CA1335130C - Polyester composition containing an ester of an ethoxylated aromatic alcohol - Google Patents

Polyester composition containing an ester of an ethoxylated aromatic alcohol

Info

Publication number
CA1335130C
CA1335130C CA000549735A CA549735A CA1335130C CA 1335130 C CA1335130 C CA 1335130C CA 000549735 A CA000549735 A CA 000549735A CA 549735 A CA549735 A CA 549735A CA 1335130 C CA1335130 C CA 1335130C
Authority
CA
Canada
Prior art keywords
composition
recited
acid
carboxylic acid
ester
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA000549735A
Other languages
French (fr)
Inventor
John Christopher Haylock
Harold Willis Tuller
Nicholas Vanderkooi, Jr.
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
AlliedSignal Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AlliedSignal Inc filed Critical AlliedSignal Inc
Application granted granted Critical
Publication of CA1335130C publication Critical patent/CA1335130C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/101Esters; Ether-esters of monocarboxylic acids
    • C08K5/103Esters; Ether-esters of monocarboxylic acids with polyalcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters

Abstract

The present invention is a composition comprising a linear saturated polyester and from 0.5 to 30 percent by weight of the polyester of at least one ester of an ethoxylated polyfunctional alcohol having a molecular weight of from 500 to about 1,500. The ester is of an ethoxylated aromatic alcohol and a carboxylic acid wherein the ethoxylated aromatic alcohol has the formula HO (R O)n - R1 - (OR)n - OH

wherein, R is the same or different hydrocarbon radical of from 2 to 4 carbon atoms, n can be the same or a different integer of from 2 to 15; and R1 is an aromatic radical preferably derived from an aromatic dialcohol, most preferably bisphenol A. The ethoxylated aromatic alcohol has greater than 20 carbon atoms. The acid is a carboxylic acid of from 1 to 25 and preferably 3 to 10 carbon atoms, and from 1 to 10 carboxyl groups. Pre-ferahly the acid has from 3 to 10 carbon atoms and one carboxyl group. The composition of the present invention is particularly useful to make injection molded articles, with the ester acting as a plasticizing agent.

Description

POLYESTER COMPOSITION CONTAINING AN ESTER OF
AN ETHO~YLATED AROMATIC ALCOHOL
~ACRGROUND OF THE INVENTION
This invention relates to linear saturated poly-ester compositions. More particularly, the invention is 5 directed to a linear saturated polyester composition containing at least one ester of an ethoxylated aromatic alcohol.
Molding formulations based on linear saturated polyesters, such as polyethylene terephthalate, should 10 result in a molded product having good physical proper-ties including flexural strength, modulus, tensile strength, and impact proper,ties. The molding compound should have good molding properties, including a melt flow index for sufficient flow into the mold, good mold 15 release properties and good surface finish appearance.
The molded article should be crystalline and warp resistant.
It is desirable that satisfactory properties be attained using water heated molds. That is, molds heated to temperatures between 76.7C (170F) to about 110C (230F). In order to accomplish this, it is desirable for crystallization to begin at as high a temperature as possible upon the cooling of the molten polyester which was fed into the mold, and continue during the cooling to as low a temperature as pos-sible. TCc is a measurement to determine at what temperature crystals first appear upon cooling from the melt. TCh is a measurement which indicates the temperature at which crystallization is no longer occurring upon cooling. It has been found that mold appearance and mold release properties can be related to TCh. TCh is determined by measuring the temperature at which crystals appear upon heating an amorphous piece of polyester. TCc and and TCh can be measured using a Differential Scanning Calorimeter.
$' _ I

~ 1 335~ 30 A variety of additives are disclosed in the art for use with linear saturated polyester compositions. Two important classes of additives include nucleators and plasticizers. Plasticizers include a variety of low molecular weight esters such as those disclosed in U.S.
5 Patent Nos. 4,223,125 and 4,435,546. These patents describe the use of esters of alcohols having up to 20 carbon atoms and preferably having a carbon bond to ester bond ratio of between 4 and 15, inclusive of the carbonyl atom.
It is known to use nucleating agents in crystalliz-able polymers, such as linear saturated polyesters of aromatic dicarboxylic acids. U.S. Patent Nos.
3,435,093; 3,516,957; and 3,639,527 disclose various approaches to molding thermoplastic compositions of linear saturated polyesters of aromatic dicarboxylic acids, and are particularly applicable to polyethylene terephthalate. These patents generally disclose the use of salts of hydrocarbon and polymeric carboxylic acids as nucleating agents for linear saturated polyesters.
20 Great Britain Patent No. 1,315,699 discloses the use of low molecular weight sodium, lithium or barium salts of mono- or polycarboxylic acids used with solid, inert inorganic substances.
The use of organic esters in combination with nucleators is disclosed in U.S. Patent Nos. 3,516,957;
4,352,904; 4,486,564; 4,429,067; 4,223,125; 4,435,546;
and 4,548,978. These patents disclose the use of a variety of plasticizers including specific ester compounds used in combination with other materials.

The present invention is a composition comprising a linear saturated polyester and from 0.5 to 30 percent by weight of the polyester of at least one ester of an ethoxylated aromatic alcohol, preferably ethoxylated Risphenol A. The ester has a molecular weight of from ~ _3_ 1 335 ~ 3~
500 to about 1,500. The ethyxolated aromatic alcohol has the formula HO - (R )n ~ Rl - (OR)n - OH
wherein R is the same or different hydrocarbon radicals of from 2 to 4 carbon atoms, n can be the same or a different integer of from 2 to 15. By the "same or different" it is meant that where the symbol R or n appear more than once in a general formula it can be the same or different in that formula. The alcohol has greater than 20 carbon atoms. Rl is an aromatic diradical preferably derived from an aromatic dialcohol, most preferably bisphenol A. Ethoxylated bisphenol A
has the formula HO - (R )n - \ ~ C ~ (OR)n ~ OH

The acid is a carboxylic acid of from 1 to 25 and 20 preferably 3 to 10 carbon atoms, and from 1 to 10 carboxyl groups. Pre~erably the acid is alphatic and has from 3 to 10 carbon atoms and one carboxyl group.
The composition of the present invention preferably contains a nucleating agent and optionally filler or 25 reinforcing material, an impact modifier, an epoxy com-pound, and other conventional additives such as antioxi-dants, colorants, flame retardants and the like.
Objects, features, and advantages of the present invention will become apparent by reference to the following specification:
DESCRIPTION OF THE PREFERRED EMBODIMENTS
The present invention is a composition comprising a linear saturated polyester, and from 0.5 to 30, preferably 1.0 to 10, and more preferably 1.5 to 8, and 35 most preferably 1.5 to 5 percent by weight of the polyester of at least one ester of an ethoxylated _4_ l 335t 30 aromatic alcohol and wherein the ethoxylated aromatic alcohol has the formula HO - (RO)n ~ Rl ~(OR)n -OH
wherein R is the same or different hydrocarbon radicals 5 of from 2 to 4 carbon atoms, and n can be the same or a different integer of from 2 to 15. By the "same or different" it is meant that where the symbol R or n appear more than once in a general formula it can be the same or different in that formula. Rl is an aromatic 10 radical, preferably derived from an aromatic dialcohol, most preferably bisphenol A. The ethoxylated alcohol has greater than 20 carbon atoms and preferably 25 to 50 carbon atoms. The alcohol is esterified with an acid which is a carboxylic acid of from 1 to 25 carbon atoms, 15 preferably 3 to 10 carbon atoms. The acid is preferably an alphatic acid. The acid has from 1 to 3 carboxyl groups and preferably 1 to 2 carboxyl groups with one carboxyl group most preferred. The ester formed has a molecular weight of from 500 to 1500 preferably 700 to 20 about 1,200, and more preferably 800 to 1,000.
The preferred ethoxylated aromatic alcohol are derived from aromatic dialcohols having from at least six carbon atoms and preferably from 6 to about 15 carbon atoms. The aromatic portion of the aromatic 25 dialcohol can contain substituents groups which do not make the plasticizer ineffective. Such groups could include hydrocarbons such as methyl groups, ester groups, halogen containing groups and the like.
Preferred aromatic dialcohols, include bisphenol A, 30 resorcinol, dihydroxynapthalene (i.e., 2,6 dihydroxynapthalene), and biphenol, with bisphenol A
being most preferred. The ethoxylated bisphenol A has the formula _5_ 1 335 1 3~

HO - ( RO ) n ~ C ~ ( OR ) n -OE~

Preferably R is -CH2CH2- and n is 5.
The carboxylic acid has from 1 to 25 and preferably from 3 to 10 carbon atoms and preferably from 1 to 3, and most preferably one carboxyl group. The most preferred carboxylic acid is an aliphatic carboxylic acid with from 3 to 10 carbon atoms and 1 carboxyl group. Useful acids include, but are not limited to, acetic acid, butyric acid, caproic acid, caprylic acid, pelargonic acid, 2-ethylhexanoic acid, lauric acid, myristic acid, palmitic acid, stearic acid, oleic acid, ricinolic acid, 2-ethyl butyric acid, tall oil acids, fatty acids, and the like. The most preferred acid is 2-ethylhexanoic acid. ~i- and tri-carboxylic acids which are useful include adipic acid, azelyic acid, 20 citric acid, fumaric acid, maleic acid, glutaric acid, succinic acid, tartaric acid, and sebacic acid. The above list of acids is illustrative rather than limiting.
A preferred ester of the present composition is di-25 2-ethylhexoate of an ethoxylated Bisphenol A having the formula:

3 2) 3 CH C ( CH2CH2) 5 ~>--C--<~> ( OCH2CH2 ) 5--O-C--CH ( CH2 ) 3CH3 I

35 having a molecular weight of 876.
The composition of the present invention includes linear, saturated polyesters of aromatic dicarboxylic -6- ~ 3~
acids. The preferred linear saturated polyesters in-clude polyethylene terephthalate, polybutylene tereph-thalate, and poly(l,4-cyclohexane dimethylene tereph-thalate), and mixtures thereof. Polyethylene tereph-thalate is the most preferred due its ability to be molded at low molding temperatures. The polyethylene terephthalate has an intrinsic viscosity range between about 0.3 and about 1.20, with a preferred intrinsic viscosity range between about 0.4 and 0.7. Intrinsic viscosity is obtained by extrapolation of viscosity 10 values to zero concentration of solutions of poly(ethylene terephthalate) in a 60 to 40 weight/volume ratio of phenol and tetrachloroethane. The measurements are normalized to 25C. The preferred polyethylene terephthalate melts between about 250C and 275C. The 15 polyethylene terephthalate can contain minor amounts, up to 10%, of other comonomers such as 1,4-cyclohexyldimethyldiol, butylenediol, neopentyldiol, diethylene glycol, or glutaric acid.
It has been found that the ester of the present 20 invention acts as plasticizer in that they lower the TCh thereby allowing crystallization to take place as the polyester composition cools to lower temperatures. The plasticizing effect has been found to improve mold release properties and molded appearance of molded poly-25 ester, preferably polyethylene terephthalate articles.
TCh is the temperature at which crystal formation occurs upon heating an amorphous piece of polyester. TCh is measured as the maximum of the peak of the curve formed when the amorphous polyester is heated in a Differential 30 Scanning Colorimeter (DSC). Typically the polymer is k heated at 10C/minute. The use of a plasticizer reduces the TCh. The TCh for pure polyethylene terephthalate (0.5 intrinsic viscosity) is approximately 125C-130C. It is desirable to lower this value as much as 35 possible for the best mold release and molded article release properties. The TCh is preferably not greater than about 110C. It has been decreased to about 94C

~ 5 ~ 3 ~

using 5 percent, based on the weight of the polyethylene terephthalate, of the present invention.
The use of the relatively high molecular weight ester of the present invention as plasticizers has been found to improve plasticization as indicated by the low TCh. Additionally, the use of high molecular weight ester of the present invention has been found to provide advantages including low volatility, attributed to its relatively high molecular weight and at the same time results excellent molded surface appearance.
It is believed that the presence of the aromatic group enhances compatibility of the esters with polyesters containing aromatic groups such as polyethylene terephthalate resulting in easier incorporation of the ester of the ethoxylated aromatic 15 alcohol. It has been found that consistent with the disclosure of U.S. Patent 4,223,125 that this material is somewhat difficult to uniformly incorporate into the polyester composition. This is believed to be the results of it not being as compatible as plasticizers 20 such as those disclosed in the U.S. Patent 4,223,125.
The composition of the present invention preferably contains nucleating agents in combination with the polyester and plasticizer. The most useful nucleating agent is at least one compound containing a sodium 25 cation or a potassium cation. The nucleating agent is preferably the sodium salt of a carboxylic acid, which is most preferably a hydrocarbon carboxylic acid.
Useful nucleating agents include the sodium or potassium salts of hydrocarbon acids containing from 3 to at least 30 54 carbon atoms and from 1 to 3 carboxyl groups. The hydrocarbon acids can be aromatic or aliphatic acids.
Preferred nucleating agents include the sodium salts of a carboxyl containing organic polymer. Such a polymer can contain one or more sodium neutralized carboxyl 35 group. Preferred polymeric sodium salts include copolymer acids which are the copolymers of an a -olefin -8- 1 335 t 30 and an ~,~-ethylenically unsaturated carboxylic acid. The copolymer molecule can include additional materials including esters and other substituents.
The ~-olefin is preferably ethylene. The concentration of ethylene in the copolymer is at least 50 mol percent and preferably from 80 to 95 percent by weight. The ~,~-ethyleneically unsaturated carboxylic acid can be a monocarboxylic acid, or have more than one carboxylic group. The ~ ,B-ethylenically unsaturated carboxylic acid which can be copolymerized with the ~-alpha olefin preferably has 3 to 8 carbon atoms. Examples of such acids include acrylic acid, methacrylic acid, ethacrylic acid, itaconic acid, meleic acid, furmaric acid, and monoesters of other dicarboxylic acids, such as methyl hydrogen maleate, methyl hydrogen furmarate, ethyl hydrogen furmarate, and maleic anhydride which is considered to behave like an acid and be an acid in the present invention. Useful copolymer salts include those disclosed in U.S.
Patent No. 4,412,040 and U.S. Patent No. 3,435,093.
Preferred nucleators are the sodium salts of copolymers of ethylene and ~,~-ethylenically unsaturated carboxylic acids having a number average molecular weight of from 500 to 6000 as described in U.S. Patent No. 4,412,040. These salts are preferably neutralized from 50 to 100%.
Another preferred nucleator for use in combin-ation with the present invention are nucleating agents which are of the type described in U.S. Patent No. 4,357,268. These include sodium or potassium salts of dimer acids, trimer acids, or mixtures of the two. The dimer acid has at least 36 carbon atoms and 2 carboxyl groups and the trimer acid has at least 54 carbon atoms and 3 carboxyl groups. The definition of dimer acid is a high molecular weight dibasic acid, which is liquid (viscous), stable, resistant to high temperatures. It is produced by the dimerization of unsaturated fatty acids, at mid-molecule i D

J~ 9 1 33~ 1 3Q
and usually contains 36 carbon atoms. Trimer acids, which usually contain 3 carboxyl groups and 54 carbon atoms are similarly prepared.
The temperature at which crystal formation occurs is indicated by TCc. The TCc is measured using a Differential Scanning Calorimeter which measures the heat evolved versus temperature. ~etween 5 and 10 milligrams of sample is prepared. The sample can be made in the form of a compression molded film which is vacuum dried or as a pellet which is hammered flat. The sample is placed in the Differential Scanning Calorim-eter and heated to 280C where it is held for two minutes. The sample is cooled at 10C per minute. The TCc is the temperature at which the crystallization takes place. The TCC is approximately 195C to 200C
for polyethylene terephthalate having an intrinsic viscosity normalized to about 0.50. It is desirable for crystallization from the melt to begin at as high a temperture as possible without adversely affecting other properties. This allows crystal nucleation to begin earlier and for crystallization to take place over a greater temperature range. The TCc is preferably at least 205C, and more preferably at least 210C.
The preferred polyethylene terephthalate composi-tion should have as high a TCc as possible and as low a TCh as possible, allowing crystal formation and growth over the widest possible temperature range. The TCh is preferably not greater than about 110C. Therefore, the temperature range over which crystallization can occur is from about 220C to about at least as low as 110C
3 during cooling of the composition of the present inven-tion. The range for pure polyethylene terephthalate is about 195C to 125C.
The composition can optionally contain other addi-tives such as inert nucleating agents (i.e., talc), filler or reinforcing materials, impact modifiers, epoxies, antioxidants, colorants, flame retardants, and the like.

~ 1 ~3~ ~ 3~

Any suitable filler and/or reinforcing agent can be used. The fillers may optionally be treated with various coupling agents or adhesion promotors as is known to those skilled in the art. Such fillers may be selected from a wide variety of minerals, metals, metal oxides, siliceous materials, metal salts, and materials thereof. Examples of fillers include glass fibers, alumina, feldspar, asbestos, talc, calcium carbonates, clay, carbon black, quartz, novaculite and other forms of silica, kaolinite, bentonite, garnet, mica, saponite, etc. The foregoing recited fillers are illustrative only an~ are not meant to limit the scope of the fillers that can be utilized in this invention. As noted above, the most preferred filler is glass fibers. There is up to 150 percent by weight of the polyethylene terephthal-ate of filler, and preferably 30 percent to 90 percent by weight of the polyethylene terephthalate of filler, preferably fiberglass.
The composition preferably includes impact modifi-ers known for use in polyester compositions. Preferred input modifiers are ethylene copolymers and terpolymers having carboxylic acids or derivatives. Pre~erably copolymers of ethylene and carboxylic acids, their esters or salts can be used as impact modifiers.
Included among those impact modifiers are the following copolymers: ethylene-acrylic acid, ethylene-methacrylic acid, ethylene-ethyl acrylate, ethylene-vinyl acetate, and mixtures thereof. Useful impact modifiers include copolymers of a -olefins and the metal salts of carboxy-lic acids and particularly the sodium and potassium salts. These compolymer salts both nucleate and improve impact resistance. There can be used up to about 30 percent, and preferably from about 2 percent and about 10 percent of the impact modifier, based on the weight of the poly(ethylene terephthalate).
The composition can contain up to about 5 percent based on the weight of the polyethylene terephthalate, of a polyepoxide. Useful polyepoxides are epoxy cresol ~ -11- 133513~
novolac resins of the type produced by Ciba-Geigy Corporation, and include ECN~ 1234, 1273 and 1299, and those formed from bisphenol-A and glycidyl ether. A
preferred polyepoxide is an epoxy formed from bisphenol-A and glycidyl ether. Pre~erably, there is from 0.5 percent to 4.0 percent, based on the weight of the polyethylene terephthalate, of a polyepoxide formed from a diglycidyl ether and bisphenol A having a molecular weight of from about 1500 to 4000 and most preferably about 200n. The polyepoxides act as chain extenders and help compensate for polyethylene terephthalate chains broken by hydrolysis.
~ preferred ~illed composition comprises polyethy-lene terephthalate, from 3096 to 90 percent glass fibers and 2% to 8% of the ester of the present invention from, 0.6 to about 3 percent of a polyepoxide and from about 0.1 to about 10 percent of a sodium carboxylate salt as described above. The percents are based on the weight of the polyethylene terphthalate.
As indicated in the examples to follow, the use of 20 the ester of the present invention results in the poly-linear saturated polyester, such as polyethylene terephthalate, molding composition which can be injection molded into water heated molds as temperatures as low as 76.7C (170F). As the mold temperature 25 increases, there is an improvement in molded article appearance. The ester of the present invention, the carboxylate salt and polyethylene terephthalate are melt blended. In the most preferred embodiment, they can be melt blended in an extruder at a temperature above the melt temperature of the polyester. In a preferred embodiment, the components are melt blended at a temperature between 260C (500F) and 316C (600F) in an extrude r.
The polyethylene terephthalate composition of the 35 present invention can be formed by blending the compo-nents together by any convenient means to obtain an intimate blend. Neither temperature nor pressure are -12- 1 3351 3~
critical. For example, the polyethylene terephthalate can be mixed dry in a suitable blender or tumbler with the other components and the mixture melt extruded. The exudate can be chopped. If desired, a reinforcing or filing agent can be omitted initially and added after the first melt, and the resulting mixture can be melt extruded. It has been observed that the composition can be uniformly extruder blended. Uniform blends were made when all the ingredients were fed into the throat of the extruder. Uniform blends were made with the polyester was fed into the throat and all of the additives including small amounts of polyester, the fiberglass and the plasticizer were added together downstream of the throat. A third method is to inject the plasticizer after all of the materials are added downstream. This method results in uniform blends under high shear conditions such as are present in a twin screw extruder.
The general incompatibility of the higher molecular plasticizer of the present invention makes its uniform incorporation an important consideration. It has been found that the aromatic plasticizer was easier to incorporate than the aliphatic diester plasticizers such as used in Comparatives 2 and 3 below. Poor dispersion is evidenced by the appearance of fiberglass showing at the surface.
The composition of the present invention is particularly useful to make injection molded articles.
The examples and compositions set forth below illustrate the nature of the invention and the manner of carrying it out. ~owever, the invention should not be considered as being limited to the details thereof. All parts are percent by weight unless otherwise indicated.
EXA~PLE~
All of the following examples were made using poly-ethylene terephthalate having an intrinsic viscosity (IV) in the range of 0.66 to 0.72. Intrinsic viscosity is measured by extrapolation of the viscosity values to zero concentration of solutions of polyethylene ~ -13- 1 3 3 5 1 3 ~
terephthalate in a 60 to 40 volume ratio of phenol and tetrachloroethane. The measurements are normalized to 25C. In the results that follow the IV was measured on extruded pellets and molded parts. Unless otherwise indicated, the parts were 1/8 inch thick tensile bars molded at 1.5 ounce Arburg injection molding machine at about 590C barrel melt temperature with the mold temperature between about 200F to 230F.
The fiberglass used was 1/8 inch long short glass fibers made by Pittsburgh Plate Glass as PPG 3540. The epoxy compound used in the compositions was a diglycidyl ether of Bisphenol A sold by Ciba-Geigy as Araldite 7074. The ethylene acryclic acid (EAA) copolymer used was manufactured by Dow Chemical Corporation as Dow EAA-445 which is described as having 8 percent by weight acrylic acid and a melt index of 5.5g/10 min. The ethylene ethyl acrylate copolymer (EEA) used was made by Union Carbide as ~akelite~ flexible ethylene copolymer DPD-6169 which is described as having a melt index of 6g/min and an ethyl acrylate content of 18 weight percent. The ethylene methyl acrylate copolymer (EMA) used was 80 mol percent ethylene, but a density of 0.942 and had a melting point of 59C and was produced by Chevron Chemical. Irganox~ 1010 which is tetrakis [methylene 3-(3,5 di-tertiary butyl 4 hydroxyphenyl) proprionate] methane made by Ciba-Geigy, was used as an antixoidant. A processing aid S-160 which is butyl benzyl phthalate made by Monsanto Corporation was used to prevent powder/pellet separation prior to extrusion.
In each of the Examples and comparatives that used a sodium dimerate salt as the nucleator, a dimer acid was used which was 100% sodium neutralized with sodium cation. The dimer acid is sold by Emery Corp. as Empol~
1024. The dimer salt was used as a preblend (PB) contained 0.6% dimer acid sold, 0.6% EEA, 2.8% EAA, and 0.1% S-160. Alternately, as indicated, the nucleator was the sodium salt of ethylene methacrylic acid sold by the DuPont Company as Surlyn~ 8920.

1 33~ 1 30 Unless otherwise indicated, the compositions were made by melt extruding using a 2 1/2" Egan single screw extruder having a 40 L/D ratio. The temperatures in Zones 1-7 were Zone 1-500F/Zone 2-540F/Zone 3-530F/Zones 4-7 -525F with the die at 540F. The 5 fiberglass was fed into Zone 2 and a vacuum of 10 inches was applied to Zone 3.
~ ifferential Scanning Calorimeter (DSC) values were measured in accordance with the above-described proced-ure. ~etween a 5 and 10 milligram sample is prepared.
10 The sample is made in the form of a film which is vacuum dried. The sample is placed in the DSC and heated at 10C/min. to 280C where it is held for 2 minutes. The sample is cooled at 10C per minuted. The TCC appears as the peak in the cooling branch of the curve. Tg is the glass transition temperature of the composition.
TCh is measured using similar sample preparation.
The sample was melted and then quenched to assure that the samp]e was substantially amorphous. The sample was heated at 10C per minute and a crystallization curve forms when crystallization takes place. The TCh was the temperature at the peak of the curve.
The volatility was measured as percentage weight loss upon heating at the indicated temperature. Mold surface ratings are based on visual appearance ratings of 1 to 10 with 1 being the best and 10 being the worst.
The following ASTM test procedures were used to measure physical properties: Tensile Strength - ASTM
D638; Flexural Strength and Modulus - ASTM D790; and Notched Izod Impact Testing - ASTM D256.
Compositions were made using a preferred plasticizer and various comparative plasticizers. The amounts of the plasticizers was varied as indicated.
The examples illustrates the use of plasticizer "P"
made by C. P. ~all and which is the di-2-ethyhexoate of ethoxylated Bisphenol A having a molecular weight of 876 and the formula 1 3351 3~

l O l O
I n I n I
C~3- (C~2)3 - ~ C ~ (C~2CH20)5 ~ C~ C~2CH2)s ~ C-CH(C~2)3CH3 In variou~ Comparative Example~, the plasticizer used wa~ polyethylene glycol di-2-ethylhexoate (PE
diester) having a molecular weight of 652 and sold by C.
P. Hall as ~egmer 80~.
Another Comparative u~ed was an aliphatic ethoxylated trie~ter (PE trie~ter) made by C.P. ~all having a molecular weight of 998 and having the formula c~3 n CH2- ( OCH2CH2 ) 4-O-C- C- ( CH2 ) 3-CH3 ¦ CH3 ¦ O CH2 l CH2- ( OCH2CH2 ) 4--O--C-C- (CH2)3--CH3 I C~3 I

n I
CH2-(OCH2(~2)4-~-C-C-(CH2)3-CH3 Example 1 illu~trate~ a compo~ition u~ing pla~ticizer P compared to PE trie~ter. The compo~ition and result~ are ~ummarized in Table 1.
*Trademark n L~, -16-1 33~ ~ 3~
TABLE I
Ex 1 Comp 1 PET 61.15 61.15 Fiberglass 30.00 pBl 4.10 4.10 Epoxy 1.0 1.0 Antioxidant .15 .15 10 Plasticizer 3.6 3.6 (96) Plasticizer P PE
triester Plasticizer MW 876 998 15 Molded surface @225F Mold ~2-3 2 @ 215F mDld 6 5 Flex Str.(psi) 28,800 31,000 Mbd x 106(psi) 1.16 1.18 20 Notched Izod 1.86 1.76 ft lbs/in notch rv Molded Bar 1/8" thick .60 .59 1/16" thick .52 .48 1PB is a preblend of sodium dimer salt, EEA and EAA.
The above results indicate that the plasticizer P
and the PE triester both resulted in a satisfactory composition. As the mold temperature was reduced from 225F surface appearance was poorer.
E~AMPLES 2-5 Examples 2-5 are a comparison of PET compositions melt blended using a 1 inch single screw extruder having a 25 L/D ratio. The extruder was run at barrel temperature of about 540F. The plasticizer P used in Example 5 was the same ester of ethoxylated bisphenol A
but from a different batch than the plasticizer used in Examples 2-4 to check lot to lot variation. The plasticizer in Comparatives 2 and 3 used the PE diester (MW-652) as described above. The compositions and test results are summarized in Table 2 below.

TABLE II
Ex . 2 Ca[lp 2 Ex . 3 Ex . 4Ex . 5 Canp 3 PET 61.15 61.15 59 .25 59 .2559 .25 59 .25 Fiberglas 30.00 30.00 30.00 30.0030.00 30.00 PB 4 .10 4 .10 4 .10 ---- 4 .10 4 .10 Surlyn 8920 --- --- --- 4.10 --- ---Epoxy 1.0 1.10 1.00 1.00 1.00 1.00 1 5 Antioxidant .15 .15 .15 .15 .15 .15 Plasticizer 3.6 3.6 5.5 5.5 5.5 5.5 Plasticizer Type P PE P P P PE
diester diester Molded Surface@

225F 3 Bestl --- 1 Bestl Best 1 Flex Str (psi ) 30,600 29 ,60028,50031,00028 ,700 27,300 Flex 6Mod 1.21 1.18 1.13 1.17 1.15 1.11 xlO (psi) Tensile (psi )19 ,60018 ,60018 ,30020,30018,700 17,700 Notched Izod ( ft-lb/in Notch) 1.66 1.75 1.59 1.86 1.53 1.47 l~SC Tg 56 ------ 58 ------ 56 49 Tch 101 ----- 102 ----- 100 90 Tcc 209 ----- 205 ------ 210 208 lBest indicates that these samples were the Best of the samples rated as "1".

The above results indicate that at lower levels of plasticizer, 3.6%, the PE diester plasticizer has a better surface appearance than the plasticizer P, with comparable physical properties. At higher levels of plasticizer, 5.5% the physical properties when using the PE diester are poorer than when using plasticizer P of the present invention. Additionally, the molded surface when using 5.5% plasticizer of the present invention is almost equal to the molded surface when using plasticizer PE diester.

In Example 6 and Comparatives 4 and 5 the short glass fiber was fed into the throat of the extruder.
Volatility was measured in an oven at a vacuum of 27-28 inches of mercury at the indicated time and temperature.

TABLE III
E~. 6 COMP. 4 oOMP. 5 PET 62.05 62.05 62.05 Fiberglass 30.00 30.00 30.00 Surlyn 8920 4.00 4.00 4.00 Sodium Stearate 0.2 0.2 0.2 Epo~ 1.0 1.0 1.0 10 Antioxidant .15 .15 .15 Plasticizer 2.6 2.6 2.6 Plasticizer P PE PE
Type diester triester Molded Surface@

225F 1 Best Flex Str (psi) 34,300 34,000 32,800 Flex M~d (psi) 1.24 1.21 1.24 20 Tensile (psi) 22,000 22,200 21,700 Unnotched Izod 1.7 1.19 1.6 (ft-lb/in) IV - Pellets .50 .50 .47 molded part .49 .52 .46 Volatility %
weight loss in 5 hours @

124C .045 .090 033 116C .017 .050 .016 30 D6C Tg (F) 60 58 Tc~ 99 97 Tcc 209 209 The plasticizer P of the present invention resulted in a composition which was generally comparable in physical properties with compositions containing the PE
diester (Comp. 4) and the PE triester (Comp. 5). The composition with the PE diester had the Best surface appearance. The composition of Ex. 6 and Comp. 5 had ~ -20- 1 3351 30 similar volatility results with Comp. 5 being slightly better. Comp. 4 had the poorest volatility.
EXAMPL~S 7-12 Examples 7-12 illustrate preferred compositions using a low molecular weight sodium ionomer salt as a 5 nucleator. There was variation in the amount of neutralization with sodium cations of a low molecular weight ethylene acrylic acid copolymer sold as A-C~ 120 by Allied Corp. (NaAC) which was neutralized to the precent indicated . Example 12 contained 1.2 weight 10 percent of a masterbatch tMB) which was made from 80 parts of PET, 20 parts of sodium stearate (SST), and 40 parts of ~MA. Results are summarized in Table 4 below:

-21- ~ ~35 1 30 Table 4 Ex 7 Ex 8 Ex 9 Ex 10 Ex 11 Ex 12 PET 62.05 62.00 62.00 61.75 61.45 60.95 Fiberglas 30.00 30.00 30.00 30.00 30.00 30.00 EMA 2.2 2.2 2.2 2.2 2.2 2.2 SST 0.10 .15 .15 .10 .10 Epoxy .9 .9 9 9 9 9 Antioxident.15 .15 .15 .15 .15 .15 Plasticizer "P" 2.6 2.6 2.6 2.6 2.6 2.6 MB - - - - - 1.2 90% NaAC 2.0 80~ NaAC - 2.0 - 2.3 15 70% NaAC ~ ~ 2.0 - 2.fi 2.0 Molded Surface @220F 2 2 2 2 2 2 Ash (%) 29.2 28.1 28.8 28.4 29.3 28.2 Min Pressure (psi) to fill a 1/16"
Flex Bar m~ld 690 530 540 580 540 525 Flex Str (psi) 36,30034,10034,200 33,60035,000 34,200 Flex Mod (psi) 1.31 1.22 1.22 1.17 1.26 1.22 25 Tensile (psi) 23,60021,80022,200 21,60022,250 22,600 Notched Izod 2.02 2.10 2.06 2.05 2.04 2.11 (ft-lbs/in notch) Unnotched Izod 22.4 22.7 21.8 20.6 20.6 20.9 (ft-lbs/in) DSC Tg 69 69 70 67 68 66 Tch 106 105 105 103 103 105 Tcc 214 216 217 218 218 215 rv Pellets .56 .56 .56 .55 .57 .56 rV Parts.60 .57 .61 .57 .56 .57 -22- ~ 335 1 30 These results illustrate a composition containing the preferred plasticizer and nucleator.

Examples 13 to 19 were extruded as above except that the fiberglass, and the additives were added at 20ne 2 followed by the addition of plasticizer downstream from the other additives fed into Zone 2 of the extruder. The PET (hot) was heated and dried at 275F and added in the throat. A small amount of room temperature (cold) PET was added with the additives other than the plasticizers. The compositions evaluated and results are summarized in Table 6 below:

Table 6 Ex 13 Ex 14 Ex 15 Ex 16 PET (hot) 58.4 58.4 58.4 58.4 PET (cold) 3.6 3.6 3.6 3.6 Epoxy 1.0 1.0 1.0 1.0 Antioxidant .15 .15 .15 .15 NaAC (90%N) 2.0 2.4 1.8 ---SST .2 --- .2 .2 Surlyn 8920 --- --- --- 4.0 EMA 2.0 2.0 2.2 ---Plasticizer "P" 2.6 2.6 2.6 2.6 Fiberglass 30 30 30 30 Dioctyladipate .08 .08 .08 .08 Paraffin Wax --- --- --- ---Molded Surface @220F 2~/2 3 2~2 4 DSC Tg 67 --- --- 67 Tch 106 --- --- 107 Tcc 213 --- --- 212 Flex Str (psi) 36,10035,500 35,400 35,900 Flex Mbd (psi)xlO~ 1.28 1.26 1.26 1.27 Notched Izod 2.02 2.13 2.03 2.24 Unnotched Izod 20.6 21.3 21.5 22.6 25 rv Pellet .64 --- .57 Part .52 .75 --- .60 % Ash 29.9 29.8 29.9 30.4 -24- 1 3 ~ 5 1 3 0 Table 6 (con't) Ex 17 Ex 18 Ex 19 PET (hot) 58.4 56.4 47.8 PET (cold) 3.6 3.6 2.95 Epoxy 1.0 1.0 .82 Antioxidant .15 .15 .12 NaAC (90%N) --- --- ---SST .2 .2 .16 Surlyn 8920 4.0 4.0 3.27 ~MA ------ ------ ------10 Plasticizer "P" 2.6 4.6 2.1 Fiberglass 30 30 45 ~ioctyl adipate .08 .08 .08 Paraffin Wax .35 -- ---Molded Surface @220oF 2'~2 1 6 ~SC Tg 64 61 ---Tch 105 102 ---Tcc 213 213 ---Flex Str (psi) 34,600 32,400 42,400 Flex Mbd (psi) X1061.23 1.18 1.88 Notched Izod 2.19 2.16 2.38 Unnotched Izod 21.0 17.5 27.0 rv Pellet --- --- ___ ~- r Part --- --- ---% Ash 29.6 29.5 44.8 Examples 20-21 illustrate and impact modified version using an Acryloid~ KM-330 shell/core impact modifier produced by Rohm and Haas. This is believed to have a polybutylacrylate core and a polymethylmethacrylate shell. The compositions evaluated and results are summarized in Table 7.

-25-1 33~ ~ 30 Table 7 Ex 20 Ex 21 PET 51.6 51.7 Epoxy 1.25 1.25 Antioxidant .15 .15 Surlyn 8920 --- 3.7 SST --- 1.7 NaAC (9096N) .9 ---EMA 2.1 ----10 Plasticizer "P" 3.0 3.0 Fiberglass 30 30 Flex Str (psi) 28,300 29,700 Flex Mod x 106 (psi)1.16 1.13 Tensile St (psi)19,400 20,000 Notched Izod ft lbs/in notch 2.16 2.41 Unnotched Izod ft lbs/in 23.3 24.9 The above evaluation of various example composi-tions and comparative compositions indicate that the plasticizer of the present invention is a significantly less volatile plasticizer than the esters of difunctional polyethylene oxides as used in Comparative 2. The plasticizer of the present invention is preferred over the PE triester as used in Comparative 1 because it is believed that it is more compatible and therefore is easier to melt blend into a uniform composition. The plasticizier of the present invention had satisfactory molded surface appearance and was easily moldable.
While exemplemary embodiments of the invention have been described, the true scope of the invention is to be determined from the following claims.

Claims (15)

1. A composition comprising:
(a) polyethylene terephthalate; and (b) from 1 to 10% by weight of the polyethylene terephthalate of at least one ester of an alcohol and a carboxylic acid wherein the alcohol has the formula:

H O(RO)n - R1 - (OR)n - OH

wherein, R1 is a bisphenol A radical, R is -CH2CH2-, n can be the same or different integer of from 3 to 5, and wherein the acid is an aliphatic carboxylic acid of from about 3 to 10 carbon atoms, and the molecular weight of the ester being from about 800 to 1,000.
2. The composition as recited in claim 1 wherein the carboxylic acid has from about 1 to 3 carboxyl groups.
3. The composition as recited in claim 1 wherein the carboxylic acid is an aliphatic carboxylic acid with one carboxyl group.
4. The composition as recited in claim 1 further comprising a nucleating agent.
5. The composition as recited in claim 4 containing sufficient amounts of the ester and nucleating agents to have a Tch of not greater than 110°C and a Tcc of at least about 205°C.
6. The composition as recited in claim 4 wherein the nucleating agent is the sodium salt of a carboxylic acid.
7. The composition as recited in claim 4 wherein the nucleating agent is a sodium salt of a copolymer of ethylene and an ethylenically unsaturated carboxylic acid, the copolymer having a number and average molecular weight of from about 500 to 6000.
8. The composition as recited in claim 4 further comprising from about 30 to 150 percent based on the weight of the polyester of a filler or reinforcing material.
9. The composition as recited in claim 8 wherein there is from about 30 to 90 percent based on the weight of the polyester of fiberglass filler.
10. The composition as recited in claim 1 further comprising from about 2 to 30 percent of an impact modifier.
11. The composition as recited in claim 10 wherein the impact modifier is a polymer material selected from the group consisting of an .alpha.-olefin homopolymer and copolymer of an .alpha.-olefin and a carboxylic acid containing moiety or derivative thereof.
12. The composition as recited in claim 11 wherein the impact modifier is a copolymer of ethylene and at least one monomer selected from the group consisting of acrylic acid, ethyl acrylate, methacrylic acid, methyl methacrylate, and the metal salts of acrylic acid and methacrylic acid.
13. The composition recited in claim 4 further comprising up to about 3 percent of an epoxy compound.
14. An article molded from the composition as recited in claim 1.
15. The composition as recited in claim 1 wherein the carboxylic acid is 2-ethylhexanoic acid.
CA000549735A 1986-10-24 1987-10-20 Polyester composition containing an ester of an ethoxylated aromatic alcohol Expired - Fee Related CA1335130C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US92290986A 1986-10-24 1986-10-24
US922,909 1986-10-24

Publications (1)

Publication Number Publication Date
CA1335130C true CA1335130C (en) 1995-04-04

Family

ID=25447764

Family Applications (1)

Application Number Title Priority Date Filing Date
CA000549735A Expired - Fee Related CA1335130C (en) 1986-10-24 1987-10-20 Polyester composition containing an ester of an ethoxylated aromatic alcohol

Country Status (5)

Country Link
EP (1) EP0334847A1 (en)
JP (1) JP2582827B2 (en)
KR (1) KR960002531B1 (en)
CA (1) CA1335130C (en)
WO (1) WO1988003155A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2443196A4 (en) * 2009-06-19 2015-09-30 Commw Scient Ind Res Org Self healing polymer materials
CN111187477B (en) * 2018-01-02 2022-03-15 义乌市通顺塑料硬片有限公司 PVC composition containing ester plasticizer
CN108192133B (en) * 2018-01-02 2021-01-12 佳力士添加剂(海安)有限公司 Ester plasticizer and application thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2631424A1 (en) * 1976-07-13 1978-01-19 Basf Ag STABILIZED THERMOPLASTIC POLYESTER COMPOUNDS
JPS6084352A (en) * 1983-10-13 1985-05-13 Unitika Ltd Polyester resin composition
JPH0660277B2 (en) * 1984-02-24 1994-08-10 イ−・アイ・デユポン・デ・ニモアス・アンド・カンパニ− Rapid crystalline polyester resin containing a three-component crystallization system
JPS61163957A (en) * 1985-01-16 1986-07-24 Unitika Ltd Polyester resin composition
JPS61200159A (en) * 1985-03-01 1986-09-04 Unitika Ltd Impact-resistant polyester resin composition
JPS61235456A (en) * 1985-04-10 1986-10-20 Unitika Ltd Polyester resin composition

Also Published As

Publication number Publication date
WO1988003155A1 (en) 1988-05-05
KR960002531B1 (en) 1996-02-22
KR880701755A (en) 1988-11-05
JP2582827B2 (en) 1997-02-19
EP0334847A1 (en) 1989-10-04
JPH02500446A (en) 1990-02-15

Similar Documents

Publication Publication Date Title
EP0017942B1 (en) Polyethylene terephthalate molding compositions
US4124561A (en) Reinforced thermoplastic polyester compositions having improved shatter resistance
CA2569229A1 (en) High gloss pet molding composition and articles made therefrom
US5028647A (en) Polyester composition containing an ester of an ethoxylated aromatic alcohol
US4440889A (en) Polyethylene terephthalate molding compositions
US4551507A (en) Polyester composition containing tertiary and quaternary amine carboxylate salts
US4357268A (en) Nucleation agents for crystalline polymers
US4753975A (en) Polyester molding composition containing low viscosity polyester reaction product
US4731404A (en) Polyester composition containing ester of polyfunctional high molecular weight alcohol
US5021495A (en) Polyester molding composition having improved flame resistant
US5389710A (en) Crystallization modifier for polyester molding compositions
US4349503A (en) Polyester compositions containing sodium nitrite
CA1335130C (en) Polyester composition containing an ester of an ethoxylated aromatic alcohol
EP0388518A2 (en) Improved polyethylene terephthalate molding resin blends
US4506050A (en) Polyethylene terephthalate molding compositions
CA1104734A (en) Unfilled thermoplastic molding compositions
CA1212494A (en) Non-mold depositing polyethylene terephthalate molding compositions
US5068274A (en) Secondary amides in polyethylene terephthalate molding compositions
US4687795A (en) Polyester molding compositions
US4803237A (en) Reinforced polyester molding compositions
JP3075575B2 (en) Thermoplastic polyester resin composition
EP0268867A2 (en) Flame retardant polyethylene terephthalate
WO1985003717A1 (en) Fast crystallizing polyester resin containing three-component crystallization system
JPS63142055A (en) Glass-fiber reinforced polyester resin composition
EP0467368A2 (en) Secondary amides in polyethylene terepthalate molding compositions

Legal Events

Date Code Title Description
MKLA Lapsed