CA1340868C - Nucleic acid coding for human angiotensin converting enzyme (ace), and its applications, particularly for in vitro diagnosis of high blood pressure - Google Patents

Nucleic acid coding for human angiotensin converting enzyme (ace), and its applications, particularly for in vitro diagnosis of high blood pressure

Info

Publication number
CA1340868C
CA1340868C CA 613622 CA613622A CA1340868C CA 1340868 C CA1340868 C CA 1340868C CA 613622 CA613622 CA 613622 CA 613622 A CA613622 A CA 613622A CA 1340868 C CA1340868 C CA 1340868C
Authority
CA
Canada
Prior art keywords
nucleic acid
nucleotide
probe
hybridization
ace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA 613622
Other languages
French (fr)
Inventor
Florent Soubrier
Francois Alhenc-Gelas
Christine Hubert
Pierre Corvol
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institut National de la Sante et de la Recherche Medicale INSERM
Original Assignee
Institut National de la Sante et de la Recherche Medicale INSERM
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institut National de la Sante et de la Recherche Medicale INSERM filed Critical Institut National de la Sante et de la Recherche Medicale INSERM
Priority to CA 613622 priority Critical patent/CA1340868C/en
Application granted granted Critical
Publication of CA1340868C publication Critical patent/CA1340868C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y304/00Hydrolases acting on peptide bonds, i.e. peptidases (3.4)
    • C12Y304/15Peptidyl-dipeptidases (3.4.15)
    • C12Y304/15001Peptidyl-dipeptidase A (3.4.15.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)

Abstract

L'invention concerne le clonage et le séquençage de l'acide nucleique codant pour l'ECA humaine ainsi que la determination de la chaîne peptidique correspondant à
l'ECA et de fragments peptidiques actifs qui en decoulent. L'invention a également pour objet l'utilisation des polypeptides sus-mentionnés pour la mise en oeuvre de méthodes de diagnostic in vitro de l'hypertension, pour l'étude conceptuelle de nouveaux inhibiteurs de l'ECA. L'invention concerne également l'utilisation des sondes nucléotidiques de l'invention pour le depistage in vitro des polymorphismes du gène codant pour l'ECA.

Description

13~086~

ACIDE NUCLEIQIfJE CO1)ANT POUR L' ENZYME DE CONVERSION
DE L'ANGIOTENSINE (ECA) HUMAINE, ET SES
APPLICATIONS, NOTAMMENT POUR LE DIAGNOSTIC IN VITRO
DE L' HYPERTEN.~.~ION A:RTERIELLE .
L'invention concerne un acide nucleique codant pour 1'enzyme de conversion de 1'angiotensine (ECA) humaine ainsi que des vecteurs contenant cet acide nucleique et 1'utilisation de ces derniers pour la production d'ECA humaine. L'invention concerne egalement les applications de cet acide nucleique, notamment dans le domaine de la conception de nouveaux inhibiteurs de 1'ECA humaine.
L'ECA, ou peptidyl dipeptidase A (EC 3.4.15.1), ou encore kininase II, joue un role important dans la regulation de la pression arterielle, en hydrolysant 1'angiotensine I (peptide inactif libere apres clivage de 1'angiotensinogenE~ par la renine) en angiotensine II
vasopressive jouant un role dans les mecanismes de 1'hypertension arterielle (SKEGGS, L.T., et al (1986) J. Exp. Med., 7.03, 295-299).
L'inhibit:ion dea 1'activite de 1'ECA par 1'EDTA et les chelateurs de m~taux, indique qu'il s'agit dune metallopeptida~;e, plus particulierement dune peptidase a zinc, capable d'hydrolyser, non seulement, 1'angiotensine I, maps aussi la bradykinine (un peptide vasodilateur et: natriuretique qu'elle transforme en un heptapeptide inactif), et de nombreux autres peptides a activite biologique (YANG, H.Y.T. et al (1970) Biochim. Biophys. Acaa, 214, 374-376 ; ERDOS, E.G., et al (1987) Lab. Invest:., 56, 345-348).
L'ECA est une peptidase largement distribuee daps 1'organisme, que 1'on retrouve par exemple sous forme d' enzyme memb~ranair~e a la surface des cellules 13~~~6~
13 ~ 086 ~

NUCLEIQIfJE ACID CO1) ANT FOR THE CONVERSION ENZYME
HUMAN ANGIOTENSIN (ACE), AND ITS
APPLICATIONS, ESPECIALLY FOR IN VITRO DIAGNOSIS
HYPERTEN. ~. ~ ION A: RTERIELLE.
The invention relates to a nucleic acid encoding for angiotensin converting enzyme (ACE) human as well as vectors containing this acid nucleic acid and the use of these for human ACE production. The invention relates to also the applications of this nucleic acid, especially in the area of new design human ACE inhibitors.
ACE, or peptidyl dipeptidase A (EC 3.4.15.1), or still kininase II, plays an important role in the regulation of blood pressure, by hydrolyzing Angiotensin I (inactive peptide released after cleavage of angiotensinogenE ~ by renin) into angiotensin II
vasopressive playing a role in the mechanisms of Arterial hypertension (SKEGGS, LT, et al (1986) J. Exp. Med., 7.03, 295-299).
Inhibition of the activity of ACE by EDTA and metal chelators, indicates that it is a metallopeptida ~; e, more particularly of a peptidase has zinc, capable of hydrolyzing, not only, Angiotensin I, also maps bradykinin (a peptide vasodilator and: natriuretique which it transforms into a heptapeptide inactive), and many other peptides has biological activity (YANG, HYT et al (1970) Biochim. Biophys. Acaa, 214, 374-376; ERDOS, EG, and al (1987) Lab. Invest:., 56, 345-348).
ACE is a widely distributed peptidase daps The organism, which we find for example in the form of membrane enzyme on cell surface 13 ~~~ 6 ~

2 endotheliales vasculaires, et des cellules epitheliales renales, ainsi que sous forme d'enzyme circulant dans le plasma (ERDOS, et al (1987) sus-mentionne ;
CARDWELL, P.R.B. et al, (1976) Science, 191, 1050-1051 RYAN, U.S. et al (1976) Tissue Cell, 8, 125-145).
Des methodes dea purification de 1'ECA humaine ou animale ont de:ja ete decrites (notamment dans BULL H.G.
et al, (1985)J. Biol. Chem., 260, 2963-2972 ; HOOPER, N.M. et al, (1!387) Biochem. J., 247, 85-93).
Toutefois, la structure de 1'ECA humaine nest pas connue <~ 1'heure actuelle. Seules quelques sequences peptidique~s de 1'ECA d'origine animale ont ete publiees (BERrfSTEIN, K.E. et al (1988), Kidney Int., 33, 652-655: HARRIS, R.B. et al (1985) J. Biol.
Chem., 260, 228-2211; IWATA, K. et al (1982) Biochem.
Biophys. Res. Commun, 107, 1097-1103 ; IWATA, K. et al (1983) Arch. Biocheam. Biophys., 227, 188-201 ; ST
CLAIR, D.K. et al (1'986) Biochem. Biophys. Res. Commun, 141, 968-972 ; SOFFE1R, RL. et al (1987) Clin. Exp. Hyp.
A9, 229-234).
Quelques essais de clonage de 1'ADN codant pour 1'ECA animale ont ete effectues a partir de deux organes riches en EC:A, les reins et les poumons, mais aucun acide nuc:leique complet codant pour 1'ECA animale n'a cependant ete decrit ; seuls quelques fragments d'un tel aside nuc7Leique ont ete decrits (DELUCA-FLAHERTY, C. et: al (:L987) Int. J. Peptide Protein Res., 29, 678-684 ; BERN~~TEIN K.E. et al, (1988 J. Biol.
Chem., 263, 11021-11024)). Les quantites d'ARN messager (ARNm) codant pour 1'ECA sont probablement trop faibles daps ces organes pour permettre le clonage d'un ADN
compl2mentaire (ADNc;) de set ARNm. Aucun essai de ~.34U868
2 vascular endothelials, and epithelial cells renales, as well as in the form of an enzyme circulating in plasma (ERDOS, et al (1987) mentioned above;
CARDWELL, PRB et al, (1976) Science, 191, 1050-1051 RYAN, US et al (1976) Tissue Cell, 8, 125-145).
Methods for purifying human ACE or animal have of: ja been described (in particular in BULL HG
et al, (1985) J. Biol. Chem., 260, 2963-2972; HOOPER, NM et al, (1! 387) Biochem. J., 247, 85-93).
However, the structure of human ACE is not not known at present. Only a few ACE peptide sequences of animal origin have have been published (BERrfSTEIN, KE et al (1988), Kidney Int., 33, 652-655: HARRIS, RB et al (1985) J. Biol.
Chem., 260, 228-2211; IWATA, K. et al (1982) Biochem.
Biophys. Res. Common, 107, 1097-1103; IWATA, K. et al (1983) Arch. Biocheam. Biophys., 227, 188-201; ST
CLAIR, DK et al (1986) Biochem. Biophys. Res. Common, 141, 968-972; SOFFE1R, RL. et al (1987) Clin. Exp. Hyp.
A9, 229-234).
Some attempts to clone the DNA coding for Animal ACEs were performed from two organs rich in EC: A, the kidneys and the lungs, but no nuc acid: complete leic coding for animal ACE
however, has not been described; only a few fragments such nuc7Leique aside have been described (DELUCA-FLAHERTY, C. et: al (: L987) Int. J. Peptide Protein Res., 29, 678-684; BERN ~~ TEIN KE et al, (1988 J. Biol.
Chem., 263, 11021-11024)). The amounts of messenger RNA
(MRNA) encoding ACE are probably too weak daps these organs to allow cloning of DNA
complementary (cDNA;) of mRNA set. No trial of ~ .34U868

3 clonage de 1'ADN codant pour 1'ECA humaine n'a ete decrit jusqu'a maintenant.
Bien que le ro:le physiologique de 1'ECA dans les tissus extra-vascula~ires ne soit pas encore connu, il est desormais bien etabli que cette enzyme que 1'on retrouve dans 1'endothelium vasculaire et dans le plasma, joue un role essentiel dans 1'homeostasie circulatoire par son action de clivage du dipeptide carboxy-termin~~l dea 1'angiotensine I, activant ainsi cette derniere en la transformant en angiotensine II
qui est un ~~eptide vasoconstricteur, stimulant la production d'a:Ldosterone, et facilitant la transmission adrenergique.
Etant donne le role essentiel de 1'angiotensine II
dans le controle de la pression arterielle, une recherche active s'est developpee sur la synthese d'inhibiteurs de 1'E;CA. Le captopril a ete le premier inhibiteur oral de 1'ECA, suivi par de nombreux autres composes. Actuellement, les inhibiteurs de 1'ECA
occupent une ~~lace importante dans le traitement de 1'hypertension arterielle. La structure complete de 1'ECA n'etant pas connue,les inhibiteurs sus-mentionnes ont ete congus sur la base de la structure de proteases a zinc posseda.nt de;s proprietes enzymatiques voisines de celles de 1'ECA, notamment sur la base de la structure du site actif de la carboxypeptidase A
(ONDETTI, M.A. et al (1977) Science, 196, 441-444).
Ainsi, en 1'ab:aence d'indication precise sur la structure de 1'ECA, et plus particulierement sur le ou les sites) a~~tif(s) de cette derniere, on conroit facilement que les inhibiteurs de 1'ECA sus-mentionnes synthetises sur la base d'analogies avec la structure d'autres enz~rmes, peuvent etre des molecules ~~~!~$6~
3 cloning of DNA encoding human ACE has not been described so far.
Although ro: physiological ACE in extravascular tissue ~ ires is not yet known, it it is now well established that this enzyme found in the vascular endothelium and in the plasma, plays an essential role in homeostasis circulatory by its action of cleavage of the dipeptide carboxy-terminated by angiotensin I, thereby activating the latter by transforming it into angiotensin II
which is a vasoconstrictor ~~ eptide, stimulating the production of a: Ldosterone, and facilitating transmission adrenergic.
Given the essential role of angiotensin II
in the control of blood pressure, a active research has developed on the synthesis inhibitors of E; CA. Captopril was the first oral ACE inhibitor, followed by many others compounds. Currently, ACE inhibitors occupy an important ~~ lace in the treatment of Arterial hypertension. The complete structure of ACE not being known, the above-mentioned inhibitors were designed on the basis of the protease structure a zinc posseda.nt of neighboring enzyme properties those of the ECA, in particular on the basis of the structure of the active site of carboxypeptidase A
(ONDETTI, MA et al (1977) Science, 196, 441-444).
Thus, in the ab: absence of precise indication on the structure of the ACE, and more particularly on the or the sites) a ~~ tif (s) of the latter, we believe easily than the above-mentioned ACE inhibitors synthesized on the basis of analogies with the structure other enzymes may be molecules ~~~! ~ $ 6 ~

4 insuffisamment actives, ou non totalement specifiques de 1'ECA et suscs:ptibles de posseder une action therapeutique insuffisante, ou de creer des effets secondaires indes~irables. Parmi ces effets indesirables, on distinguera notamment des phenomenes de toux, de t:roubleas digestifs, d'eruptions cutanees qui peuvent etre liEa a 1'inhibition d'autres systemes enzymatiques par les inhibiteurs de 1'ECA sus-men-tionnes.
Un des buts de la presente invention est de permettre la conception de nouveaux inhibiteurs de 1'ECA plus pui.ssant:~ et specifiques de cette derniere que ne le sont les actuels inhibiteurs sus-mentionnes, permettant eve:ntuel7_ement une meilleure efficacite a dose moindre, et limitant les risques d'effets indesirables de ces :nouveaux inhibiteurs.
La presence invention a pour obj et Le clonage et le sequen~age de 1'acide nucleique codant pour 1'ECA
humaine ; ce travail a ete realise a partir de deux banques d'ADN comp~lementaires d'ARNm provenant de cellules endotheliales de veines ombilicales humaines et de sondes nucleotidiques deduites a partir de sequences peptidiques obtenues par sequengage de fragments purifies de 1'ECA humaine. Les techniques utilisees pour le clonage et le sequen~age de 1'acide nucleique sel.on 1.'invention seront plus parti-culierement de~crites dans la description detaillee de 1'invention.
Il sera fait reference dans ce qui suit, au tableau I et aux figures dans lesquels .
- le tableau I represente les fragments peptidiques obt:enus ~3 partir de 1'ECA humaine purifiee.

.~340~68 - la figure 1 represente la comparaison des sequences en acide:~ amines aminoterminales de 1'ECA
humaine, et dens ECA provenant de lapins, de boeuf, de porc et de souris ;
- la figure 2 represente les positions respectives des acides nucleiques des trois clones utilises pour la determination de 1'acide nucleique codant pour 1'ECA
humaine;
- la figure 3 represente 1'acide nucleique ainsi que le polypep~tide, deduit de ce dernier, correspondant a 1'ECA humaine ;
- la figure 4 represente les homologies entre certaines sequences. peptidiques de 1'ECA humaine (ECAh), de la thermolysine (THERM), de 1'endopeptidase neutre de rat ou de lapin (rNEP), et de la collagenase de fibroblastea de p~eau humaine (COLLh) ;
Une etude: approfondie de 1'acide nucleique de 1'invention, ainsi clue du polypeptide deduit a partir de ce dernier cat cor:respondant a 1'ECA humaine, conduit aux observations suivantes .
- la phasEa de lecture ouverte de 1'acide nucleique de la figure 3 east constituee dune sequence d'ADN
delimitee par les nucleotides correspondant aux positions 23 et 109 de la figure 1 codant pour un peptide signal de 29 acides amines, et dune sequence d'ADN delimitee par les nucleotides situes aux positions 110 a 3940 de la figure 3, et codant pour une proteine m~iture de 1277 acides amines ;
- 1'acide nucle:ique de 1'invention est caracterise par une forte homologie interne (superieure a 60 %) entre la sequence d"ADN delimitee par les nucleotides situes aux position~~ 700 et 1770, et celle delimitee par les nucleoi~ides situes aux positions 2495 et 3565.

I34p8~g Les polypeptides d.e 257 acides amines codes res-pectivement par 7Les deux sequences d'ADN sus-mentionnees presentent egalement une forte homologie entre eux (de 1'o:rdre de 67,7 %). la plus forte homologie se situe au niveau des acides amines des parties centrales des deux polypeptides sus-mentionnes par exemple le polypeptide delimits par les acides amines situes aux positions 361 et 404, et celui delimits par l~es acides amines situes aux positions 951 et 1002, pre:~entenit un pourcentage d'homologies de 1'ordre de 85~ %. Les deux polypeptides homologues comprennent clhacun une sequence His-Glu-Met-Gly-His correspondant aux acides amines situes aux positions 361 a 365 et 959 .a 963 de la figure 3. Une etude comparative (representee sur la figure 4) de cette derniere sequence pe:ptidique de 5 acides amines amines, avec les sites act:ifs de plusieurs enzymes dont la thermolysine, :~ugger~e le fait que T une au moins de ces deux sequences de 5 acides amines, que 1'on retrouve dans les deux parties homologues de 1'ECA, pourrait constituer une parti~e du site actif de cette derniere ;
- le produit dEa la phase ouverte de lecture sus-mentionnee comprend 17 sites potentiels de glycosylation, dont la plupart sont groupes dans la region N-terminals de la molecule, et dans la region localises a la jomction entre les deux domaines d'acides amines homologues sus-mentionnes.
La presen.te invention concerns donc tout acids nucleique comprenant. la sequence nucleotidique de la figure 3 codant: pour 1'ECA humaine.
L'invention concerns plus particulierement tout acids nucleique~ comprenant la sequence d'ADN delimitee par les nucleoi~ides situes aux positions 23 et 3940 de 13408~g la figure 3, ea cod<~nt pour la pre-ECA humaine de 1306 acides amines : les 29 premiers acides amines du cote N-terminal rep~resent:ent le peptide signal, et les 1277 acides amine; restant representent 1'ECA humaine nature.
L'invention c:oncerne egalement tout acide nucleique comprenani~ la sequence d'ADN delimitee par les nucleotides situes aux positions 110 et 3940 de la figure 3, et codant pour 1'ECA humaine mature.
L'inventi~on a egalement pour objet tout acide nucleique issu de la sequence d' ADN de la figure 3 et codant pour un polypeptide susceptible de posseder des proprietes en~:ymatiques du type de celles de 1'ECA
humaine, notamment un polypeptide capable d'hydrolyser 1'angiotensine I et/ou les kinines, notamment la bradykinine, ou tout. acide nucleique ne se distinguant du precedent au niveau de sa sequence nucleotidique que par des substitutions de nucleotides n'entrainant la modification de la sequence en aminoacides du susdit polypeptide da.ns des conditions propres a lui faire perdre les susdites :proprietes.
A ce titre, 1'invention concerne plus particulierement tout acide nucleique comprenant T une ou 1'autre des regions homologues de 1'ECA sus-mentionnees.
Parmi lns acides nucleiques conformer a 1'invention, on citera notamment tout fragment d'ADN
contenant .
- une sequence d'ADN s'etendant entre, dune part, un nucleotide situe entre les positions 1 a 1177 et, d'autre part, un nuc:leotide situe entre les positions 3070 a 3940 ;

l3~pg~g - une sequence d'ADN s'stendant entre, dune part, un nucleotide situs entre les positions 110 a 1177, et d'autre part un nuc:leotide situe entre les positions 1276 ~ 1966 ;
- une sequence d'ADN s'etendant entre, dune part, le nucleotide situe entre les positions 1967 a 2971, et, d'autre part, le nucleotide situs entre les positions 3070 a 3940.
L'invention concerns aussi les acides nucleiques dont les ssquEances nuclsotidiques sont modifises dans les limites aotorisees par la degsnerescence du code genstique, des lors que les polypeptides codes par ces acides nucleiques conservent soit une structure primaire identique, soit leurs proprietss enzymatiques ou immunologiq~ues.
De telles modifications non limitatives conduisent par exemple a des acides nuclsiques variants qui se distinguent de;s acides nuclsiques ci-dessus .
- par addition et/ou - supprescsion d'un ou de plusieurs nucleotides et/ou - modific<~tion ~d'un ou de plusieurs nucleotides.
L'invention a plus particulierement pour objet tout acids nuc:leique~ presentant la caractsristique de s'hybrider spscifiquement avec 1'acide nuclsique represents su:r la figure 3, dans les conditions dsfinies ci-apses .
- traitemEant de prshybridation du support (filtre de nitrocellulose ou membrane de nylon), sur lequel est fixe 1'acide n.ucleique susceptible de s'hybrider avec celui de la figure 3, a 65°C pendant 6 heures avec une solution ayant la composition suivante . 4 x SSC, x Denhardt, ~3~086~3 - remplac:ement de la solution de pre-hybridation au contact du support par une solution tampon ayant la composition suivantea . 4 x SSC, 1 x Denhardt, 25 mM
NaP04 pH 7, 2 mM EDTA, 0,5 % SDS, 100 ,ug/ml d'ADN de sperme de saumon sonique, comprenant 1' acide nucleique de la figure 3 en tint que sonde, notamment de maniere radioactive, ea pre.alablement denaturee par un trai-tement a 100°C pendant 3 minutes, - incubation pendant 12 heures a 65°C, - lavages successifs avec les solutions suivantes .
. 2 x SSC, 1 x Denhardt, 0,5 % SDS, pendant 45 minutes a 65°C a quatre reprises, . 0,2 x S~SC, 0,1 x SSC pendant 45 minutes a 65°C a deux reprises, . 0,1 x S;SC, 0,1 % SDS pendant 45 minutes a 65°C.
I1 est ~~ rappeler que la composition de la solution de Denhardt. est la suivante . 1 % ficoll, 1 %
polyvinylpyrro:lidone, 1 % BSA (albumine de serum de boeuf), et que 1 x SSC est constituee de 0,15 M de NaCl et 0,015 M de citrate de sodium, pH 7.
L'invention concerne egalement tout acide nu-cleique presentant la caracteristique de s'hybrider specifiquement avec 1'acide nucleique de la figure 3 dans des conditions non stringentes reprenant les caracteristiques essentielles des conditions strin-gentes definie:~ ci-d~essus, sauf pour ce qui concerne la temperature qui est de 40°C dans les conditions non stringentes, et les lavages successifs qui, dans les conditions non stringentes, sont realises a 1 'aide de 2 x SSC a 45°C pendant 15 minutes a 2 reprises.
L'invention vise egalement les sondes nucleo-tidiques susce:ptibles de s'hybrider avec les acides nucleiques dec:rits precedemment, ou leurs sequences 13~08~~
complementaires, ai:nsi qu'avec Y ARN messager codant pour 1'ECA et aver le gene humain responsable de 1'expression de 1"ECA, daps les conditions d'hy-bridation definies c:i-dessus.
I1 va den soi que les conditions d'hybridation stringentes ou non. stringentes, definies ci-dessus constituent des conditions preferees pour 1'hybridation, mais ne sont nullement limitatives et peuvent etre modifiees sans affecter pour autant les proprietes de reconnaissance et d'hybridation des sondes et des acides nucleiques sus-mentionnes.
Les conditions salines et de temperature, au cours de 1'hybridation et du lavage des membranes, peuvent etre modifiees dans le sens dune plus grande ou d'une plus faible string~ence sans que la detection de 1'hybridation en soit affectee. Par exemple, il est possible d'ajouter de la formamide pour abaisser la temperature au cours de 1'hybridation.
L':invention concerne egalement le polypeptide dont 1<~ sequence en acides amines est representee sur la figure 3, ainsi que tous les polypeptides :ausceptibles de posseder une activite enzymatique du type ~de celle de 1'ECA et qui sont codes par les fragments d'.ADN sus-mentionnes issus de 1'acide nucleique de la figure 3.
Parmi l~es polypeptides sus-mentionnes, on distinguera noi~ammen~t - le po:Lypeptide s'etendant entre les acides amines correspondant: aux positions 1 et 619 de la figure 3 ;
- le po7Lypept:ide s' etendant entre les acides amines correspondant aux positions 620 et 1229 ;

~~~(~~6g - le polypept.ide s'etendant entre les acides amines correspondant aux positions 350 et 395 ;
- le polypept:ide s'etendant entre les acides amines correspondant: aux positions 948 et 993.
Les polyp~eptide~s precedents peuvent etre modifies des lors qu' il.s con;servent les proprietes biochimiques ou immunolog~iques ou pharmacologiques definies precedemment.
Par exem~ple, .et de fagon non limitative, des polypeptides clans le cadre de 1'invention peuvent se distinguer des polypeptides definis ci-dessus ;
- par addition et/ou - suppre;asion d'un ou plusieurs acides amines et/ ou - modification d'un ou de plusieurs acides amines, sous reserve que les proprietes biochimiques ou immunologiques ou p~harmacologiques comme indique ci-dessus soient ~~onservees.
On congoi.t que 1'homme de metier dispose de la possibilite d'identifier, voire de selectionner ceux des polypeptides de sequences plus courtes qui entrent dans le champ de _L'invention. A titre de 1'un des moyens generaux lui. permettant de proceder a cette identification, on mentionnera, par exemple, le traitement du polypeptide de la figure 3 avec une protease clivant le polypeptide sus-mentionne dans un site peptidiq~ue choisi, snit dans une region N-terminale, sort dans> une region C-terminals, suivi de la separation du fragment N-terminal ou du fragment C-terminal du restant dudit polypeptide, ce "restant"
~tant alors tests pour son activite enzymatique vis-a-vis de 1'angiovtensine et/ou de la bradykinine. En cas de reponse po;~itive, 1'on aura alors etabli que le 134~8~~

fragment N-terminal ou C-terminal, ne jouait pas un role signif:icatif, sinon essentiel pour la manifestation des proprietes enzymatiques dudit polypeptide. L'ope:ration peut eventuellement etre repetee pour autant: que 1'on dispose dune protease susceptible do reconnaitre un autre site specifique proche dune extremiite N-terminale ou C-terminale du polypeptide reatant. La perte par le polypeptide plus petit reconnu des p~_~oprietes enzymatiques du fragment plus long dont i.l etait issu pent conduire a 1'hypothese qL~e le dernier fragment separe jouait un role significatif dins la manifestation des proprietes enzymatiques du polypeptide de la figure 3.
Une autre variante, plus simple que la precedente, de detection ~des rE:gions de 1'ECA essentielles a la manifestation des activites enzymatiques de cette derniere, pent et:re basee sur des traitements enzymatiques dl'un acide nucleique codant pour 1'ECA, avant 1'incorporati.on de 1'acide nucleique ainsi obtenu, et presume c;oder pour un polypeptide possedant des activites enzymatiques du type de celle de 1'ECA, dans le vecteur d'expression utilise pour la mise en oeuvre d'un procede de production dudit polypeptide dans 1'hote ce:llulaire approprie (procede qui sera plus particulierement ~detaille dans ce qui suit). Ce traitement enz:ymatique peut alors consister soft en un emondage des eaxtremites de 1'acide nucleique initial (codant par exemple pour le polypeptide de la figure 3 en entier), par exemple par une enzyme exonucleolytiqixe, te~lle que Ba131, soft par une ou plusieurs enzymes de restriction choisie pour leurs sites de reconnais:~ance respectifs (le cas echeant amenages par :mutagenese ponctuelle dirigee) dans la 13408ti~

sequence de 1'acide nucleique initial, soit par 1'addition d'un fragment d'ADN synthetique de jonction entre le site de coupure de 1'enzyme de restriction et le debut de :La region a exprimer. L'acide nucleique tronque obtenu peut alors etre teste, apres incorporation dans :Le vecteur choisi et transformation de 1' hote cs~llula:ire avec le vecteur recombinant obtenu, pour sa capacite a exprimer un polypeptide tronque correspondant, possedant encore les susdites proprietes enzymatiques -- ou au contraire ne les possedant plu:a, d'ou la possibilite, comme dans la variante precedent:e, d'identifier au sein du polypeptide ds~ la figure 3, les sequences jouant un role important:, sinon essentiel dans la manifestation des proprietes enzymatiques de 1'ECA.
L'invention a egalement pour objet tout acide nucleique recombinant contenant tout fragment d'ADN du type sus-indic~ue codant pour la pre-ECA humaine, ou 1'ECA humaine mature, ou encore pour tout polypeptide susceptible ds: possceder une activite enzymatique du type de celle de 1'ECA, associe avec un promoteur et/ou un terminateur de transcription reconnu par les polymerases de' la cellule hote dans laquelle ledit acide nucleiq~ze recombinant est susceptible d'etre introduit.
L'introduction dudit acide nucleique recombinant dans la ce11u7Le hote, est avantageusement realisee a 1'aide de vecteurs, notamment du type plasmide, qui sont aptes a se repliquer dans ladite cellule hote et a y permettre 1'expression de la sequence codant pour 1'enzyme.
Ledit acide nuc:leique recombinant peut egalement etre introduit: dans~ la cellule hote a 1'aide d'un vecteur viral (virus recombinant) capable d'infecter ladite cellules note: et d'y permettre 1'expression du polypeptide .code par un acide nucleique selon 1'invention, ~~e dernier etant loos le controle d'un promoteur viral acti.f daps la cellule Note.
L'invention concerne donc un procede de production de 1'ECA humaine, ou des polypeptides sus-mentionnes issus de 1' EC:A, c~ai comprend la transformation des cellules hotel; au moyen des vecteurs sus-indigoes, la mise en culture des cellules notes transformees dans un milieu approprie et la recuperation desdits polypeptides snit directement a partir du milieu de culture, lor:aque ces derniers y sont secretes (notamment dans le c:as ou les polypeptides consideres sont precedes dune sequence signal lors de leur synthese dans la cel.lule note), soit apres lyse de la paroi de la cellule note dans le cal ou les polypeptides ne seraient pas secretes hors de cette derniere.
Le procede sus--mentionne comprend avantageusement one etape finale de purification, par exemple selon les techniques de chroma~tographie hybrophobe et d'affinite en faisant appel a un inhibiteur de toute ou partie de 1'ECA fixe sur la c:olonne (cf. description detaillee qui suit).
A ce tit:re, 1'invention a plus particulierement pour objet one: composition contenant de 1'ECA humaine pure, exempte de contaminants notamment de nature proteique.
Les cellules notes utilisees pour la mile en oeuvre du procede sus-mentionne peuvent etre des cellules procaryotea, notamment des cellules de E.
coli, ou, d'un~e maniere plus avantageuse, des cellules 13~0~6$
eucaryotes, ~qui pe~rmettent, notamment, d'obtenir des proteines sours le~ur forme glycosylee et mature (levures, cellules CHO, ou cellules d'insectes infectees par le bac:ulovirus) .
Ce proc~ede ~decrit ci-dessus est egalement realisable par trans;fection des cellules hotes avec des vecteurs d'ex~~ression ayant integre un gene modifie de 1'ECA. Soit c~u'il s'agisse de parties tronquees de 1'ADN compleme~ntairE, de YARN messager endothelial de 1'ECA, comprenant pa.r exemple un seul des deux domaines homologues, ou bien ampute de 1'extremite 3' codant pour le segment hydrophobe d'insertion membranaire. La transfection des cellules hotes est egalement realisable avec des vecteurs comprenant une forme mutee de 1'ECA, ou de ses fragments, les mutations portant en particulier sur les bases codant pour les acides amines impliques dans 1'activite enzymatique decrits ci-dessus.
I1 est p<irticulierement avantageux en vue de la cristallisatio:n de 1'enzyme recombinante de muter un ou plusieurs su=es potentiels de N glycosylation, c'est-a-dire les codons correspondants aux asparagine des sequences ~~sparagine-X-Threonine et asparagine-X-serine.
L'invention vise egalement un procede de preparation dees nouveaux polypeptides sus-mentionnes par synthese yui comprend soft 1'addition etape par etape des residus pe~ptidiques choisis, avec 1' addition ou 1'elimination de ~groupes protecteurs quelconques des fonctions amino et carboxyle, ou addition de residus peptidiques choisis afin de produire des fragments, suivie dune condensation desdits fragments en une sequence en ac:ides amines appropriee, avec addition ou elimination des groupes protecteurs choisis.
L' invention se rapporte egalement a des anticorps specifiques di.riges contre les polypeptides ci-dessus.
En particuli~er, 1'invention vise des anticorps monoclonaux d:iriges contre les sequences peptidiques paraissant impliquesas dans au moins une des activites enzymatiques de 1'EC'.A.
De tels anti.corps monoclonaux peuvent etre produits par la technique des hybridomes dont le principe general est rappels ci-apres.
Dans un premier temps, on inocule un des polypeptides c:i-des:aus a un animal choisi, dont les lymphocytes B sont alors capables de produire des anticorps con~.tre ce polypeptide. Ces lymphocytes producteurs d',anticorps sont ensuite fusionnes avec des cellules myelomateuses "immortelles" pour donner lieu a des hybridomes. .A partir du melange heterogene des cellules ainsi obtenu, on realise alors une selection des cellules capables de produire un anticorps particulier et. de :~e multiplier indefiniment. Chaque hybridome est multiplie sous la forms de clone, chacun conduisant a la production d'un anticorps monoclonal dont les proprietes de reconnaissance vis-a-vis des polypeptides de 1'i:nvention pourront etre testes par exemple sur co:Lonne d' affinite.
Parmi l~~s p~olypeptides utilises pour la fabrication des anticorps monoclonaux sus-mentionnes, on mentionnera notamment ceux delimites par les acides amines situes aux positions 350 et 395, ou 948 et 993 de la figure 3., L'invention concerns egalement une methods de depistage, ou de doaage, in vitro dune ECA, et plus l3~pg~g particuliereme:nt de: 1'ECA humaine, ou d'un produit derive de 1'ECA tel que les polypeptides sus-mentionnes ayant in viwo le:~ proprietes de 1'ECA, daps un prelevement biologic~ue susceptible de les contenir. Une telle methode de depistage selon 1'invention, peut etre realisee soft a 1'aide des anticorps monoclonaux sus-mentionnes, soit a 1'aide des sondes nucleotidiques de-crites ci-dessus.
Le prep=vement biologigue sus-mentionne est effectue soit dans des tissus fluides, tels que le sang, soit dans d.es organes, ce dernier type de prelevement permett:ant notamment d'obtenir des coupes fines de tis:aus sur lesquelles les anticorps sus-mentionnes sont ulterieurement fixes.
La methode de dosage selon 1'invention, procedant par 1'intermE~diaire des anticorps sus-mentionnes comprend notaaument les etapes suivantes .
- la mise en contact d'un anticorps reconnaissant specifiquement 1'ECA, ou un polypeptide derive de 1'ECA
selon 1'inveni~ion, avec le susdit prelevement bio-logique dans des conditions permettant la production eventuelle d'un co:mplexe immunologique forme entre 1'ECA ou produit qui en est derive et 1'anticorps sus-mentionne ;
- la detection ,a 1'aide de tout moyen approprie du susdit complex~~ immu:nologique.
Avantageu:~ement, les anticorps utilises pour la mise en oeuvre d'un tel procede sont marques notamment de maniere enz;~matiq~ue ou radio-active.
Une telle methode selon 1'invention peut notamment etre realisee suivant la methode ELISA (enzyme linked sorbent assay) qui comprend les etapes suivantes .

13~p868 - fixation dune quantite predeterminee d'anticorps sur un support solide, notamment a la surface d'un puits cl'une microplaque ;
- addition du prelevement biologique (sous forme liquide) sur ledit support ;
- incubation pendant une temps suffisant pour permettre la reaci:ion immunologique entre lesdits anticorps et :1'ECA ou produit qui en est derive sus-mentionne ;
- elimi:nation des parties non fixees du prelevement biologiclue et lavage du support solide (en particulier des puits de la microplaque) ;
- addition dune immunoglobuline marquee par une enzyme susceptible d'activer un substrat specifique de cette enzyme, - addition du substrat specifique de 1'activite enzymatique liberee lors de la reaction immunologique precedente ;
- detection, a 1'aide de tout moyen approprie, de la degradation du substrat par 1'enzyme : et - correlation d.e la quantite d' enzymes liberties a la concentration d'ECA humaine initialement presente dans le prelevement :biologique.
Selon un autre mode de realisation de la methode de dosage de 1'invention, les anticorps sus-mentionnes ne sont pas marques et la detection des complexes immunologiques forme;s entre les polypeptides et lesdits anticorps est realisee a 1'aide dune immunoglobuline marquee reconnaissant lesdits complexes.
La metho~ie de dosage selon 1'invention peut egalement etrEa rea:lisee par une technique immuno-enzymatique suivant un mecanisme de competition entre les polypeptid~es suscceptibles d'etre contenus dans le 13~0~~~

prslevement biologic~ue, et des quantitss prsdsterminses de ces memes polypeptides, vis-a-vis des anticorps sus-mentionnss. Dan: ce dernier cas, les polypeptides de 1'invention eon quantits prsdsterminse sont avantageusement marquss a 1'aide d'un marqueur enzymatique.
L'invention ne se limits nullement aux modes de realisation dE:crits ci-dessus pour le dosage in vitro des polypeptides de 1'invention, ce dosage pouvant etre realise a 1'a_'Lde de touts autre msthode immunologique approprise.
L'invention concerns sgalement une msthode de dspistage, ou de do:>age, in vitro d'un acids nuclsique codant pour touts ou partie de 1'ECA, rsalisse a partir d' un prelevem~snt b:iologique susceptible de contenir ledit acids nuclsique, caractsrisse en ce qu'elle comprend .
- la miss en contact dune sonde nuclsotidique dscrite ci-des;sus avec le susdit prslevement biologique dans des conditions permettant la production sventuelle d'un complexes d'hybridation forms entre 1'acide nuclsique et l~~dite sonde ;
- la detection a 1'aide de tout moyen appropris du susdit complexe d'hy:bridation.
Selon un mode de realisation de 1'invention, le prslevement bio7Logique sue-mentionns est, prsalablement ~~ la mdse en oeuvre du dspistage, traits de maniere a ce que lee cellules qu'il contient soient lysses et, e~rentue.llement, en ce que le materiel gsnomique contESnu daps lesdites cellules soit fragments a 1'aide d'enz:Ymes de restriction du type EcoRI, BamHI
etc..., ou que les ARN en soient isolss.

~3~0~6g Avantageu.sement, les sondes nucleotidiques de 1'invention sont marquees a 1'aide d'un marqueur enzymatique ou radio-actif. Les ADN, ou ARN, issus du prelevement biologi.que sont places sur un support approprie, notamment: sur un filtre de nitrocellulose ou autre, par exE;mple membrane de nylon, sur lequel sont ensuite additionnees; les sondes sus-mentionnees.
Selon un autre mode avantageux de realisation du procede sus-mentionne de 1'invention, des coupes histologiques sont realisees a partir du susdit prelevement biologic~ue et les sondes nucleotidiques de 1'invention sent mises en contact direct avec des coupes histologiques pour la detection des acides nucleiques de 1'invention par hybridation in situ.
L'invention a ~egalement pour objet 1'application des methodes de depistage, ou de dosage, sus-mentionnees au diagnostic in vitro de pathologies telles que 1"hyperitension, la sarcoidose et autres maladies granulomateuses, les dysfonctionnements thy-ro3diens et dune maniere generale toutes maladies correlees a des teneurs dans 1'organisme (dans le plasma ou d'autres tissus) en sequences d'acides amines de 1'im~ention, situees a 1'exterieur du domaine delimite par les valeurs extremes correspondant generalement a 1'etat physiologique d'un individu sain.
Les methodes de dosage in vitro de 1'invention procedant a 1'aide des anticorps sus-mentionnes permettent egalement. le suivi dans 1'organisme de la concentration <ies inlhibiteurs de 1'ECA par mesure de la quantite d'ant:icorps n'ayant pu se fixer sur le, ou les sites) act:if(s) de 1'ECA qui sont masques par 1'inhibiteur. Les methodes de dosage de 1'invention sont donc part.iculiE~rement avantageuses dans le cadre de la surveillance des traitements de patients par des inhibiteurs de: 1' ECA.
L'invention a E~galement pour objet des necessaires ou kits pour la rnise en oeuvre des methodes de depistage, ou de doscage, in vitro sus-mentionnes.
A titre d'exemple, de tels kits comprennent notamment:
- une quantit:e determinee d'un des anticorps monoclonaux sus-ment:ionnes susceptible de donner lieu a une reaction immunologique specifique avec 1'ECA ou avec un des polypeptides derives de 1'ECA selon 1'invention ;
- et/ou une quantite determinee d'ECA ou un polypeptide susceptible de dormer lieu a une reaction immunologique avec les anticorps sus-mentionnes - avantageusement, un milieu approprie a la formation dune reaction immunologique entre 1'ECA ou les polypeptides de 1'invention et les anticorps sus-mentionnes ;
- avantageusement, des reactifs permettant la detection des complexes immunologiques produits lors de la reaction im~;nunologique sus-mentionnee.
Dans le cadre de la mise en oeuvre d' une methode de depistage in vitro utilisant des sondes nucleotidiques, les kits utilises comprennent par exemple .
- une c~uantii:e determinee d' une des sondes nucleotidiques sus-aientionnees susceptible de dormer lieu a une re~~ction d'hybridation avec un des asides nucleiques su:a-mentionnes codant pour 1'ECA ou un polypeptide den~ive d~e 1'ECA selon 1'invention ;

1340~3~~

- avanta.geusement, des reactifs permettant la detection des complexes d'hybridation produits lors de la reaction d'hybridation sus-mentionnee.
L'invention concerne egalement 1'utilisation du polypeptide d.e la figure 3 ou de tout fragment peptidique appropri.e issu de ce dernier, pour la conception de nouveaux inhibiteurs de 1'ECA humaine, plus puissants, et/ou specifiques de cette derniere que ne le sont les actue:ls inhibiteurs de 1'ECA.
L' invention a E;galement pour obj et une methode de detection ou de dosage, d'un inhibiteur de 1'ECA, ou de quantification de son pouvoir inhibiteur, qui comprend la mise en contact d.u polypeptide de la figure 3, ou de tout fragment peptidique issu de de ce dernier et possedant une activi.te enzymatique du type de celle de 1'ECA, avec ledit i.nhibiteur, et la determination du coefficient d'inhibition de 1'enzyme par 1'inhibiteur, notamment par mesure de 1'eventuelle activite enzymatique rEaidue:Lle sur un substrat approprie de 1'ECA.
L'invention concerne egalement 1'utilisation du polypeptide de la figure 3, ou de tout fragment de ce dernier capable d'hydrolyser les kinines, notamment la bradykinine, ~dans le traitement des maladies in-flammatoires, ou infectieuses, de la pancreatite gigue, et plus ga_neralement de maladies ou une liberation de kinineas dans 1'organisme pourrait jouer un role pathogi:ne.
A ce titre, 1'invention concerne plus particulierement des compositions pharmaceutiques pour le traitement des maladies indiquees ci-dessus, caracterisee par 1'~association de tout ou partie du polypeptide de la figure 3, capable d'hydrolyser les 13~O~G8 kinines, nota:mment la bradykinine, avec un vehicule pharmaceutique:ment acceptable.
La prese.nte invention a egalement pour objet 1'utilisation des sondes nucleotidiques de 1'invention, capables de s'hybr:ider avec le gene responsable de 1'expression de 1'ECA humaine dans les conditions decrites ci-dessu~~, pour la determination des differentes formes a:lleliques du gene sus-mentionne.
Les hypertensions arterielles (HTA) sont classees en deux grandes categories selon leurs etiologies . les HTA secondaires eat 1'HTA essentielle. Les HTA
secondaires re:groupeant toutes les formes d'HTA que la medecine peut ratt:acher de fa~on univoque a une pathologie identifiee. I1 peut s'agir, notamment, dune hypersecretion hormonale d'origine tumorale (repine ou aldosterone, catecholamines, par exemple) ou vasculaire (stenose d'u.ne ,artere renale provoquant une hypersecretion de repine). Ces formes d'HTA secondaires representent e~nviron 5 % du total des HTA. Sous le vocable d'HTA essenitielle, sont regroupees toutes les formes d'HTA pour lesquelles aucune etiologie nest aujourd'hui identifiable et qui constituent les 95 %
restant des cars d'HT.A.
La patho~~enie de 1'HTA essentielle nest pas aujourd'hui connue mais de nombreuses etudes opt montre que des facteurs genetiques etaient impliques daps le developpement de 1'HTA. Les etudes familiales opt montre qu'il existait une agregation familiale des valeurs de prEassion arterielle et qu'une correlation existe entre l.a pression arterielle des parents et des enfants naturels alors que cette correlation n'existe pas avec les enfants adoptes. Les etudes menees sur des jumeaux mono ou dlizygotes opt egalement confirme 13~0~6~

1'heritabilitE: du niveau de pression arterielle. Enfin, 1'analyse gen~etique de la transmission du niveau de pression arte:riellea, chez 1'homme et dans les souches de rats genetiquement hypertendus, a montre que plusieurs genEa etaient impliques. La transmission de ce caractere, variable entre les individus, quest le niveau de pression arterielle passe donc par la transmission de forznes alleliques de genes entre les parents et lee erifants. Les genes que 1'on pent designer "candidate;" a la responsabilite de cette transmission sont, a.u premier chef, ceux impliques dans les principau~; systemes de regulation de la pression arterielle, tels que: lee genes, du systeme renine-angiotensine, dont c.elui codant pour 1'ECA.
La methode de choix pour reconnaitre, aujourd'hui, les formes alleliques d'un gene est d'identifier, pour ce gene, le polymorphisme de taille des fragments de restriction de ce gene (par taille des fragments de restriction on entend le nombre de paires de bases que comprennent lesdit.s fragments). Pour ce type d'experience, lee ADN de plusieurs individus sont isoles, clivEa pair une enzyme de restriction, transferes sur une membrane capable de lee fixer de fagon irreversible, et hybrides avec une sonde d'ADN
marquee corres~~ondant au gene etudie.
Cette mei~hode permet de distinguer lee formes alleliques d'u.n meme gene qui different entre elles d' un individu <~ 1' autre - par leur cari:e de :restriction, et/ou - par la pre:~ence dans T une des formes alleliques dune insertic>n (fragment d'ADN supplementaire dans 1'allele le moins frequent), ou d'une deletion (fragment d'ADN manquant dans 1'allele le moins 13~0~68 frequent) cet.te insertion n'existant pas chez les autres formes alleliques.
Dans le premier cas sus-mentionne (differences fondees sur la carte de restriction, ou encore polymorphismes de sites de restriction), sous 1'effet de la digestion par une enzyme de restriction donnee X, 1'allele possE:dant, au niveau dune region precise du genome, un site de restriction reconnu par cette enzyme est coupe par ladite enzyme, et celui ne possedant pas un tel site, au niveau de ladite region, nest pas clive. A 1'aide d'u.ne sonde nucleotidique susceptible de s'hybrider au ni~,eau de ladite region, on peut donc detecter deux fragments de restriction de tailles differentes selon que la region concernee a ete clivee ou non. A chac.une de: ces tailles correspond une forme allelique.
Dans le :>econd cas (presence dune insertion, ou dune deletion), leis fragments d'ADN genomique cor-respondant aux deux formes alleliques sont clives par 1'enzyme de restriction X au niveau d'un site iden-tique. On peut detecter, a 1'aide dune sonde telle que definie dans le paragraphe precedent, deux fragments de restriction de tail:les differences. A chacune de ces tailles correspond une forme allelique, la taille la plus elevee correspondant a la forme allelique comprenant 1'insertion sus-mentionnee.
Dans les deux cas precedents et chaque fois que 1'on detecte des fragments de restriction de tailles differentes (ou encore fragments de restriction polymorphes) d.ans un gene donne et d'un individu a 1'autre sous 1'eff~et de f action dune enzyme de restriction X, il se:ra fait reference au "polymorphisme X" de ce gene (par exemple "polymorphisme EcoRI" si 13~08~8 1'enzyme de restriction X est 1'enzyme EcoRI, ou polymorphisme TaqI si 1'enzyme de restriction est TaqI).
L'etude d'un polymorphisme X d'un allele choisi, dans une population donnee d'individus, presumes sains, permet de constater 1'existence de ce polymorphisme dans une proportion determinee des individus de cette population. La mesui°e de cette proportion conduit a ce que 1'on appelle ci-apres la "frequence allelique de reference".
Si la frequence: d'un allele choisi, mesure suivant la meme methode au sein dune population d'individus presentant une pathc~logie determinee, est differente de la frequence de reference, on pourra alors emettre 1'hypothese que 1'a7Llele en question est lie a ladite pathologie.
De meme, on pourra impliquer un allele dans le developpement de l.a maladie s'il existe une co-segregration entre l.a transmission de la maladie, dans les familles atteintes et informatives pour le polymorphisme, et la transmission de 1'allele permet d'impliquer cet allele dans le developpement de la maladie. (on dit dune famille qu'elle est informative pour le polym.orphiscme si le parent atteint par la maladie est helterozy~gote pour le site de restriction ce qui permet de' suiwre dans la descendance 1'allele responsable de la maladie).
La presente invention concerne les fragments de restriction po:Lymorplhes susceptibles de s'hybrider avec une sonde nucleotidique de 1'invention, notamment dans les conditions decrites ci-dessus, et qui sont issus du clivage des differentes formes alleliques du gene ~~~fl~6 codant pour 7.'ECA a 1'aide d'enzymes de restriction determinees.
L'invention concerne plus particulierement les fragments de restriction polymorphes susceptibles de s'hybrider avec une sonde nucleotidique selon 1'invention, E~lle-mi=me susceptible de s'hybrider avec 1' extremite 5' de 1' acide nucleique de la figure 3 et qui sont les suivanta .
- les fragments. de 5,8 kb et de 6 kb correspondant au polymorphisme TaqI, - les fragments. de 8,8 kb et de 9 kb correspondant au polymorphisme Dra.I, - les fragments de 8,5 kb et de 9 kb correspondant au polymorphisme BglII, - les fragments de 10,6 kb et de 11 kb cor-respondant au ;polymorphisme KpnI, - les fragments de 8,4 kb et de 8,8 kb cor-respondant au ;polymorphisme HindIII, - les fragmentssl de 4, 2 kb et 3, 0 kb dune part, et de 4 kb et 2,7 kb d'autre part, correspondant au polymorphisme ;BglI, - les fragments de 5, 2 kb et de 5, 7 kb correspondant au po:lymorphisme RsaI (avec presence ou non d'un fragment de 3,0 kb), - les fragments de 4,3 kb dune part, et de 2,2 et 2,5 kb d'autre part, correspondant au polymorphisme PvuII, - les fragments de 3,5 kb et de 3 kb correspondant au polymorphismes Xb;aI, - les fragments de 4,3 kb et de 2,7 kb cor-respondent au polymo:rphisme TaqI.
La difference de taille des fragments alleliques reconnus par les sondes de 1'invention chez les 13~0~~8 differents individu;s, correspond a une insertion d'un fragment genomique d'environ 400 paires de base avec la marge d'erreu.r due: a 1'analyse de taille de ces fragments par electrophorese sur gel d'agarose.
Cette insertion peut etre detectee a 1'aide de toute enzyme de restriction clivant 1'acide nucleique sus-mentionne du moment que les fragments engendres soient capables de s'hybrider au moins en partie, avec la sonde corresponda.nte.
La presente invention concerne un procede de depistage, in. vitro des polymorphismes du gene codant pour 1'expres~;ion de 1'ECA humaine, realise a partir d'echantillons biologiques, tels que le sang, sus-ceptibles de <:ontenir de 1'ADN genomique, et qui ont ete preleves dans une population donnee d'individus ne presentant pas d'HTA (ou encore individus normotendus), ou d'autres maladies de 1'endothelium vasculaire.
Les echantillons sus-mentionnes sont analyses suivant la metlhode suivante comprenant .
- le tra:itement des acides nucleiques issus des echantillons biologiques sus-mentionnes a 1'aide dune enzyme de restriction determinee daps des conditions permettant 1'obtention de fragments de restriction issus du cliva~~e desdits acides nucleiques au niveau de leurs sites de restriction reconnus par ladite enzyme, - la mise en contact dune sonde nucleotidique selon 1'invention susceptible de s'hybrider avec les fragments sus-mentio:nnes dans des conditions permettant la production event:uelle de complexes d'hybridation entre ladite sonde et les fragments de restriction sus-mentionnes,, notamment daps les conditions d'hybridation definies ci-dessus, I3~0~6g - la detection des susdits complexes d'hybri-dation, - la mesure de la taille des eventuels fragments de restriction polymorphes engages daps les complexes d'hybridation sus-me:ntionnes.
Parmi les sondes utilisees pour la mise en oeuvre d'un tel procede, on citera notamment 1'ADN com-plementaire (ou ADNc) de 1'acide nucleique decrit a la figure 3, ou, avant:ageusement, une fraction de cette ADNc susceptible de s'hybrider avec les differents fragments de restricaion correspondant aux differentes formes alleliques du. gene de 1'ECA.
Avantageusement., la sonde utilisee dans le procede sus-mentionne est marquee, notamment de maniere radioactive ou non radioactive, sous forme notamment de sonde biotinylee, pour permettre la detection des differents fragment, de restriction restant hybrides avec ladite so:nde.
La mesure de la taille des differents fragments de restriction p~olymorphes engages Bans des complexes d'hybridation avec :La sonde sus-mentionnee, peut etre realisee par mute methode connue en soi par 1'homme du metier ; la determination de la taille de ces fragments de restrict:Lon est realisee notamment par electrophorese sur gel d'agarose et evaluation de la taille desdit;s fragments par rapport a celles de fragments temo:ins.
La comparaison des tailles des fragments de restriction mesurees chez les individus de la population etudiee, permet d'etablir, au sein de cette population d'individus, les frequences alleliques de reference.

1.~40~~~
L'inventi.on concerne egalement la detection des differentes fo~rmes alleliques du gene codant pour 1'ECA
humaine, susceptibles d'etre liees au developpement chez un indi'ridu dune HTA, ou autres maladies de 1'endothelium vasculaire, notamment de 1'atherosclerose. Ce~tte detection est realisee suivant la meme methode au sein dune population d'individus presentant une pathologie sus-mentionnee. Si la frequence d'un allele mesuree au sein de cette population est diffe:rente de la frequence de reference, on pourra alors emet;tre 1'hypothese que cet allele est probablement lie a 1'HTA.
De meme, on pourra impliquer un allele dans le developpement de l.a maladie s'il existe, dans les familles atteintes x>ar la maladie et informatives pour le polymorphisme, une cosegregation entre la trans-mission de certaines formes alleliques du gene de 1'ECA
et la transmission de 1'HTA et/ou des maladies de 1'endothelium, notamment de 1'atherosclerose.
L'inventi~on a ~egalement pour objet 1'application des resultats de 1'etude des polymorphismes du gene codant pour 1'ECA humaine au diagnostic in vitro de 1'eventuelle predisposition genetique probable d'un individu a 1'hypert:ension arterielle, ou a d'autres maladies de :1'endothelium vasculaire, notamment de 1' atherosclero;se .

13~0~6~

La methode de diagnostic in vitro sus-mentionnee comprend la dE~tection eventuelle de fragments de res-triction polymorphe:~, issus du clivage par une enzyme de restriction determinee d'alleles probablement lies au mecanisme de 1'HTA, a 1'aide de sondes nucleotidiques selon 1'invention, susceptible de s'hybrider avec lesdits fragments de restriction polymorphes.
Les conditions daps lesquelles une telle methode de diagnostic in vitro pent etre mise en oeuvre sont celles decrites dins les articles concernant les techniques de detection des polymorphismes de longueur des fragments de re:atriction, plus connues encore sous 1'abreviation RFL:P (Restriction Fragment-length Polymorphism). De telles conditions sont plus particuliereme:nt decrites dans P article de GUSELLA
J.F. 'Recombinant D:NA techniques in the diagnosis of inherited disorders" paru dans Journal of Clinical Investigations (1986), 77, 1723-1726.
Selon un aspeci~ avantageux de 1'invention, outre le depistage des polymorphismes du gene codant pour 1'ECA humaine, la mE~thode de diagnostic in vitro sus-mentionnee compren~d egalement le depistage de polymorphismes d'un ou de plusieurs genes codant pour des proteines differentes de 1'ECA et impliquees dans le mecanisme de la regulation de la pression arterielle.
A ce tit:re, la methode de diagnostic in vitro selon 1'invention comprend le depistage de polymorphismes du gene de 1'ECA, et du gene de la renine, et/ou du gene de la kallikreine, et/ou du gene de 1'ANF.

~3~086g Parmi le:: polymorphismes sus-mentionnes des genes codant pour la renine, la kallikreine, et 1'ANF, on citera notamment ceux qui ont ete plus particulierement decrits dans .La demande de brevet PCT publiee sous le numero W087/02709 dE:posee le 23 octobre 1987.
A 1'aide de sondes appropriees, les auteurs de cette demande PCT ont decouvert les fragments de restriction suivants; .
4 insufficiently active, or not completely specific of the ECA and suspects: possible to have an action insufficient therapy, or create effects secondary ires ~ irables. Among these effects undesirable, we will notably distinguish phenomena cough, t: digestive redness, rash which can be linked to the inhibition of other systems enzymatic by ACE inhibitors above tions.
One of the aims of the present invention is to allow the design of new inhibitors of The most powerful ECA: ~ and specifics of the latter than the current inhibitors mentioned above, allowing eve: ntuel7_ement a better efficiency has lower dose, and limiting the risk of effects unwanted from these: new inhibitors.
The purpose of the invention is Cloning and nucleic acid sequencing encoding ACE
human; this work was carried out from two complementary DNA banks of mRNA from human umbilical vein endothelial cells and nucleotide probes deduced from peptide sequences obtained by sequencing of purified fragments of human ACE. The techniques used for cloning and sequencing of acid nucleic sel.on 1.'invention will be more parti-especially ~ written in the detailed description of The invention.
Reference will be made in the following to the Table I and the figures in which.
- table I represents the fragments peptides obtained: enus ~ 3 from purified human ACE.

. ~ 340 ~ 68 - Figure 1 represents the comparison of acid sequences: ~ aminoterminal amines of ACE
human, and ECA dens from rabbits, beef, pork and mouse;
- Figure 2 shows the respective positions nucleic acids of the three clones used for the determination of the nucleic acid encoding ACE
human;
- Figure 3 shows the nucleic acid as well that the polypep ~ tide, deduced from the latter, corresponding human ACE;
- Figure 4 represents the homologies between certain sequences. human ACE peptides (ECAh), thermolysin (THERM), endopeptidase neutral rat or rabbit (rNEP), and collagenase human water fibroblastea (COLLh);
An in-depth study of the nucleic acid of The invention, thus included from the polypeptide deduced from of the latter cat corresponding to human ACE, leads to the following observations.
- the open reading phase of nucleic acid of figure 3 east made up of a DNA sequence delimited by the nucleotides corresponding to positions 23 and 109 of FIG. 1 coding for a signal peptide of 29 amino acids, and a sequence of DNA delimited by the nucleotides located at positions 110 to 3940 of FIG. 3, and coding for a protein containing 1277 amino acids;
- the nucleic acid of the invention is characterized by a strong internal homology (greater than 60%) between the DNA sequence delimited by nucleotides located at positions ~~ 700 and 1770, and that delimited by nucleoi ~ ides located at positions 2495 and 3565.

I34p8 ~ g The polypeptides of 257 amino acids coded res-pectively by 7 The two DNA sequences above mentioned also have strong homology between them (from o: 67.7% reduction). the strongest homology is at the amino acid level of central parts of the two above-mentioned polypeptides for example the polypeptide delimited by acids amines located at positions 361 and 404, and that delimited by amino acids located at positions 951 and 1002, pre: ~ entenit a percentage of homologies of Around 85 ~%. The two homologous polypeptides each includes a His-Glu-Met-Gly-His sequence corresponding to the amino acids located at the positions 361 to 365 and 959 .a 963 of figure 3. A study comparative (represented in figure 4) of this last sequence pe: ptidic of 5 amino amino acids, with act: ifs sites of several enzymes including thermolysin,: ~ ugger ~ e the fact that T at least one of these two sequences of 5 amino acids, which we find in the two homologous parts of the ACE, could constitute a party ~ e of the active site of the latter;
- the product of the open reading phase above-mentioned includes 17 potential sites of glycosylation, most of which are grouped in the region N-terminals of the molecule, and in the region located at the junction between the two domains of the above-mentioned homologous amino acids.
The present invention therefore concerns all acids including nucleic. the nucleotide sequence of the FIG. 3 coding: for human ACE.
The invention relates more particularly to everything nucleic acids ~ including the delimited DNA sequence by nucleoi ~ ides located at positions 23 and 3940 of 13408 ~ g figure 3, ea cod <~ nt for human pre-ECA from 1306 amino acids: the first 29 amino acids listed N-terminal rep ~ resent: ent the signal peptide, and the 1277 amino acids; remaining represent human ACE
nature.
The invention c: also relates to any acid nucleic acid understood ~ the DNA sequence delimited by the nucleotides located at positions 110 and 3940 of the Figure 3, and coding for mature human ACE.
The invention also relates to any acid nucleic acid from the DNA sequence of Figure 3 and coding for a polypeptide capable of having properties in ~: ymatic of the type of those of the ACE
human, in particular a polypeptide capable of hydrolyzing Angiotensin I and / or kinins, especially bradykinin, or whatever. no distinguishing nucleic acid of the precedent at the level of its nucleotide sequence that by nucleotide substitutions which do not cause modification of the amino acid sequence of the above polypeptide in specific conditions to make it lose the above: properties.
As such, the invention relates more particularly any nucleic acid comprising T a or the other counterpart regions of the ACE above mentioned.
Among the nucleic acids conform to The invention, particular mention will be made of any DNA fragment container.
- a DNA sequence extending between, on the one hand, a nucleotide located between positions 1 to 1177 and, on the other hand, a nuc: leotid located between the positions 3070 to 3940;

l3 ~ pg ~ g - a DNA sequence extending between, on the one hand, a nucleotide located between positions 110 to 1177, and on the other hand a nuc: leotid located between the positions 1276 ~ 1966;
- a DNA sequence extending between, on the one hand, the nucleotide is between the positions 1967 a 2971, and, on the other hand, the nucleotide located between the positions 3070 to 3940.
The invention also relates to nucleic acids whose nucleotide sequences are modified in the limits aotorized by the degsnerescence of the code genstic, as soon as the polypeptides coded by these nucleic acids either retain a structure identical primary, ie their enzymatic properties or immunologiq ~ ues.
Such non-limiting modifications lead to for example to variant nucleic acids which distinguish from; s nucleic acids above.
- by addition and / or - deletion of one or more nucleotides and or - change <~ tion ~ of one or more nucleotides.
A more particular subject of the invention is all acids nuc: leic ~ presenting the characteristic of specifically hybridize with nucleic acid represents su: r figure 3, under the conditions defined above.
- prehybridization treatment of the support (filter nitrocellulose or nylon membrane), on which is fixes the nucleic acid capable of hybridizing with that of FIG. 3, at 65 ° C. for 6 hours with a solution having the following composition. 4 x SSC, x Denhardt, ~ 3 ~ 086 ~ 3 - replacement: pre-hybridization solution in contact with the support by a buffer solution having the following composition a. 4 x SSC, 1 x Denhardt, 25 mM
NaPO4 pH 7, 2 mM EDTA, 0.5% SDS, 100, ug / ml DNA from sonic salmon sperm, comprising nucleic acid of Figure 3 while holding that probe, in particular so radioactive, ea previously denatured by a treatment at 100 ° C for 3 minutes, - incubation for 12 hours at 65 ° C, - successive washes with the following solutions.
. 2 x SSC, 1 x Denhardt, 0.5% SDS, for 45 minutes at 65 ° C four times, . 0.2 x S ~ SC, 0.1 x SSC for 45 minutes at 65 ° C a two times, . 0.1 x S; SC, 0.1% SDS for 45 minutes at 65 ° C.
I1 is ~~ remember that the composition of the Denhardt's solution. is the following . 1% ficoll, 1%
polyvinylpyrro: lidone, 1% BSA (serum albumin from beef), and that 1 x SSC consists of 0.15 M NaCl and 0.015 M sodium citrate, pH 7.
The invention also relates to any nu-cleique with the characteristic of hybridizing specifically with the nucleic acid of Figure 3 under non-stringent conditions including essential characteristics of the strin-gentes defined: ~ above ~ essus, except for what concerns temperature which is 40 ° C in non-conditions stringent, and successive washes which, in the non stringent conditions, are realized using 2 x SSC at 45 ° C for 15 minutes twice.
The invention also relates to nucleo-causes: possible to hybridize with acids nucleics dec: rits previously, or their sequences 13 ~ 08 ~~
complementary, ai: nsi that with Y messenger RNA coding for ACE and with the human gene responsible for The expression of 1 "ECA, under the hy-bridging defined c: above.
It goes without saying that the hybridization conditions stringent or not. stringent, defined above are preferred conditions for Hybridization, but are in no way limiting and can be changed without affecting the recognition and hybridization properties of probes and nucleic acids mentioned above.
Salt and temperature conditions during hybridization and washing of membranes, can be changed in the direction of a larger or a lower string ~ ence without the detection of Hybridization is affected. For example, it is possible to add formamide to lower the temperature during hybridization.
The invention also relates to the polypeptide of which 1 <~ amino acid sequence is shown in Figure 3, as well as all polypeptides: likely to have activity enzymatic type ~ that of ACE and which are coded by the above-mentioned DNA fragments derived from the acid Figure 3 nucleic acid.
Among the above-mentioned polypeptides, will distinguish us ~ ammen ~ t - po: Lypeptide extending between acids corresponding amines: in positions 1 and 619 of the Figure 3;
- po7Lypept: ide extending between acids amines corresponding to positions 620 and 1229;

~~~ (~~ 6g - the polypeptide extending between the amino acids corresponding to positions 350 and 395;
- the polypeptide: ide extending between acids corresponding amines: at positions 948 and 993.
The previous polyp ~ eptides ~ can be modified as long as they serve the biochemical properties or defined immunologic or pharmacological previously.
For example ~ ple, and in a non-limiting way, polypeptides within the scope of the invention can be distinguish from the polypeptides defined above;
- by addition and / or - suppresses; asion of one or more amino acids and or - modification of one or more acids amines, provided that the biochemical properties or immunological or p harmacological as indicated above above be ~~ reserved.
We believe that the skilled man has the possibility of identifying or even selecting those polypeptides of shorter sequences that enter in the field of _L'invention. As one of general means him. allowing to proceed with this identification, we will mention, for example, the treatment of the polypeptide of FIG. 3 with a protease cleaving the above-mentioned polypeptide into a peptidiq site ~ eu chosen, snit in a region N-terminal, exit in> a C-terminal region, followed by separation of the N-terminal fragment or of the C- fragment terminal of the remainder of said polypeptide, this "remainder"
~ so many tests for its enzymatic activity vis-a-vis angiovtensine and / or bradykinin. In case response po; ~ itive, we will have established that the 134 ~ 8 ~~

N-terminal or C-terminal fragment, did not play a role signif: icatif, if not essential for the manifestation of the enzymatic properties of said polypeptide. The ope: ration can possibly be repeated however: that we have a protease likely to recognize another specific site near an N-terminal or C-terminal end of the reatant polypeptide. Loss by the polypeptide plus small recognized of the enzymatic fragments of the fragment longer which it came from can lead to The hypothesis that the last separate fragment played a significant role in the manifestation of properties of the polypeptide of FIG. 3.
Another variant, simpler than the previous one, detection ~ of regions: ACE regions essential to manifestation of the enzyme activities of this last, pent and: re based on treatments nucleic acid enzymes encoding ACE, before incorporation of the nucleic acid as well obtained, and presumes c; oder for a polypeptide having enzymatic activities of the ACE type, in the expression vector used for setting work of a process for the production of said polypeptide in the host this: appropriate cell (process which will be more particularly ~ details in what follows). This enzymatic treatment can then consist of soft in one pruning of the ends of the initial nucleic acid (coding for example for the polypeptide of FIG. 3 in full), for example by an enzyme exonucleolytiqixe, te ~ lle que Ba131, soft by one or several restriction enzymes chosen for their recognition sites: ~ respective ance (if applicable) feeds by: directed point mutagenesis) in the 13408ti ~

initial nucleic acid sequence, either by The addition of a synthetic junction DNA fragment between the restriction enzyme cleavage site and the beginning of: The region to be expressed. Nucleic acid trunk obtained can then be tested, after incorporation into: The chosen vector and transformation of the host cs ~ llula: ire with the recombinant vector obtained, for its capacity to express a polypeptide corresponding trunk, still having the above enzymatic properties - or on the contrary do not having more: a, hence the possibility, as in the previous variant: e, to identify within the polypeptide ds ~ Figure 3, the sequences playing a important role :, if not essential in the event enzymatic properties of ACE.
The invention also relates to any acid recombinant nuclei containing any DNA fragment from the above-indicated type coding for human pre-ECA, or Mature human ACE, or for any polypeptide susceptible to: possess an enzymatic activity of type of that of the ECA, associated with a promoter and / or a transcription terminator recognized by polymerases of the host cell in which said recombinant nucleic acid is likely to be introduced.
The introduction of said recombinant nucleic acid in the ce11u7Le host, is advantageously carried out at Using vectors, in particular of the plasmid type, which are able to replicate in said host cell and to allow the expression of the sequence coding for The enzyme.
Said nuc acid: recombinant leic can also be introduced: into ~ the host cell using a viral vector (recombinant virus) capable of infecting said cells note: and allow the expression of the .code polypeptide with a nucleic acid according to 1'invention, ~~ e last being loos the control of a viral promoter acti.f daps the Note cell.
The invention therefore relates to a production process human ACE, or the above-mentioned polypeptides from EC: A, c ~ ai includes the transformation of hotel cells; using the sus-indigoes vectors, the cultivation of the transformed note cells in a appropriate medium and recovery of said polypeptides snit directly from the middle of culture, lor: that these are secret (especially in c: as or the polypeptides considered are preceded by a signal sequence when synthesis in the cell note), either after lysis of the wall of the note cell in the callus or polypeptides would not be secret outside of this last.
The above-mentioned process advantageously comprises one final purification step, for example according to chroma techniques ~ hybridophobia and affinity using an inhibitor of all or part of The fixed ECA on the column: (see detailed description following).
As such: the invention has more particularly for subject one: composition containing human ACE
pure, free of contaminants, particularly of a natural protein.
The note cells used for the mile in work of the above mentioned process can be prokaryotic cells, especially E. cells coli, or, more advantageously, cells 13 ~ 0 ~ 6 $
eukaryotes, ~ which allow, in particular, to obtain proteins on the ~ ur glycosylated and mature form (yeast, CHO cells, or insect cells infected with the bac: ulovirus).
This process ~ described above is also achievable by transfection of host cells with vectors of ~ ~ ression having integrated a modified gene The ECA. Either it is truncated parts of Complementary DNA, endothelial messenger RNA from The ECA, including for example only one of the two fields counterparts, or amputee of the 3 'end coding for the hydrophobic membrane insertion segment. The transfection of host cells is also realizable with vectors including a mutated form of ACE, or fragments thereof, the mutations carrying particularly on the bases coding for amino acids involved in the enzyme activity described above above.
I1 is p <particularly advantageous for the crystallization of the recombinant enzyme to mutate one or several potentials of N glycosylation, i.e. the codons corresponding to asparagine ~~ sparagine-X-Threonine and asparagine-X-serine.
The invention also relates to a method of preparation of the above-mentioned new polypeptides by synthesis yui includes soft 1'addition step by stage of the small residues chosen, with the addition or the removal of any protective groups from amino and carboxyl functions, or addition of residues peptides chosen to produce fragments, followed by condensation of said fragments into a ac sequence: appropriate amino acids, with addition or elimination of the protective groups chosen.
The invention also relates to antibodies.
specific di.riges against the above polypeptides.
In particular, the invention relates to antibodies monoclonal d: iriges against peptide sequences appearing to be involved in at least one of the activities of EC'.A.
Such monoclonal antibodies can be produced by the hybridoma technique, the general principle is recalled below.
First, we inoculate one of the polypeptides c: i-des: aus to a chosen animal, whose B cells are then able to produce antibody against this polypeptide. These lymphocytes antibody producers are then merged with "immortal" myeloma cells to give rise has hybridomas. From the heterogeneous mixture of cells thus obtained, we then make a selection cells capable of producing an antibody particular and. of: ~ e multiply indefinitely. Each hybridoma is multiplied in the form of clone, each leading to the production of a monoclonal antibody whose recognition properties vis-à-vis polypeptides of the invention can be tested by example on co: Lonne of affinity.
Among the ~ polypeptides used for the manufacture of the above-mentioned monoclonal antibodies, particular mention will be made of those delimited by acids amines located at positions 350 and 395, or 948 and 993 in Figure 3., The invention also relates to a methods of in vitro screening, or testing, for ACE, and more l3 ~ pg ~ g especially: human ACE, or a product derived from ACE such as the above-mentioned polypeptides having in viwo the: ~ properties of the ACE, daps a biologic ~ ue sample likely to contain them. A
such a screening method according to the invention, can be performed softly using the above monoclonal antibodies mentioned, either using the nucleotide probes of-above.
The above mentioned biological prep = vement is performs either in flowing tissues, such as the blood, either in d.es organs, this last type of permitting: in particular to obtain cuts fine of tis: aus on which the antibodies mentioned are later fixed.
The assay method according to the invention, proceeding through the above-mentioned antibodies particularly includes the following steps.
- contacting an antibody recognizing specifically ACE, or a polypeptide derived from ACE
according to the invention, with the aforementioned bio-sampling logic in conditions allowing production possible of an immunological complex formed between ACE or product derived therefrom and the above antibody mentionned ;
- detection, using any appropriate means of above complex ~~ immu: nological.
Advantage: ~ ement, the antibodies used for the implementation of such a process are particularly marked enz; ~ matiq ~ eu or radioactive.
Such a method according to the invention can in particular be carried out according to the ELISA method (enzyme linked sorbent assay) which includes the following steps.

13 ~ p868 - fixing of a predetermined amount of antibodies on a solid support, in particular to the surface of a well of a microplate;
- addition of the biological sample (in the form liquid) on said support;
- incubation for a sufficient time to allow immunological reaci: ion between said antibodies and: ACE or product derived therefrom mentionned ;
- elimi: nation of the non-fixed parts of the biologiclue sampling and washing of the solid support (in particular of the microplate wells);
- addition of an immunoglobulin marked by a enzyme capable of activating a specific substrate for this enzyme, - addition of specific activity substrate enzyme released during the immunological reaction previous ;
- detection, using any appropriate means, of degradation of the substrate by the enzyme: and - correlation of the quantity of enzymes released to the concentration of human ACE initially present in the sample: organic.
According to another embodiment of the method of the invention, the above-mentioned antibodies are not marked and the detection of complexes immunological forms between the polypeptides and said antibody is made using an immunoglobulin marked recognizing said complexes.
The dosage method according to the invention can also be rea: read by an immuno-technique enzymatic following a mechanism of competition between the polypeptides that are likely to be contained in the 13 ~ 0 ~~~

biological sample, and pre-determined amounts of these same polypeptides, with respect to antibodies above-mentioned. Dan: the latter case, the polypeptides of the invention and its predetermined amounts are advantageously marked with a marker enzymatic.
The invention is in no way limited to the modes of realization of: above criteria for in vitro assay polypeptides of the invention, this assay can be carried out with the help of any other immunological method appropriate.
The invention also relates to a method of screening, or testing:> age, in vitro of a nuclear acid coding for all or part of the ACE, realized from of a ~ snt b: iological sample likely to contain said nucleic acids, characterized in that it understand.
- the miss in contact with a nucleotide probe described below; above with the above biological sample under conditions allowing possible production of a hybridization complex formed between the acid nuclear and the so-called probe;
- detection using any appropriate means of aforementioned hy complex: bridging.
According to an embodiment of the invention, the bio7Logique sample mentioned above is, previously ~~ the mdse implementation of screening, traits so that the cells it contains are lysses and, e ~ rentue.llement, in that the material Contained in the said cells or fragments using restriction enmes: EcoRI-type, BamHI
etc ..., or that the RNAs are isolated from it.

~ 3 ~ 0 ~ 6g Advantageously, the nucleotide probes of The invention are marked with a marker enzymatic or radioactive. DNA, or RNA, from biologi.que sample are placed on a support suitable, in particular: on a nitrocellulose filter or other, e.g., single nylon membrane, on which are then added; the above-mentioned probes.
According to another advantageous embodiment of the above-mentioned process of the invention, cuts histological are carried out from the above biologic sampling and nucleotide probes of The invention feels put in direct contact with histological sections for the detection of acids nucleic acids of the invention by in situ hybridization.
The invention also relates to the application screening, or assay, methods above mentioned in the in vitro diagnosis of pathologies such as 1 "hyperitension, sarcoidosis and others granulomatous diseases, thy-ro3diens and generally all diseases correlated with levels in the organism (in the plasma or other tissues) in acid sequences amines of the im ~ ention, located outside the domain delimited by the corresponding extreme values generally in the physiological state of a healthy individual.
The in vitro assay methods of the invention using the above-mentioned antibodies also allow. follow-up in the organization of the concentration <ACE inhibitors by measuring the amount of ant: antibodies that could not be fixed on the, or the sites) act: if (s) of the ACE which are masked by The inhibitor. The assay methods of the invention are therefore part.iculiE ~ rement advantageous in the context monitoring treatment of patients with inhibitors of: ACE.
The invention was also subject to necessities or kits for the implementation of the methods of screening, or screening, in vitro mentioned above.
For example, such kits include especially:
- a determined quantity of one of the antibodies monoclonal above-mentioned: likely to give rise to a specific immunological reaction with ACE or with one of the ACE derived polypeptides according to The invention;
- and / or a specific quantity of ACE or a sleepable polypeptide gives rise to a reaction immunological with the above-mentioned antibodies - advantageously, an environment suitable for formation of an immunological reaction between the ACE or the polypeptides of the invention and the above antibodies mentioned;
advantageously, reagents allowing the detection of the immunological complexes produced during the im ~ nunological reaction mentioned above.
Within the framework of the implementation of a method in vitro screening using probes nucleotides, the kits used include example.
- a c ~ uantii: e determined from one of the probes above-mentioned nucleotides capable of sleeping place at a re ~~ ction of hybridization with one of the aids nucleic acids su: a-mentioned coding for ACE or a ACE polypeptide according to the invention;

1340 ~ 3 ~~

- advantageously, reagents allowing the detection of the hybridization complexes produced during the above-mentioned hybridization reaction.
The invention also relates to the use of the Figure 3 polypeptide or any fragment appropriate peptide derived from the latter, for the design of new inhibitors of human ACE, more powerful, and / or specific to the latter than so are the acts: the ACE inhibitors.
The invention is also intended and a method of detection or assay, of an ACE inhibitor, or quantification of its inhibitory power, which includes bringing the polypeptide of FIG. 3 into contact, or any peptide fragment derived from the latter and having an enzymatic activity of the type of that of The ACE, with said inhibitor, and the determination of the coefficient of inhibition of the enzyme by the inhibitor, in particular by measuring any activity reEaidue enzyme: It on an appropriate substrate of The ECA.
The invention also relates to the use of the polypeptide of Figure 3, or any fragment thereof the latter capable of hydrolyzing kinins, in particular bradykinin, ~ in the treatment of diseases inflammatory, or infectious, pancreatitis jitter, and more generally illnesses or release of kinineas in the body could play a pathogenic role.
As such, the invention relates more particularly pharmaceutical compositions for the treatment of the diseases indicated above, characterized by the association of all or part of the polypeptide of Figure 3, capable of hydrolyzing the 13 ~ O ~ G8 kinines, note: even bradykinin, with a vehicle pharmaceutical: reasonably acceptable.
The prese.nte invention also relates to The use of the nucleotide probes of the invention, able to hybridize: ider with the gene responsible for Expression of human ACE under the conditions described above ~~, for the determination of different forms a: lleliques of the aforementioned gene.
Arterial hypertension (HTA) is classified into two main categories according to their etiologies. the Secondary HTA is essential HTA. HTA
secondary re: grouping all forms of hypertension that the medicine can relate unequivocally to a pathology identified. It can be, in particular, a hormonal hypersecretion of tumor origin (repine or aldosterone, catecholamines, for example) or vascular (stenosis of a kidney, renal artery causing repine hypersecretion). These secondary forms of hypertension represent around 5% of the total HTA. Under the term of essential hypertension, are grouped all forms of hypertension for which no etiology exists now identifiable and which constitute 95%
remaining buses of HT.A.
The pathology of essential hypertension is not today known but many studies opt shows that genetic factors were involved in the development of hypertension. Opt family studies shows that there was a family aggregation of arterial prEassion values and that a correlation exists between the blood pressure of parents and natural children when this correlation does not exist not with adopted children. Studies conducted on mono twins or dlizygotes also opt confirmed 13 ~ 0 ~ 6 ~

Heritability: the level of blood pressure. Finally, The genetic analysis of the transmission of the level of arte pressure: riellea, in humans and in strains of genetically hypertensive rats, showed that several genEa were involved. The transmission of this characteristic, variable between individuals, calls it blood pressure level therefore goes through the transmission of allelic forznes of genes between parents and lee erifants. The genes that one hangs designer "candidate;" to the responsibility of this transmission are, primarily, those involved in the principau ~; pressure regulation systems arterial, such as: genes, renin system-angiotensin, including that coding for ACE.
The method of choice to recognize, today, the allelic forms of a gene is to identify, for this gene, the size polymorphism of the fragments of restriction of this gene (by size of the fragments of restriction we mean the number of base pairs that include the said fragments). For this type experience, the DNA of several individuals is isolates, cleave a restriction enzyme, transferred to a membrane capable of fixing it irreversible, and hybrids with a DNA probe marquee corres ~~ ondant au gene etudie.
This method makes it possible to distinguish the forms allelics of a same gene that differentiates them of an individual <~ 1 'other - by their curity: restriction, and / or - by the presence: in T one of the allelic forms dune insertic> n (additional DNA fragment in The least frequent allele), or a deletion (DNA fragment missing in the least allele 13 ~ 0 ~ 68 frequent) this insertion does not exist in other allelic forms.
In the first case mentioned above (differences based on the restriction card, or restriction site polymorphisms), under the effect digestion with a given restriction enzyme X, The allele possesses: at the level of a precise region of the genome, a restriction site recognized by this enzyme is cut by said enzyme, and the one without such a site, at the level of said region, is not cleaves. Using a susceptible nucleotide probe to hybridize to ni ~, water of said region, so we can detect two size restriction fragments different depending on whether the region concerned has been split or not. Each of these sizes corresponds to a shape allelic.
In the:> second case (presence of an insertion, or dune deletion), leis genomic DNA fragments cor-corresponding to the two allelic forms are cleaved by Restriction enzyme X at a specific site tick. We can detect, using a probe such as defined in the previous paragraph, two fragments of size restriction: the differences. To each of these sizes corresponds to an allelic shape, size la higher corresponding to the allelic form including the above-mentioned insertion.
In the two previous cases and whenever We detect size restriction fragments different (or even restriction fragments polymorphic) in a given gene and an individual has The other under the effect of the action of an enzyme of restriction X, it is: ra refers to "polymorphism X "of this gene (for example" EcoRI polymorphism "if 13 ~ 08 ~ 8 The restriction enzyme X is the EcoRI enzyme, or TaqI polymorphism if the restriction enzyme is TaqI).
The study of an X polymorphism of a chosen allele, in a given population of individuals, presumed healthy, makes it possible to note the existence of this polymorphism in a determined proportion of individuals of this population. Measuring this proportion leads to this which is called hereinafter the "allelic frequency of reference".
If the frequency: of a selected allele, next measure the same method within a population of individuals presenting a determined pathology, is different from the reference frequency, we can then send The assumption that the a7Llele in question is related to said pathology.
Similarly, we can involve an allele in the development of the disease if there is a co-segregration between the transmission of the disease, in affected families and informative for the polymorphism, and the transmission of the allele allows to involve this allele in the development of sickness. (a family is said to be informative for the polymorphism if the parent reached by the disease is helterozy ~ gote for the restriction site what which allows to follow in the allele descendants responsible for the disease).
The present invention relates to fragments of restriction po: Lymorplhes likely to hybridize with a nucleotide probe of the invention, in particular in the conditions described above, and which come from cleavage of the different allelic forms of the gene ~~~ fl ~ 6 coding for 7.'ECA using restriction enzymes determined.
The invention relates more particularly to polymorphic restriction fragments capable of hybridize with a nucleotide probe according to 1'invention, E ~ lle-mi = me likely to hybridize with The 5 'end of the nucleic acid of Figure 3 and who are following them.
- the fragments. 5.8 kb and corresponding 6 kb to the TaqI polymorphism, - the fragments. 8.8 kb and 9 kb corresponding to the Dra.I polymorphism, - fragments of 8.5 kb and corresponding 9 kb to the BglII polymorphism, - the fragments of 10.6 kb and 11 kb cor-corresponding to; KpnI polymorphism, - fragments of 8.4 kb and 8.8 kb cor-corresponding to; HindIII polymorphism, - fragments of 4, 2 kb and 3, 0 kb on the one hand, and 4 kb and 2.7 kb on the other hand, corresponding to polymorphism; BglI, - fragments of 5, 2 kb and 5, 7 kb corresponding to po: RsaI lymorphism (with presence or not a 3.0 kb fragment), - fragments of 4.3 kb on the one hand, and of 2.2 and 2.5 kb on the other hand, corresponding to the polymorphism PvuII, - fragments of 3.5 kb and 3 kb corresponding to the polymorphisms Xb; aI, - fragments of 4.3 kb and 2.7 kb cor-respond to the TaqI polymorphism.
The difference in size of the allelic fragments recognized by the probes of the invention in 13 ~ 0 ~~ 8 different individuals; s, corresponds to an insertion of a genomic fragment of approximately 400 base pairs with the margin of error due to the size analysis of these fragments by electrophoresis on agarose gel.
This insertion can be detected using any restriction enzyme cleaving nucleic acid mentioned above as long as the fragments generated be able to hybridize at least in part, with the corresponding probe.
The present invention relates to a method of screening, in. in vitro polymorphisms of the coding gene for the expression of human ACE, made from biological samples, such as blood, ceptibles of <: have genomic DNA, and have was taken from a given population of individuals not with no hypertension (or normotensive individuals), or other diseases of the vascular endothelium.
The above-mentioned samples are analyzed following the following method including.
- the processing of nucleic acids from above-mentioned biological samples using a restriction enzyme determined under conditions allowing the obtaining of restriction fragments derived from the cleavage of said nucleic acids at the level of their restriction sites recognized by said enzyme, - bringing a nucleotide probe into contact according to the invention capable of hybridizing with above-mentioned fragments: under conditions allowing event production: uelle of hybridization complexes between said probe and the restriction fragments mentioned above, in particular under the conditions of hybridization defined above, I3 ~ 0 ~ 6g - the detection of the above hybrid complexes -donation, - measuring the size of any fragments restriction polymorphs involved in complexes of above-mentioned hybridization.
Among the probes used for the implementation of such a process, mention will be made in particular of DNA
of the nucleic acid described at the figure 3, or, before: very carefully, a fraction of this CDNA likely to hybridize with different restricaion fragments corresponding to the different allelic forms of. gene for ACE.
Advantageously, the probe used in the process above mentioned is marked, in particular so radioactive or non-radioactive, in particular in the form of biotinylated probe, to allow detection of different fragment, restriction remaining hybrid with said so: nde.
Measuring the size of the different fragments of restriction p ~ olymorphs engaged Bans of complexes hybridization with: The aforementioned probe, can be carried out by mute method known per se by the man of the job ; determining the size of these fragments restrictive: Lon is realized in particular by agarose gel electrophoresis and evaluation of size of said fragments compared to those of temo fragments: ins.
The comparison of the sizes of the fragments of restriction measured in individuals of the population studied, allows to establish, within this population of individuals, the allelic frequencies of reference.

1. ~ 40 ~~~
The invention also relates to the detection of different allelic forms of the gene encoding ACE
human, likely to be linked to development in a person with hypertension, or other diseases of The vascular endothelium, especially Atherosclerosis. This ~ detection head is carried out according to the same method within a population of individuals presenting a pathology mentioned above. If the frequency of an allele measured within this population is different: rent from the reference frequency, we can then emit; be the hypothesis that this allele is probably related to hypertension.
Similarly, we can involve an allele in the development of the disease if it exists, in families affected x> ar the disease and informative for polymorphism, a cosegregation between trans-mission of certain allelic forms of the ACE gene and the transmission of HTA and / or diseases of Endothelium, especially atherosclerosis.
The invention also relates to the application results of the study of gene polymorphisms coding for human ACE in in vitro diagnosis of The possible probable genetic predisposition of a individual with hypertherapy, or other diseases of the vascular endothelium, especially 1 'atherosclero; se.

13 ~ 0 ~ 6 ~

The above-mentioned in vitro diagnostic method includes the possible detection of fragments of res-polymorphic triction: ~, derived from cleavage by an enzyme specific restriction of allies probably related to the mechanism of the HV, using probes nucleotides according to the invention, capable of hybridize with said restriction fragments polymorphs.
The conditions under which such a method in vitro diagnostics can be implemented are those described in the articles concerning techniques for detecting length polymorphisms fragments of re: atriction, still better known as The abbreviation RFL: P (Restriction Fragment-length Polymorphism). Such conditions are more particular: nt described in P article of GUSELLA
JF 'Recombinant D: NA techniques in the diagnosis of inherited disorders "published in Journal of Clinical Investigations (1986), 77, 1723-1726.
According to an aspeci ~ advantageous of the invention, in addition screening for polymorphisms in the gene encoding Human ACE, the above-mentioned in vitro diagnostic method mentioned also includes screening for polymorphisms of one or more genes coding for proteins different from ACE and involved in the mechanism of pressure regulation arterial.
As such: the in vitro diagnostic method according to the invention includes screening for polymorphisms of the ACE gene, and of the renine, and / or the kallikreine gene, and / or the gene of the ANF.

~ 3 ~ 086g Among the :: aforementioned polymorphisms of genes coding for renin, kallikrein, and ANF, we will cite in particular those who have been more particularly described in .The PCT patent application published under number W087 / 02709 dE: posed on October 23, 1987.
Using appropriate probes, the authors of this PCT application discovered the fragments of following restriction; .

- 5 kb et 9 kb correspondant au polymorphisme BglI du gene de la renine, - 0, 9 kb corr~aspond~ant au polymorphisme BglII du gene de la renine, - 20 kb et 24 kb correspondant au polymorphisme RsaI du gene de la renine, - 5 kb and 9 kb corresponding to the BglI polymorphism of renin gene, - 0.9 kb corr ~ aspond ~ ant to the BglII polymorphism of the gene renin, - 20 kb and 24 kb corresponding to the RsaI polymorphism of renin gene,

- 6,2 kb et 9 kb correspondant au polymorphisme HindIII
du gene de la renine, - 9, 8 kb et 1:1 kb c:orrespondant au polymorphisme TaqI
du gene de la :renine, - 3, 9 kb correapondant au polymorphisme EcoRI du gene de la renine, - 1,4 kb et 1,~8 kb correspondant au polymorphisme BanII
du gene ANF, - 4,1 et 6,2 kb correspondant au polymorphisme BglI du gene ANF, - 9,1 kb et 6,!5 kb correspondant au polymorphisme BglII
du gene ANF, - 5,2 kb et 11,8 kb correspondant au polymorphisme EcoRI du gene i~IJF, - 15 kb correspondant au polymorphisme EcoRI du gene de la kallikreine,, - 3,1 kb correspondent au polymorphisme PstI du gene de la kallikreine,, ~~~os6s - 4,5 kb corre.spondant au polymorphisme StuI du gene de la kallikreine.
L'invention a egalement pour objet des kits pour la mise en oeuvre de la methode de diagnostic in vitro definie ci-dessus.
A titre d'exemple, de tels kits de diagnostic comprennent .
- une qu~antite determinee dune ou de plusieurs enzymes de restriction, - une quantite determinee dune sonde nucleotidique susceptible de reconnaitre les fragments de restriction issu.s du clivage du gene codant pour 1'ECA par 1'(ou les ) enzyme(s) sus-mentionne(s), - eventuelleme:nt une quantite determinee dune sonde susceptible de reconnaitre les fragments de restriction i:~sus du clivage du gene codant pour la renine par 1'(~ou les) enzymes) sus-mentionnes(s), - et/ou une quantite determinee dune sonde susceptible d~e reconnaitre les fragments issus du clivage du gene codant pour la kallikreine par 1'(ou les) enzymes) sus-mentionne(s), - et/ou une quantite determinee dune sonde susceptible de reconnaitre les fragments de restriction issus du clivage du gene codant pour 1'ANF par 1'(ou les) enzymes) sus-mentionne(s).
Les techniques classiques d'amplification genique, notamment celle decrite dans le brevet US n°4,683,202 depose le 25/10/1985, sont utilisables pour detecter le polymorphisme du gene codant pour 1'ECA en utilisant des amorces s'hybridant avec ce gene de part et d'autre de 1'insertion d'e:nviron 400 paires de base sus-mentionnee. Le:~ fragments d'ADN ainsi amplifies ont une 13~0~~~

taille differe.nte se:lon que le fragment d'ADN genomique contient ou ne conti.ent pas ladite insertion.
A ce titre, 1'invention a plus particulierement pour obj et toute sequence nucleotidique d' environ 10 a 40 nucleotides issue: de la sequence nucleotidique de la figure 3, ou sa sequence complementaire, ou susceptible de s'hybrider avec une partie de la sequence de la figure 3 ou avec la sequence complementaire de cette derniere, ut.ilisable en tant qu'amorces pour 1'amplification du gene codant pour 1'ECA.
Des caracte:ristiques supplementaires de 1'invention appara:itront encore au cours de la description qu~i suit du clonage de 1'acide nucleique codant pour 1'ECA humaine, ainsi que des sondes utilisees pour ce clonage, etant entendu que cette description ne saurait etre interpretee comme tendant a restreindre la portee des revendications.
I - PURIF'ICATIDN ET SEQUENCAGE DE L'ECA
L'ECA hum,aine sous sa forme complete membranaire a ete purifiee a partir de microsomes renaux. La fraction microsomale a ete preparee a partir d'homogenats de reins de cadavres humains de la fagon suivante . 600 g de cortex de rein ont ete haches, suspendus dans un tampon de phos~~hate de potassium 20 mM, pH 8, contenant 250 mM de saccharo:~e et un melange d'inhibiteurs de protease (tetrathionate de sodium 5 mM, N-ethylma-leimide 10 mM, fluorure de phenylmethanesulfonyle 2 mM), et homogeneise~~ pendant 3 minutes. Les debris de tissu ont ete elim:ines par centrifugation a 5000 g pendant 20 minutes et la fraction particulaire a ete sedimentee par centrifugation a 105000 g pendant 1 heure. Le culot a ete resuspendu dans un tampon de phosphate de potassium 150 mM,; pH 8 (tampon I, 200 ml) 1~~~~~6g et traite pendant 18 heures avec le detergent CRAPS 8 mM (Serva). Le surnageant, apres centrifugation 5 105000 g pendant 1 heure, a ete dialyse contre le tampon I pendant 24 heures afin d'eliminer le CHAPS.
Puis il a ete depose sur une colonne de phenyl-Sepharose* 4B (Pharmacia) et Blue a un taux de 24 ml/heure ; 60 % de 1'activite enzymatique a ete retenue 10 sur la colonne et eluee sous forme d'un pic unique apres avoir applic~ue un gradient lineaire de CHAPS
(3-(3-cholamidopropyl)dimethylammonio-1-propanesulfona-te) jusqu'a une concentration de 10 mM (800 ml).
L'eluat a etE: enrichi avec du ZnS04 et du KC1 a des 15 concentrations finales de 0,1 mM et de 330 mM
respectivemen~t de maniere ~ obtenir une liaison optimale avec 1'inhibiteur, puffs la purification a ete completee sur une colonne de lysinopril-Sepharose 4B
comme il a etc~ decr.it dans BULL, N.G. et al, (1985), J.
20 giol . Chem. , :?60, 2963-2972.
La prote:ine ainsi isolee ( 1, 2 mg) a ete analysee, apres reduction (2 mercaptoethanol a 5 %) et denaturation (ebullition pendant 3 minutes), par electrophoress~ sur gel de polyacrylamide Bans 6 % de 25 gel contenant NaDodS04 (LAEMMLI, U.A., (1970), Nature, 227, 680-685).
L'enzyme purifiee hydrolyse 1'angiotensine I, la bradykinine et: plusieurs substrats synthetiques, et est inhibee par l.e captopril et d'autres inhibiteurs de 30 1'ECA . la dEaermination de 1'activite enzymatique a ete realisee a 1'aide du substrat furanacryloyl-L-phenylalanyl-g~lycyl--glycine (FAPGG) dans les conditions decrites daps HOLMQUIST et al (1979), Anal. Biochem., 95, 540-548. hes pa:rametres de la reaction enzymatique 35 determinee a pH 7,5 sont de 136 ~m pour Km et 22100 * trademark ~.~~0~68 min.'s pour Kcat ; un traitement a 1'aide de bromure de cyanogene a et:e utilise pour cliver 1'enzyme au niveau des residus methionine generant ainsi des fragments pour le sequE~ngage. L'ECA purifiee (0,5 mg) a ete dissoute dens 1'acide formique 70 % (0,2 ml) et le bromure de cy~anogene (2,0 mg) a ete ajoute. Apres 16 heures de reaction a: temperature ambiante dens le noir, la solution a. ete diluee 20 fois avec de 1'eau et lyophilisee.
Les fr~~gments peptidiques ont ete isoles par HPLC en phase' inverse, en utilisant un systeme de gradient acide trifluoroacetique (TFA)-eau-acetonitrile (tampon A . 0,1 M d.e TFA dens 1'eau ; tampon B . 0,1 %
de TFA dens 1'acet.onitrile ; 1-100 % de B sur 32 minutes, taux d'elution 1 ml.min.'~). Les fractions correspondent a des pics differents ont ete separees et lyophilisees, et sequencees a 1'aide d'un sequenceur automatique. I~es fragments peptidiques ainsi obtenus ont ete regroupes sur le tableau I. La sequence amino-terminale de la proteine a ete determinee par la methode d'Edma:n a 1'aide d'un sequenceur automatique en utilisant la p:roteine ECA entiere.
La sequence suivante de 16 acides amines a ete obtenue NH2-Leu-Asp-Pro-Gly-Leu-Gln-Pro-Gly-Asp-Phe-Ser-Ala-Asp-Glu-Ala-G1:~-COOH
II - CLO:NAGE DE L'ADN COMPLEMENTAIRE DE L'ARN
MESSAGER
A) Sonde nucleotidigue - a parti~r de la sequence peptidique Met-Trp-Ala-Mei~-Trp-,Ale-Gln-Ser-Trp-Glu-Asn-Ile (con~ue d'apres la sequence: CNBb du tableau I), 64 sondes nucleotidiques denom~mees HACE6 ont ete synthetisees a 13~08fg 1'aide d'un synthstiseur d'ADN automatique en utilisant la msthode au phosphoramidite.
Met-Trp-~,la-Lys-Ser-Trp-Glu-Asp-Ile- 3' TAC-ACC-C'.GA-TT'T-ACG-ACC-CTT-TTG-TA 5' G G: TG C A
- Marquage radio-actif . la sonde HACE6 a sts marquee au [yP3Z] ATP (activits spscifique . 5000 curies/mmole) a son extrsmits 5' par la T4 polynuclsotide kina~se. L'activits spscifique de la sonde est de 5 x 106 cpm/pmole.
B) Cribbage dune banctue d'ADN complementaires construite a partie d'ARN de cellules endothsliales Une banque d'ADNc de cellules endothsliales de veins ombilicale hu:maine amorcse avec de 1'oligo(dT), construite dams le phage agtll (Clontech Laboratories Inc.), et constituse de 1,5 x 106 recombinants indspendants, a sts criblse en utilisant la sonde HACE6 marqus au P32. L'AD:N des phages a sts transfers sur filtre de nitrocellulose selon la msthode de Benton et Davis (rsf. BE:NTON, W.D., et DAVIS R.W. (1977), Science (Wash), 196, 180-182.). Les hybridations avec HACE6 ont sts rsalisses dans . 6 x SSC, 0, 1 % de NaDodS04, tampon NaP04 50 mM ~~ pH 6, 8, 5 x Denhardt, 0, 1 mg/ml d'ADN dsnaturs de sperms de saumon a 50°C. Le lavage final des fili:res a sts effectus deux fois dans 2 x SSC, 0,1 % SDS, a 55°C pendant 15 minutes.
Dans ces conditions deux diffsrents types de clones hybrida:nt fortement avec la sonde HACE6 ont sts obtenus. I1 s'~agit des clones aHECl922 et aHEC2111. Les fragments d'AD1V inssrss dans les phages ont sts isolss apres coupure des phages par 1'enzyme de restriction EcoRI, et inssrss dins les deux sens dans le plasmide bluescript (St:ratagene) , au niveau du site EcoRI de ce dernier. A partir de ces plasmides doubles-brins des matrices mono-~brins ont ete obtenues en reinfectant des cultures bactnriennes portant ces plasmides a 1'aide d' un phage helper KC>7 .
La deternnination de la sequence nucleotidique de ces clones a ete Eaffectue par la methode de Sanger (SANGER, F. et: al (:1977) , Proc. Natl. Acad. Sci. , USA, 74, 5463-5467) en utilisant soit 1'ADN polymerase de klenow, soit 1'ADN polymerase de T7 modifiee (Sequenase, U:c Bioc:hemical). Quelques regions ont ete sequencees en utilis,ant a la place de la deoxyguanosine tri-phosphate (dGTF~), le deoxyinosine tri-phosphate (dITP) ou le deaza-deoxyguanosine tri-phosphate (7-deaza dGTP). L'elect.rophorese des fragments marques par le [S35] dAT:P a ete pratiquee sur gel d'uree-polyacrylamide. Les sequences ont ete determinees en synthetisant des oligomeres de proche en proche toutes les 350 paires de base environ qui ont servi d'amorces echelonnees le long de la sequence.
Les sequences nucleotidiques inserees dans ces deux phages so:nt chevauchantes sur une longueur de 2323 paires de base:. La sequence peptidique deduite de ces clones contient 1'e:nsemble des sequences peptidiques obtenues par purification de 1'ECA humaine, et qui sont representees sour le: tableau I, a 1'exception de la region amino-t~~rminale.
De maniE:re zi obtenir 1'ADN complementaire correspondant ~~ 1'extremite 5' de Y ARN messager codant pour 1'ECA, une autre banque d'ADNc a ete construite en utilisant 5 ~g d'ARN poly(A) isole a partir de cellules endotheliales de 7La veine ombilicale en culture tertiaire. CEas cE:llules ont ete obtenues par dissociation ~~ 1'aide de collagenase comme il est decrit daps J~~FFE et al (JAFFE J.M. , et al (1973) , J.
Clin. Invest., 52, 2745-2756), et ont ete cultivees en presence de 20 % de serum foetal de veau, 100 ~g/ml d'heparine et de 2ng/ml de FGF (facteur de croissance de fibroblast~e) (GOSPORADOWICZ, D. et al (1983) J.
Cell . Biol. , 9~7, 16'77-1685) . L'ARN total a ete extra it des cellules ~~pres 3 sous-cultures par la methode de Chirgwin et al (CHIRGWIN, J.M. et al (1979) Biochemistry, 18, 5:?94-5299), et purifie sur cellulose oligo-d(T)7 (Pharmac:ia). La banque d'ADN complementaire a ete construite se7Lon la methode de Gubler et Hoffman (Gene (1983) 25, 263-269), en utilisant comme amorce un melange de deux oligonucleotides. Le premier oligonucleotide est une amorce specifique de 1'ARNm de 1'ECA, determine par la sequence des clones precedemment obtenus. I1 s'agit d'un oligomere de 17 bases (CP5-21) complementaire dune sequence localisee pres de 1'extremite 5' de 1'ADNc de 1'ECA (nucleotide 234 a 250 de la figure 3). La seconde amorce correspond a 1'oligo-d(T)12-18 mers (Pharmacia). Les ADNc ont ete traites et inseres dans le phage gGTlO coupe par 1'enzyme EcoRI selon la methode de Koenig et al (KOENIG, M. et al (1987), Cell, 50, 509-517).
Les phages recombinants ont ete cribles a 1'aide d'un fragment d'ADN genomique humain de 300 paires de base isole a partir dune banque genomique clonee daps le phage CHAR01'~4A et qui s'hybride avec CP5-21, et avec 1'oligonucleot.ide de' 44 bases obtenu a partir de la sequence amine-terminale deduite de 1'ECA purifiee selon la metho~3e decrite ci-dessus.
Ce fragme:nt de restriction (SacII-SacII) de 300 paires de base comprend la partie la plus 5' terminale de YARN messager de' 1'ECA ; il a ete marque avec une 13~0~~8 haute activitE~ specifique en utilisant la methode de marquage decri.te daps FEINBERG A. P. et al ( 1983 ) Anal .
Biochem., 132, 6-13, et utilise pour cribler 1,5 x 106 clones dans des conditions de stringence elevee.
Parmi leis clones positifs obtenus, le clone aCHDT32 a ete selectionne et sequence selon la meme methode decrite pour les clones precedents. I1 a ainsi ete determine que ce clone contenait une insertion de 246 paires de base cat qu'il demarrait 7 nucleotides en amont de 1'a~morce CP5-21 et qu'il s'arretait 25 nucleotides en amont de 1'ATG d'initiation de la traduction.
L'insertion daps ce clone partage 60 paires de base avec le c:lone ;~HEC2111 et contient 1' extremite 5' de la sequence codant pour 1'ECA.
La sequence nucleotidique de 1'ADNc codant pour 1'ECA obtenu par sequen~age des trois clones precedents comprend donc 4024 nucleotides. L'extremite 3' de cette sequence ne co:ntient pas de signal de polyadenylation.
La phase ouverte de lecture partant du premier codon ATG jusq~u'au codon stop TGA code pour 1306 acides amines. La :Leucine amino-terminale determine par sequen~age de la proteine est localisee apres un peptide signal de 29 residus.
Le clone aHEC19~22 a ete utilise comme sonde pour etudier 1'expression du gene codant pour 1'ECA par la methode dite "l~lorthern-blot" selon le procede de Thomas et al (THOMAS, P.S. et al (1983) Methods in Enzymology, N.Y. Academic Press, 100, 255-266). Un ARN messager d'environ 4,3 kb dEa cellules endotheliales de veine ombilicale en culture s'hybride avec la sonde sus-mentionnee. Dans ls' testicule, seul un ARN messager, plus court, de 3 kb a ete detects. Dans les reins, qui ~34~~6g sont une source riche en ECA, aucune hybridation n'a ete detectee d.ans leas conditions utilisees en utilisant 20 ~g d'ARN ;poly(A), ce qui laisse suggerer que la synthese et les tau~,: de turn-over de 1'ECA sont faibles dans cet organe.
Une anal~~se par "Southern blot" de 1'ADN humain dans des conditions stringentes a ete realisee avec un fragment EcoRI-BglII: de 300 paires de bases localise a 1'extremite 5' du clone aHEC2111. L'ADN humain a ete isole a partii~ de noyaux de cellules du placenta, par traitement avec la proteinase K suivi d'extractions par le melange phenol-c:hloroforme. L'ADN (14 ~cg) a ete digere avec HindIII,, separe sur gel d' agarose a 0, 7 %
et analyse par hybridation selon la methode "Southern Blot" (SOUTHERN, IE.M. (1975) J. Mol. Biol, 98, 503-517).
Les fragments d'ADN ont ete marques selon la methode decrite dans~ FEINBERG, A.P. et al (1983) anal.
Biochem., 132,, 6-1a. Cette sonde s'hybride avec un fragment de restriction unique de 9,5 kb.
Des resultats similaires ont ete obtenus en utilisant un fragment d'ADNc proche de 1'extremite 3'.
Ce result~at confirme la presence d'un seul gene.
La determination de 1'activite enzymatique de 1'ECA codee par le gene ainsi isole, ou de tout polypeptide actif s~elon 1'invention et issu de cette derniere, peut titre determinee notamment par la methode decrite par Ho:Lmquist et al (1979) precedemment cite.
Le dosage de ceatte ECA humaine peut titre realise par des techniques radioimmunologiques (RIA) decrites par HIVADA K., et al (1987) Lung, 267, 27-35.
III POLYM:ORPHI~51KES DU GENE DE L' ECA

~~4~~ss L'ADN de plusie:urs individus a sts isoles a partir des cellules nuclsees par lyse des globules rouges suivies dune lyse files globules blancs, d'un traitement a la protsinase K et: par extractions successives par le phenol et le c:hloro:Eorme suivies dune precipitation a 1'isopropanol.
Une quant,its dsterminee d'ADN est ensuite digsrse par une enzyme de restriction et migrse sur un gel d'agarose qui separe. les fragments d'ADN en fonction de leur taille. L'AD1V est ensuite denature par un traitement avec de l.a soude 0,5 N et transfers sur une membrane de nylon par buvardage pendant 12 heures.
L'ADN est ensuite fixe a la membrane par passage au four pendant 2 heures a 80°C.
La membr<~ne e;st ensuite pre-hybridee avec une solution 4 x SSC, 10 x Denhardt pendant au moms 6 heures a 65°C,. La membrane est ensuite hybridse avec une solution tampon 4 x SSC, 1 x Denhardt, 25 mM NaP04 pH 7, 2 mM ED'TA, 0,.5 % SDS, 100 ~Cg/ml d'ADN de sperms de saumon sonique comprenant la sonde marquee denatures par :La chaleur a 100°C pendant 3 minutes.
La sonde marquee est un melange des fragments ADNc de 1'ECA contenu dans les clones aHEC1922 et aHEC1922.
Les fragments d.'ADN purifies sont marquss a haute activits specifique~ par la technique d'amor~age statistique ut:ilisant le fragment de Klenow de la polymsrase de E. co7Li et un dsoxynuclsotide marqus au P32 a haute activits spscifique.
Les membranes sont hybridses en presence de la sonde pendant :l2 heu:res a 65 ° C .
Apres 1'hybrida~tion, la membrane est laves dans une solution 2 x SSC, 1 x Denhardt, 0,5 % SDS a 65°C
pendant 45 minutes a quatre reprises, laves ensuite Bans une solmtion 0,2 x SSC, 0,1 x SSC pendant 45 minutes a 65°C a deux reprises, puffs daps une solution 0,1 x SSC, 0,1 % SDS~ pendant 45 minutes a 65°C.
Les sequE~nces ayant hybride avec la sonde sont ensuite visua:Lisees par autographie des membranes a -80°C en presence ~d'un ecran intensificateur sur un film.
L'analyse de 1'ADN de plusieurs individus avec les sondes ADNc de 1"ECA ou des sondes equivalentes c'est-a-dire raccourcies a T une des deux extremites, ou allongees veers l.'extremite 3' ou 5' de la partie transcrite ou non transcrite du gene, ou des fragments d'ADN synthet:iques guff gardent la propriete de s'hybrider avec les fragments de restriction sus-mentionnes, pE:rmet de distinguer plusieurs types de fragments de restriction en fonction des coupures enzymatiques d~e 1'ADN. Ces fragments sont les suivants:
- 5,8 kb ou 6 :kb par digestion TaqI, - 8,8 kb ou 9 kb par digestion DraI, - 8,5 kb ou 9 kb par digestion DglII, - 10,6 kb ou 11 kb par digestion KpnI, - 8,4 kb ou 8,.8 kb par digestion HindIII, - 4,2 kb et 3,0 kb ou 4 kb et 2,7 kb par digestion BglI, - 5,2 kb ou 5,'7 kb par digestion RsaI, avec presence ou non dune bande a 3,0 kb.
- 3,5 kb ou 3 l~cb par digestion XbaI, - 4,3 kb ou 2,'7 par digestion TaqI.
Par digestion par 1' enzyme PvuII, on obtient deux profils ou pattern de restriction comportant la presence ou non d'un~e bande a 4,2 kb guff est associee a une bande plu:a faible de 2,2 et de 2,5 kb.
- 6.2 kb and 9 kb corresponding to the HindIII polymorphism renin gene, - 9.8 kb and 1: 1 kb c: corresponding to the TaqI polymorphism of the gene for: renine, - 3.9 kb corresponding to the EcoRI polymorphism of the gene renin, - 1.4 kb and 1, ~ 8 kb corresponding to the BanII polymorphism of the ANF gene, - 4.1 and 6.2 kb corresponding to the BglI polymorphism of ANF gene, - 9.1 kb and 6,! 5 kb corresponding to the BglII polymorphism of the ANF gene, - 5.2 kb and 11.8 kb corresponding to the polymorphism EcoRI of the gene i ~ IJF, - 15 kb corresponding to the EcoRI polymorphism of the gene kallikrein ,, - 3.1 kb correspond to the PstI polymorphism of the gene for kallikrein ,, ~~~ os6s - 4.5 kb corre. Corresponding to the StuI polymorphism of the gene kallikrein.
The invention also relates to kits for the implementation of the in vitro diagnostic method defined above.
For example, such diagnostic kits understand.
- a given quantity of one or more restriction enzymes, - a determined quantity of a probe nucleotide capable of recognizing the fragments restriction resulting from the cleavage of the gene coding for ACE by the above-mentioned enzyme (s), - eventuelleme: nt a determined quantity of a probe likely to recognize fragments of restriction i: ~ above the cleavage of the gene coding for the renin with 1 '(~ or the enzymes) mentioned above, - and / or a specific quantity of a probe likely to recognize fragments from cleavage of the gene coding for kallikrein by 1 ′ (or the) enzymes) mentioned above, - and / or a specific quantity of a probe likely to recognize restriction fragments derived from the cleavage of the gene encoding ANF by 1 '(or the) enzymes) mentioned above.
Classic techniques of gene amplification, including that described in US Patent No. 4,683,202 filed on 25/10/1985, can be used to detect the polymorphism of the gene encoding ACE using primers hybridizing with this gene on both sides e insertion: about 400 base pairs above mentioned. The: ~ DNA fragments thus amplified have a 13 ~ 0 ~~~

diffe.nte se se: lon that the fragment of genomic DNA
contains or does not contain said insertion.
As such, the invention more particularly for obj and any nucleotide sequence of around 10 to 40 nucleotides from: the nucleotide sequence of the Figure 3, or its complementary sequence, or likely to hybridize with part of the sequence of the figure 3 or with the complementary sequence of this last, usable as primers for Amplification of the gene encoding ACE.
Additional characteristics of The invention appears: it will still appear during the description which follows of the cloning of the nucleic acid encoding human ACE, as well as probes used for this cloning, it being understood that this description should not be interpreted as tending to restrict the scope of claims.
I - PURIF'ICATIDN AND SEQUENCING OF THE ACE
ACE hum, groin in its complete membrane form has was purified from renal microsomes. Fraction microsomal was prepared from homogenates of kidneys of human corpses in the following way. 600 g kidney cortices were minced, suspended in a phos buffer ~~ potassium hate 20 mM, pH 8, containing 250 mM of saccharo: ~ e and a mixture of inhibitors of protease (5 mM sodium tetrathionate, N-ethylma-leimide 10 mM, phenylmethanesulfonyl fluoride 2 mM), and homogenize ~~ for 3 minutes. Debris from tissue were removed by centrifugation at 5000 g for 20 minutes and the particulate fraction was sedimented by centrifugation at 105,000 g for 1 hour. The pellet was resuspended in a buffer of potassium phosphate 150 mM; pH 8 (buffer I, 200 ml) 1 ~~~~~ 6g and treated for 18 hours with CRAPS 8 detergent mM (Serva). The supernatant, after centrifugation 5 105000 g for 1 hour, was dialyzed against buffer I for 24 hours in order to eliminate CHAPS.
Then it was placed on a column of phenyl-Sepharose * 4B (Pharmacia) and Blue has a rate of 24 ml / hour; 60% of the enzyme activity has been retained 10 on the column and elected as a single peak after applying a linear CHAPS gradient (3- (3-cholamidopropyl) dimethylammonio-1-propanesulfona-te) up to a concentration of 10 mM (800 ml).
The eluate was: enriched with ZnS04 and KC1 has 15 final concentrations of 0.1 mM and 330 mM
respectively ~ t way ~ get a connection optimal with the inhibitor, then the purification was completed on a lysinopril-Sepharose 4B column as it has been described in BULL, NG et al, (1985), J.
20 giol. Chem. ,:? 60, 2963-2972.
The protein thus isolated (1, 2 mg) was analyzed, after reduction (2 5% mercaptoethanol) and denaturation (boiling for 3 minutes), by electrophoress ~ on Bans polyacrylamide gel 6%
25 gel containing NaDodS04 (LAEMMLI, UA, (1970), Nature, 227, 680-685).
The purified enzyme hydrolyzes angiotensin I, bradykinin and: several synthetic substrates, and is inhibited by captopril and other inhibitors of 30 the ECA. the determination of enzyme activity at was carried out using the substrate furanacryloyl-L-phenylalanyl-g ~ lycyl - glycine (FAPGG) under the conditions described daps HOLMQUIST et al (1979), Anal. Biochem., 95, 540-548. hes pa: branches of the enzymatic reaction 35 determined at pH 7.5 are 136 ~ m for Km and 22100 * trademark ~. ~~ 0 ~ 68 min.'s for Kcat; treatment with bromide cyanogene a et: e used to cleave the enzyme at the level methionine residues thus generating fragments for the sequE ~ ngage. Purified ACE (0.5 mg) has been dissolved in 70% formic acid (0.2 ml) and Cyanogenic bromide (2.0 mg) was added. After 16 reaction hours at: ambient temperature in black, solution a. diluted 20 times with water and lyophilized.
The peptide fractions have been isolated by Reverse phase HPLC, using a trifluoroacetic acid (TFA) -water-acetonitrile gradient (buffer A. 0.1 M TFA in water; buffer B. 0.1%
TFA dens acet.onitrile; 1-100% B on 32 minutes, elution rate 1 ml.min. '~). Fractions correspond to different peaks have been separated and freeze-dried, and sequenced using a sequencer automatic. I ~ es peptide fragments thus obtained have been grouped in Table I. The amino-protein terminal has been determined by the Edma's method: na using an automatic sequencer using the whole ECA rotein.
The following sequence of 16 amino acids has been obtained NH2-Leu-Asp-Pro-Gly-Leu-Gln-Pro-Gly-Asp-Phe-Ser-Ala-Asp-Glu-Ala-G1: ~ -COOH
II - CLO: SWIMMING OF RNA COMPLEMENTARY DNA
MESSENGER
A) Nucleotide probe - from ~ r of the peptide sequence Met-Trp-Ala-Mei ~ -Trp-, Ale-Gln-Ser-Trp-Glu-Asn-Ile (con ~ ue according to the sequence: CNBb of table I), 64 probes HACE6 nucleotides have been synthesized at 13 ~ 08fg Using an automatic DNA synthesizer using the phosphoramidite method.
Met-Trp- ~, la-Lys-Ser-Trp-Glu-Asp-Ile- 3 ' TAC-ACC-C'.GA-TT'T-ACG-ACC-CTT-TTG-TA 5 ' GG: TG CA
- Radioactive marking. the HACE6 probe has sts marked with [yP3Z] ATP (specific activities. 5000 curies / mmole) at its 5 'end by T4 polynuclsotide kina ~ se. The specific activities of the probe is 5 x 106 cpm / pmole.
B) Cribbage of a banctue of complementary DNA
built from RNA from endothslial cells A cDNA bank of endothsial cells from umbilical veins hu: main primed with oligo (dT), built in phage agtll (Clontech Laboratories Inc.), and constitues of 1.5 x 106 recombinants independent, has been screened using the HACE6 probe marked with P32. AD: N of phages has sts transfers on nitrocellulose filter according to the Benton method and Davis (rsf. BE: NTON, WD, and DAVIS RW (1977), Science (Wash), 196, 180-182.). Hybridizations with HACE6 have sts rsalisses in. 6 x SSC, 0.1% NaDodS04, 50 mM NaPO4 buffer ~~ pH 6, 8, 5 x Denhardt, 0.1 mg / ml of DNA from salmon sperm at 50 ° C. Washing final fili: res has been done twice in 2 x SSC, 0.1% SDS, at 55 ° C for 15 minutes.
Under these conditions two different types of hybrida clones: strongly with the HACE6 probe have sts obtained. These are the clones aHECl922 and aHEC2111. The fragments of AD1V inssrss in phages have isolated sts after phage cleavage by the restriction enzyme EcoRI, and inssrss in both directions in the plasmid bluescript (St: ratagene), at the EcoRI site of this latest. From these double-stranded plasmids, single stranded matrices were obtained by reinfecting bacterial cultures carrying these plasmids using of a phage helper KC> 7.
Determination of the nucleotide sequence of these clones were assigned by the Sanger method (SANGER, F. et: al (: 1977), Proc. Natl. Acad. Sci., USA, 74, 5463-5467) using either DNA polymerase from klenow, or the modified T7 DNA polymerase (Sequenase, U: c Bioc: hemical). Some regions have been sequenced in use, ant in place of deoxyguanosine tri-phosphate (dGTF ~), deoxyinosine tri-phosphate (dITP) or deaza-deoxyguanosine tri-phosphate (7-deaza dGTP). The electrophoresis of the fragments marked by [S35] dAT: P was practiced on urea gel-polyacrylamide. The sequences were determined in synthesizing oligomers step by step all the approximately 350 base pairs that served as primers staggered along the sequence.
The nucleotide sequences inserted into these two phages so: nt overlapping over a length of 2323 base pairs :. The peptide sequence deduced from these clones contain the set of peptide sequences obtained by purification of human ACE, and which are shown in: Table I, except for the amino-terminal region.
So: re zi get the complementary DNA
correspondent ~~ the 5 'end of the messenger RNA coding for the ECA, another cDNA library was constructed in using 5 ~ g of poly (A) RNA isolated from cells endothelials of 7The umbilical vein in culture tertiary. CEas cE: cells were obtained by dissociation ~~ using collagenase as it is describes daps J ~~ FFE et al (JAFFE JM, et al (1973), J.
Clin. Invest., 52, 2745-2756), and were cultivated in presence of 20% fetal calf serum, 100 ~ g / ml heparin and 2ng / ml FGF (growth factor fibroblast ~ e) (GOSPORADOWICZ, D. et al (1983) J.
Cell. Biol. , 9 ~ 7, 16'77-1685). Total RNA was extracted from it cells ~~ near 3 subcultures by the method of Chirgwin et al (CHIRGWIN, JM et al (1979) Biochemistry, 18, 5:? 94-5299), and purifies on cellulose oligo-d (T) 7 (Pharmac: ia). The complementary DNA bank was built using the Gubler and Hoffman method (Gene (1983) 25, 263-269), using as a primer a mixture of two oligonucleotides. The first oligonucleotide is a specific primer for mRNA for ACE, determined by the sequence of clones previously obtained. It is an oligomer of 17 bases (CP5-21) complementary to a localized sequence near the 5 'end of the ACE cDNA (nucleotide 234 to 250 of Figure 3). The second primer corresponds with oligo-d (T) 12-18 seas (Pharmacia). CDNAs have been milked and inserted into the phage gGTlO cut by The EcoRI enzyme according to the method of Koenig et al (KOENIG, M. et al (1987), Cell, 50, 509-517).
Recombinant phages were screened using of a human genomic DNA fragment of 300 pairs of base isolated from a daps cloned genomic bank phage CHAR01 '~ 4A and which hybridizes with CP5-21, and with The 44-base oligonucleotide obtained from the amine-terminal sequence deduced from purified ACE
according to the method ~ 3rd described above.
This fragme: nt of restriction (SacII-SacII) of 300 base pairs includes the most 5 'terminal ACE messenger RNA; it was marked with a 13 ~ 0 ~~ 8 high activity ~ specific using the method of descriptive labeling daps FEINBERG AP et al (1983) Anal.
Biochem., 132, 6-13, and used to screen 1.5 x 106 clones under conditions of high stringency.
Among the positive clones obtained, the clone aCHDT32 has been selected and sequenced according to the same method described for previous clones. I1 has thus was determined that this clone contained an insertion of 246 base pairs cat it started 7 nucleotides in upstream of CP5-21 a ~ morce and that it stopped 25 nucleotides upstream of the ATG initiating translation.
The insertion in this clone shares 60 pairs of base with c: lone; ~ HEC2111 and contains 1 'end 5' of the sequence coding for the ACE.
The nucleotide sequence of the cDNA encoding The ACE obtained by sequencing the age of the three preceding clones therefore includes 4024 nucleotides. The 3 'end of this sequence does not contain a polyadenylation signal.
The open reading phase from the first ATG codon up to the stop codon TGA code for 1306 acids amines. La: Amino-terminal leucine determined by protein sequencing is localized after a signal peptide of 29 residues.
The clone aHEC19 ~ 22 was used as a probe for study the expression of the gene encoding ACE by the method called "the northern blot" according to the method of Thomas et al (THOMAS, PS et al (1983) Methods in Enzymology, NY Academic Press, 100, 255-266). A messenger RNA
about 4.3 kb of Ea vein endothelial cells umbilical in culture hybridizes with the above probe mentioned. In the testis, only a messenger RNA, shorter, 3 kb was detected. In the kidneys, which ~ 34 ~~ 6g are a rich source of ECA, no hybridization has was detected in the conditions used using 20 ~ g of RNA; poly (A), which suggests that the synthesis and the tau ~ ,: of turnover of the ACE are low in this organ.
Southern blot analysis of human DNA
under stringent conditions was carried out with a EcoRI-BglII fragment: from 300 base pairs locates a The 5 'end of the clone aHEC2111. Human DNA was isolates from ~ placental cell nuclei, by treatment with proteinase K followed by extraction with the phenol-c mixture: chloroform. DNA (14 ~ cg) has been digested with HindIII, separated on 0.7% agarose gel and analysis by hybridization according to the "Southern" method Blot "(SOUTHERN, IE.M. (1975) J. Mol. Biol, 98, 503-517).
The DNA fragments were labeled according to the method described in ~ FEINBERG, AP et al (1983) anal.
Biochem., 132 ,, 6-1a. This probe hybridizes with a single 9.5 kb restriction fragment.
Similar results have been obtained in using a cDNA fragment close to the 3 'end.
This result ~ at confirms the presence of a single gene.
Determination of the enzyme activity of The ECA coded by the gene thus isolated, or any active polypeptide according to the invention and derived from this last, may title determined in particular by the method described by Ho: Lmquist et al (1979) previously cited.
The dosage of this human ECA can be carried out by radioimmunological techniques (RIA) described by HIVADA K., et al (1987) Lung, 267, 27-35.
III POLYM: ORPHI ~ 51KES OF THE ACE GENE

~~ 4 ~~ ss Most DNA: Individuals Isolated From nucleated cells by lysis of red blood cells followed by lysis of white blood cells, treatment has protsinase K and: by successive extractions by the phenol and c: hloro: Eorme followed by precipitation a Isopropanol.
A quant, its determined DNA is then digsrse by a restriction enzyme and migrates on a gel agarose that separates. DNA fragments as a function of their size. The AD1V is then denature by a treatment with 0.5 N soda and transfers to a nylon membrane by blotting for 12 hours.
The DNA is then fixed to the membrane by passage through the oven for 2 hours at 80 ° C.
The member is then pre-hybridized with a solution 4 x SSC, 10 x Denhardt for at least 6 hours at 65 ° C ,. The membrane is then hybridized with a buffer solution 4 x SSC, 1 x Denhardt, 25 mM NaP04 pH 7, 2 mM ED'TA, 0.5% SDS, 100 ~ Cg / ml of sperm DNA
of sonic salmon including the marked probe denatures by: Heat at 100 ° C for 3 minutes.
The labeled probe is a mixture of cDNA fragments of the ACE contained in the clones aHEC1922 and aHEC1922.
The purified DNA fragments are labeled at high specific activities by priming technique statistic ut: using the Klenow fragment of the E. co7Li polymsrase and a dsoxynuclsotide labeled with P32 with high specific activities.
The membranes are hybridized in the presence of probe for: 12 hours: 65 ° C.
After hybridization, the membrane is washed in a solution 2 x SSC, 1 x Denhardt, 0.5% SDS at 65 ° C
for 45 minutes four times, then wash In a 0.2 x SSC solution, 0.1 x SSC for 45 minutes at 65 ° C twice, puffs in solution 0.1 x SSC, 0.1% SDS ~ for 45 minutes at 65 ° C.
The sequE ~ nces having hybridized with the probe are then visualized: Autograph readings of the membranes -80 ° C in the presence ~ of an intensifying screen on a movie.
DNA analysis of several individuals with the 1 "ECA cDNA probes or equivalent probes that is to say shortened to T one of the two ends, or extensions to the end 3 'or 5' of the part transcribed or not transcribed of the gene, or fragments of synthetic DNA: ics guff keep the property of hybridize with the restriction fragments above mentioned, pE: allows to distinguish several types of restriction fragments based on cuts DNA enzymes. These fragments are as follows:
- 5.8 kb or 6: kb by TaqI digestion, - 8.8 kb or 9 kb by DraI digestion, - 8.5 kb or 9 kb by DglII digestion, - 10.6 kb or 11 kb by KpnI digestion, - 8.4 kb or 8 .8 kb by HindIII digestion, - 4.2 kb and 3.0 kb or 4 kb and 2.7 kb by digestion BglI, - 5.2 kb or 5, '7 kb by RsaI digestion, with presence or not a 3.0 kb band.
- 3.5 kb or 3 l ~ cb by XbaI digestion, - 4.3 kb or 2, '7 by TaqI digestion.
By digestion with the enzyme PvuII, two restriction profiles or pattern including the presence or not of a ~ 4.2 kb guff band is associated with a longer band: a low of 2.2 and 2.5 kb.

Claims (23)

1. Acide nucléique caractérisé en ce qu'il comprend toute ou partie de la séquence nucléique de la figure 3, et en ce qu'il code pour un polypeptide capable d'hydrolyser l'angiotensine I et/ou les kinines, ou tout acide nucleique ne se distinguant du précédent au niveau de sa séquence nucléotidique que par des substitutions de nucléotides n'entraînant pas la modification de la séquence en aminoacides du susdit polypeptide dans des conditions propres à lui faire perdre les susdites propriétés. 1. Nucleic acid characterized in that it includes all or part of the nucleic acid sequence of the Figure 3, and in that it codes for a polypeptide capable of hydrolyzing angiotensin I and / or kinins, or any nucleic acid which does not differ from the previous one at the level of its nucleotide sequence only by nucleotide substitutions that do not cause modification of the amino acid sequence of the above polypeptide under proper conditions to make it lose the above properties. 2. Acide nucleique selon la revendication 1, caractérisé en ce qu'il comprend une séquence d'ADN
délimitée par les nucléotides situées aux positions 110 et 3940 de la figure 3, codant pour l'ECA humaine mature.
2. Nucleic acid according to claim 1, characterized in that it comprises a DNA sequence bounded by nucleotides located at positions 110 and 3940 of FIG. 3, coding for human ACE
mature.
3. Acide nucléique selon la revendication 2, caractérisé en ce que ladite séquence d'ADN codant pour l'ECA humain mature est précedée par une séquence d'ADN
délimitée par les nucléotides situés aux positions 23 et 109 de la figure 3, cette dernière codant pour un peptide signal de 29 acides amines.
3. Nucleic acid according to claim 2, characterized in that said DNA sequence encoding mature human ACE is preceded by a DNA sequence bounded by the nucleotides located at positions 23 and 109 of FIG. 3, the latter coding for a signal peptide of 29 amino acids.
4. Acide nucléique selon la revendication 1, caractérisé en ce qu'il comprend une séquence d'ADN
s'étendant entre, d'une part, le nucléotide situé entre les positions 1 à 1177 et, d'autre part, le nucléotide situé entre les positions 3070 à 3940 de la figure 3.
4. Nucleic acid according to claim 1, characterized in that it comprises a DNA sequence extending between, on the one hand, the nucleotide located between positions 1 to 1177 and, on the other hand, the nucleotide located between positions 3070 to 3940 in Figure 3.
5. Acide nucléique selon la revendication 1, caractérisé en ce qu'il comprend une séquence d'ADN
s'étendant entre, d'une part, le nucléotide situé entre les positions 110 à 1177 et d'autre part, le nucléotide situé entre les positions 1276 à 1966 de la figure 3.
5. Nucleic acid according to claim 1, characterized in that it comprises a DNA sequence extending between, on the one hand, the nucleotide located between positions 110 to 1177 and on the other hand, the nucleotide located between positions 1276 to 1966 in Figure 3.
6. Acide nucléique selon la revendication 1, caractérisé en ce qu'il comprend une sequence d'ADN
s'étendant entre, d'une part, le nucléotide situé entre les positions 1967 à 2971 et, d'autre part, le nucléotide situé entre les positions 3070 à 3940 de la figure 3.
6. Nucleic acid according to claim 1, characterized in that it comprises a DNA sequence extending between, on the one hand, the nucleotide located between the positions 1967 to 2971 and, on the other hand, the nucleotide located between positions 3070 to 3940 of the figure 3.
7. Acide nucléique, caractérisé en ce qu'il comprend une séquence nucléotidique selon l'une quelconque des revendications 1 à 6 associée avec un promoteur sous le controle duquel la transcription de ladite séquence est susceptible d'être effectuée et, le cas échéant, une séquence d'ADN codant pour des signaux de terminaison de la transcription. 7. Nucleic acid, characterized in that it includes a nucleotide sequence according to one any of claims 1 to 6 associated with a promoter under whose control the transcription of said sequence is likely to be performed and, the if necessary, a DNA sequence encoding signals transcription termination. 8. Vecteur recombinant choisi du groupe comprenant plasmide recombinant et virus recombinant, capable de transformer ou d'infecter une cellule hôte appropriée, ledit vecteur contenant un fragment d'ADN
selon l'une quelconque des revendications 1 à 6 sous le contrôle d'éléments de régulations permettant l'expression de ce fragment d'ADN dans la cellule hôte.
8. Recombinant vector chosen from the group comprising recombinant plasmid and recombinant virus, able to transform or infect a host cell appropriate, said vector containing a DNA fragment according to any one of claims 1 to 6 under the control of regulatory elements allowing expression of this DNA fragment in the host cell.
9. Procédé de production de l'ECA humaine, mature ou non, ou d'un polypeptide issu de l'ECA humaine et capable d'hydrolyser l'angiotensine I et/ou les kinines, ce procédé comprenant la transformation de cellules hôtes au moyen du vecteur selon la revendication 8, la mise en culture des cellules hôtes transformées dans un milieu de culture approprié et la récupération de l'enzyme à partir de ces cellules ou du milieu de culture. 9. Process for producing human ACE, mature or not, or a polypeptide derived from human ACE
and capable of hydrolyzing angiotensin I and / or kinins, this process comprising the transformation of host cells using the vector of claim 8, culturing the transformed host cells in an appropriate culture medium and recovery of the enzyme from these cells or from the medium of culture.
10. Polypeptide codé par l'acide nucléique selon la revendication 7, caractérisé en ce qu'il comprend toute ou partie de la séquence peptidique délimitée par les acides aminés situés aux positions -29 à 1277 de la figure 3, et en ce qu'il est capable d'hydrolyser 1'angiotensine I et/ou les kinines. 10. Polypeptide encoded by nucleic acid according to claim 7, characterized in that it comprises all or part of the peptide sequence delimited by amino acids located at positions -29 to 1277 of the Figure 3, and in that it is capable of hydrolyzing Angiotensin I and / or kinins. 11. Polypeptide selon la revendication 10, caractérisé par la séquence peptidique délimitée par les acides aminés situés aux positions 1 et 619 de la figure 3. 11. The polypeptide according to claim 10, characterized by the peptide sequence delimited by amino acids located in positions 1 and 619 of the figure 3. 12. Polypeptide selon la revendication 10, caractéérisé par la séquence peptidique délimitée par les acides aminés situés aux positions 620 et 1229 de la figure 3. 12. The polypeptide according to claim 10, characterized by the peptide sequence delimited by amino acids located in positions 620 and 1229 of the figure 3. 13. Polypeptide selon la revendication 10, caractérisé par la séquence peptidique délimitée par les acides aminés situés aux positions 350 et 395 de la figure 3. 13. The polypeptide according to claim 10, characterized by the peptide sequence delimited by amino acids located at positions 350 and 395 of the figure 3. 14. Polypeptide selon la revendication 10, caractérisé par la séquence peptidique délimitée par les acides aminés situés aux positions 948 et 993 de la figure 3. 14. The polypeptide according to claim 10, characterized by the peptide sequence delimited by amino acids located at positions 948 and 993 of the figure 3. 15. Sonde nucléotidique caractérisée en ce qu'elle est constituée par une séquence nucléotidique complémentaire de toute ou partie de l'acide nucléique de la revendication 1, ou toute sonde nucléotidique ne se distinguant de la précédente au niveau de sa séquence nucléotidique que par des substitutions de nucléotides n'entraînant: pas la modification des propriétés d'hybridation de ladite sonde avec l'acide nucléique de la revendication 1. 15. Nucleotide probe characterized in that it consists of a nucleotide sequence complementary to all or part of the nucleic acid of claim 1, or any nucleotide probe does not distinguishing itself from the previous one in terms of its sequence nucleotide only by nucleotide substitutions not causing: the modification of the properties of hybridization of said probe with the nucleic acid of claim 1. 16. Procédé d'hybridation d'une sonde nucléotidique avec un acide nucléique selon l'une quelconque des revendications 1 à 6, caractérisé en ce qu'il comprend, dans les conditions d'hybridation stringentes, les étapes suivantes :
- traitement de pré-hybridation du support sur lequel est fixé l'acide nucleique selon l'une quelconque des revendications 1 à 6, à 65 °C pendant 6 heures avec une solution ayant la composition suivante : 4 X SSC, 10 x Denhardt;
- remplacement de la solution de pré-hybridation au contact du support par une solution tampon ayant la composition suivante: 4 x SSC, 1 x Denhardt, 25mM NaPO4 pH 7, 2 mM EDTA, 0, 5 % SDS, 100µg/ml de sperme de saumon soniqué, comprenant la sonde nucléotidique marquée et préalablement dénaturée par un traitement à 100 °C
pendant 3 minutes;
- incubation pendant 12 heures à 65 °C;

- lavages successifs avec les solutions suivantes :
~ 2 x SSC, 1 x Denhardt, 0,5% de SDS pendant 45 minutes à 65 °C à quatre reprises, ~ 0,2 x SSC. 0,1 x SSC pendant 45 minutes à
65 °C à deux reprises, ~ 0,1 x SSC, 0,1% SDS pendant 45 minutes à
65 °C, ladite sonde nuclotidique étant caractérisé en ce qu'elle est constituée par une séquence nucléotidique complémentaire de toute ou partie de l'acide nucléique de la revendication 1, ou ne se distinguant de la précédente au niveau de sa séquence nucléotidique que par des substitutions de nucléotides n'entraînant pas la modification des propriétés d'hybridation de ladite sonde avec l'acide nucléique de la revendication 1.
16. Method for hybridizing a probe nucleotide with a nucleic acid according to one any one of claims 1 to 6, characterized in that that it understands, under hybridization conditions stringentes, the following stages:
- pre-hybridization treatment of the support on which is attached nucleic acid according to any one of claims 1 to 6, at 65 ° C for 6 hours with a solution having the following composition: 4 X SSC, 10 x Denhardt;
- replacement of the pre-hybridization solution in contact with the support by a buffer solution having the following composition: 4 x SSC, 1 x Denhardt, 25mM NaPO4 pH 7, 2 mM EDTA, 0.5% SDS, 100 µg / ml of salmon sperm sonicated, comprising the labeled nucleotide probe and previously denatured by treatment at 100 ° C.
for 3 minutes;
- incubation for 12 hours at 65 ° C;

- successive washes with solutions following:
~ 2 x SSC, 1 x Denhardt, 0.5% SDS for 45 minutes at 65 ° C four times, ~ 0.2 x SSC. 0.1 x SSC for 45 minutes at 65 ° C twice, ~ 0.1 x SSC, 0.1% SDS for 45 minutes at 65 ° C, said nucleotide probe being characterized in that that it consists of a nucleotide sequence complementary to all or part of the nucleic acid of claim 1, or not distinguishable from the previous at the level of its nucleotide sequence that by nucleotide substitutions which do not cause modification of the hybridization properties of said probe with the nucleic acid of claim 1.
17. Procédé d'hybridation d'une sonde nucléotidique avec un acide nucléique selon l'une quelconque des revendications 1 à 6, caractérisé en ce qu'il comprend, dans les conditions d'hybridation non stringentes, les étapes suivantes :
- traitement de pré-hybridation du support sur lequel est fixé l'acide nucléique, selon l'une quelconque des revendications 1 à 6, à 40 °C pendant 6 heures avec une solution ayant la composition suivante:
4 x SSC, 10 x Denhardt;
- remplacement de la solution de pré-hybridation au contact du support par une solution tampon ayant la composition suivante : 4 x SSC, 1 x Denhardt, 25 mM
NaPO4 pH 7, 2 mM EDTA, 0,5 SDS, 100 µg/ml de sperme de saumon soniqué, comprenant la sonde nucléotidique marquée et préalablement dénaturée par un traitement à
100 °C pendant 3 minutes;
- incubation pendant 12 heures à 40 °C;
- lavages successifs avec 2 x SSC à 45 °C
pendant 15 minutes à deux reprises, ladite sonde nucléotidique étant caractérisée en ce qu'elle est constituée par une séquence nucléotidique complémentaire de toute ou partie de l'acide nucléique de la revendication 1, ou ne se distinguant de la précédente au niveau de séquence nucléotidique que par des substitutions de nucléotides n'entraînant pas la modification des propriétés d'hybridation de ladite sonde avec l'acide nucléique de la revendication 1.
17. Method for hybridizing a probe nucleotide with a nucleic acid according to one any one of claims 1 to 6, characterized in that that it understands, in the hybridization conditions not stringentes, the following stages:
- pre-hybridization treatment of the support on which is attached nucleic acid, according to one any of claims 1 to 6 at 40 ° C for 6 hours with a solution having the following composition:
4 x SSC, 10 x Denhardt;
- replacement of the pre-hybridization solution in contact with the support by a buffer solution having the next composition: 4 x SSC, 1 x Denhardt, 25 mM
NaPO4 pH 7, 2 mM EDTA, 0.5 SDS, 100 µg / ml of semen sonicated salmon, including the nucleotide probe marked and previously denatured by treatment with 100 ° C for 3 minutes;
- incubation for 12 hours at 40 ° C;
- successive washes with 2 x SSC at 45 ° C
for 15 minutes twice, said nucleotide probe being characterized in that that it consists of a nucleotide sequence complementary to all or part of the nucleic acid of claim 1, or not distinguishable from the previous at the nucleotide sequence level as by nucleotide substitutions that do not cause modification of the hybridization properties of said probe with the nucleic acid of claim 1.
18. Méthode de dépistage ou de dosage in vitro d'un acide nucléique selon l'une quelconque des revendications 1 à 6, dans un prélèvement biologique susceptible de le contenir, caractérisée en ce qu'elle comprend :

- la mise en contact d'une sonde nucleotidique avec le susdit prélevement biologique dans des conditions permetaant la production éventuelle d'un complexe d'hybridation formé entre la sonde et l'acide nucléique sus-mentionnés, ladite sonde nucléotidique étant caractérisée en ce qu'elle est constituée par une séquence nucléotidique complémentaire de toute ou partie de l'acide nucléique de la revendication 1, ou ne se distinguant de la précédente au niveau de sa séquence nucléotidique que par des substitutions de nucléotides n'entraînant pas la modification des propriétés d'hybridation de ladite sonde avec l'acide nucléique de la revendication 1; et - la détection du susdit complexe d'hybridation.
18. In vitro screening or assay method of a nucleic acid according to any one of claims 1 to 6 in a biological sample likely to contain it, characterized in that it includes:

- bringing a nucleotide probe into contact with the aforementioned biological sampling in conditions allowing the possible production of a hybridization complex formed between the probe and the acid above-mentioned nucleic acid, said nucleotide probe being characterized in that it is constituted by a nucleotide sequence complementary to all or part of the nucleic acid of claim 1, or not distinguishing from the previous one in terms of its sequence nucleotide only by nucleotide substitutions not causing the properties to change of hybridization of said probe with the nucleic acid of claim 1; and - the detection of the above hybridization complex.
19. Méthode de dépistage ou de dosage in vitro selon la revendication 18, appliquée au diagnostic in vitro de pathologies choisies parmi le groupe comprenant l'hypertension, la sarcoïdose et autres maladies granulomateuses, et les dysfonctionnements thyroidiens. 19. In vitro screening or assay method according to claim 18, applied to in diagnosis in vitro of pathologies chosen from the group comprising hypertension, sarcoidosis and other diseases granulomatous, and thyroid dysfunctions. 20. Nécessaire ou kit pour la mise en oeuvre d'une méthode de depistage in vitro comprenant:
- une quantité déterminée d'une sonde nucléotidique susceptible de donner lieu à une réaction d'hybridation avec un acide nucleique selon l'une quelconque des revendications 1 à 6;
- avantageusement, un milieu approprié à la formation d une réaction d'hybridation entre l'acide nucléique et la sonde sus-mentionnées; et - avantageusement, des réactifs permettant la détection des complexes d'hybridation formés entre l'acide nucléique et la sonde lors de la susdite réaction d'hybridation, ladite sonde nucléotidique étant caractérisé en ce qu'elle est constituée par une séquence nucléotidique complémentaire de toute ou partie de l'acide nucléique de la revendication 1, ou ne se distinguant de la précédente au niveau de sa séquence nucléotidique que par des substitutions de nucléotides n'entrainant pas la modification. des propriétés d'hybridation de ladite sonde avec l'acide nucléique de la revendication 1.
20. Kit or kit for the implementation of a in vitro screening method comprising:
- a determined quantity of a probe nucleotide likely to give rise to a reaction of hybridization with a nucleic acid according to one any of claims 1 to 6;
- advantageously, an environment suitable for formation of a hybridization reaction between the acid nucleic acid and the above-mentioned probe; and advantageously, reagents allowing the detection of hybridization complexes formed between nucleic acid and probe during the above hybridization reaction, said nucleotide probe being characterized in that that it consists of a nucleotide sequence complementary to all or part of the nucleic acid of claim 1, or not distinguishable from the previous at the level of its nucleotide sequence that by nucleotide substitutions which do not cause modification. hybridization properties of said probe with the nucleic acid of claim 1.
21. Méthode de détection ou de dosage d'un inhibiteur de l'ECA, ou de quantification de son pouvoir inhibiteur, qui comprend la mise en contact d'un polypeptide selon l'une quelconque des revendications 10 à 14 avec ledit inhibiteur, et la détermination du coefficient d'inhibition de l'enzyme par l'inhibiteur, par mesure de l'éventuelle activité enzymatique résiduelle sur un substrat approprié de l'ECA. 21. Method of detection or determination of a ACE inhibitor, or quantification of its power inhibitor, which includes contacting a polypeptide according to any one of claims 10 to 14 with said inhibitor, and the determination of the coefficient of inhibition of the enzyme by the inhibitor, by measuring possible enzymatic activity residual on an appropriate ACE substrate. 22. Composition pour le traitement de maladies inflammatoires ou infectieuses caractérisée par l'association d'un polypeptide selon l'une quelconque des revendications 10 à 14, avec un véhicule pharmaceutiquement acceptable. 22. Composition for the treatment of diseases inflammatory or infectious characterized by the association of a polypeptide according to any one from claims 10 to 14, with a vehicle pharmaceutically acceptable. 23. Méthode de depistage in vitro des polymorphismes du gène codant pour l'ECA au sein dune population donnée d'individus, réalisée à partir d'un échantillon biologique prélevé dans ladite population, caractérisée en ce qu'elle comprend:
- le traitement de l'acide nucléique issu de l'échantillon biologique sus-mentionné réalisé à l'aide d'une enzyme de restriction dans des conditions permettant l'obtention de fragments de restriction issus du clivage dudit aside nucléique au niveau de ces sites de restrictions reconnus par ladite enzyme;
- la mise en contact dune sonde nucléotidique selon la revendication 15 susceptible de s'hybrider avec les fragments sus-mentionnés dans des conditions permettant la production éventuelle de complexes d'hybridation entre ladite sonde et les fragments de restriction sus-mentionnés, - la détection des susdits complexes d'hybridation, et - la mesure de la taille des éventuels fragments de restriction polymorphes engagés dans les complexes d'hybridation sus-mentionnés.
23. Method for in vitro screening of polymorphisms of the gene encoding ACE within a given population of individuals, derived from a biological sample taken from said population, characterized in that it comprises:
- the treatment of nucleic acid from the aforementioned biological sample made using of a restriction enzyme under conditions allowing restriction fragments to be obtained of the cleavage of said nucleic aside at these sites restrictions recognized by said enzyme;
- bringing a nucleotide probe into contact according to claim 15 capable of hybridizing with the above-mentioned fragments under conditions allowing the possible production of complexes of hybridization between said probe and the fragments of above-mentioned restriction, - the detection of the above complexes hybridization, and - measuring the size of any fragments restriction polymorphs involved in complexes above-mentioned hybridization.
CA 613622 1989-09-27 1989-09-27 Nucleic acid coding for human angiotensin converting enzyme (ace), and its applications, particularly for in vitro diagnosis of high blood pressure Expired - Fee Related CA1340868C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA 613622 CA1340868C (en) 1989-09-27 1989-09-27 Nucleic acid coding for human angiotensin converting enzyme (ace), and its applications, particularly for in vitro diagnosis of high blood pressure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CA 613622 CA1340868C (en) 1989-09-27 1989-09-27 Nucleic acid coding for human angiotensin converting enzyme (ace), and its applications, particularly for in vitro diagnosis of high blood pressure

Publications (1)

Publication Number Publication Date
CA1340868C true CA1340868C (en) 2000-01-04

Family

ID=33315149

Family Applications (1)

Application Number Title Priority Date Filing Date
CA 613622 Expired - Fee Related CA1340868C (en) 1989-09-27 1989-09-27 Nucleic acid coding for human angiotensin converting enzyme (ace), and its applications, particularly for in vitro diagnosis of high blood pressure

Country Status (1)

Country Link
CA (1) CA1340868C (en)

Similar Documents

Publication Publication Date Title
EP0388466B1 (en) NUCLEIC ACID CODING FOR THE HUMAN ANGIOTENSINE CONVERSION ENZYME (ACE), AND ITS APPLICATIONS PARTICULARLY FOR THE $i(IN VITRO) DIAGNOSIS OF HIGH BLOOD PRESSURE
EP0528932B1 (en) Acute pancreatitis associated protein and means for the diagnosis of acute pancreatitis
Freije et al. Molecular cloning and expression of collagenase-3, a novel human matrix metalloproteinase produced by breast carcinomas
Fujioka et al. A new isoform of human myosin phosphatase targeting/regulatory subunit (MYPT2): cDNA cloning, tissue expression, and chromosomal mapping
CA2065352A1 (en) Abo genotyping
WO2010081131A1 (en) Compositions and methods for diagnosis and treatment of type 2 diabetes
AU2003216291A1 (en) A non-invasive diagnostic test utilizing histone modification markers
JP2002522009A5 (en)
WO2001090409A1 (en) Cancer diagnosis method
US6214542B1 (en) Quantification of indicators of fibrosis
CN1643148B (en) Mouse spermatogenesis genes, human male sterility-associated genes and diagnostic system using the same
EP0432254B1 (en) Nucleic acid coding for the human testicular angiotensin conversion enzyme (eca) and its applications, in particular for the in vitro detection of said enzyme in the organism
Pereira et al. Carboxypeptidases A1 and A2 from the perfusate of rat mesenteric arterial bed differentially process angiotensin peptides
Kijimoto et al. cimp1, a novel astacin family metalloproteinase gene from East African cichlids, is differentially expressed between species during growth
CA1340868C (en) Nucleic acid coding for human angiotensin converting enzyme (ace), and its applications, particularly for in vitro diagnosis of high blood pressure
Rae et al. The human tissue kallikreins (KLKs 1–3) and a novel KLK1 mRNA transcript are expressed in a renal cell carcinoma cDNA library
JPS62111683A (en) Human che type protein and its production
FR2601034A1 (en) Inhibitor of the activity of plasma C1-esterase (C1-inhibitor) and of other proteolytic enzymes of the serine protease group, process for preparing it, nucleic acids encoding this inhibitor, methods for detecting diseases linked to deficiencies in the said inhibitor using antibodies or nucleotide probes and medicinal products containing the said synthetic inhibitor
EP0367666B1 (en) Specific nucleic-acid fragments of the human villin gene and their application to diagnostic ends
JP2002034566A (en) Gene encoding serine protease derived from lumbricus rubellus, and plasmid vector and transformant each containing the gene
JPWO2008029807A1 (en) NOVEL POLYPEPTIDE HAVING DAMAGE TO CANCER, METHOD FOR SCREENING THE SAME, AND USE THEREOF
JP2006304666A (en) New polypeptide having trypsin inhibitory activity
WO1991006671A1 (en) Means for detecting highly proliferative cells
JP3755040B2 (en) Polynucleotide, polypeptide and method for producing glycolytic enzyme
FR2840922A1 (en) New recombinant triacylglycerol lipase from Arabidopsis thaliana, useful e.g. for treating lipase deficiency, also nucleic acid for preparation of transgenic plants

Legal Events

Date Code Title Description
MKLA Lapsed