CA2000431A1 - A method of preparing thin layers of conductive polymers - Google Patents

A method of preparing thin layers of conductive polymers

Info

Publication number
CA2000431A1
CA2000431A1 CA 2000431 CA2000431A CA2000431A1 CA 2000431 A1 CA2000431 A1 CA 2000431A1 CA 2000431 CA2000431 CA 2000431 CA 2000431 A CA2000431 A CA 2000431A CA 2000431 A1 CA2000431 A1 CA 2000431A1
Authority
CA
Grant status
Application
Patent type
Prior art keywords
polymers
conductive
conductive polymers
method
cm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CA 2000431
Other languages
French (fr)
Other versions
CA2000431C (en )
Inventor
Bernhard Wessling
Holger Merkle
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zipperling Kessler GmbH and Co
Original Assignee
Bernhard Wessling
Holger Merkle
Zipperling Kessler & Co. (G.M.B.H. & Co.)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/005Electrodes
    • H01G4/008Selection of materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; MISCELLANEOUS COMPOSITIONS; MISCELLANEOUS APPLICATIONS OF MATERIALS
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D165/00Coating compositions based on macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Coating compositions based on derivatives of such polymers
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/124Intrinsically conductive polymers
    • H01B1/127Intrinsically conductive polymers comprising five-membered aromatic rings in the main chain, e.g. polypyrroles, polythiophenes
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/124Intrinsically conductive polymers
    • H01B1/128Intrinsically conductive polymers comprising six-membered aromatic rings in the main chain, e.g. polyanilines, polyphenylenes
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer, carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer, carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic System
    • H01L21/28537Deposition of Schottky electrodes
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer, carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer, carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28575Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising AIIIBV compounds
    • H01L21/28581Deposition of Schottky electrodes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING LIQUIDS OR OTHER FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING LIQUIDS OR OTHER FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • B05D3/0254After-treatment
    • B05D3/0263After-treatment with IR heaters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING LIQUIDS OR OTHER FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING LIQUIDS OR OTHER FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • B05D3/0254After-treatment
    • B05D3/029After-treatment with microwaves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING LIQUIDS OR OTHER FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING LIQUIDS OR OTHER FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/50Multilayers
    • B05D7/52Two layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING LIQUIDS OR OTHER FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING LIQUIDS OR OTHER FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/50Multilayers
    • B05D7/56Three layers or more

Abstract

A process for the production of mouldings from intrinsically conductive polymers as conductive layer components with a specific conductivity of more than -2 S/cm is disclosed. If necessary they can contain other materials as the substrate. The conductive component is formed by deposition from a meta-stable dispersion of the intrinsically conductive polymers. A dispersion of insoluble organic polymers suitable for this process is also provided. The polymers are converted by oxidation agents or acids into an electrically conductive form, in aqueous or organic media with a solubility parameter equal to or more than 8.6 [cal/cm 3]1/2. The material can be filtered without discoloration through a pressure filter with a pore size of 250 nm.
CA 2000431 1988-10-11 1989-10-11 A method of preparing thin layers of conductive polymers Expired - Fee Related CA2000431C (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DEP3834526.9 1988-10-11
DE19883834526 DE3834526C2 (en) 1988-10-11 1988-10-11
DEP3903200.0 1989-02-03
DE3903200 1989-02-03
DE3907603 1989-03-09
DEP3907603.2 1989-03-09

Publications (2)

Publication Number Publication Date
CA2000431A1 true true CA2000431A1 (en) 1990-04-11
CA2000431C CA2000431C (en) 2000-01-25

Family

ID=27198349

Family Applications (1)

Application Number Title Priority Date Filing Date
CA 2000431 Expired - Fee Related CA2000431C (en) 1988-10-11 1989-10-11 A method of preparing thin layers of conductive polymers

Country Status (5)

Country Link
EP (1) EP0407492B1 (en)
JP (1) JP2519551B2 (en)
KR (1) KR960001314B1 (en)
CA (1) CA2000431C (en)
WO (1) WO1990004256A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5658649A (en) * 1992-03-13 1997-08-19 The Regents Of The University Of California Office Of Technology Transfer Corrosion resistant coating
US5824371A (en) * 1995-02-03 1998-10-20 Ohio State University Research Foundation Corrosion resistant metal article coated with emeraldine base polyaniline
US5928795A (en) * 1995-02-03 1999-07-27 Polymer Alloys Llc Corrosion resistant aluminum article coated with emeraldine base polyaniline
US7396596B2 (en) * 2004-06-23 2008-07-08 Ormecon Gmbh Article with a coating of electrically conductive polymer
US7547479B2 (en) 2004-06-25 2009-06-16 Ormecon Gmbh Tin-coated printed circuit boards with low tendency to whisker formation
US7947199B2 (en) 2005-03-02 2011-05-24 Ormecon Gmbh Conductive polymers consisting of anisotropic morphology particles
US7989533B2 (en) 2005-08-19 2011-08-02 Ormecon Gmbh Chemical compound comprising an indium-containing intrinsically conductive polymer
US8153271B2 (en) 2006-09-13 2012-04-10 Ormecon Gmbh Article with a coating of electrically conductive polymer and precious/semiprecious metal and process for production thereof
US8344062B2 (en) 2004-01-23 2013-01-01 Ormecon Gmbh Dispersions of intrinsically conductive polymers

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0589529A1 (en) * 1992-09-24 1994-03-30 Dsm N.V. Dispersion of electrically conductive particles in a dispersing medium
EP0817557A3 (en) * 1996-07-03 1998-05-06 Nisshinbo Industries, Inc. Electromagnetic radiation shield material and method of producing the same
DE19627071A1 (en) 1996-07-05 1998-01-08 Bayer Ag Electroluminescent arrangements
US6593690B1 (en) 1999-09-03 2003-07-15 3M Innovative Properties Company Large area organic electronic devices having conducting polymer buffer layers and methods of making same
US6890868B2 (en) * 2002-10-17 2005-05-10 Xerox Corporation Process for depositing gelable composition that includes dissolving gelable composition in liquid with agitating to disrupt gelling
US6803262B2 (en) * 2002-10-17 2004-10-12 Xerox Corporation Process using self-organizable polymer
DE102006043811B4 (en) * 2006-09-13 2010-05-06 Ormecon Gmbh Articles with a coating of electrically conductive polymer and precious / semi-precious metal, as well as processes for their preparation
DE102007040065A1 (en) * 2007-08-24 2009-02-26 Ormecon Gmbh Articles with a coating of precious nanoscopic / semi-precious metal, as well as processes for their preparation
EP2371909A1 (en) 2010-03-31 2011-10-05 Nissan Motor Co., Ltd. Corrosion-protective wax composition containing polyaniline in a doped form and a liquid paraffin
DE202015008773U1 (en) 2015-12-22 2016-01-28 Continental Automotive Gmbh Plug-in contact with an organic coating and printed circuit board assembly

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3223119A1 (en) * 1982-05-26 1983-12-01 Bbc Brown Boveri & Cie Process for increasing the electrical surface conductivity of a body
DE3422316C2 (en) * 1984-06-15 1986-11-20 Zipperling Kessler & Co (Gmbh & Co), 2070 Ahrensburg, De
FR2616790A1 (en) * 1987-06-22 1988-12-23 Rhone Poulenc Chimie Dispersions of composite particles based on an electrically conductive polymer and process for their preparation

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5658649A (en) * 1992-03-13 1997-08-19 The Regents Of The University Of California Office Of Technology Transfer Corrosion resistant coating
US5824371A (en) * 1995-02-03 1998-10-20 Ohio State University Research Foundation Corrosion resistant metal article coated with emeraldine base polyaniline
US5928795A (en) * 1995-02-03 1999-07-27 Polymer Alloys Llc Corrosion resistant aluminum article coated with emeraldine base polyaniline
US8344062B2 (en) 2004-01-23 2013-01-01 Ormecon Gmbh Dispersions of intrinsically conductive polymers
US7396596B2 (en) * 2004-06-23 2008-07-08 Ormecon Gmbh Article with a coating of electrically conductive polymer
US7547479B2 (en) 2004-06-25 2009-06-16 Ormecon Gmbh Tin-coated printed circuit boards with low tendency to whisker formation
US7947199B2 (en) 2005-03-02 2011-05-24 Ormecon Gmbh Conductive polymers consisting of anisotropic morphology particles
US7989533B2 (en) 2005-08-19 2011-08-02 Ormecon Gmbh Chemical compound comprising an indium-containing intrinsically conductive polymer
US8153271B2 (en) 2006-09-13 2012-04-10 Ormecon Gmbh Article with a coating of electrically conductive polymer and precious/semiprecious metal and process for production thereof

Also Published As

Publication number Publication date Type
EP0407492A1 (en) 1991-01-16 application
JP2519551B2 (en) 1996-07-31 grant
EP0407492B1 (en) 1997-07-30 grant
WO1990004256A1 (en) 1990-04-19 application
JPH02503660A (en) 1990-11-01 application
KR960001314B1 (en) 1996-01-25 grant
CA2000431C (en) 2000-01-25 grant

Similar Documents

Publication Publication Date Title
Vossmeyer et al. A" double-diamond superlattice" built up of Cd17S4 (SCH2CH2OH) 26 clusters
US5672410A (en) Embossed metallic leafing pigments
US5112449A (en) Two phase metal/oxide films
Sarathy et al. A novel method of preparing thiol-derivatised nanoparticles ofgold, platinum and silver forming superstructures
Král et al. Calixphyrins: novel macrocycles at the intersection between porphyrins and calixpyrroles
US20090269510A1 (en) Printed electronics by metal plating through uv light
JPH02183230A (en) Organic nonlinear optical material and production thereof
GB1215184A (en) Improvements in or relating to the making of hollow articles by metal spraying
Nishiyama et al. Photochromism of an amphiphilic azobenzene derivative in its Langmuir-Blodgett films prepared as polyion complexes with ionic polymers
JP2001328398A (en) Hydraulic transfer sheet and manufacturing method therefor
Binger et al. Synthesis and Structure of a New Bis [(trimethylphosphan) titanocene] Complex with a Bridging C2 Unit
JPS62140620A (en) Production of thin membrane
JPS5515869A (en) Non-metallic materialsigma superficial decorative scratch-like pattern forming method and thus processed product
JPS6393859A (en) Sputtering target and its production
JPH03254011A (en) High molecular composite dielectric substance
JPH01273372A (en) Manufacture of high-molecular thin-film piezoelectric transducer
CA2343444A1 (en) Printed conductors made of polyalkylene dioxythiophene
JPS5478026A (en) Production of solid color image pickup unit
JPS61283629A (en) Plastic composite material
DE19701568C1 (en) Structured layer formation for micro-engineered functional system
JPH03260119A (en) Isotropic reinforced reticulate fine composite material
JPS63109601A (en) Filter
JPS59122406A (en) Control of gastropod
JPS5655282A (en) Thermal transfer sheet
JPH0338314A (en) Molding die

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed