAGT;

GGCAGGAACTACCAGCTGCAATTGACTGAACAACCCTCAAGAACTCAAGGTCAAACGAGCAATCAGGTA
AAAGTTACTAAGGCCAAAAGCCGCATCAGGACGAAAATCAGT; and GGCAGGAACATCCAGCTGCAGTTGACCGAACCGCTCCCAAATATTCAACCTCAGGTTACTAAGCGCAAA
AGCCGCATCAGGACGAAAATCAGC.
23. Isolated nucleic acid, having a nucleotide sequence selected from the group consisting of ACGCTGCGCGCCGGTCGCGTTGCGAATCAGTTTGACGATGCCAGCCAAGCCATTGATCCTTGGGACAGC
AATAATGATGTGGCTTCGCAATTGGGTATTTTCAAACGCCACGACGACATGCCGGTTTCTGTACGCTAC
GATTCCCCCGAATTTTCCGGTTTCAGCGGCAGCGTTCAATTCGTTCCGATCCAAAACAGCAAGTCCGCC
TATACGCCGGCTTATTATACTAAGGATACAAACAATAATCTTACTCTCGTTCCGGCTGTTGTCGGCAAG
CCCGGATCGGATGTGTATTATGCCGGTCTGAATTACAAAAATGGCGGTTTTGCCGGGAACTATGCCTTT
AAATA TGCGAGACACGCCAATGTCGGACGTAATGCTTTTGAGTTGTTC;

ACGCTGCGCACCGGTCGCGTTGCGAATCAGTTTGACGATGCCAGCCAAGCCATTGATCCTTGGGACAGC
AATAATGATGTGGCTTCGCAATTGGGTATTTTCAAACGCCACGACGATATGCCGGTTTCTGTACGCTAC
GACTCTCCGGACTTTTCCGGTTTCAGCGGCAGCGTCCAATTCGTTCCGGCTCAAAACAGCAAGTCCGCC
TATACGCCGGCTTATGTGGCGGTGGAAAATGGCGTAGCTAAAAAAGTTGCGGCTGTTGTCGGCAAGCCC
GGATCGGATGTGTATTATGCCGGTCTGAATTATAAGAATGGCGGTTTTGCCGGGAACTATGCCTTTAAA
TATGCGAAACACGCCAATGTCGGACGTGATGCTTTTGAGTTGTTC;

ACGCTGCNNNNNGGTCGCGTCGCGAATCAGTTTGACGATGCCAGCCAAGCCATTGATCCTTGGGACAGC
AACAATGATGTGGCTTCGCAATTGGGTATTTTCAAACGCCACGACGATATGCCGGTTTCTGTACGCTAC
GACTCTCCGGACTTTTCCGGTTTCAGCGGCAGCGTCCAATTCGTTCCGATCCAAAACAGCAAGTCCGCC
TATACGCCGGCTCATAATACTAGGCAGAACAATGCTGATGTTTTCGTTCCGGCTGTTGTCGGCAAGCCC
GGATCGGATGTGTATTATGCCGGTCTGAATTACAAAAATGGCGGTTTTGCCGGGCGCTATGCCTTTAAA
TATGCGAGACACGCCAATGTCGGACGTGATGCTTTTGAGTTGTTC;
CGCTACGACTCTCCGGACTTTTCCGGTTTCAGCGGCAGCGTCCAATTCGTTCCGGCCCAAAACAGCAAA
TCCGCCTATACGCCGGCTACTTATACTGTGGATAGTAGTGGTGTTGTTACTCCCGTTCCTGCTGTTGTC
GGCAAGCCCGGATCGGATGTGTATTATGCCGGTCTGAATTACAAAAATGGCGGTTTTGCCGGGAACTAT
GCCTTTAAATACGCGAAACACGCCAATGTGGGCCGTGATGCTTTTAATTTGTTC;
CGCTACGACTCTCCGGACTTTTCCGGTTTCAGCGGCAGCGTCCAATTCGTTCCGGCTCAAAACAGCAAG
TCCGCCTATAAGCCGGCTTATGTGGATGAGAAGAAAATGGTTCATGCGGCTGTTGTCGGCAAGCCCGGA
TCGGATGTGTATTATGCCGGTCTGAATTACAAAAATGGCGGTTTTGCCGGGAACTATGCCTTTAAATAT
GCGAAACACGCCAATGTGGGCCGTGATGCTTTTAATTTGTTC; and ACGCTGCGCACCGGTCGCGTTGCAAATCAGTTTGACGATGCCAGCCAAGCCATTGATCCTTGGGACAGC
AATAATGATGTGGCTTCGCAATTGGGTATTTTCAAACGCCACGACGATATGTCGGTTTCTGTACGCTAC
GATTCCCCCGAATTTTCCGGTTTTAGCGGCAGCGTCCAATTCGTTCCGGCCCAAAACAGCAAGTCCGCC
TATACGCCGGCTCATTTTGTTCAGAATAAGCAAAATCAGCGGCCTACTCTCGTTCCGGCTGTTGTCGGC
AAGCCGGGGTCGGATGTGTATTATGCCGGTCTGAATTACAAAAATGGCGGTTTTGCCGGGAACTATGCC
TTTAAATACGCGAAACACGCCAATGTGGGCCGTGATGCTTTTGAGTTGTTC.
24. A nucleic acid vector comprising an isolated nucleic acid according to Claim 22 or 23.
25. An expression vector comprising a nucleic acid encoding a Class 1 outer-membrane protein of Neisseria meningitidis or a fusion protein thereof comprising Class 1 outer-membrane protein of Neisseria meningitidis under the control of transcription signals and linked to appropriate translation signals for expression in a suitable host cell, wherein the Class 1 outer-membrane protein has a molecular weight of 42 kD to 46 kD and an amino acid sequence selected from the group consisting of:

DVSLYGEIKAGVEGRNIQAQLTEQPQVTNGVQGNQVKVTKAKSRIRTKISDFGSFIGFKGSEDLGEGLK
AVWQLEQDVSVAGGGASQWGNRESFIGLAGEFGTLRAGRVANQFDDASQAINPWDSNNDVASQLGIFKR
HDDMPVSVRYDSPEFSGFSGSVQFVPAQNSKSAYKPAYYTKDTNNNLTLVPAVVGKPGSDVYYAGLNYK
NGGFAGNYAFKYARHANVGRNAFELFLIGSATSDEAKGTDPLKNHQVHRLTGGYEEGGLNLALAAQLDL
SENGDKAKTKNSTTEIAATASYRFGNAVPRISYAHGFDLIERGKKGENTSYDQIIAGVDYDFSKRTSAI
VSGAWLKRNTGIGNYTQINAASVGLRHKF;

DVSLYGEIKAGVEGRNFQLQLTEPPSKSQPQVKVTKAKSRIRTKISDFGSFIGFKGSEDLGEGLKAVWQ
LEQDVSVAGGGATQWGNRESFVGLAGEFGTLRAGRVANQFDDASQAIDPWDSNNDVASQLGIFKRHDDM
PVSVRYDSPDFSGFSGSVQFVPIQNSKSAYTPAHYTRQNNTDVFVPAVVGKPGSDVYYAGLNYKNGGFA
GSYAFKYARHANVGRDAFELFLLGSTSDEAKGTDPLKNHQVHRLTGGYEEGGLNLALAAQLDLSENGDK
AKTKNSTTEIAATASYRFGNAVPRISYAHGFDLIERGKKGENTSYDQIIAGVDYDFSKRTSAIVSGAWL
KRNTGIGNYTQINAASVGLRHKF;

DVSLYGEIKAGVEGRNYQLQLTEAQAANGGASGQVKVTKVTKAKSRIRTKISDFGSFIGFKGSEDLGDG
LKAVWQLEQDVSVAGGGATQWGNRESFIGLAGEFGTLRAGRVANQFDDASQAIDPWDSNNDVASQLGIF
KRHDDMPVSVRYDSPEFSGFSGSVQFVPIQNSKSAYTPAYYTKNTNNNLTLVPAVVGKPGSDVYYAGLN
YKNGGFAGNYAFKYARHANVGRNAFELFLIGSGSDQAKGTDPLKNHQVHRLTGGYEEGGLNLALAAQLD
LSENGDKTKNSTTEIAATASYRFGNAVPRISYAHGFDFIERGKKGENTSYDQIIAGVDYDFSKRTSAIV
SGAWLKRNTGIGNYTQINAASVGLRHKF; and DVSLYGEIKAGVEGRNIQLQLTEPLQNIQQPQVTKAKSRIRTKISDFGSFIGFKGSEDLGEGLKAVWQL
EQDVSVAGGGATRWGNRESFVGLAGEFGTLRAGRVANQFDDASKAIDPWDSNNVVASQLGIFKRMDDMP
VSVRYDSPEFSGFSGSVQFVPAQNSKSAYTPAHFVQQTPQQSPTLVPAVVGKPGSDVYYAGLNYKNGGF
AGNYAFKYAKHANVGRDAFELFLLGSGSDEAKGTDPLKNHQVHRLTGGYEEGGLNLALAAQLDLSENAD
KTKNSTTEIAATASYRFGNAVPRISYAHGFDFIERGKKGENTSYDQIIAGVDYDFSKRTSAIVSGAWLK
RNTGIGNYTQINAASVGLRHKF.
26. A host cell which contains an expression vector of claim 25.
27. A method for producing an intact Class 1 outer-membrane protein of Neisseria meningitidis or a fusion protein thereof comprising Class 1 outer-membrane protein of Neisseria meningitidis, which comprises introducing the expression vector of Claim 25 into suitable host cells and culturing the host cells under conditions which permit the expression of said nucleic acid.
28. A method for producing Neisseria meningitidis Class 1 outer-membrane protein, said method comprising maintaining a host cell containing a recombinant nucleic acid encoding Neisseria meningitidis Class 1 outer-membrane protein under conditions suitable for expression thereof, whereby the Class 1 outer-membrane protein is expressed and thereby produced, wherein the Neisseria meningitidis Class 1 outer-membrane protein has a molecular weight of 42 kD to 46 kD and comprises an amino acid sequence selected from the group consisting of:

DVSLYGEIKAGVEGRNIQAQLTEQPQVTNGVQGNQVKVTKAKSRIRTKISDFGSFIGFKGSEDLGEGLK
AVWQLEQDVSVAGGGASQWGNRESFIGLAGEFGTLRAGRVANQFDDASQAINPWDSNNDVASQLGIFKR
HDDMPVSVRYDSPEFSGFSGSVQFVPAQNSKSAYKPAYYTKDTNNNLTLVPAVVGKPGSDVYYAGLNYK
NGGFAGNYAFKYARHANVGRNAFELFLIGSATSDEAKGTDPLKNHQVHRLTGGYEEGGLNLALAAQLDL
SENGDKAKTKNSTTEIAATASYRFGNAVPRISYAHGFDLIERGKKGENTSYDQIIAGVDYDFSKRTSAI
VSGAWLKRNTGIGNYTQINAASVGLRHKF;

DVSLYGEIKAGVEGRNFQLQLTEPPSKSQPQVKVTKAKSRIRTKISDFGSFIGFKGSEDLGEGLKAVWQ
LEQDVSVAGGGATQWGNRESFVGLAGEFGTLRAGRVANQFDDASQAIDPWDSNNDVASQLGIFKRHDDM
PVSVRYDSPDFSGFSGSVQFVPIQNSKSAYTPAHYTRQNNTDVFVPAVVGKPGSDVYYAGLNYKNGGFA
GSYAFKYARHANVGRDAFELFLLGSTSDEAKGTDPLKNHQVHRLTGGYEEGGLNLALAAQLDLSENGDK
AKTKNSTTEIAATASYRFGNAVPRISYAHGFDLIERGKKGENTSYDQIIAGVDYDFSKRTSAIVSGAWL
KRNTGIGNYTQINAASVGLRHKF;

DVSLYGEIKAGVEGRNYQLQLTEAQAANGGASGQVKVTKVTKAKSRIRTKISDFGSFIGFKGSEDLGDG
LKAVWQLEQDVSVAGGGATQWGNRESFIGLAGEFGTLRAGRVANQFDDASQAIDPWDSNNDVASQLGIF
KRHDDMPVSVRYDSPEFSGFSGSVQFVPIQNSKSAYTPAYYTKNTNNNLTLVPAVVGKPGSDVYYAGLN
YKNGGFAGNYAFKYARHANVGRNAFELFLIGSGSDQAKGTDPLKNHQVHRLTGGYEEGGLNLALAAQLD
LSENGDKTKNSTTEIAATASYRFGNAVPRISYAHGFDFIERGKKGENTSYDQIIAGVDYDFSKRTSAIV
SGAWLKRNTGIGNYTQINAASVGLRHKF; and DVSLYGEIKAGVEGRNIQLQLTEPLQNIQQPQVTKAKSRIRTKISDFGSFIGFKGSEDLGEGLKAVWQL
EQDVSVAGGGATRWGNRESFVGLAGEFGTLRAGRVANQFDDASKAIDPWDSNNVVASQLGIFKRMDDMP
VSVRYDSPEFSGFSGSVQFVPAQNSKSAYTPAHFVQQTPQQSPTLVPAVVGKPGSDVYYAGLNYKNGGF
AGNYAFKYAKHANVGRDAFELFLLGSGSDEAKGTDPLKNHQVHRLTGGYEEGGLNLALAAQLDLSENAD

KTKNSTTEIAATASYRFGNAVPRISYAHGFDFIERGKKGENTSYDQIIAGVDYDFSKRTSAIVSGAWLK
RNTGIGNYTQINAASVGLRHKF.
29. The method of Claim 28 further comprising the step of isolating the Neisseria meningitidis Class 1 outer-membrane protein.
30. Isolated peptide having an amino acid sequence selected from the group consisting of: QPQVTNGVQGN, EAQAANGGASGQ, YYTKDTNNNLTL or YYTKNTNNNLT.
31. A fusion protein comprising a flagellin protein having an amino acid sequence for an epitope of a meningococcal Class 1 outer-membrane inserted within it, wherein the amino acid sequence is selected from the group consisting of:

YYTKNTNNNL, HFVQQTPQSQP, YYTKDTNNNL, YTKDTNNNLT, TKDTNNNLTL, KDTNNNLTLV, AQAANGGASG, QAANGGASGQ, AANGGASGQV, ANGGASGQVK, NGGASGQVKV, GGASGQVKVT, GASGQVKVTK, ASGQVKVTKV, SGQVKVTKVT, PAHYTRQNNT, AHYTRQNNTD, HYTRQNNTDVF, TRQNNTDVFV, RQNNTDVFVP, QNNTDVFVP, QNNTDVFVPA, NNTDVFVPAV, ANVGRNAFELFLIGSATSDEAKG, NIQAQLTEQPQVfDUVQGV, TKISDFGSFIGFK, VSVAGGGASQWGN, TLRAGRVANQFDDASQAIN, DSNNDVASQLGIFK, GGFSGFSG, LSENGDKAKTKNSTTE and VPRISYAHGFDLIERGKKG.
32. The fusion protein of claim 31 wherein the amino acid sequence is inserted a) within the flagellin protein at a region which is non-essential to function of the flagellin protein, or b) is inserted into the hyper-variable region of the flagellin protein.
33. A Neisseria meningitidis Class 1 outer-membrane protein which is substantially free from Neisseria meningitidis Class 2 and Class 3 outer-membrane proteins, wherein the Class 1 outer-membrane protein comprises an amino acid sequence selected from the group consisting of:

DVSLYGEIKAGVEGRNIQAQLTEQPQVTNGVQGNQVKVTKAKSRIRTKISDFGSFIGFKGSEDLGEGLK
AVWQLEQDVSVAGGGASQWGNRESFIGLAGEFGTLRAGRVANQFDDASQAINPWDSNNDVASQLGIFKR

HDDMPVSVRYDSPEFSGFSGSVQFVPAQNSKSAYKPAYYTKDTNNNLTLVPAVVGKPGSDVYYAGLNYK
NGGFAGNYAFKYARHANVGRNAFELFLIGSATSDEAKGTDPLKNHQVHRLTGGYEEGGLNLALAAQLDL
SENGDKAKTKNSTTEIAATASYRFGNAVPRISYAHGFDLIERGKKGENTSYDQIIAGVDYDFSKRTSAI
VSGAWLKRNTGIGNYTQINAASVGLRHKF;

DVSLYGEIKAGVEGRNFQLQLTEPPSKSQPQVKVTKAKSRIRTKISDFGSFIGFKGSEDLGEGLKAVWQ
LEQDVSVAGGGATQWGNRESFVGLAGEFGTLRAGRVANQFDDASQAIDPWDSNNDVASQLGIFKRHDDM
PVSVRYDSPDFSGFSGSVQFVPIQNSKSAYTPAHYTRQNNTDVFVPAVVGKPGSDVYYAGLNYKNGGFA
GSYAFKYARHANVGRDAFELFLLGSTSDEAKGTDPLKNHQVHRLTGGYEEGGLNLALAAQLDLSENGDK
AKTKNSTTEIAATASYRFGNAVPRISYAHGFDLIERGKKGENTSYDQIIAGVDYDFSKRTSAIVSGAWL
KRNTGIGNYTQINAASVGLRHKF;

DVSLYGEIKAGVEGRNYQLQLTEAQAANGGASGQVKVTKVTKAKSRIRTKISDFGSFIGFKGSEDLGDG
LKAVWQLEQDVSVAGGGATQWGNRESFIGLAGEFGTLRAGRVANQFDDASQAIDPWDSNNDVASQLGIF
KRHDDMPVSVRYDSPEFSGFSGSVQFVPIQNSKSAYTPAYYTKNTNNNLTLVPAVVGKPGSDVYYAGLN
YKNGGFAGNYAFKYARHANVGRNAFELFLIGSGSDQAKGTDPLKNHQVHRLTGGYEEGGLNLALAAQLD
LSENGDKTKNSTTEIAATASYRFGNAVPRISYAHGFDFIERGKKGENTSYDQIIAGVDYDFSKRTSAIV
SGAWLKRNTGIGNYTQINAASVGLRHKF; and DVSLYGEIKAGVEGRNIQLQLTEPLQNIQQPQVTKAKSRIRTKISDFGSFIGFKGSEDLGEGLKAVWQL
EQDVSVAGGGATRWGNRESFVGLAGEFGTLRAGRVANQFDDASKAIDPWDSNNVVASQLGIFKRMDDMP
VSVRYDSPEFSGFSGSVQFVPAQNSKSAYTPAHFVQQTPQQSPTLVPAWGKPGSDVYYAGLNYKNGGF
AGNYAFKYAKHANVGRDAFELFLLGSGSDEAKGTDPLKNHQVHRLTGGYEEGGLNLALAAQLDLSENAD
KTKNSTTEIAATASYRFGNAVPRISYAHGFDFIERGKKGENTSYDQIIAGVDYDFSKRTSAIVSGAWLK
RNTGIGNYTQINAASVGLRHKF.
34. A substantially purified meningococcal Class 1 outer-membrane protein having an amino acid sequence selected from the group consisting of:

DVSLYGEIKAGVEGRNIQAQLTEQPQVTNGVQGNQVKVTKAKSRIRTKISDFGSFIGFKGSEDLGEGLK
AVWQLEQDVSVAGGGASQWGNRESFIGLAGEFGTLRAGRVANQFDDASQAINPWDSNNDVASQLGIFKR
HDDMPVSVRYDSPEFSGFSGSVQFVPAQNSKSAYKPAYYTKDTNNNLTLVPAVVGKPGSDVYYAGLNYK
NGGFAGNYAFKYARHANVGRNAFELFLIGSATSDEAKGTDPLKNHQVHRLTGGYEEGGLNLALAAQLDL
SENGDKAKTKNSTTEIAATASYRFGNAVPRISYAHGFDLIERGKKGENTSYDQIIAGVDYDFSKRTSAI
VSGAWLKRNTGIGNYTQINAASVGLRHKF;

DVSLYGEIKAGVEGRNFQLQLTEPPSKSQPQVKVTKAKSRIRTKISDFGSFIGFKGSEDLGEGLKAVWQ
LEQDVSVAGGGATQWGNRESFVGLAGEFGTLRAGRVANQFDDASQAIDPWDSNNDVASQLGIFKRHDDM
PVSVRYDSPDFSGFSGSVQFVPIQNSKSAYTPAHYTRQNNTDVFVPAVVGKPGSDVYYAGLNYKNGGFA
GSYAFKYARHANVGRDAFELFLLGSTSDEAKGTDPLKNHQVHRLTGGYEEGGLNLALAAQLDLSENGDK
AKTKNSTTEIAATASYRFGNAVPRISYAHGFDLIERGKKGENTSYDQIIAGVDYDFSKRTSAIVSGAWL
KRNTGIGNYTQINAASVGLRHKF;

DVSLYGEIKAGVEGRNYQLQLTEAQAANGGASGQVKVTKVTKAKSRIRTKISDFGSFIGFKGSEDLGDG
LKAVWQLEQDVSVAGGGATQWGNRESFIGLAGEFGTLRAGRVANQFDDASQAIDPWDSNNDVASQLGIF
KRHDDMPVSVRYDSPEFSGFSGSVQFVPIQNSKSAYTPAYYTKNTNNNLTLVPAVVGKPGSDVYYAGLN
YKNGGFAGNYAFKYARHANVGRNAFELFLIGSGSDQAKGTDPLKNHQVHRLTGGYEEGGLNLALAAQLD
LSENGDKTKNSTTEIAATASYRFGNAVPRISYAHGFDFIERGKKGENTSYDQIIAGVDYDFSKRTSAIV
SGAWLKRNTGIGNYTQINAASVGLRHKF; and DVSLYGEIKAGVEGRNIQLQLTEPLQNIQQPQVTKAKSRIRTKISDFGSFIGFKGSEDLGEGLKAVWQL
EQDVSVAGGGATRWGNRESFVGLAGEFGTLRAGRVANQFDDASKAIDPWDSNNVVASQLGIFKRMDDMP
VSVRYDSPEFSGFSGSVQFVPAQNSKSAYTPAHFVQQTPQQSPTLVPAVVGKPGSDVYYAGLNYKNGGF
AGNYAFKYAKHANVGRDAFELFLLGSGSDEAKGTDPLKNHQVHRLTGGYEEGGLNLALAAQLDLSENAD
KTKNSTTEIAATASYRFGNAVPRISYAHGFDFIERGKKGENTSYDQIIAGVDYDFSKRTSAIVSGAWLK
RNTGIGNYTQINAASVGLRHKF.
35. A vaccine comprising a pharmaceutically acceptable vehicle and a Neisseria meningitidis Class 1 outer-membrane protein(s) of one or more subtypes, said Class 1 outer-membrane protein(s) being free of meningococcal Class 2 and Class 3 outer-membrane protein, wherein at least one of the Class 1 outer-membrane proteins comprises an amino acid sequence selected from the group consisting of:

DVSLYGEIKAGVEGRNIQAQLTEQPQVTNGVQGNQVKVTKAKSRIRTKISDFGSFIGFKGSEDLGEGLK
AVWQLEQDVSVAGGGASQWGNRESFIGLAGEFGTLRAGRVANQFDDASQAINPWDSNNDVASQLGIFKR
HDDMPVSVRYDSPEFSGFSGSVQFVPAQNSKSAYKPAYYTKDTNNNLTLVPAVVGKPGSDVYYAGLNYK
NGGFAGNYAFKYARHANVGRNAFELFLIGSATSDEAKGTDPLKNHQVHRLTGGYEEGGLNLALAAQLDL
SENGDKAKTKNSTTEIAATASYRFGNAVPRISYAHGFDLIERGKKGENTSYDQIIAGVDYDFSKRTSAI
VSGAWLKRNTGIGNYTQINAASVGLRHKF;

DVSLYGEIKAGVEGRNFQLQLTEPPSKSQPQVKVTKAKSRIRTKISDFGSFIGFKGSEDLGEGLKAVWQ
LEQDVSVAGGGATQWGNRESFVGLAGEFGTLRAGRVANQFDDASQAIDPWDSNNDVASQLGIFKRHDDM
PVSVRYDSPDFSGFSGSVQFVPIQNSKSAYTPAHYTRQNNTDVFVPAVVGKPGSDVYYAGLNYKNGGFA
GSYAFKYARHANVGRDAFELFLLGSTSDEAKGTDPLKNHQVHRLTGGYEEGGLNLALAAQLDLSENGDK
AKTKNSTTEIAATASYRFGNAVPRISYAHGFDLIERGKKGENTSYDQIIAGVDYDFSKRTSAIVSGAWL
KRNTGIGNYTQINAASVGLRHKF;

DVSLYGEIKAGVEGRNYQLQLTEAQAANGGASGQVKVTKVTKAKSRIRTKISDFGSFIGFKGSEDLGDG
LKAVWQLEQDVSVAGGGATQWGNRESFIGLAGEFGTLRAGRVANQFDDASQAIDPWDSNNDVASQLGIF
KRHDDMPVSVRYDSPEFSGFSGSVQFVPIQNSKSAYTPAYYTKNTNNNLTLVPAVVGKPGSDVYYAGLN
YKNGGFAGNYAFKYARHANVGRNAFELFLIGSGSDQAKGTDPLKNHQVHRLTGGYEEGGLNLALAAQLD
LSENGDKTKNSTTEIAATASYRFGNAVPRISYAHGFDFIERGKKGENTSYDQIIAGVDYDFSKRTSAIV
SGAWLKRNTGIGNYTQINAASVGLRHKF, and DVSLYGEIKAGVEGRNIQLQLTEPLQNIQQPQVTKAKSRIRTKISDFGSFIGFKGSEDLGEGLKAVWQL
EQDVSVAGGGATRWGNRESFVGLAGEFGTLRAGRVANQFDDASKAIDPWDSNNVVASQLGIFKRMDDMP
VSVRYDSPEFSGFSGSVQFVPAQNSKSAYTPAHFVQQTPQQSPTLVPAVVGKPGSDVYYAGLNYKNGGF
AGNYAFKYAKHANVGRDAFELFLLGSGSDEAKGTDPLKNHQVHRLTGGYEEGGLNLALAAQLDLSENAD
KTKNSTTEIAATASYRFGNAVPRISYAHGFDFIERGKKGENTSYDQIIAGVDYDFSKRTSAIVSGAWLK
RNTGIGNYTQINAASVGLRHKF.
36. The vaccine of claim 35 further comprising a detergent.
37. A vaccine effective against a meningococcal disease, comprising a pharmaceutically acceptable vehicle and a meningococcal Class 1 outer-membrane protein which is free of Neisseria meningitidis Class 2 and Class 3 outer-membrane protein, wherein the Class 1 outer-membrane protein comprises an amino acid sequence selected from the group consisting of:

DVSLYGEIKAGVEGRNIQAQLTEQPQVTNGVQGNQVKVTKAKSRIRTKISDFGSFIGFKGSEDLGEGLK
AVWQLEQDVSVAGGGASQWGNRESFIGLAGEFGTLRAGRVANQFDDASQAINPWDSNNDVASQLGIFKR
HDDMPVSVRYDSPEFSGFSGSVQFVPAQNSKSAYKPAYYTKDTNNNLTLVPAVVGKPGSDVYYAGLNYK
NGGFAGNYAFKYARHANVGRNAFELFLIGSATSDEAKGTDPLKNHQVHRLTGGYEEGGLNLALAAQLDL

SENGDKAKTKNSTTEIAATASYRFGNAVPRISYAHGFDLIERGKKGENTSYDQIIAGVDYDFSKRTSAI
VSGAWLKRNTGIGNYTQINAASVGLRHKF;

DVSLYGEIKAGVEGRNFQLQLTEPPSKSQPQVKVTKAKSRIRTKISDFGSFIGFKGSEDLGEGLKAVWQ
LEQDVSVAGGGATQWGNRESFVGLAGEFGTLRAGRVANQFDDASQAIDPWDSNNDVASQLGIFKRHDDM
PVSVRYDSPDFSGFSGSVQFVPIQNSKSAYTPAHYTRQNNTDVFVPAVVGKPGSDVYYAGLNYKNGGFA
GSYAFKYARHANVGRDAFELFLLGSTSDEAKGTDPLKNHQVHRLTGGYEEGGLNLALAAQLDLSENGDK
AKTKNSTTEIAATASYRFGNAVPRISYAHGFDLIERGKKGENTSYDQIIAGVDYDFSKRTSAIVSGAWL
KRNTGIGNYTQINAASVGLRHKF;

DVSLYGEIKAGVEGRNYQLQLTEAQAANGGASGQVKVTKVTKAKSRIRTKISDFGSFIGFKGSEDLGDG
LKAVWQLEQDVSVAGGGATQWGNRESFIGLAGEFGTLRAGRVANQFDDASQAIDPWDSNNDVASQLGIF
KRHDDMPVSVRYDSPEFSGFSGSVQFVPIQNSKSAYTPAYYTKNTNNNLTLVPAVVGKPGSDVYYAGLN
YKNGGFAGNYAFKYARHANVGRNAFELFLIGSGSDQAKGTDPLKNHQVHRLTGGYEEGGLNLALAAQLD
LSENGDKTKNSTTEIAATASYRFGNAVPRISYAHGFDFIERGKKGENTSYDQIIAGVDYDFSKRTSAIV
SGAWLKRNTGIGNYTQINAASVGLRHKF, and DVSLYGEIKAGVEGRNIQLQLTEPLQNIQQPQVTKAKSRIRTKISDFGSFIGFKGSEDLGEGLKAVWQL
EQDVSVAGGGATRWGNRESFVGLAGEFGTLRAGRVANQFDDASKAIDPWDSNNVVASQLGIFKRMDDMP
VSVRYDSPEFSGFSGSVQFVPAQNSKSAYTPAHFVQQTPQQSPTLVPAVVGKPGSDVYYAGLNYKNGGF
AGNYAFKYAKHANVGRDAFELFLLGSGSDEAKGTDPLKNHQVHRLTGGYEEGGLNLALAAQLDLSENAD
KTKNSTTEIAATASYRFGNAVPRISYAHGFDFIERGKKGENTSYDQIIAGVDYDFSKRTSAIVSGAWLK
RNTGIGNYTQINAASVGLRHKF.
38. The vaccine of claim 37 further comprising a detergent.
39. A vaccine against Neisseria meningitidis comprising a peptide-carrier protein conjugate, wherein the peptide has an amino acid sequence selected from the group consisting of:

YYTKNTNNNL, HFVQQTPQSQP, YYTKDTNNNL, YTKDTNNNLT, TKDTNNNLTL, KDTNNNLTLV, AQAANGGASG, QAANGGASGQ, AANGGASGQV, ANGGASGQVK, NGGASGQVKV, GGASGQVKVT, GASGQVKVTK, ASGQVKVTKV, SGQVKVTKVT, PAHYTRQNNT, AHYTRQNNTD, HYTRQNNTDVF, TRQNNTDVFV, RQNNTDVFVP, QNNTDVFVP, QNNTDVFVPA, NNTDVFVPAV, ANVGRNAFELFLIGSATSDEAKG, NIQAQLTEQPQVINGVQGN, TKISDFGSFIGFK, VSVAGGGASWGN, TLRAGVANQFDDASQAIN, DSNNDVASQIGIFK, GGFSGFSG, LSENGDKAKTKNSTTE and VPRISYAHGFDLIERGKKG.
40. A vaccine against Neisseria meningitidis comprising a peptide-carrier protein conjugate, wherein the peptide has an amino acid sequence selected from the group consisting of QPQVTNGVQGN, PPSKSQP, QAANGGASGQV, PLQNIQQPQ, YYTKDTNNNLTL, HYTRQNNTDVF, YYTKNTNNNLTL and HFVQQTPQQSPT.
41. The vaccine of claim 39, wherein the carrier protein is CRM197.
42. An antigenic composition comprising a pharmaceutically acceptable vehicle and a conjugate of a peptide linked to a carrier protein, wherein the peptide has amino acid sequence selected from the group consisting of: YYTKNTNNNL, HFVQQTPQSQP, YYTKDTNNNL, YTKDTNNNLT, TKDTNNNLTL, KDTNNNLTLV, AQAANGGASG, QAANGGASGQ, AANGGASGQV, ANGGASGQVK, NGGASGQVKV, GGASGQVKVT, GASGQVKVTK, ASGQVKVTKV, SGQVKVTKVT, PAHYTRQNNT, AHYTRQNNTD, HYTRQNNTDVF, TRQNNTDVFV, RQNNDVFVP, QNNTDVFVP, QNNTDVFVPA, NNTDVFVPAV, ANVGRAFEGSATSDEAKG, NIQAQLTEQPQVTNGVGN, TKISDFGSFIGFK, VSVAGGGASQWGN, TLRAGRVANQFDDASQAIN, DSNNVASQLGIFK, GGFSGFSG, LSENGDKAKTKNSTTE and VPRISYMGFDLIERGKKG.
43. The composition of claim 42, wherein the carrier protein is tetanus toxoid.
44. An antigenic composition comprising a pharmaceutically acceptable vehicle and a hybrid protein, said protein comprising one or more peptides fused internally or terminally to a Salmonella flagellin, wherein the peptide has an amino acid sequence selected from the group consisting of: YYTKNTNNNL, HFVQQTPQSQP, YYTKDTNNNL, YTKDTNNNLT, TKDTNNNLTL, KDTNNNLTLV, AQAANGGASG, QAANGGASGQ, AANGGASGQV, ANGGASGQVK, NGGASGQVKV, GGASGQVKVT, GASGQVKVTK, ASGQVKVTKV, SGQVKVTKVT, PAHYTRQNNT, AHYTRQNNTD, HYTRQNNTDVF, TRQNNTDVFV, RQNNTDVFVP, QNNTDVFVP, QNNTDVFVPA, NRIDVFVPAV, ANVMMUELFLIGSATSDEAKG, NIQAQLTEQPQVTNGVQGN, TKISDFGSFIGFK, VSVAGGGASQWGN, TLRAGRVANQFDDASQAIN, DSNNDVASQLGIFK, GGFSGFSG, LSENGDKAKTNSTTE and VPRISYAHGFDLIERGKKG.
45. An antigenic composition comprising a pharmaceutically acceptable vehicle and a hybrid protein, said protein comprising one or more peptides fused internally or terminally to a Salmonella flagellin, wherein the peptide has an amino acid sequence consisting from the group consisting of: QPQVTNGVQGN, PPSKSQP, QAANGGASGQV, PLQNIQQPQ, YYTKDTNNNLTL, HYTRQNNTDVF, YYTKNTNNNLTL and HFVQQTPQQSPT.
46. An antigenic composition which elicits antibodies against Neisseria meningitidis, said composition comprising a pharmaceutically acceptable vehicle and a meningococcal capsular polysaccharide or oligosaccharide derived therefrom, conjugated to a hybrid protein comprising a carrier protein and a peptide having an amino acid sequence selected from the group consisting of:
YYTKNTNNNL, HFVQQTPQSQP, YYTKDTNNNL, YTKDTNNNLT, TKDTNNNLTL, KDTNNNLTLV, AQAANGGASG, QAANGGASGQ, AANGGASGQV, ANGGASGQVK, NGGASGQVKV, GGASGQVKVT, GASGQVKVTK, ASGQVKVTKV, SGQVKVTKVT, PAHYTRQNNT, AHYTRQNNTD, HYTRQNNTDVF, TRQNNTDVFV, RQNNTDVFVP, QNNTDVFVP, QNNTDVFVPA, NNTDVFVPAV, ANVGRNAFELFLIGSATSDEAKG, NIQAQLTEQPQVTNGVQGN, TKISDFGSFIGFK, VSVAGGGASQWGN, TLRAGRVANQFDDASQAIN, DSNNDVASQLGIFK, GGFSGFSG, LSENGDKAKTKNSTTE and VPRISYAHGFDLIERGKKG.
47. The composition of claim 46, wherein the carrier protein is a Salmonella flagellin.
48. An antigenic composition which elicits antibodies against Neisseria meningitidis, said composition comprising a pharmaceutically acceptable vehicle, and a meningococcal capsular polysaccharide or oligosaccharide derived therefrom, wherein the polysaccharide or oligosaccharide is conjugated to a hybrid protein comprising a carrier protein and a peptide having an amino acid sequence selected from the group consisting of: QPQVTNGVQGN, PPSKSQP, QAANGGASGQV, PLQNIQQPQ, YYTKDTNNNLTL, HYTRQNNTDVF, YYTKNTNNNLTL and HFVQQTPQQSPT.
49. A vaccine comprising one or more peptides, in liposomes or microspheres, wherein the peptide has an amino acid sequence selected from the group consisting of:

YYTKNTNNNL, HFVQQTPQSQP, YYTKDTNNNL, YTKDTNNNLT, TKDTNNNLTL, KDTNNNLTLV, AQAANGGASG, QAANGGASGQ, AANGGASGQV, ANGGASGQVK, NGGASGQVKV, GGASGQVKVT, GASGQVKVTK, ASGQVKVTKV, SGQVKVTKVT, PAHYTRQNNT, AHYTRQNNTD, HYTRQNNTDVF, TRQNNTDVFV, RQNNTDVFVP, QNNTDVFVP, QNNTDVFVPA, NNTDVFVPAV, ANVGRNAFELFLIGSATSDEAKG, NIQAQLTEQPQVINGVQGN, TKISDFGSFIGFK, VSVAGGGASQWGN, TLRAGRVANQFDDASQAIN, DSNNDVASQLGIFK, GGFSGFSG, LSENGDKAKTKNSTTE and VPRISYAHGFDLIERGKKG.
50. A vaccine comprising meningococcal Class 1 outer-membrane protein(s) of one or more subtypes, wherein said proteins are substantially free from Class 2 and 3 outer membrane proteins, in liposomes or microspheres, wherein at least one of the meningococcal Class 1 outer-membrane proteins comprises an amino acid sequence selected from the group consisting of:

DVSLYGEIKAGVEGRNIQAQLTEQPQVTNGVQGNQVKVTKAKSRIRTKISDFGSFIGFKGSEDLGEGLK
AVWQLEQDVSVAGGGASQWGNRESFIGLAGEFGTLRAGRVANQFDDASQAINPWDSNNDVASQLGIFKR
HDDMPVSVRYDSPEFSGFSGSVQFVPAQNSKSAYKPAYYTKDTNNNLTLVPAVVGKPGSDVYYAGLNYK
NGGFAGNYAFKYARHANVGRNAFELFLIGSATSDEAKGTDPLKNHQVHRLTGGYEEGGLNLALAAQLDL
SENGDKAKTKNSTTEIAATASYRFGNAVPRISYAHGFDLIERGKKGENTSYDQIIAGVDYDFSKRTSAI
VSGAWLKRNTGIGNYTQINAASVGLRHKF;

DVSLYGEIKAGVEGRNFQLQLTEPPSKSQPQVKVTKAKSRIRTKISDFGSFIGFKGSEDLGEGLKAVWQ
LEQDVSVAGGGATQWGNRESFVGLAGEFGTLRAGRVANQFDDASQAIDPWDSNNDVASQLGIFKRHDDM
PVSVRYDSPDFSGFSGSVQFVPIQNSKSAYTPAHYTRQNNTDVFVPAVVGKPGSDVYYAGLNYKNGGFA
GSYAFKYARHANVGRDAFELFLLGSTSDEAKGTDPLKNHQVHRLTGGYEEGGLNLALAAQLDLSENGDK
AKTKNSTTEIAATASYRFGNAVPRISYAHGFDLIERGKKGENTSYDQIIAGVDYDFSKRTSAIVSGAWL
KRNTGIGNYTQINAASVGLRHKF;

DVSLYGEIKAGVEGRNYQLQLTEAQAANGGASGQVKVTKVTKAKSRIRTKISDFGSFIGFKGSEDLGDG
LKAVWQLEQDVSVAGGGATQWGNRESFIGLAGEFGTLRAGRVANQFDDASQAIDPWDSNNDVASQLGIF
KRHDDMPVSVRYDSPEFSGFSGSVQFVPIQNSKSAYTPAYYTKNTNNNLTLVPAVVGKPGSDVYYAGLN
YKNGGFAGNYAFKYARHANVGRNAFELFLIGSGSDQAKGTDPLKNHQVHRLTGGYEEGGLNLALAAQLD

LSENGDKTKNSTTEIAATASYRFGNAVPRISYAHGFDFIERGKKGENTSYDQIIAGVDYDFSKRTSAIV
SGAWLKRNTGIGNYTQINAASVGLRHKF, and DVSLYGEIKAGVEGRNIQLQLTEPLQNIQQPQVTKAKSRIRTKISDFGSFIGFKGSEDLGEGLKAVWQL
EQDVSVAGGGATRWGNRESFVGLAGEFGTLRAGRVANQFDDASKAIDPWDSNNVVASQLGIFKRMDDMP
VSVRYDSPEFSGFSGSVQFVPAQNSKSAYTPAHFVQQTPQQSPTLVPAVVGKPGSDVYYAGLNYKNGGF
AGNYAFKYAKHANVGRDAFELFLLGSGSDEAKGTDPLKNHQVHRLTGGYEEGGLNLALAAQLDLSENAD
KTKNSTTEIAATASYRFGNAVPRISYAHGFDFIERGKKGENTSYDQIIAGVDYDFSKRTSAIVSGAWLK
RNTGIGNYTQINAASVGLRHKF.
51. An antigenic composition comprising a pharmaceutically acceptable vehicle and a Class 1 N. meningitidis outer-membrane protein, wherein said Class 1 outer-membrane protein is substantially free from Class 2 or Class 3 outer-membrane proteins, and wherein said Class 1 outer-membrane protein comprises an amino acid sequence selected from the group consisting of:

DVSLYGEIKAGVEGRNIQAQLTEQPQVTNGVQGNQVKVTKAKSRIRTKISDFGSFIGFKGSEDLGEGLK
AVWQLEQDVSVAGGGASQWGNRESFIGLAGEFGTLRAGRVANQFDDASQAINPWDSNNDVASQLGIFKR
HDDMPVSVRYDSPEFSGFSGSVQFVPAQNSKSAYKPAYYTKDTNNNLTLVPAVVGKPGSDVYYAGLNYK
NGGFAGNYAFKYARHANVGRNAFELFLIGSATSDEAKGTDPLKNHQVHRLTGGYEEGGLNLALAAQLDL
SENGDKAKTKNSTTEIAATASYRFGNAVPRISYAHGFDLIERGKKGENTSYDQIIAGVDYDFSKRTSAI
VSGAWLKRNTGIGNYTQINAASVGLRHKF;

DVSLYGEIKAGVEGRNFQLQLTEPPSKSQPQVKVTKAKSRIRTKISDFGSFIGFKGSEDLGEGLKAVWQ
LEQDVSVAGGGATQWGNRESFVGLAGEFGTLRAGRVANQFDDASQAIDPWDSNNDVASQLGIFKRHDDM
PVSVRYDSPDFSGFSGSVQFVPIQNSKSAYTPAHYTRQNNTDVFVPAVVGKPGSDVYYAGLNYKNGGFA
GSYAFKYARHANVGRDAFELFLLGSTSDEAKGTDPLKNHQVHRLTGGYEEGGLNLALAAQLDLSENGDK
AKTKNSTTEIAATASYRFGNAVPRISYAHGFDLIERGKKGENTSYDQIIAGVDYDFSKRTSAIVSGAWL
KRNTGIGNYTQINAASVGLRHKF;

DVSLYGEIKAGVEGRNYQLQLTEAQAANGGASGQVKVTKVTKAKSRIRTKISDFGSFIGFKGSEDLGDG
LKAVWQLEQDVSVAGGGATQWGNRESFIGLAGEFGTLRAGRVANQFDDASQAIDPWDSNNDVASQLGIF
KRHDDMPVSVRYDSPEFSGFSGSVQFVPIQNSKSAYTPAYYTKNTNNNLTLVPAVVGKPGSDVYYAGLN
YKNGGFAGNYAFKYARHANVGRNAFELFLIGSGSDQAKGTDPLKNHQVHRLTGGYEEGGLNLALAAQLD

LSENGDKTKNSTTEIAATASYRFGNAVPRISYAHGFDFIERGKKGENTSYDQIIAGVDYDFSKRTSAIV
SGAWLKRNTGIGNYTQINAASVGLRHKF, and DVSLYGEIKAGVEGRNIQLQLTEPLQNIQQPQVTKAKSRIRTKISDFGSFIGFKGSEDLGEGLKAVWQL
EQDVSVAGGGATRWGNRESFVGLAGEFGTLRAGRVANQFDDASKAIDPWDSNNVVASQLGIFKRMDDMP
VSVRYDSPEFSGFSGSVQFVPAQNSKSAYTPAHFVQQTPQQSPTLVPAVVGKPGSDVYYAGLNYKNGGF
AGNYAFKYAKHANVGRDAFELFLLGSGSDEAKGTDPLKNHQVHRLTGGYEEGGLNLALAAQLDLSENAD
KTKNSTTEIAATASYRFGNAVPRISYAHGFDFIERGKKGENTSYDQIIAGVDYDFSKRTSAIVSGAWLK
RNTGIGNYTQINAASVGLRHKF.
52. An antigenic composition comprising a polysaccharide or oligosaccharide, and a peptide having an amino acid sequence selected from the group consisting of YYTKNTNNNL, HFVQQTPQSQP, YYTKDTNNNL, YTKDTNNNLT, TKDTNNNLTL, KDTNNNLTLV, AQAANGGASG, QAANGGASGQ, AANGGASGQV, ANGGASGQVK, NGGASGQVKV, GGASGQVKVT, GASGQVKVTK, ASGQVKVTKV, SGQVKVTKVT, PAHYTRQNNT, AHYTRQNNTD, HYTRQNNTDVF, TRQNNTDVFV, RQNNTDVFVP, QNNTDVFVP, QNNTDVFVPA, NNTDVFVPAV, ANVGRNAFELFLIGSATSDEAKG, NIQAQLTEQPQVTNGVQGN, TKISDFGSFIGFK, VSVAGGGASQWGN, TLRAGRVANQFDDASQAIN, DSNNDVASQLGIFK, GGFSGFSG, LSEDGDKAKTKNSTTE and VPRISYAHGFDLIERGKKG.
53. An antigenic composition, said composition comprising a pharmaceutically acceptable vehicle and a polysaccharide or oligosaccharide conjugated to a peptide having an amino acid sequence selected from the group consisting of YYTKNTNNNL, HFVQQTPQSQP, YYTKDTNNNL, YTKDTNNNLT, TKDTNNNLTL, KDTNNNLTLV, AQAANGGASG, QAANGGASGQ, AANGGASGQV, ANGGASGQVK, NGGASGQVKV, GGASGQVKVT, GASGQVKVTK, ASGQVKVTKV, SGQVKVTKVT, PAHYTRQNNT, AHYTRQNNTD, HYTRQNNTDVF, TRQNNTDVFV, RQNNTDVFVP, QNNTDVFVP, QNNTDVFVPA, NNTDVFVPAV, IGSATSDEAKG, NIQAQLTEQPQVTNGVQGN, TKISDFGSFIGFK, VSVAGCGASQWGN, TLRAGRVANQFDDASQAIN, DSNNDVASQLGIFK, GGFSGFSG, LSENGDKAKTKNSTTE and VPRISYAHGFDLIERGKKG.
54. A recombinant microorganism that expresses a fusion protein comprising a carrier protein and an immunogenic portion of subtype P1.15, P1.7.16, or P1.2 meningococcal Class 1 outer-membrane protein, wherein said meningococcal Class 1 outer-membrane protein comprises an amino acid sequence selected from the group consisting of:
DVSLYGEIKAGVEGRNIQAQLTEQPQVTNGVQGNQVKVTKAKSRIRTKISDFGSFIGFKGSEDLGEGLK
AVWQLEQDVSVAGGGASQWGNRESFIGLAGEFGTLRAGRVANQFDDASQAINPWDSNNDVASQLGIFKR
HDDMPVSVRYDSPEFSGFSGSVQFVPAQNSKSAYKPAYYTKDTNNNLTLVPAVVGKPGSDVYYAGLNYK
NGGFAGNYAFKYARHANVGRNAFELFLIGSATSDEAKGTDPLKNHQVHRLTGGYEEGGLNLALAAQLDL
SENGDKAKTKNSTTEIAATASYRFGNAVPRISYAHGFDLIERGKKGENTSYDQIIAGVDYDFSKRTSAI
VSGAWLKRNTGIGNYTQINAASVGLRHKF;

DVSLYGEIKAGVEGRNFQLQLTEPPSKSQPQVKVTKAKSRIRTKISDFGSFIGFKGSEDLGEGLKAVWQ
LEQDVSVAGGGATQWGNRESFVGLAGEFGTLRAGRVANQFDDASQAIDPWDSNNDVASQLGIFKRHDDM
PVSVRYDSPDFSGFSGSVQFVPIQNSKSAYTPAHYTRQNNTDVFVPAVVGKPGSDVYYAGLNYKNGGFA
GSYAFKYARHANVGRDAFELFLLGSTSDEAKGTDPLKNHQVHRLTGGYEEGGLNLALAAQLDLSENGDK
AKTKNSTTEIAATASYRFGNAVPRISYAHGFDLIERGKKGENTSYDQIIAGVDYDFSKRTSAIVSGAWL
KRNTGIGNYTQINAASVGLRHKF;

DVSLYGEIKAGVEGRNYQLQLTEAQAANGGASGQVKVTKVTKAKSRIRTKISDFGSFIGFKGSEDLGDG
LKAVWQLEQDVSVAGGGATQWGNRESFIGLAGEFGTLRAGRVANQFDDASQAIDPWDSNNDVASQLGIF
KRHDDMPVSVRYDSPEFSGFSGSVQFVPIQNSKSAYTPAYYTKNTNNNLTLVPAVVGKPGSDVYYAGLN
YKNGGFAGNYAFKYARHANVGRNAFELFLIGSGSDQAKGTDPLKNHQVHRLTGGYEEGGLNLALAAQLD
LSENGDKTKNSTTEIAATASYRFGNAVPRISYAHGFDFIERGKKGENTSYDQIIAGVDYDFSKRTSAIV
SGAWLKRNTGIGNYTQINAASVGLRHKF, and DVSLYGEIKAGVEGRNIQLQLTEPLQNIQQPQVTKAKSRIRTKISDFGSFIGFKGSEDLGEGLKAVWQL
EQDVSVAGGGATRWGNRESFVGLAGEFGTLRAGRVANQFDDASKAIDPWDSNNVVASQLGIFKRMDDMP
VSVRYDSPEFSGFSGSVQFVPAQNSKSAYTPAHFVQQTPQQSPTLVPAVVGKPGSDVYYAGLNYKNGGF
AGNYAFKYAKHANVGRDAFELFLLGSGSDEAKGTDPLKNHQVHRLTGGYEEGGLNLALAAQLDLSENAD
KTKNSTTEIAATASYRFGNAVPRISYAHGFDFIERGKKGENTSYDQIIAGVDYDFSKRTSAIVSGAWLK
RNTGIGNYTQINAASVGLRHKF.
55. A recombinant microorganism that is transformed with a gene that expresses a Class 1 meningococcal outer-membrane protein comprising an amino acid sequence selected from the group consisting of:

DVSLYGEIKAGVEGRNIQAQLTEQPQVTNGVQGNQVKVTKAKSRIRTKISDFGSFIGFKGSEDLGEGLK
AVWQLEQDVSVAGGGASQWGNRESFIGLAGEFGTLRAGRVANQFDDASQAINPWDSNNDVASQLGIFKR
HDDMPVSVRYDSPEFSGFSGSVQFVPAQNSKSAYKPAYYTKDTNNNLTLVPAWGKPGSDVYYAGLNYK
NGGFAGNYAFKYARHANVGRNAFELFLIGSATSDEAKGTDPLKNHQVHRLTGGYEEGGLNLALAAQLDL
SENGDKAKTKNSTTEIAATASYRFGNAVPRISYAHGFDLIERGKKGENTSYDQIIAGVDYDFSKRTSAI
VSGAWLKRNTGIGNYTQINAASVGLRHKF;

DVSLYGEIKAGVEGRNFQLQLTEPPSKSQPQVKVTKAKSRIRTKISDFGSFIGFKGSEDLGEGLKAVWQ
LEQDVSVAGGGATQWGNRESFVGLAGEFGTLRAGRVANQFDDASQAIDPWDSNNDVASQLGIFKRHDDM
PVSVRYDSPDFSGFSGSVQFVPIQNSKSAYTPAHYTRQNNTDVFVPAWGKPGSDVYYAGLNYKNGGFA
GSYAFKYARHANVGRDAFELFLLGSTSDEAKGTDPLKNHQVHRLTGGYEEGGLNLALAAQLDLSENGDK
AKTKNSTTEIAATASYRFGNAVPRISYAHGFDLIERGKKGENTSYDQIIAGVDYDFSKRTSAIVSGAWL
KRNTGIGNYTQINAASVGLRHKF;

DVSLYGEIKAGVEGRNYQLQLTEAQAANGGASGQVKVTKVTKAKSRIRTKISDFGSFIGFKGSEDLGDG
LKAVWQLEQDVSVAGGGATQWGNRESFIGLAGEFGTLRAGRVANQFDDASQAIDPWDSNNDVASQLGIF
KRHDDMPVSVRYDSPEFSGFSGSVQFVPIQNSKSAYTPAYYTKNTNNDTLTLVPAWGKPGSDVYYAGLN
YKNGGFAGNYAFKYARHANVGRNAFELFLIGSGSDQAKGTDPLKNHQVHRLTGGYEEGGLNLALAAQLD
LSENGDKTKNSTTEIAATASYRFGNAVPRISYAHGFDFIERGKKGENTSYDQIIAGVDYDFSKRTSAIV
SGAWLKRNTGIGNYTQINAASVGLRHKF, and DVSLYGEIKAGVEGRNIQLQLTEPLQNIQQPQVTKAKSRIRTKISDFGSFIGFKGSEDLGEGLKAVWQL
EQDVSVAGGGATRWGNRESFVGLAGEFGTLRAGRVANQFDDASKAIDPWDSNNVVASQLGIFKRMDDMP
VSVRYDSPEFSGFSGSVQFVPAQNSKSAYTPAHFVQQTPQQSPTLVPAVVGKPGSDVYYAGLNYKNGGF
AGNYAFKYAKHANVGRDAFELFLLGSGSDEAKGTDPLKNHQVHRLTGGYEEGGLNLALAAQLDLSENAD
KTKNSTTEIAATASYRFGNAVPRISYAHGFDFIERGKKGENTSYDQIIAGVDYDFSKRTSAIVSGAWLK
RNTGIGNYTQINAASVGLRHKF.
56. The recombinant microorganism of claim 55, wherein the microorganism is Escherichia coli.
57. A vaccine comprising one or more fragments of meningococcal Class 1 outer-membrane protein, said fragment comprising one or more amino acid sequences selected from the group consisting of:

YYTKNTNNNL, HFVQQTPQSQP, YYTKDTNNNL, YTKDTNNNLT, TKDTNNNLTL, KDTNNNLTLV, AQAANGGASG, QAANGGASGQ, AANGGASGQV, ANGGASGQVK, NGGASGQVKV, GGASGQVKVT, GASGQVKVTK, ASGQVKVTKV, SGQVKVTKVT, PAHYTRQNNT, AHYTRQNNTD, HYTRQNNTDVF, TRQNNTDVFV, RQNNTDVFVP, QNNTDVFVP, QNNTDVFVPA, NNTDVFVPAV, ANVGRNAFELFLIGSATSDEAKG, NIQAQLTEQPQVTNGVQGN, TKISDFGSFIGFK, VSVAGGGASQWGN, TLRAGRVANQFDDASQAIN, DSNNDVASQLGIFK, GGFSGFSG, LSENGDKAKTKNSTTE and VPRISYAHGFDLIERGKKG.
58. A recombinant microorganism that expresses a fusion protein comprising a carrier protein and an immunogenic portion of a meningococcal Class 1 outer-membrane protein, wherein the Class 1 outer-membrane protein has an amino acid sequence selected from the group consisting of:

DVSLYGEIKAGVEGRNFQLQLTEPPSKSQPQVKVTKAKSRIRTKISDFGSFIGFKGSEDLGEGLKAVWQ
LEQDVSVAGGGATQWGNRESFVGLAGEFGTLRAGRVANQFDDASQAIDPWDSNNDVASQLGIFKRHDDM
PVSVRYDSPDFSGFSGSVQFVPIQNSKSAYTPAHYTRQNNTDVFVPAVVGKPGSDVYYAGLNYKNGGFA
GSYAFKYARHANVGRDAFELFLLGSTSDEAKGTDPLKNHQVHRLTGGYEEGGLNLALAAQLDLSENGDK
AKTKNSTTEIAATASYRFGNAVPRISYAHGFDLIERGKKGENTSYDQIIAGVDYDFSKRTSAIVSGAWL
KRNTGIGNYTQINAASVGLRHKF;

DVSLYGEIKAGVEGRNYQLQLTEAQAANGGASGQVKVTKVTKAKSRIRTKISDFGSFIGFKGSEDLGDG
LKAVWQLEQDVSVAGGGATQWGNRESFIGLAGEFGTLRAGRVANQFDDASQAIDPWDSNNDVASQLGIF
KRHDDMPVSVRYDSPEFSGFSGSVQFVPIQNSKSAYTPAYYTKNTNNNLTLVPAVVGKPGSDVYYAGLN
YKNGGFAGNYAFKYARHANVGRNAFELFLIGSGSDQAKGTDPLKNHQVHRLTGGYEEGGLNLALAAQLD
LSENGDKTKNSTTEIAATASYRFGNAVPRISYAHGFDFIERGKKGENTSYDQIIAGVDYDFSKRTSAIV
SGAWLKRNTGIGNYTQINAASVGLRHKF; and DVSLYGEIKAGVEGRNIQLQLTEPLQNIQQPQVTKAKSRIRTKISDFGSFIGFKGSEDLGEGLKAVWQL
EQDVSVAGGGATRWGNRESFVGLAGEFGTLRAGRVANQFDDASKAIDPWDSNNWASQLGIFKRMDDMP
VSVRYDSPEFSGFSGSVQFVPAQNSKSAYTPAHFVQQTPQQSPTLVPAVVGKPGSDVYYAGLNYKNGGF
AGNYAFKYAKHANVGRDAFELFLLGSGSDEAKGTDPLKNHQVHRLTGGYEEGGLNLALAAQLDLSENAD
KTKNSTTEIAATASYRFGNAVPRISYAHGFDFIERGKKGENTSYDQIIAGVDYDFSKRTSAIVSGAWLK
RNTGIGNYTQINAASVGLRHKF.
59. An antigenic composition comprising a pharmaceutically acceptable vehicle and a peptide having an amino acid sequence selected from the group consisting of:

YYTKNTNNNL, HFVQQTPQSQP, YYTKDTNNNL, YTKDTNNNLT, TKDTNNNLTL, KDTNNNLTLV, AQAANGGASG, QAANGGASGQ, AANGGASGQV, ANGGASGQVK, NGGASGQVKV, GGASGQVKVT, GASGQVKVTK, ASGQVKVTKV, SGQVKVTKVT, PAHYTRQNNT, AHYTRQNNTD, HYTRQNNTDVF, TRQNNTDVFV, RQNNTDVFVP, QNNTDVFVP, QNNTDVFVPA, NNTDVFVPAV, ANVGRNAFELFLIGSATSDEAKG, NIQAQLTEQPQVTNGVQGN, TKISDFGSFIGFK, VSVAGGCMQWCN, TLRAGRVANQFDDASQAIN, DSNDIDVASQLGIFK, GGFSGFSG, LSEM KAKTKNSTTE and VPRISYAHGFDLIERGKKG.
CA 2007248 1989-01-06 1990-01-05 Meningococcal class 1 outer-membrane protein vaccine Expired - Lifetime CA2007248C (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
NL89.00030 1989-01-06
NL8900036A NL8900036A (en) 1988-12-19 1989-01-06 Meningococcus class 1 outer-membrane protein vaccine - useful to immunise against meningococcal disease
NL8901612A NL8901612A (en) 1988-12-19 1989-06-26 Vaccines against meningococcal infections - contg. outer membrane proteins or fragments
NL89.01612 1989-06-26

Publications (2)

Publication Number Publication Date
CA2007248A1 CA2007248A1 (en) 1990-07-06
CA2007248C true CA2007248C (en) 2007-07-10

Family

ID=26646470

Family Applications (1)

Application Number Title Priority Date Filing Date
CA 2007248 Expired - Lifetime CA2007248C (en) 1989-01-06 1990-01-05 Meningococcal class 1 outer-membrane protein vaccine

Country Status (2)

Country Link
CA (1) CA2007248C (en)
PT (1) PT92807B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115851477B (en) * 2022-05-12 2024-01-16 华南农业大学 Escherichia coli JC83 and application thereof

Also Published As

Publication number Publication date
PT92807B (en) 1995-12-29
PT92807A (en) 1990-07-31
CA2007248A1 (en) 1990-07-06

Similar Documents

Publication Publication Date Title
EP0449958B2 (en) Meningococcal class 1 outer-membrane protein vaccine
US7238345B1 (en) Recombinant microorganism expressing meningococcal class 1 outer membrane protein
AU648251B2 (en) Vaccines for nontypable haemophilus influenzae
US6426074B1 (en) Group B Streptococcus vaccine
IL117483A (en) Proteinase k resistant surface protein of neisseria meningitidis
CA2512917A1 (en) Methods for increasing neisseria protein expression
KR960016208B1 (en) Vaccines and diagnostic assays for haemophilus influenzae
AU631378B2 (en) Vaccines and diagnostic assays for haemophilus influenzae
AU744733B2 (en) Neisseria lactoferrin binding protein
CA2007248C (en) Meningococcal class 1 outer-membrane protein vaccine
US5196338A (en) Recombinant vectors for Haemophilus influenzae peptides and proteins
AU695173B2 (en) Novel opacity associated proteins, DNA encoding the same, and methods of use thereof
Reyes et al. MOLECULAR ANALYSIS OF Neisseria meningitidis CLASS 3

Legal Events

Date Code Title Description
EEER Examination request
MKEX Expiry