CA1310518C - Variable-speed power transmission device - Google Patents

Variable-speed power transmission device

Info

Publication number
CA1310518C
CA1310518C CA000587264A CA587264A CA1310518C CA 1310518 C CA1310518 C CA 1310518C CA 000587264 A CA000587264 A CA 000587264A CA 587264 A CA587264 A CA 587264A CA 1310518 C CA1310518 C CA 1310518C
Authority
CA
Canada
Prior art keywords
input
output
power transmission
motor assembly
planetary gearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA000587264A
Other languages
French (fr)
Inventor
Luciano Valotto
Bruno Valotto
Gianni Valotto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TECNOQUATTRO Srl
Original Assignee
TECNOQUATTRO S.R.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TECNOQUATTRO S.R.L. filed Critical TECNOQUATTRO S.R.L.
Priority to CA000587264A priority Critical patent/CA1310518C/en
Application granted granted Critical
Publication of CA1310518C publication Critical patent/CA1310518C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H47/00Combinations of mechanical gearing with fluid clutches or fluid gearing
    • F16H47/02Combinations of mechanical gearing with fluid clutches or fluid gearing the fluid gearing being of the volumetric type
    • F16H47/04Combinations of mechanical gearing with fluid clutches or fluid gearing the fluid gearing being of the volumetric type the mechanical gearing being of the type with members having orbital motion

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Structure Of Transmissions (AREA)

Abstract

VARIABLE-SPEED POWER TRANSMISSION DEVICE
ABSTRACT OF THE DISCLOSURE

The variable-speed power transmission device comprises an input gearing for dividing the power into two fractions having different and variable speeds. The first of these two fractions is transmitted directly to an output gearing, while the second is transmitted to a hydrostatic pump-motor assembly which varies its speed and then to the above mentioned output gearing which recombines it with the first fraction.

Description

The present invention relates to a variable-speed power transmission device.
Various types of device6 adapted to continuously vary the speed in a transmission of motion are known, among which mention may be made of mechanical, hydrostatic and electric variators.
Among mechanical variators, those in most widespread use are based on the concept of employing the friction torque transmitted by a belt stretched between two pulleys having a fixed center distance and a variable diameter.
The speed change occurs by axially moving the plates of which the pulleys are compo~ed so as to vary the winding diameters of said pulleys.
Hydro~tatic variators transform mechanical energy into hydraulic energy with the ald of a pump-motor assembly.
Direct-current motors in which the applied voltage can be varied can be considered electric variators; as is known, the applied voltage is linked to the number of revolutions.
Other kinds of electric variators employ the principles of varying electrostatic and electromagnetic fields.
All these kinds of variators are however characte~ized by more or less modest results as to the factors of speed, power, torque, weight, dimensions and effici'ency.

The aim of the present invention is to provide a device capable of varying continuously the output speed with a simpler de~ign and structure than known devices.
~- A further aim is to provide a speed varying device which is simple in concept and easy to manufacture.

~1 ~1 , ' ' . ' : :

' ~ 3 _ 131[)~1~
Not least object is to provide a speed varying device which can be obtained at low cost with conventional systems.
This aim, these objects and others which s will become apparent hereinafter are achieved by a variable-speed power transmission device, character-i~ed in that it comprises an input gearing for dividing the powex into two fractions having different and variable speeds, the first of said two 10 fractions being transmitted directly to an output gearing, the second of said two fractions being transmitted to a hydrostatic pump-motor assembly which varies its speed and then to said output gearing adapted to recombine it with said first 15 fraction.
In accordance with a particular embodiment of the invention there is provided a variable-speed power-transmission device, comprising:
an input planetary gearing for splitting input power into two, first and second variable power fractions having different and variable speeds, first and second power transmission paths connected mutuaIly in parallel and to said input 2s plànetary gearing for receiving from said input planetary gearing said first and second power fractions and generating respectively a first and a second speeds, an output planetary gearing connected to said first and second power transmission paths for combining said first and second power fractions and generating an output rotation rate as the sum of said first and second speeds, said first power transmission path 3s including a first intermediate shaft extending from said input to said output planetary gearings, ' ,...... .
. ~
. '-'. ' . . ' ,' ~ :
' ' ' ', ~, ~ . , ~ ' : . , ' ~ ' ,: ' ' ' , - 3a ~ 1 31 ~51 ~
said second power transmission path including a hydrostatic pump-motor assembly, a second intermediate shaft interposed between said input planetary gearing and said hydrostatic pump-5 motor assembly, and a third intermediate shaftinterposed between said hydrostatic pump-motor assembly and said output planetary ~earing, said hydrostatic pump-motor assembly including a hydraulic pump, a hydraulic motor and a con~rollable flow regulator interposed between said hydraulic pump and said hydraulic motor, said controllable flow regulator controlling flow of fluid in said hydrostatic pump-motor assembly and thus controlling splitting of power between first 15 and second power transmission paths and varying said first and second speeds.
In accordance with a further particular embodiment of the invention there is provided a variable-speed power transmission device comprising:
an input planetary gearing for splitting input power into a first and a second variable power fractions, a first and a second power transmission paths connected mutually in parallel and to said 25 input planetary gearing for receiving from said input planetary gearing said first and second power fractions and generatin~ respectively a first and second speeds, an output planetary gearing connected to 30 said first and second power transmission paths for combining said first and second power fractions and generating an output rotation rate as.the sum of said first and second speeds, said first power transmission path 35 including a first intermediate shaft extending from said input to said output planetary gearings, .. ~. . ' - .

~ - 3b - 1 3 1 05 1 ~
said second power transmission path including a hydrostatic pump-motor assembly, a second intermediate shaft interposed between said input planetary gearing, and said hydrostatic pump-motor assembly, and a third intermediate shaft interposed between said hydrostatic pump-motor assembly and said output planetary gearing, said hydrostatic pump-motor assembly 10 including a hydraulic pump, a hydraulic motor and a controllable flow regulator interposed between said hydraulic pump and said hydraulic motor for controlling flow of fluid in said hydrostatic pump-motor assembly and thus controlling splitt1ng of 15 power between said first and second power transmission paths and said first and second speeds, wherein an input is connected to said input planetary gearing and an output shaft is connected to said output planetary gearing, said input shaft, said output shaft and said ~irst intermediate shaft being arranged coaxially to each other In accordance with a still further parti-cular embodiment of the invention there is provided 25 a variable-speed power transmission device, comprising:
an input shaft, an output shaft, an input planetary gearinq including an input sun gear rigid with said input shaft, input planetary gears and an input crown gear, an output planetary gearing including an output sun year rigid with said output shaft, output planetary gears and an output crown gear, 3s a first intermediate shaft connected between said input and said output planetary gears, .

.
.
-.
, ~
.
, .
- .

~ - 3c - 1310518 a hydrostatic pump~motor assembly, a second intermediate shaft interposed between said input crown gear of said input planetary gearing and said hydrostatic pump-motor s assembly, a third intermediate shaft interposed between said hydrostatic pump-motor assembly and said output crown gear of said output planetary gearing, said hydrostatic pump-motor assembly including a hydrostatic pump, a hydraulic motor and a controllable flow regulator interposed between said hydraulic pump and motor for controlling flow of fluid in said hydraulic pump-motor assembly.
Further characteristics and advantages of the invention will become apparent from the detailed description of an embodiment, illustrated only by way of non-limitative example in Figure 1 of the accompanying drawings.
With reference to the above described figure, the variable-5peed power transmission device comprises, in a preferred embodiment, an input shaft 1 rotoidally coupled to the axis of a first epicyclic train 2 adapted to transmit the motion to 2s a first intermediate shaft 3, coaxial with respect ; to said shaft l, and to a second intermediate shaft 4 connected to the outer planetary gear of said gearing 2.
Said second intermediate shaft 4 is 30 associated with a hydrostatic assembly 5 which transmits the motion to the planetary gear of a second epicyclic train 7 through a .third intermediate shaft 6; said gearing 7 also receives the motion from the first intermediate shaft 3.

A

. , .
~ . . ,~ .

..
.

``~ 4 131051~

The motion resulting from the combination of the motions arriving from the intermediate shafts 3 and 6 is transmitted by the second epicyclic train to an output shaft 8 coaxial to said shaft 3.
Accordi-ng to the invention, said hydrostatic assembly 5 is preferably constituted by a hydraulic pump 9 with a fixed and/or variable displacement, by a hydraulic motor 10 with fixed and/or variable displacement and by a flow regulator 11 interposed therebetween.
In the illustrated example, the second intermediate shaft 4 is connected to the external toothing of a crown gear 2a of the epicyclic train 2. The crown gear 2a is rotatable and, in a known manner, is connected to planetary gears 2b, in turn connected to a solar gear 2c.
The third intermediate shaft 6 is conneated to the external toothing of the crown gear 7a of the epicyclic train 7, which similarly has planetary gears 7b and a solar : gear 7c.
: The solar gear 2c lS connected to the input shaft 1, '~ : 20 the solar gear 7c is connected to the output shaft 8 and the planetary gears 2b and 7b are connected by the first intermediate shaft 3.
When the flow regulator 11 blocks the flow of fluid in the hydrostatic assembly 5, the intermedïate shaft 4 is blocked and so is the crown gear 2a of the epicyclic train , 2. Similarly the shaft 6 is blocked and ~o is the crown gear ' 7a of the epicyclic train 7.
i In this condition motion is transmitted fro~ input shaft 1 to output ~haft 8 entirely via the epicyclic trains ~, 30 2 and 7 and shaft 3.

"~''`'`''~'' ~' ' ' ~ ~ ' , ,-.
;

5 ~31051~

By regulating the aperture of the flow regulator 11, motion can progressively be transmitted through the hydrostatic assembly 5 since the crown gear 2a tends to rotate because of the planetary gears' 2b action.
The operating concept of the device according to the present invention is illustrated in figure 2, wherein:
the arrow 12 indicates the power N1 in input, having a torque Mtl and an rpm rate nl;
the arrows 13 and 14 respectively indicate the powers N2 and N3 obtained by variably dividing N1, each respectively having a torque Mt2 and Mt3 and an rpm rate n2 and n3;
; the arrow 15 indicates the power N4 obtained after the conversion in the hydro~tatic assembly 5, having a torque Mt4 and an rpm rate n4 which are always and in any ca~e different from n3;
the arrow 16 indicates the power M5 resulting in output from the sy~tem, having a torque Mt5 and an rpm rate n5.
Considering ideally an efficiency of 1 for the device, the relation linking the various powers is:
N5 = N2 + N4 = N1 In a first numeric example related to the rotation rate, the followiny are assumed:
nl = lO00 rpm n2 = 400 rpm n3 = 600 rpm n4 = 300 rpm so that n5 = n2 + n4 = 400 ~ 300 = 700 rpm.
~ In a second numeric example, the following are assumed:
nl = 1000 rpm i 6 1 3 1 05 1 g n2 = 200 rpm n3 = 800 rpm n4 = 400 rpm so that n5 = n2 + n4 = 200 + 400 = 600 rpm.
From the above two examples it is apparent that the resulting speed is variable, while the power is constant if efficiencies are ignored.
The advantage of the device, according to the present invention, over the known devices, i9 that speed can be lo variated continuously in a finer manner with a very simplified design.
The invention thus conceived is su3ceptible to numerous modifications and variations, all of which are within the scope of the inventive concept.
For example, ~ the hydrostatic assembly 5 can be connected to the solar gear or the planetary gear sha~t of the epicyclic train, instead of the~crown gear as in the illustrated example, depending on the speed ratio needed between input and output or on de~ign features o~ the device.
Furthermore all the details will be appropriately dimensioned according to the specific design of each individual application required by the technology and may be replaced with other technically equivalent elements.
In practice, the materials employed, as well as the dimensions, may be any according to the requirements.
~ .

. .

Claims (4)

1. A variable-speed power transmission device, comprising:
an input planetary gearing for splitting input power into two, first and second variable power fractions having different and variable speeds, first and a second power transmission paths connected mutually in parallel and to said input planetary gearing for receiving from said input planetary gearing said first and second power fractions and generating respectively a first and a second speeds, an output planetary gearing connected to said first and second power transmission paths for combining said first and second power fractions and generating an output rotation rate as the sum of said first and second speeds, said first power transmission path including a first intermediate shaft extending from said input to said output planetary gearings, said second power transmission path including a hydrostatic pump-motor assembly, a second intermediate shaft interposed between said input planetary gearing and said hydrostatic pump-motor assembly, and a third intermediate shaft interposed between said hydrostatic pump-motor assembly and said output planetary gearing, said hydrostatic pump-motor assembly including a hydraulic pump, a hydraulic motor and a controllable flow regulator interposed between said hydraulic pump and said hydraulic motor, said controllable flow regulator controlling flow of fluid in said hydrostatic pump-motor assembly and thus controlling splitting of power between first and second power transmission paths and varying said first and second speeds.
2. A variable-speed power transmission device comprising:
an input planetary gearing for splitting input power into a first and a second variable power fractions, a first and a second power transmission paths connected mutually in parallel and to said input planetary gearing for receiving from said input planetary gearing said first and second power fractions and generating respectively a first and second speeds, an output planetary gearing connected to said first and second power transmission paths for combining said first and second power fractions and generating an output rotation rate as the sum of said first and second speeds, said first power transmission path including a first intermediate shaft extending from said input to said output planetary gearings, said second power transmission path including a hydrostatic pump-motor assembly, a second intermediate shaft interposed between said input planetary gearing and said hydrostatic pump-motor assembly, and a third intermediate shaft interposed between said hydrostatic pump-motor assembly and said output planetary gearing, said hydrostatic pump-motor assembly including a hydraulic pump, a hydraulic motor and a controllable flow regulator interposed between said hydraulic pump and said hydraulic motor for controlling flow of fluid in said hydrostatic pump-motor assembly and thus controlling splitting of power between said first and second power transmission paths and said first and second speeds, wherein an input is connected to said input planetary gearing and an output shaft is connected to said output planetary gearing, said input shaft, said output shaft and said first intermediate shaft being arranged coaxially to each other.
3. A variable-speed power transmission device, comprising:
an input shaft, an output shaft, an input planetary gearing including an input sun gear rigid with said input shaft, input planetary gears and an input crown gear, an output planetary gearing including an output sun gear rigid with said output shaft, output planetary gears and an output crown gear, a first intermediate shaft connected between said input and said output planetary gears, a hydrostatic pump-motor assembly, a second intermediate shaft interposed between said input crown gear of said input planetary gearing and said hydrostatic pump-motor assembly, a third intermediate shaft interposed between said hydrostatic pump-motor assembly and said output crown gear of said output planetary gearing, said hydrostatic pump-motor assembly including a hydrostatic pump, a hydraulic motor and a controllable flow regulator interposed between said hydraulic pump and motor for controlling flow of fluid in said hydraulic pump-motor assembly.
4. A transmission device according to claim 3, wherein said input shaft, said first intermediate shaft and shaft output shaft are arranged coaxially to each other.
CA000587264A 1988-12-29 1988-12-29 Variable-speed power transmission device Expired - Fee Related CA1310518C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA000587264A CA1310518C (en) 1988-12-29 1988-12-29 Variable-speed power transmission device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CA000587264A CA1310518C (en) 1988-12-29 1988-12-29 Variable-speed power transmission device

Publications (1)

Publication Number Publication Date
CA1310518C true CA1310518C (en) 1992-11-24

Family

ID=4139388

Family Applications (1)

Application Number Title Priority Date Filing Date
CA000587264A Expired - Fee Related CA1310518C (en) 1988-12-29 1988-12-29 Variable-speed power transmission device

Country Status (1)

Country Link
CA (1) CA1310518C (en)

Similar Documents

Publication Publication Date Title
US4994002A (en) Variable-speed power transmission device
EP1631758B1 (en) Variable ratio gear
US4056986A (en) Torque converters
WO1992003671A1 (en) Improvements in or relating to transmissions of the toroidal-race, rolling-traction type
CA2160375A1 (en) Improvements in or relating to continuously-variable-ratio transmissions
US4109551A (en) Variable speed gear ratio transmission apparatus
US3982448A (en) Input-split hydromechanical transmission
CN101743414B (en) Variable ratio transmission
NO944874L (en) Infinitely hydrostatic power distribution gear
CA2036267A1 (en) Mechanically variable transmission
US2330397A (en) Variable-speed power unit
US5299985A (en) Continuously variable transmission apparatus
CN214036723U (en) Stepless speed change mechanism
CA1310518C (en) Variable-speed power transmission device
US5397283A (en) Automatically controlled continuously variable transmission
US3592077A (en) Hydromechanical transmission
US4014222A (en) Variable speed and direction transmission prime mover system
EP0040904B1 (en) Planetary gear assembly and application thereof
CN215171932U (en) Pure mechanical stepless speed change transmission device with output self-adaptive load characteristic
CN201536293U (en) Servo variable-speed motor
JPH02190649A (en) Variable speed power transmission gear
US4557160A (en) Hydraulic differential transmission
CN1072341C (en) Stepless gearing method and device
AU765634B2 (en) A convertor
RU2086833C1 (en) Device for steplessly changing speed of rotation

Legal Events

Date Code Title Description
MKLA Lapsed