CA1286883C - Automatic irrigation device for cultivated soil - Google Patents

Automatic irrigation device for cultivated soil

Info

Publication number
CA1286883C
CA1286883C CA000519354A CA519354A CA1286883C CA 1286883 C CA1286883 C CA 1286883C CA 000519354 A CA000519354 A CA 000519354A CA 519354 A CA519354 A CA 519354A CA 1286883 C CA1286883 C CA 1286883C
Authority
CA
Canada
Prior art keywords
passages
reservoir
water
air
soil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CA000519354A
Other languages
French (fr)
Inventor
Alexander Wild
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of CA1286883C publication Critical patent/CA1286883C/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G27/00Self-acting watering devices, e.g. for flower-pots
    • A01G27/02Self-acting watering devices, e.g. for flower-pots having a water reservoir, the main part thereof being located wholly around or directly beside the growth substrate

Landscapes

  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Cultivation Receptacles Or Flower-Pots, Or Pots For Seedlings (AREA)
  • Hydroponics (AREA)

Abstract

ABSTRACT OF THE DISCLOSURE

The device consists of a wall (4-7) surrounding a reservoir (9) for the water, this wall having at the top a tightly sealable (11) opening (12) for introduction of the water and at the bottom two passages (17, 18) for the discharge of water and the entrance of air. The wall areas provided with the passages (17, 18) directly adjoin the soil to be irrigated.
The device can be constituted by a container (1) with a double-walled shell (2) and bottom (3). In this arrangement, two passages (17, 18) are provided in the downwardly curved inner wall (7) of the bottom (3), the spacing between these passages being dimensioned to be small.
The irrigation device is simple and inexpensive.
It discharges only the quantity of water required by the plants so that the water reservoir lasts for a long time and danger of bogginess of the soil is avoided.

Description

12f~6~
0 l 559-86 GW15: jy AUTOMAT :~ C ~ RR IGAT I ON DEV I C E ~OR C U LT I VA~ E D SO I L
The invention relates to an automatic irrigation de~ice for cultivated soil.
Cultivated soil is understood to mean earth, humus, and the like, suitable for gardening or agriculture and planted or sowed with seedlings or plants.
Summary of the invention According to one aspect of the present invention an automatic irrigation device for cultivated soil, comprising a wall surrounding a reservoir for water and having an opening for introduction of the water, a removable sealing means airtightly sealing said opening~ said wall having two passages for the discharge of water from said reservoir and for the entrance of air into the reservoir, said reservoir being airtightly sealed by said wall and said sealing means except for said two passages, said two passages each having an outside end intended ~or adjoining soil to be automatically irrigated, said outside ends of said two passages being spaced-apart by a distance which is less than n-3 cm, wherein n is the number of liters of the reservoir volume, said passages having diameters in the range of 0.5-5 mm, whereby when soil to be automatically irrigated covers the outside ends of the two passages water from the reservoir can flow out of one of said passages only upon entrance of air through the other of said passages and the flow is stopped when the water after passing said distance reaches the outside end of the other of said passages, preventing the further entrance of air through the other of said passages allowing a vacuum to be formed in the reservoir above the level of the water therein.
, ~, ~Z~6883 Br_ef Descrlpt on of_the Drawings The invention and its preferred features will be described in greater detall below with reference to the embodiments illustrated in the drawings wherein:
Figure 1 is a top view of an irrigation device designed as a tank, Figure 2 is a cross-section through the tank along line II-II in Figure 1, Figure 3 shows another irrigation device fashioned as a tank, Figure 4 is a cross-section through an irrigation device designed as an insert for a box or a pot, Figure 5 is a cross-section through another irrigation device fashioned as an insert for a box or a pot, Figure 6 shows an irrigation device for being embedded in earth, and Figure 7 is a top view of part of the device according to Figure 6.

1213~ 3 DESCRIPTION OF THE PREFERRED EMBODIMENTS
The irrigation device shown in Figures 1 and 2 consists of a tank 1 with a double-walled shell 2 and a double-walled bottom 3. The outer wall 4 of the shell 2 is cylindrical; the inner wall 5 tapers conically toward the bottom. The outer wall 6 of the bottom 3 is planar;
the inner wall 7 is curved downwards from the edge 8~
The reservoir space for the water, encompassed by the outer and inner walls 4-7 of the shell and bottom 2 and 3 is de-noted by 9. The shell 2 has an opening 12 that can besealed airtight by a rubber stopper 11 at its upper, annular rim 10 for introduction and/or refilling of the water into the reservoir space 9. The interior 14 of the tank is filled with soil l5. Two passages 17, 18 are pro-vided in the inner wall 7 of the bottom 3. The two pas-sages are made of identical dimensions and are arranged at equal spacings from the edge 8 of the bottom, i.e.
at the same level. The mutual spacing of the two passages 17, 18 is 1.5 cm and is dimensioned according to the formula n 1 cm wherein n is the number of liters of the reservoir volume. (In the embodiment, the storage space 9 has a capacity of 1.5 liters.) The pasages 17, 18 taper conically in the upward direction toward the inner chamber 14 and their inside diameter, i.e. the hole diameter at the tapered end, is l mm.
A ring 20 is integrally formed at the underside of the inner wall 7 of the bottom, this ring being seated ~2~ 3 tightly in an annular groove of the outer wall 6 of the bottom. The portionof the outer wall 6 surrounded by the ring 20 has a hole 21, and the portion of the inner wall 7 surrounded by the ring has a predetermined breaking point 22 formed by a notch-like annular groove for the breaking out of a hole.
The tank 1 is composed of two pieces manufactured from a synthetic resin by injection molding. The walls 4, 5, 7 with the rim 10 and the ring 20 constitute one piece;
the wall 6 with feet 23 integrally formed thereat consti-tutes the other piece. The two pieces are joined to the wall 6 by a splined connection 25 of the rims of walls 4 and 6, glued with an adhesive and thus sealed off, as well as by a correspondingly sealed splined connection of the lower rim of the ring 20.
The irrigation device constituted by the container 1 operates as follows: While water is filled in through the opening 12, air is displaced from the reservoir 9 and C ~ exits via the opening 12 and the passages 17, 18. After the reservoir 9 is filled with water, the opening 12 is sealed airtight by the stopper 11. At this point in time, water will still be discharged from the passages 17, 18 until the suction pressure acting on the water column, which suction pressure is produced due to the vacuum formed above the water level 24 in the upper portion of the reservoir 9, is of equal size as the weight of the water column. Without any soil, the flow of water through ~2868~3 the passages 17, 18 would now cease entirely. ~owever, the soil adjoining the passages 17, 18 and wetted during the filling step initially will still absorb some water by capillary action so that the water column does not remain in its equilibrium position (suction pressure = weight of water), but rather is pulled downwardly to a small extent against the suction pressure. The water column now has the desire ~- under the effect of the suction pressure of the vacuum -- to return into the equilibrium position.
This, though, cannot be accomplished at first because the earth surrounding the passages 17, 18 has a high moisture content and is therefore air-impermeable. Watering will now remain interrupted until the plant has absorbed the water from the soil, and the ground at one of the two passages 17, 18, for example passage 17, has dried out to such an extent that the air can pass through the soil 14 to this passage. The air is then taken in through the passage 17 and rises as an air bubble into the upper part C of the reservoir 9 whereby the vacuum is diminished. Water will now exit from the other passage 18 to the extent that air is taken in. The entrance of air into the passage 17 is stopped as soon as the water discharged from the other passage 18 passes to the passage 17, and the earth at that point has again become adequately moist for sealing this passage. The earth is thus utilized, so to speak, as a moisture-dependent sealing means, preventing the entrance of air into the passages as soon as its lZ~68f~3 moisture content has become adequately large. Consequently, irrigation takes place which is automatically controlled by the moisture content of the soil.
Based onthese realizations, found in the scope of the present invention, regarding the mode of operation of the irrigation device, the following result ensues:
The extent of irrigation depends essentially on the spacing of the two pasages 17, 18: The larger the spacing, the more intensive is the irrigation. For this reason, the two passages 17, 18 are arranged, as set forth above, in close proximity to each other, but still so far apart that the usual foreign bodies contained in the soil, such as stones or the like, cannot cover both passages; this is so, because the device, for the above reasons, works only if the earth adjoins directly at least one of the two passages. If the spacing of the two passages 17, lB is chosen to be too large, then excess watering results, and there is the danger that the soil becomes boggy, and the C , plants will not flourish. The spacing can be chosen to be larger if the water volume and correspondingly the amount of soil to be irrigated are very large. The limit at which the danger of excess watering becomes intolerably high lies approximately at a hole spacing of n 3 cm, wherein n is the number of liters of the reservoir volume.
Once the water stored in reservoir 9 has been consumed, in the embodiment normally after about 2 months, ~286883 refilling initially is neither required nor desirable because the soil is still moist. It has been found that the plants flourish substantially better when refilling is postponed until the soil has been approximately dried out.
This can be recognized by the fact that the earth 15, contracting during the drying out process~ detaches it-self from the shell wall 5. Only once a pronounced annular gap has been formed between the earth 15 and the wall 5 should the reservoir 9 be refilled with water.
( 10 It is essential in this connection that the passages 17, 18 are arranged at a distance from the shell wall 5 and, respectively, from the rim 8 in the bottom wall 7, and that the latter is curved downwardly.
This ensures that even the dried-out clump of earth 15 located at a spacing from the shell wall 5 still is in reliably firm contact with the passages 17, 18. This is necessary so that the irrigation device, after water has been replenished in the reservoir 9, again works reliably.
c Although water is dischrged from the pasages 17, 18 during refilling, this quantity of water is not enough to strongly moisten the clump of earth to such an extent that it again expands up to the shell wall 5. Therefore, a gap will remain between the soil and the shell wall 5, and if the pasages are arranged in the latter, or immediately at the rim of the bottom wall, then irriga-tion is interrupted with finality as soon as the cor-responding vacuum has been attained in the upper reservoir portion.

~215i~3 In case the device is set up in the open air, for example if it is to be installed in a flower bed, the predetermined breaking point 22 is broken through by means of a tool introduced through the hole 21. In this 5 way, a drain hole is produced through which rainwater can flow out of the interior 14 of the tank. Since the broken-out drain hole is located at the lowermost point of the inner wall 7 of the bottom, no rainwater can collect in the interior of the tank. And because there is an interspace be-( 10 tween the two drain holes of the walls 6 and 7, the soil 15 located in the interior 14 will definitely not directly adjoin the soil locafed underneath the outer wall 6.
Consequently, the water exiting from the passages 17, 18 is prevented from being absorbed by the soil surrounding 15 the tank.
The ring 20 not only serves for separating the reser~oir 9 from the drain holes but also acts as a spacer means between the outer and inner walls 6 and 7 of the C bottom. The ring prevents these walls from moving toward 20 each other in case of vibrations, thereby urging water outwards through the passages 17, 18.
Another essential factor for the reliable functioning of the device is that the air which has passed through one of the passages 17, 18 into the 25 reservoir 9 will not remain in the zone of the passage but rather will rise up. This is ensured by the curved shape of the inner wall 7 of the bottom and, in case the 12~6~3 tank is set up on an inclined support, by the circular shape of the ring 20, to which rising air bubbles cannot adhere.
The tank 30 illustrated in Figure 3 differs from tank 1 as follows: Instead of a double-walled bottom, this tank has a merely single-wall bottom 31 wherein the lower rims of the outer and inner walls 32, 33 of the shell 34 are inserted. The shell 34 consists of porous clay to which - has been applied, on the side facing away from the storage 10 chamber, a glazed, water- and air-impermeable layer 35.
Two zones 36, 37 have been left without glazing at the lower rim of the inner wall 33. The pores of the clay wall in these zones 36, 37 constitute the passages through which the air can enter the reservoir and water can exit there-15 from. The bottom 31 can consist of some other material, or likewise of clay; in the latter case, the bottom must also be glazed on its underside.
For the reasons mentioned in connection with C the mode of operation of the tank 1, care must be taken ~0 in case of tank 30 that the earth does not dry out to such an extent that it is detached from the inner wall 33 of the shell 34 in the region of the zones 36, 37. In order to avoid this drawback, the clay vessel 30 can, of course, also be shaped in correspondence with the tank 1 25 so that the unglazed zones 36, 37 can be located in the inner wall of the bottom.

12~ 3 The irrigation device illustrated in Figure 4 denoted by 40 is fashioned as an insert for a flower - box 41 or a flowerpot. The device consists of a con-tainer 42, for example of a square shape, with an up-5 wardly extending filling nipple 43 that can be tightly sealed by a plug. Two capillary tubes 46, 47 are arranged in the upper wall of the container 42 and extend into the close proximity of the container bottom. Each capillary tube 46, 47 is mounted at the top in a disk 48, 49, which ( 10 latter has an upwardly tapering passage 44, 45 adjoining the bore for the capillary tube and is glued firmly onto the upper container wall. The device 40 operates besically in the same fashion as the tank 1 in that air enters the reservoir of the container 42 through one of the two 15 capillary tubes 46, 47, and water exits through the re-spectively other capillary tube.
In the version 50 of the insert 40 illustrated in Figure 5, the capillary tubes are omitted, and the C upper part of the container wall 51 has instead a recess 52 20 extending almost to the container bottom and having ap-proximately the same shape as the inner walls 5 and 7 of the shell and bottom 2 and 3 of the tank 1 and exhibiting in its bottom 53 likewise two passages 54, 55 corresponding to the passages 17 and 18. Suitably, this embodiment 25 likewise comprises, in correspondence with the tank 1, a ring 20, a drain hole 21, and a predetermined breaking point 22 so that rainwater can be drained from the recess 52 of the device set up in the open air.

:IZ~68~3 The irrigation device 60 illustrated in Figures 6 and 7 is intended for being embedded in the soil, for example in a flower bed, a flower box, and the like. It c~nsists of a tank 61, for example a cylindrical tank, exhibiting at the top an opening which can be sealed off in an airtight fashion by a plug and having a foot 62 at the bottom; on the topside of this foot, which is in-wardly curved and gradually rises from the foot end to a continuously increasing extent toward the vertical tank wall, two passages 63, 64 are provided corresponding to the passages 17 and 18 of the tank 1. Depending on the amount of the earth to be irrigated, several devices 60 can be embedded in the soil at mutual spacings.
It is also possible to provide more than two passages, especially in case of very large irrigation installations. In order to avoid excess watering, care must be taken also in this instance that all of the pas-sages are in an area withmaximum dimensions of n 3 cm, preferably n 1 cm, for example in a circular area with maximally this diameter (n = number of liters of reservoir volume).
Since it is necessary for the functioning of the irrigation device that at least one of the passages is not segregated from the soil by a stone and the like or by a cavity, an absorbent material can be arranged at the passages,this material, in turn, directly adjoining the soil. For example, at least one of the.passages 17, 18 ~2~6883 of the tank 1 can be covered by a piece of felt or another absorbent and/or porous material, the dimensions of the la~ter being such that a foreign body present in the soil can cover only a partial area of the material, thus en~uring a reliable communication of the soil with the absorbent material. However, it has been found that there-by irrigation takes place more quickly, and the danger of excess watering and thus bogginess of the soil arises.
Therefore, this solution is suited practically only ( 10 for the device 60 to be embedded, for example, in the open air into the ground.
The irrigation device can also be utilized for irrigation of cultivated beds in nurseries etc. For this purpose, the device can comprise a water tank, a pipeline network being connected to the underside of this tank.
The passages in this arrangement are provided in the jackets of the pipes; the free ends of relatively large pipes are here to be sealed except for possible passages.
In order to introduce the water, the water tank can com-pxise a connecting nipple for a waterline, which nipplecan be closed by a blocking element. At the top in the tank wall, a check valve can be located through which the air escapes from the tank while water is being filled in.

Claims (10)

1. Automatic irrigation device for cultivated soil, comprising a wall surrounding a reservoir for water and having an opening for introduction of the water, a removable sealing means airtightly sealing said opening, said wall having two passages for the discharge of water from said reservoir and for the entrance of air into the reservoir, said reservoir being airtightly sealed by said wall and said sealing means except for said two passages, said two passages each having an outside end intended for adjoining soil to be automatically irrigated, said outside ends of said two passages being spaced-apart by a distance which is less than n?3 cm, wherein n is the number of liters of the reservoir volume, said passages having diameters in the range of 0.5-5 mm, whereby when soil to be automatically irrigated covers the outside ends of the two passages water from the reservoir can flow out of one of said passages only upon entrance of air through the other of said passages and the flow is stopped when the water after passing said distance reaches the outside end of the other of said passages, preventing the further entrance of air through the other of said passages allowing a vacuum to be formed in the reservoir above the level of the water therein.
2. Automatic irrigation device for cultivated soil, comprising a wall surrounding a reservoir for water and having a opening for introduction of the water, a removable sealing means airtightly sealing said opening, said wall having at 01559-86 GWH:jy least two passages for the discharge of water from said reservoir and for the entrance of air into the reservoir, said reservoir being airtightly sealed by said wall and said sealing means except for said at least two passages, said at least two passages each having an outside end intended for adjoining soil to be automatically irrigated, said outside ends of said at least two passages lying in an area, the maximum extension of said area being less than n?3 cm, wherein n is the number of liters of the reservoir volume, said at least two passages having diameters in the range of 0.5-5 mm, whereby when soil to be automatically irrigated covers the outside ends of the at least two passages, water from the reservoir can flow out of one of said passages only upon entrance of air through another passage and the flow is stopped when the water covers said area, preventing the further entrance of air through one of said passages allowing a vacuum to be formed in the reservoir above the level of the water therein.
3. Device according to claim 1 or 2, characterized in that the inside diameter of the passage is at least 0.5 mm to 2 mm.
4. Device according to claim 2, characterized in that the passages are tapered.
5. Device according to claim 2, wherein said wall has an inner and an outer shell, the passages being arranged in the lower portion of the inner shell, and the interior of the inner shell being open at the top and adapted for being filled with soil.

01559-86 GWH:jy
6. Device according to claim 5 wherein the inner and the outer shell each having a bottom, the passages being holes in the bottom of the inner shell arranged at a distance from the edge thereof, and the bottom of the inner shell from its edge being downwardly curved toward its center, so that air entering the reservoir through one of the passage holes can rise along the bottom of the inner shell.
7. Device according to claim 5 wherein the inner and the outer shell each have a bottom, the passages being holes in the bottom of the inner shell arranged at a distance from the edge thereof, and the bottom of the inner shell being inclined so that air entering the reservoir through one of the passage holes can rise along the bottom of the inner shell.
8. Device according to claim 6 or 7, characterized by at least one spacer means supporting the bottoms of the inner and the outer shell with respect to each other.
9. Automatic irrigation device for cultivated soil, comprising a container having an inner and an outer shell each having a bottom, said bottoms of said inner and outer shell having a central area, each cental area having a drain hole or a predetermined breaking point to break out a drain hole, in order to permit rainwater to drain from the interior of the container set up in the open air, the peripheries of the central area of the bottoms being connected by a spacer ring, said container surrounding a reservoir for the water and having an opening for introduction of the water, a removable sealing means airtightly sealing said opening, said inner shell having at least two passages outside said central area 01559-86 GWH:jy of said bottom for the discharge of water from the reservoir and for the entrance of air into the reservoir, said at least two passages adapted for adjoining soil to be irrigated and having diameters in the range of 0.5-5 mm and being spaced-apart by a distance which is less than n?3 cm, wherein n is the number of liters of the reservoir volume, said container being composed of two components, said ring being formed at one of the components, the one component with the ring being joined to the other component by a splined connection, said splined connection being glued with an adhesive and thus sealed off, said reservoir is airtightly sealed by said inner and outer shell, said ring and said sealing means except for said at least two passages, whereby when soil to be irrigated covers the at least two passages water from the reservoir can flow out of one of said passages only upon entrance of air through the other passage and the flow is stopped when the water after passing said distance covers the other passage, preventing further entrance of air through said other passage allowing a vacuum to be formed in the reservoir above the level of water introduced therein.
10. Automatic irrigation device for cultivated soil comprising a container surrounding a reservoir for water and having an opening for introduction of the water, a removable sealing means airtightly sealing said opening, at least two open capillary tubes, said at least two capillary tubes each having an upper end airtightly seated in the container wall and having a lower end being located in the lowermost portion of said reservoir for the discharge of water from the 01559-86 GWH:jy reservoir and for the entrance of air into the reservoir, said reservoir being airtightly sealed by said container and said sealing means except for the communication with the exterior by said at least two open capillary tubes, said upper ends of said at least two capillary tubes spaced apart by a distance which is less than n?3 cm wherein n is the number of liters of the reservoir volume, whereby when soil to be automatically irrigated covers the upper ends of said two open capillary tubes water from the reservoir can be discharged from one of the capillary tubes only upon entrance of air through the other capillary tube and the discharge is stopped when the water after passing said distance reaches the upper end of the other capillary tube, preventing further entrance of air through the other capillary tube allowing a vacuum to be formed in the reservoir above the level of water introduced therein.
CA000519354A 1985-10-21 1986-09-29 Automatic irrigation device for cultivated soil Expired - Lifetime CA1286883C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH4529/85-5 1985-10-21
CH452985A CH667972A5 (en) 1985-10-21 1985-10-21 Automatic soil watering device

Publications (1)

Publication Number Publication Date
CA1286883C true CA1286883C (en) 1991-07-30

Family

ID=4277798

Family Applications (1)

Application Number Title Priority Date Filing Date
CA000519354A Expired - Lifetime CA1286883C (en) 1985-10-21 1986-09-29 Automatic irrigation device for cultivated soil

Country Status (5)

Country Link
AT (1) AT398021B (en)
AU (1) AU6325586A (en)
CA (1) CA1286883C (en)
CH (1) CH667972A5 (en)
SU (1) SU1678192A3 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995024826A1 (en) * 1994-03-16 1995-09-21 Philip Morgan Wilby An automatic plant watering device
IT1280753B1 (en) * 1995-04-07 1998-02-06 Benito Cacciatore SELF-IRRIGATING POT
RU177568U1 (en) * 2017-05-18 2018-03-01 Сергей ОДОБЕСКУ DEVICE FOR GROWING PLANTS

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3775904A (en) * 1971-07-06 1973-12-04 Universal Prod Dev Corp Self-watering flower pot
US3783555A (en) * 1972-01-03 1974-01-08 Universal Prod Dev Corp Self-watering flower pot
DE2362149A1 (en) * 1973-12-14 1975-06-26 Lommerzheim Hans Ekkehard DEVICE FOR IRRIGATION OF PLANTS
DE2509723A1 (en) * 1975-03-06 1976-09-23 Horst Nicolai Double waller pot plant stand - encloses water container with filler opening connected to pot holding compartment
GB1572701A (en) * 1976-12-08 1980-07-30 Gardenair Natural Plant Decor Apparatus for growing plants

Also Published As

Publication number Publication date
SU1678192A3 (en) 1991-09-15
AU6325586A (en) 1987-04-30
ATA176686A (en) 1994-01-15
AT398021B (en) 1994-08-25
CH667972A5 (en) 1988-11-30

Similar Documents

Publication Publication Date Title
US4756121A (en) Automatic irrigation device for cultivated soil
ES2211789T3 (en) CONTAINER FOR THE GROWTH OF PLANTS.
JP3816444B2 (en) Molded body for improving the cultivation state of plants
US4344251A (en) Self-irrigating pot for plants
US4096663A (en) Plant watering system and process
US6134833A (en) Self-watering plant container
US5546700A (en) Fluid level control system
WO2000018216A1 (en) Linked sub-irrigation reservoir system
US4739581A (en) Flower pot
US5247762A (en) Hydraulic planter system
CA1286883C (en) Automatic irrigation device for cultivated soil
EP1145623B1 (en) Irrigation device for plants in pots, plant container and container assembly including said device
EP0250435A1 (en) A plant pot for miniature plants
RU2070782C1 (en) Device for plant growing with automated soil moistening
JPH10150867A (en) Automatic water supply device for flower bed
KR200251469Y1 (en) Water Tank Flower Case
KR200228643Y1 (en) A Vase for automatic water supply
JPH0525407Y2 (en)
KR200246697Y1 (en) Flowerpot for cultivating a plant
JP3027161U (en) flower pot
JPH10127190A (en) Flowerpot and water base for mounting flowerpot
JPH09308398A (en) Automatic water feed/drain device
KR102303717B1 (en) Automatic watersupply device for flowerpot
CN1031921A (en) Watered the flowerpot of a water in 1 year
JPH10113081A (en) Plant cultivation device and plant shelf

Legal Events

Date Code Title Description
MKLA Lapsed