CA1268829A - Apparatus for electrically interconnecting vibrating structures - Google Patents

Apparatus for electrically interconnecting vibrating structures

Info

Publication number
CA1268829A
CA1268829A CA000516776A CA516776A CA1268829A CA 1268829 A CA1268829 A CA 1268829A CA 000516776 A CA000516776 A CA 000516776A CA 516776 A CA516776 A CA 516776A CA 1268829 A CA1268829 A CA 1268829A
Authority
CA
Canada
Prior art keywords
mounting
insulating
insulating means
support structure
structures
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA000516776A
Other languages
French (fr)
Inventor
Dean Edward Lowe
Donald Reed Cage
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Micro Motion Inc
Original Assignee
Micro Motion Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Micro Motion Inc filed Critical Micro Motion Inc
Application granted granted Critical
Publication of CA1268829A publication Critical patent/CA1268829A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

Abstract An apparatus comprising an insulated flexible circuit having conductors therein for electrically interconnecting vibrating structures having a half-loop shaped section between the structures so that the vibration does not cause fatigue and breaking of the conductors or insulation and which also minimizes coupling of mechanical forces between the structures that can alter vibrating motion of the structures. The flexible circuit apparatus is particularly useful for Coriolis type mass flow metering devices.

Description

38~9 TITLE

AP~A~ATUS FOR ELECTRICALLY INTERCONNECTING
VIBRATING STRUC~URES

Back~round of the Invent'on Field of the Invention The invention set ,out and claimed here relates to providing electrical conductors for signal txansmission between two mechanical structures, at least one of which is vibrating with respect to the other. The electrical conductors can be insulated wi~h respect to each other and are arranged between the vi`brating structures so ~hat vibration does not cause fatigue and breaking of the conductors and also minimizes coupling of mechanical forces and damping between th~
structures.
Description of the Prior Art The ~rrangements for mounting wires for transmission of electrical signals between vibrating structures which are continuously vibrated are in part limited by sever~l consequences arising from the vibration.~ Prolonged alternating motion of wi.res can cause the wires to experience fatigue which leads to their breaking, or can lead to their kinking which in combination with the cyclic motion exacerbates fatigue and causes the wires to break.
Another consequence of mounting wir~s from vibrating structures is that damping forces or driving forces can be coupled to the vibrating structures.
Damping forces arise for example from ~1) friction ~6~ 9
- 2 -between wires or in some arrange~ents friction between the wires and adjacent structures (these frictional forces arise even when the insulating material on the wires is a synthetic resin polymer lubricating material such as is sold under the trademark Teflon), and (2) the internal structure of the material itself.
Examples of driving foxces include those which result from adjacent vibrating machinery. Coupling damping and driving forces to vibrating structures will alter the motion of the vibrating structures, which in many applications is an unacceptable consequence when unaltered vibrating motion of the structure is to be measured.
As an example of an attempt to compromise these problems, it has been known in the manufacture of Coriolis mass flow rate meters where flow tubes are continuously vibrated with respect to support structures that wires can be wrapped around the flow tubes from their base, where the flow tubes are solidly mounted to a support and not vibrated, up to locations on the vibrated flow tubes where the wires are connected to sensors and other electrical components.
Wires can also be laid along the length of flow tubes - and taped or glued to them.
Having wires wrapped or affixed, by tape or glue for example, to vibrating structures substan~ially precludes kinking problems because the wires are essentially kept in line and prevented from kinking by the structure to which they are mounted. As ~or the problem of fatigue, if the mechanical characteristics of the wires are at least equivalent to or even better than those of the vibrated structure, mechanical fatigue of the wires is a comparable engineering problem to that for the vibrated structure. However, these solutions, wrapping, taping or gluing, add additional mass to the flow tubes due to either the 8~
- 3 additional lengths in the conductor5 when wound around the flow tubes or the added tape and glue. This additional mass can alter the vibrating motion of the structure. In addition, because the effects of humidity and temperature on the glue and tape are not uniform, differential damping in the glue and tape can occur which can alter the vibrating motion of the structures. Thus, it would be advantageous to have an apparatus for electrically interconnecting vibrating structures that would provide for secure attachment of the conductors while minimizing the conductor length or the use of tape and glue.
Addressing the problem of minimizing the coupling of damping and driving orces to vibrating structures is a distinct problem from preventing kinking and fatigue. Continuing with the example of Coriolis mass flow rate meters, unless the wires are very light, such as 34 gauge and the structure about which it is wrapped is suhstantially more massive, such as a 2.54 centimeter (cm) diameter stainless steel flow tube having a 0.3 cm wall thickness, the magnitude of coupled forces to the vibrating structure cannot necessarily be ignored. Another factor which can exacerbate the problem of forces being coupled to vibrating structures arises when wires are wrapped or in some way attached to more than one portion of a vibrating structure because the damping -forces or driving forces coupled to the two portions may not be the same. Therefore, the sum of the different forces can cause the structure to twist.
Reducing the gauge of the wire used, tailoring the insulation on wires to minimize stiffness and friction, and using the most fle~ible but still temperature insensitive wire possible are readily available considerations engineers can make when faced with the problem of transmission of electrical signals along conductors mounted between vibrating structures.
However, these specification considerations alone will not alwayc be sufficient. Accordingly, it is one object of the invention to provide a means for mounting wires between vibrating structures that will essentially minimize wire breakage and the coupling of damping and driving forces that can alter ~he motion of the vibrating structures. Another object of the invention is to be able to provide for secure attachment of the conductors to a vibrating structure while minimizing the conductor length or the use of tape and glue.

Summary_of the I_vention The invention set out and claimed here overcomes the deficiencies of prior methods for mounting wires between vibrating structures without compromising solutions for preventing wire breaking and coupling of forces to vibrating structures against each other and in particular to vibrating structures found in Coriolis mass flow meters.

.
4a Various aspects of this invention are as Eollows:
An apparatus having multiple electrical conductors for electrically interconnecting at least two structures, one of which is vibrating with respect to the other, comprising:
(a) flexible insulating means for maintaining said multiple electrical conductors in essent~ally parallel relationships in a plane over a first distance along the length of said electrical conductors which is greater than the rectilinear distance between said structures where said insulating means is mounted; and, (b) stiffening means at each end of said first distance of said insulating means adjacent the locations where said insulating means is attached to said structures, said stiffening means comprises maintaining an essentially constant first width for said insulating means across said plane and along said first distance except at both ends where there are increases in said first width prior to the locations where said insulating means is attached to said structures, said increases in said first width about said ends being substantially symmetrical, smoothly outwardly tapering increases about a centerline of said plane extending between said ends.
In a Coriolis mass flow meter comprising a flow tube, mounting means for said flow tube, means for vibrating said flow tube with respect to said mounting means and means for sensing the deflection of said flow tube caused by fluid flow throuyh said flow tube and for producing a signal representative of said deflection, support structure means mounted adjacent said flow tube for supporting said means for vibrating and said means for sensing, an apparatus having multiple electrical conductors for electrically interconnecting said means for vibrating and said means for sensing on said support structure means with said mounting comprising:

~6~ 9 4b (a) flexible insulating means for maintaining said multiple electrical conductors in essentially parallel relationships in a plane over a first distance along the length of said electrical conductors which is greater than the rectilinear distance between said mounting means and said support s~ructure means where said insulating means is mounted; and, (b) stiffening means at each end of said first distance of said insulating means adjacent the locations where said insulating means is attached to said mounting means and said support structure, said stiffening means comprises maintaining an essentially constant first width for said insulating means across said plane and along said first distance except at both ends where there are increases in said first width prior to the locations said insulating means is attached to said mounting means and said support structure means, said increases in said first width about said ends being substantially symmetrical, smoothly outwardly tapering increases about a centerline of said plane extending between said ends.
In a Coriolis mass flow meter comprising a flow tube, mounting means for said flow tube, means for vibrating said flow tube with respect to said mounting means and means for sensing the deflection of said flow tube caused by fluid flow through said flow tube and for producing a signal representative of said deflection, support structure means mounted ad~acent said flow tube for supporting said means for vibrating and said means for sensing, an apparatus having multiple electrical conductors for electrically interconnecting said means for vibrating and said means for sensing on said support structure means with said mounting comprising:
(a) flexible insulating means for maintaining said multiple electrical conductors in essentiall.y parallel relationships in a plane over a first distance 38~9 4c along the length of said electrical conductors which is greater than the rectilinear distance between said mounting means and said support structure means where said insulating means is mounted:
(b) stiffening means for stiffening said flexible insulating means at each end of said first distance of said insulating means adjacent the locations where said insulating means is attached to said mounting means and said support structure, said stiffening means comprising maintaining an essentially constant first width for said insulating means across said plane and along said first distance except at both ends where said first width is increased in a gradual, smoothl~, outwardly tapering manner prior to the locations where said insulating means is attached to said mounting means and said support structure means; and, adhesive mounting means for mounting said insulating means to said mounting means and said support structure means in a fixed relationship.
All wires for conducting electrical signals from vibrating structures according to the apparatus of the present invention are transmitted using wires mounted at one end to one of the structures and mounted at the other end to the other structure with the sections of the wires between the mounted ends being maintained in free suspension. The wires are shaped in the space between their mountings in a semi-circular loop shape.
The loop shape permits rolling motions for the wires about axes essentially perpandicular to the line between the locations on the structures where the wires are mounted. This loop shape and rolling motion ~'~6~

prevents kinking and avoids bending which both accelerate fatigue and fracture.
To minimize coupling of any forces either damping or driving to vibrating structures the wires are mounted from the vibrating structures at essentially the axes defined by deflection of the vibrating structures. In particular, the deflection axes chosen are those having the shortest distances from the intersection on the structure of the deflection axes to where the wires must be connected to the electrical components on the structures. So mounting the wires minimizes the moment arms from the axes to the wires and therefore minimizes coupling of external force effects to the vibrating structures.
Previously, use of suspended semi-circular loop shapes for wires, and mounting wires adjacent deflection axes has been disclosed for Coriolis mass flow rate meters; see Canadian Patent Application Serial No.
517,048, Sensor Mounting for Coriolis Mass Flow Rate Meter, filed August 28, 1986, and United States Patent
4,738,143, High Temperature Coriolis Mass Flow Rate Meter, issued April 19, 1988; both assigned to the assignee of the present invention.
Though use of flexible circuits in the form of flat flexible ribbon is disclosed in Canadian Patent Application Serial No. 517,048, continuously maintaining the half-loop shape of the suspended flexible circuit section remains a difficult task. If the half-loop shape is not continuously maintained, the suspended section can transition to another shape, such as an "S" shape. The transition to another shape or periodic transitioning between shapes will invariably cause kinking and fatigue as the flexible circuit is vibrated. It is a purpose of the present invention to \

assure continuous maintenance o only the semi-circular shape for the flexible circuit.
A preferred embodiment for the present invention utilizes a flexible circuit with multiple conductors.
Adjacent each end where the flexible circuit is - mounted, the flexible circuit increases in width from the width in the region where the wires are maintained in the half-loop shape. The increased widths assures maintenance of the semi-circular loop shape thus preventing kinking and fatigue of the flexible circuit between the mounted ends. Alternate embodiments include providing the flexible circuit with a sheet ~etal layer or metallized layer that can be used to spot weld the flexible circuit to the vibrating lS structure.

Brief Description of the Drawings This and other advantages and novel features of the present invention will be more readily apprehended from the following detailed description when read in conjunction with the appended drawings, in which:
FIG 1 is a perspective view showing an embodiment of the present invention as mounted on a Coriolis mass flow rate meter;
FIG 2 is a front view of the flexible circuit of the present invention;
FIG 3 is a sectional view of the flexible circuit o~ the present invention as shown in FIG 2 taken along line 3-3;
FIG 4 is a sectional side view of a Coriolis mass flow rate meter with an emhodiment of the present nvention mounted on the meter;

FIG 5 is a sectional view of the flexible circuit of the present invention as shown in FIG 2 taken along line 5-5;
Corresponding components are designated by the 5same reference numerals throughout the various figures.

Detailed Description of the Invention 10Application of the. invention for use on Coriolis mass flow rate meters will be shown here~ However, use on Coriolis mass flow rate meters only is not to be understood as a limitation for the use of the present invention. The invention can in fact, as would be 15understood in the art, be used on any electromechanical structure where electrical signals are to be transmitted between vibrating structures.
- Use of the invention on a Coriolis mass flow rate meter 10 is shown in FIG 1. The Coriolis mass flow 20rate meter 10, for purposes of understanding the present invention, includes two continuous flow tubes 12 which are driven to vibrate about their fixed mountings 14 and spacer plates lS by a vibration driver 16. The components of the vibration driver 16 are 25connected to ~he flow tubes 12 by support bars 18.
Also mounted on the support bars 18 are the components for two electrical sensors 20. These electrical sensors 20 respond to deflection of the flow tubes 12 about the A-A axes caused by fluid flow through the 30vibrating flow tubes 12. Therefore, coupling of damping and driving forces to the flow tubes 12 must be minimized.
Electrical si.gnals have to be provided to the vibration driver 16 and must also be transmi~ted from 35the sensors 20. Prior to the present invention it was known that wires could be wrapped about the flow tubes - - -12 starting adjacent to the fixed mounting 14 up to the support bars 18 and then the wires were directed along the support bars 18 to the vibration driver 16 and sensors 20. Such routing of wires invariably causes damping forces to be transmitted to the vibrating flow tubes 12. These dampin~ forces, which for example, can be caused by friction between the wires and the flow tubes 12, will change the amount of deflection of the flow tubes 12 about axes A-A. Changes in the amount of deflection caused by damping forces from wires are errors in measurements of fluid flow and have to be substantially minimized or eliminated. It has also been previously known to use half-loop shaped suspended wires, including flexible circuits, mounted from one of the support bars 18 to stationary support 19. However, assuring the maintainence of the half-loop shape when the flow tubes are vibrated or oscillated lS a problem unaddressed by the prior art.
The present invention overcomes these and other deficiencies in the prior art. The invention uses a flexible circuit 22 (see FIG 2) which can be built up from a synthetic insulating reinforcement layer 24 such as sold under the trademark Kapton ~see FIG 3) with rolled annealed copper conductors 26 on the reinforcement layer 24. Over the copper conductors 26 another synthetic insulating cover layer 28 can then be laid. The reinforcement and cover layers (24 and 28) are thin, for example, on the order of 0.12 ~o 2.5 thousandths of a centimeter, so as to be flexible.
Accordingly, the copper conductors 26 are also very thin, for example, 3.5 thousandths of a centimeter.
The flexible circuit 22 can be mounted to the Coriolis mass flow rate meter lO by use of a pressure sensitive external adhesive 30, as known in the art, which is laid down on the reinforcement layer 24 on .iB~ 3 those regions of the flexible circuit 22 where the flexible circuit 22 will be in contact with structures of the Coriolis mass flow rate meter 10 such as on the stationary support l9 or along the support bars 18.
Prior to mountin~ the flexible circuit 22 a release liner 32, as is also known in the art, is laid over the pressure sensitive external adhesive 30 to protect it.
(See FIG 5).
Alternate means for fastening the flexible circuit to the support bar include providing a metalized layer or a thin sheet metal layer in lieu of or in conjunction with the adhesive layer 30. When used, the metalized layer could be secured to the support bar 18 by spot welding or soldering. Where both an adhesive layer and a metallized layPr are used, the adhesive layer would be used to position the circuit until the spot welding ox soldering was finished. Alternatively, the portions of the flexible circuit along the support bar 18 could be provided with holes through which screws, spot welded retainers or tabs, or other conventional fasteners could be inserted and which would extend into correspondingly positioned holes in the support 13.
For a preferred embodiment of the invention as used on the Coriolis mass flow rate meter 10, the elec~rical signals from the vibration driver 16 and sensors 20 on the Coriolis mass flow rate meter 10 are transmitted via flexible circuit 22 between a support bar 18 attached to a vibrating flow tube 12 and a stationary support 19 mounted on the base 36 of the Coriolis mass flow rate meter 10. The flexible circuit 22 is mounted so that a throat section 38 of the flexible circuit 22 in which the nece~sary number of copper conductors 26 are laid out substantially parallel to each other and as closely spaced from each other as is convenient is positioned or suspended in the space between the support bar 18 and the stationary support 19.
The length of the throat section 38 of the flexible circuit 22 is greater than the rectilinear distance between support bar 18 and the stationary support 19. Therefore, the throat section 38 will, as a first shape, form a half-loop between the support bar 18 and the stationary structure 19 (See FIG 4). Other - 10 shapes could possibly be formed such as an "S"shape.
All shapes other than a half-loop shape, however, are not preferred. For shapes other than the half-loop shape, care must he taken to assure that shape of the throat section 38 cannot transition between alternate shapes. For example, a S-shaped section could transition between the half-loop shape and its S-shape.
Further, no sharp bends can be allowed to be formed along the length of the throat section 18 of the flexible circuit 22 because sharp bends when repeatedly vibrated by the relative motion between the stationary support 19 and the support bar 18 will lead to fatigue breaking of the copper conductors 26, the reinforcement layers 24, or both.
The half-loop shape of the throat section 38 results in a rolling motion or a wave-like motion of the flexible circuit 22 as the support bar lB moves with respect to the stationary support 19. We have discovered that to continuously maintain the half-loop shape and preclude sharp bends from forming in the regions adjacent the locations where the flexible circuit 22 is mounted, the widths, Dl and D~, of the portions of the suspended flexible circuit 22 are increased from the width, D~, of the throat section 38 prior to the two locations where the flexible circuit 3s 22 is fixedly mounted. This increases the stiffness of the flexible circuit 22 over that of the throat section 38. This increase in stiffness assures maintenance of the half-loop shape within the region of the throat section 38 and prevents sharp bending adjacent the mounting locations of the flexible circuit 22. The transition from width Do to width D1 and that from width Do to width D2 should not be abrupt but should be a gradual, smoothly, outwardly tapering area along each of the lateral edges of the flexible circuit 22 as shown in FIG 2. Preferably, this outwardly tapering region occurs in an essentially symmetrical fashion about the longitudinal centerline L-L. With an abrupt transition at the points of attachment, the flexible circuit would flex like a hinge at the points of attachment which, in turn, would con~entrate stress in a highly localized region that would fatigue the conductors. The increased stiffness, however, does not . increase coupling of forces to the flow tube 12. The force components which result from the increased stiffness are directed to preventing sharp bending, such as would cause creasing, of the flexible circuit 22 adjacent the fixed mountings and maintaining of the half-loop shape that minimize~ the coupling of forces to the flow tube 12. Coupling of forces to flow tube 12 is most effectively accomplished by flexible circuit 22 when the damping or driving forces are aligned parallel to the longitudinal axis L-L lsee FIG 2) of flexible circuit 22. This would result in a pulling or pushing of the flexible circuit 22 in a straight line.
However, because of the half-loop shape in the region of the throat section 38, the flexible circuit 22 is prevented from aligning forces along longitudinal axis L-L of the flexible circuit 22.
The above discussion and related illus~rations of the present invention are directed primarily to "

preferred embodiments and practices of the invention.
However, it is believed that numerous changes and modifications in the actual implementation of the concepts described herein will be apparent to those skilled in the art, and it is contemplated that such changes and modifications may be made without departing from the scope of the invention as defined by the following claims.

. . .:

Claims (15)

The embodiments of the invention in which an exclusive property or privilege is claimed are defined as follows:
1. An apparatus having multiple electrical conductors for electrically interconnecting at least two structures, one of which is vibrating with respect to the other, comprising:
(a) flexible insulating means for maintaining said multiple electrical conductors in essentially parallel relationships in a plane over a first distance along the length of said electrical conductors which is greater than the rectilinear distance between said structures where said insulating means is mounted; and, (b) stiffening means at each end of said first distance of said insulating means adjacent the locations where said insulating means is attached to said structures, said stiffening means comprises maintaining an essentially constant first width for said insulating means across said plane and along said first distance except at both ends where there are increases in said first width prior to the locations where said insulating means is attached to said structures, said increases in said first width about said ends being substantially symmetrical, smoothly outwardly tapering increases about a centerline of said plane extending between said ends.
2. The apparatus according to claim 1 further comprising means for mounting said insulating means to said structures in a fixed relationship.
3. The apparatus of claim 2 wherein the means for mounting said insulating means is an adhesive layer provided on said insulating means coincident to the locations where said insulating means is attached to said structures.
4. The apparatus of claim 2 wherein the means for mounting said insulating means is a metal layer provided on said insulating means coincident to the locations where said insulating means is attached to said structures whereby said metal layer can be spot welded to said structures.
5. The apparatus according to claim 1 further comprising means for mounting said insulating means to said structures in a fixed relationship.
6. The apparatus of claim 5 wherein the means for mounting said insulating means is an adhesive layer provided on said insulating means coincident to the locations where said insulating means is attached to said structures.
7. The apparatus of claim 5 wherein the means for mounting said insulating means is a metal layer provided on said insulating means coincident to the locations where said insulating means is attached to said structures whereby said metal layer can be spot welded to said structures.
8. In a Coriolis mass flow meter comprising a flow tube, mounting means for said flow tube, means for vibrating said flow tube with respect to said mounting means and means for sensing the deflection of said flow tube caused by fluid flow through said flow tube and for producing a signal representative of said deflection, support structure means mounted adjacent said flow tube for supporting said means for vibrating and said means for sensing, an apparatus having multiple electrical conductors for electrically interconnecting said means for vibrating and said means for sensing on said support structure means with said mounting comprising:
(a) flexible insulating means for maintaining said multiple electrical conductors in essentially parallel relationships in a plane over a first distance along the length of said electrical conductors which is greater than the rectilinear distance between said mounting means and said support structure means where said insulating means is mounted; and, (b) stiffening means at each end of said first distance of said insulating means adjacent the locations where said insulating means is attached to said mounting means and said support structure, said stiffening means comprises maintaining an essentially constant first width for said insulating means across said plane and along said first distance except at both ends where there are increases in said first width prior to the locations said insulating means is attached to said mounting means and said support structure means, said increases in said first width about said ends being substantially symmetrical, smoothly outwardly tapering increases about a centerline of said plane extending between said ends.
9. The apparatus according to claim 8 further comprising means for mounting said insulating means to said mounting means and said support structure means in a fixed relationship.
10. The apparatus of claim 9 wherein the means for mounting said insulating means is an adhesive layer provided on said insulating means coincident to the locations where said insulating means is attached to said mounting means and said support structure means.
11. The apparatus of claim 9 wherein the means for mounting said insulating means is a metal layer provided on said insulating means coincident to the locations where said insulating means is attached to said mounting means and to said support structure means whereby said metal layer can be spot welded to said mounting means and said support structure means
12. The apparatus according to claim 8 further comprising means for mounting said insulating means to said mounting means and said support structure means in a fixed relationship.
13. The apparatus of claim 12 wherein the means for mounting said insulating means is an adhesive layer provided on said insulating means coincident to the locations where said insulating means is attached to said mounting means and said support structure means.
14. The apparatus of claim 12 wherein the means for mounting said insulating means is a metal layer provided on said insulating means coincident to the locations where said insulating means is attached to said mounting means and to said support structure means whereby said metal layer can be spot welded to said mounting means and said support structure means.
15. In a Coriolis mass flow meter comprising a flow tube, mounting means for said flow tube, means for vibrating said flow tube with respect to said mounting means and means for sensing the deflection of said flow tube caused by fluid flow through said flow tube and for producing a signal representative of said deflection, support structure means mounted adjacent said flow tube for supporting said means for vibrating and said means for sensing, an apparatus having multiple electrical conductors for electrically interconnecting said means for vibrating and said means for sensing on said support structure means with said mounting comprising:
(a) flexible insulating means for maintaining said multiple electrical conductors in essentially parallel relationships in a plane over a first distance along the length of said electrical conductors which is greater than the rectilinear distance between said mounting means and said support structure means where said insulating means is mounted;
(b) stiffening means for stiffening said flexible insulating means at each end of said first distance of said insulating means adjacent the locations where said insulating means is attached to said mounting means and said support structure, said stiffening means comprising maintaining an essentially constant first width for said insulating means across said plane and along said first distance except at both ends where said first width is increased in a gradual, smoothly, outwardly tapering manner prior to the locations where said insulating means is attached to said mounting means and said support structure means; and, adhesive mounting means for mounting said insulating means to said mounting means and said support structure means in a fixed relationship.
CA000516776A 1986-05-22 1986-08-28 Apparatus for electrically interconnecting vibrating structures Expired - Fee Related CA1268829A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US86571586A 1986-05-22 1986-05-22
US865,715 1986-05-22

Publications (1)

Publication Number Publication Date
CA1268829A true CA1268829A (en) 1990-05-08

Family

ID=25346078

Family Applications (1)

Application Number Title Priority Date Filing Date
CA000516776A Expired - Fee Related CA1268829A (en) 1986-05-22 1986-08-28 Apparatus for electrically interconnecting vibrating structures

Country Status (2)

Country Link
CA (1) CA1268829A (en)
DE (1) DE3650535T2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008035877A1 (en) 2008-08-01 2010-02-04 Endress + Hauser Flowtec Ag Vibration-type transducers
DE102009060834B4 (en) * 2009-12-29 2012-11-29 Krohne Ag Coriolis mass flowmeter
DE102014109116A1 (en) * 2014-06-30 2015-12-31 Krohne Ag Coriolis mass flowmeter
DE102020123999A1 (en) * 2020-09-15 2022-03-17 Endress+Hauser Flowtec Ag Vibronic sensor with eccentric excitation

Also Published As

Publication number Publication date
DE3650535D1 (en) 1996-07-25
DE3650535T2 (en) 1997-02-06

Similar Documents

Publication Publication Date Title
US4955239A (en) Apparatus for electrically interconnecting vibrating structures
EP0553939B1 (en) Coriolis flowmeter
US4876898A (en) High temperature coriolis mass flow rate meter
US7237950B2 (en) Optical fiber temperature sensor and temperature measuring method
CA1254419A (en) Optical fibre element
JPS6017808A (en) Flexible aerial wire
JPH04229508A (en) Composite communication cable
JPS6329715A (en) Communication cable with light waveguide body
JPH01173509A (en) Manufacture of cable
GB2177231A (en) A composite overhead cable structure for electric and optical transmission
JPH0623122U (en) Overhead electrical conductor
CA2247678A1 (en) Ribbon optical cable having improved strength
CA1268829A (en) Apparatus for electrically interconnecting vibrating structures
JPS581108A (en) Optical cable
CN118016352A (en) Star-structured optical cable, optical fiber ribbon optical cable and optical cable
JPS62229212A (en) Strip transmission line having light waveguiding body
JP4490511B2 (en) Optical fiber element
DE69602612D1 (en) CONNECTING DEVICE FOR AT LEAST TWO SHEATHING CONDUCTIVE WIRES
JPS63201611A (en) Flat plate type optical fiber cable for branching
US6175081B1 (en) Structure of a signal transmission line
JP3802776B2 (en) Optical fiber built-in insulator
JPS5940408A (en) Self-standing cable with connector
JPH04170507A (en) Optical fiber
JPH034079Y2 (en)
JP2001296190A (en) Optical fiber cable for distortion sensor and laying method thereof

Legal Events

Date Code Title Description
MKLA Lapsed