CA1260417A - Laundry softening detergent - Google Patents
Laundry softening detergentInfo
- Publication number
- CA1260417A CA1260417A CA000508962A CA508962A CA1260417A CA 1260417 A CA1260417 A CA 1260417A CA 000508962 A CA000508962 A CA 000508962A CA 508962 A CA508962 A CA 508962A CA 1260417 A CA1260417 A CA 1260417A
- Authority
- CA
- Canada
- Prior art keywords
- bentonite
- siliconate
- particles
- detergent
- sodium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Detergent Compositions (AREA)
Abstract
LAUNDRY SOFTENING DETERGENT
ABSTRACT OF THE DISCLOSURE:
A heavy duty laundering and textile softening detergent composition, in particulate form, useful for automatic machine washing of laundry in water, especially hot water, and readily dispensable from a charging compart-ment of an automatic washing machine (by action of water being fed through such compartment) includes a synthetic organic detergent, a builder for such detergent and a laundry softening proportion of bentonite, with which there is present a dispensing assisting proportion of a silicon-ate or similarly functioning derivative of such siliconate.
In addtion to tending to inhibit firm adherence to the charging compartment walls of the bentonite, which is advan-tageously in separately agglomerated bead form, and promoting release thereof from such walls, the siliconate also aids in controlling the foaming activity of the built synthetic organic detergent and in strengthening the bentonite agglo-merates. It also assists in stabilizing perfumes, dyes and bleaches, when such are present in the detergent compositions when it is employed in coatings for particles containing such components.
ABSTRACT OF THE DISCLOSURE:
A heavy duty laundering and textile softening detergent composition, in particulate form, useful for automatic machine washing of laundry in water, especially hot water, and readily dispensable from a charging compart-ment of an automatic washing machine (by action of water being fed through such compartment) includes a synthetic organic detergent, a builder for such detergent and a laundry softening proportion of bentonite, with which there is present a dispensing assisting proportion of a silicon-ate or similarly functioning derivative of such siliconate.
In addtion to tending to inhibit firm adherence to the charging compartment walls of the bentonite, which is advan-tageously in separately agglomerated bead form, and promoting release thereof from such walls, the siliconate also aids in controlling the foaming activity of the built synthetic organic detergent and in strengthening the bentonite agglo-merates. It also assists in stabilizing perfumes, dyes and bleaches, when such are present in the detergent compositions when it is employed in coatings for particles containing such components.
Description
PARTICLES FOR LAUNDRY SOFTENING DETERGENT
This invention relates to particles useful for in-corporation into a particulate heavy duty detergent composition for use in automatic washing machines and is a divisional app-lication from Canadian Patent Application No. 425,408, filed April 7th, 1983 which relates to detergent compositions. More particularly, it relates to particulate heavy duty laundering and textile softening detergent compositions intended for use in the machine washing of laundry. It also relates to methods for the manufacture of such compositions.
Bentonite is advantageous as a softening agent in detergents. The softening properties of bentonite and its de-sirable adherence to substrates are important advantages but its "gelling" characteristics can cause an objectionable gummi-ness in the detergent, which sometimes will tend to hold deter-gent beads and/or bentonite beads or agglomerates to surfaces, thereby tending to inhibit free flow. Thus, under conditions of high humidity or in the presence of free moisture bentonite can "gell" and become sticky or of reduced flowability, even becoming held to passageway or chamber walls despite applicat-ions of forces to the particles to remove them (such as the force of flowing water being charged to an automatic washing machine). Such adherence could be significantly disadvantag-eous for a desirably free flowing commercial particulate de-tergent product and could lead to a lesser degree of acceptance of the product by the consumer. Even when flowability through production lines during the manufacturing and packaging pro-cesses, and flowability from the dispensing carton when the i2~ 7 product ls being employed by the ultimate consumer are satisfactory, the presence of bentonite can cause the detergent composition particles to be held to appliance part walls, especially charging compartment walls, of washing machines equipped with means for automatically charging detergent composition to the wash water in the machine tub or drum, when such particles and the bentonite present are moistened. In such circumstances the bentonite may tend to swell, with the production of moist adherent surfaces, so that the particles may resist removal from surfaces against which they are resting. For example, in washing machines and other appliances equlpped with automatic dispensers or charging compartments, the detergent particles may not entirely fall from the dlspenser or be washed out of the dispenser, especially if the dispenser walls had been wet before addition of the detergent.
Failure to dispense part of the desired charge to the washing machine diminishes the effective detergent and softener concentratlons of the wash water and can lead to inaccurate detergent and softener concentrations being employed. Also, it may create an unsightly bulld-up, which may be objectionable to the consumer. In either situation the result is undesirable and should be avoided, if possible.
-2a-~,, ~ rJ~
12fi~ ~17 The invention provides particles useful for incorporation into a particulate heavy du~-y detergent compo3itlon for use in automatic washing machines made of compositions selected from ~he group consisting of, (a) bentonite with which there is included a dispensing assisting proportlon of a siliconate or a dispensing assisting derivative thereof;
~ b) sodium perborate at least partially coated wlth a siliconate or a derivative thereof; and, (c) enzyme at least partially coated with a siliconate or a derlvatlve thereof.
The invention of the parent applicatlon provides a heavy duty laundering and textlle softenlng particulate detergent compositlon, useful for automatic machine washing of laundry in water and dl~pensable from a charging or dispensing compartment, of such a machine by action of water being fed through such compartment, comprilses a bullt synthetic organic deterqent whlch iB an anionic or nonionic detergent or a mixture thereof, a building proportion of a builder for the synthetic organlc detergent whlch ls a water soluble or water lnsoluble bullder or a mixture thereof, and a softening proportion of bentonite, with the bentonite being in particles wlth whlch there ls included a dispensing assisting proportion, preferably at least 0.15%, of a siliconate or a dispensing assisting derivative thereof. In preferred embodiments of the invention the synthetic organic deter-gent includes both an anionic detergent, which is prefer-ably a sodium linear higher alkylbenzene sulfonate, and a nonionic detergent, which is preferably a condensation product of a higher fatty alcohol and polyethylene oxide, a higher fatty acid soap is present, the builder salt is primarily pentasodium tripolyphosphate or NTA or a mixture thereof, with a small proportion of sodium silicate, the bentonite is a swellinq bentonite of a moisture content of at least 3~, the siliconate is an alkali metal lower alkyl siliconate, more preferably potassium methyl siliconate, and 5 to 35% of a bleaching agent which releases oxygen in aqueous solution at elevated temperature, such as sodium perborate, is present. Also within the invention are methods for making the improved products that have been described herein.
The synthetic organic detergent(s) employed will normally be either nonionic or anionic and very preferably will be a combination of both, but suitable amphoteric or ampholytic detergents, such as those sold under the Miranol trademark, may also be used in conjuction with nonionics and anionics in the present compositions. Cationic deter-gents, such as the quaternary ammonium halides, e.g., those sold under the Arosurf trademark, can also serve as supple-mentary fabric softeners in these products but normally will not be used Various synthetic anionic organic detergents, such as those characterized as sulfonates and sulfates, usually as alkali metal or sodium salts, may be employed, but those '' ~26~7 which are most preferred are linear higher alkyl benzene sulfonates, higher alkyl or fatty alcohol sulfates and higher fatty alcohol polyethoxy or polyethoxylate sulfates.
Preferably, in the higher alkyl benzene sulfonates the higher alkyl is linear and of 10 to 14 carbon atoms, more preferably 11 to 13, e.g., 12, and the sulfonate is a sodium salt. The alkyl sulfate is preferably a higher fatty alkyl or alcohol sulfate of 10 to 16 carbon atoms, more preferably 12 to 14 carbon atoms, e.g., 12, and is also employed as the sodium salt The higher fatty alcohol polyethoxy sulfates will preferably be of 10 to 18 carbon atoms, more preferably 12 to 16, e.g., 12, in the higher fatty alcohol, the ethoxy content will preferably be from 3 to 30 ethoxy groups per mol, more preferably 3 or 5 to 20, and the detergent will be a salt of sodium. Thus, it will be seen that the alkyls of the sulfonates and sulfates are preferably linear or fatty higher alkyls of 10 to 18 carbon atoms, the cation is preferably sodium, and when a polyethoxy chain is present the sulfate is at the end thereof.
Other useful anionic detergents include the higher olefin sulfonates and paraffin sulfonates, e.g., the sodium salts wherein the olefin or paraffin groups are of 10 to 18 carbon atoms. Specific examples of the preferred detergents are sodium dodecyl benzene sulfonate, sodium tallow alcohol polyethoxy (3 EtOI sulfate, and sodium hydrogenated tallow alcohol sulfate. In a~dition to the preferred anionic deter-gents mentioned, others of this well known group may also be present, especially in only minor proportionS with respect to those previously described. Also, mixtures thereof may be employed and in some cases such mixtures can be superior lZ6~417 to single detergents.
Although various nonionic detergents of satis-factory physical characteristics may be utilized, including condensation products of ethylene oxide and propylene oxide with each other and with hydroxy-containing aromatic and aliphatic bases, such as nonyl phenol and Oxo-type alcohols, it is highly preferred that the nonionic detergent be a higher fatty alkoxy poly-lower alkoxy lower alkanol, which may also be described as a condensation product of ethylene oxide ~and/or propylene oxide) and higher fatty alcohol.
In such products the higher fatty alkoxy or alcohol i~ of 10 to 16 carbon atoms, preferably 12 to lS carbon atoms, and the nonionic detergent contains from about 3 to 20 lower alkoxy groups, preferably 5 to lS, and more preferably 9 to 13 ethylene oxide groups per mol, e.g., 11.
The builder for the synthetic organic detergent, which helps to improve the washing action of the detergent, is either a water soluble or a water insoluble builder or a mixture thereof. Of course, mixtures of water soluble builders may also be utilized, e.g., polyphosphate and NTA
(nitrilotriacetic acid salt, normally the sodium salt), but of the water insoluble builders usually only the zeoliteswill be present, although mixtures of such zeolites may also be found to be advantageous. While zeolites are useful com-ponents of the present compositions, generally it will be preferable to employ water soluble builder(s), and often such will be the only builder(s) present.
The water soluble builder or mixture thereof employed may be one or more of the conventional materials that have been used as builders or suggested for such purpose.
These include inorganic and organic builders, and mixtures , '~ , ~ -6-6~7 62301-1221D
thereof. Among the inorganic builders those of preference are the various phosphates, preferably polyphosphates, e.g., tri-polyphosphates and pyrophosphates, such as pentasodium tripoly-p~osphate and tetrasodium pyrophosphate. Trisodium nitrilotri-acetate (NTA), preferably employed as the monohydrate, and other nitrilotriacetates, such as disodium nitrilotriacetate, are preferred organic builders. The designation NTA, which normally stands for nitrilotriacetic acid, in this specifica-tion is employed to also refer to the various salts thereof, preferably the alkali metal salts and most preferably the tri-sodium salt. Sodium tripolyphosphate, sodium pyrophosphate and NTA may be utilized in hydrated forms, which are often pre-ferred, but anhydrous forms may also be used. Of course, carbonates, such as sodium carbonate, are useful builders and may desirably be employed, alone or in conjunction with bicar-bonates, such as sodium bicarbonate. When the polyphosphates are employed it may be preferred to have sodium pyrophosphate present with sodium tripolyphosphate in proportion from l:lO to 10:1, preferably 1:5 to 5:1 with respect to it, with the total 20 proportion of both builders being about the same as that mentioned herein for the sodium tripolyphosphate. Other water soluble builder~ that are considered to be effective include the various other inorganic and organic phosphates, borates, e.g., borax, citrates, gluconates, EDTA and iminodiacetates.
Preferably the various builders will be in the forms of their alkali metal salts, either the sodium or potassium salts, or a mixture thereof, but sodium salts are normally more preferred.
¦ In eome instances, as when neutral or slightly acidic detergent compositions are being produced, acid forms of the builders, especially of the organic builders, may be preferable but .
, ~ - 7 --;,'', ~
~ " ~ .. . .
', :~- ' ' ' : ' " :
1~60~17 62301-122lD
normally the salts will either be neutral or basic in nature.
The silicates, preferably sodium silicate of Na2O:SiO2 ratio within the range of 1:1.6 to 1:3.0, preferably 1:2 to 1:2.8, e.g., 1:2.35 or 1:2.4, also serve as builder salts but because of their strong binding properties and because they could promote objectionable adherence of detergent particles to dispenser walls they are considered to be special cases of builders, and relatively small proportions thereof will be pregent (such proportions will be described separately from the other builders). When it is desired for greater proportions of silicate to be in the detergent composition it may be prefer-able for hydrated sodium silicate particles to be post-added to spray dried particles containing other builder(s).
The water insoluble builders, as that term is em-ployed in the present specification, are those which help to improve the detergency of synthetic organic detergents, especially that of synthetic anionic organic detergents, and in such cases the mechanism for increasing detergency appears to be related to water softening effects of the builder, such as calcium and/or magnesium ion removal from the wash water, usually by an ion exchange mechanism. While it is within the invention to utilize water insoluble builders other than the zeolites, as a practical matter, at the present time, the zeolites are the principal such insoluble builders that are ; used.
The zeolites employed include crystalline, amorphous ~ and mixed crystalline-amorphous zeolites, of both natural and ; synthetic origins. Preferably, such materials are capable of reacting sufficiently rapidly with calcium ions so that, alone or in conjunction with other water softening compounds in the . . .
' ' '' 1~6~ ~17 62301-1221D
detergent, they soften the wash water before adverse reactions of such ions with othe~ components of the synthetic organic detergent composition occur. The zeolites employed may be characterized as having a high exchange capacity for calcium ionl which is normally from about 200 to 400 or more milligram equivalents of calcium carbonate hardness per gram of the aluminosilicate, preferably 250 to 350 mg. eq./g.
Although other ion exchanging zeolites may also be utilized, normally the finely div,ided synthetic zeolite build-er particles employed in the practice of this invention will beof the formula (Na2)x(A123)y(sio2)zW H20 wherein x is 1, y is from 0.8 to 1.2, preferably about 1, z is from 1.5 to 3.5, preferably 2 to 3 or about 2, and w is from 0 to 9, preferably 2.5 to 6. The zeolite should be a univalent cation-exchanging zeolite, i.e., it should be an alumino-silicate of a univalent cation such as sodium or potassium.
Crystalline types of zeolites utilizable as good ion exchangers in the invention, at least in part, include zeolites of the following crystal structure groups: A, X, Y, L, morden-ite and erionite, of which types A, X and Y are preferred.
Mixtures of such molecular sieve type zeolites can also be useful, especially when type A zeolite is present. These crystalline types of zeolites are well known in the art and have been described in many patents in recent years for use as detergent composition builders.
i2~ 17 Crystalline zeolites of ion exchanging and water softening properties that are preferred are those which are in hydrated or water loaded form, containing bound water in an amount from about 4~ up to about 36% of the zeolite total weight, depending on the type of zeolite used, and are ~' . ...
1~6(~417 preferably hydrated to about 15 to 70% of their capacitiesD
Normally, water contents are in the range of about S to 30~, preferably about 10 or 15 to 25~, such as 17 to 22%, e.g., 20%.
Preferably the zeolite should be in a finely divided state, with the ultimate particle diameters being up to 20 microns, e.g., 0.005 or 0.01 to 20 microns, more preferably being from 0.01 to 15 microns, e.g., 3 to 12 microns, and especially preferably being of 0.01 to 8 microns mean particle size, e.g., 3 to 7 microns, if cry-stalline, and 0.01 to 0.1 mlcron, e.g., 0.01 to 0.05 micron, if amorphous. Although the ultimate particle sizes are much lower, usually the zeolite particles will ~e of sizes within the range of No's. 100 to 400 sieves, preferably 140 to 325. However, they may sometimes be agglomerated, separ-ately with spray dried detergent composition particles, to sizes like those of the particles, for example, +10 or 25~.
Although sodium sulfate and sodium chlroide and other filler salts possess no building properties they are sometimes utilized in detergent com~ositions for filling characteristics, and sodium sulfate is especially u~eful as a processing aid. In addition to increasing the volume and weight of the product to facilitate measuring, they also sometimes improve bead stabilities and physical propertieS
of the detergent composition beads in which they are incor-porated. Nevertheless, because the present compositionS are satisfactory without any fillers being present, such are often preferably avoided entirely or any proportion thereof present may be minimized.
The softening clay that is an important component lZ6~ 62301-1221D
of the present detergent compositions is of the type character-ized as "bentonite". Bentonites are colloidal clays (aluminum silicates) containing montmorillonite. They are of varying compositions and are obtainable from natural deposits in many countries, including Italy, Spain, U.S.S.R., Canada and the United States (principally Wyoming, Mississippi and Texas).
The bentonites which are useful in accordance with the present invention are those which have "lubricating" and dispersing properties, which are associated with swelling capacity in water. Although some bentonites, principally those which may be characterized as calcium (or magnesium) bentonites, have low or negligible swelling capacities, these may be converted or "activated" so as to increase such swelling capacity. Such conversion may be effected by appropriate treatment with alkaline material, preferably aqueous sodium carbonate solu-tion, in a manner known in the art, to insert sodium (or potassium) into the clay structure. In addition to improving the swelling capacity of the bentonite, which benefits fabric softening and dispensing capabilities thereof, the sodium carbonate solution treatment of the non-swelling clay or poorly flowing clay replaces, for example, 5 to 100~, 10 to 90~ or 15 to 50~ of the divalent metal content thereof, with sodium, ' , ~
lZ60 ~17 62301-1221D
and thereby improves the exchange capacity of the clay for water hardness ions, such as those of calcium and magnesium.
The resulting byproducts, calcium carbonate and magnesium carbonate, are left with the bentonite, and appear to have desirable adjuvant properties in the final products.
Although ion exchange capacities of bentonites have been mentioned in the patent literature as being relevant to softening capacity, it is a feature of the present invention that good textile softening is obtainable with sodium benton-ites of comparatively low ion exchange capacities. Whether theswelling bentonite (also called sodium bentonite herein) is a naturally occurring clay or is obtained by alkali treatment of a non-swelling or poorly swelling bentonite, it may be used in the present textile softening detergent compositions. Treated Italian bentonites have been found to be especially useful and are considered most appropriate for products intended for European markets. For American markets Wyoming bentonite is often preferable and such does not have to be treated because it already contains sodium ion in the bentonite structure and has swelling properties. Analysis of a typical Italian benton-ite (after alkali treatment) shows that it may contain 66.2% of SiO2, 17.9% of A12O3, 2.80% of MgO, 2.43% of Na2O, 1.26% of Fe2O3, 1.15% of CaO, 0.14% of Tio2 and 0.13% of K2O. A typical Wyoming or western bentonite (untreated) may contain from 64.8 126~ ~17 62301-1221D
to 73.0~ of sio2, 14 to 18% of A12O3, 1.6 to 2.7% of MgO, 0.8 to 2.8~ of Na20, 2~3 to 3.4% of Fe203, 1.3 to 3.1% of CaO and 0.4 to 7.0~ of K2O. Thus, it is seen that the compositions of the bentonites are quite different although both types have swelling properties. It is considered that if the ~a2O content of the clay is at least about 0.5%, preferably at least 1% and more preferably at least 2% (the equivalent proportion of K20 may also be taken into account) the clay will be satisfactorily swelling for the purposes of the present invention, with satisfactory softening and dispersing properties in aqueous suspencion. While it is expected that proportions of the various constituents of the swelling bentonites (which may herein be referred to as sodium bentonites, whether natural or "activated") within the ranges between the typical analysis given will result in useful components of the present composi-tions, it is also considered that the percentages of the components of the natural swelling bentonite may be raised or lowered about 10% and that the typical analysis of the treated bentonite may be expanded +10%, with the bentonites within those ranges still being useful. Additionally, other swelling bentonites may be substituted, at least in part. Generally the useful bentonites will have swelling capacities of at least 1 or 2 milliliters per gram, more preferably at least 5 or 10 ml./g. Of course, higher swelling capacity bentonites will also be useful. Normally the range of swelling capacities
This invention relates to particles useful for in-corporation into a particulate heavy duty detergent composition for use in automatic washing machines and is a divisional app-lication from Canadian Patent Application No. 425,408, filed April 7th, 1983 which relates to detergent compositions. More particularly, it relates to particulate heavy duty laundering and textile softening detergent compositions intended for use in the machine washing of laundry. It also relates to methods for the manufacture of such compositions.
Bentonite is advantageous as a softening agent in detergents. The softening properties of bentonite and its de-sirable adherence to substrates are important advantages but its "gelling" characteristics can cause an objectionable gummi-ness in the detergent, which sometimes will tend to hold deter-gent beads and/or bentonite beads or agglomerates to surfaces, thereby tending to inhibit free flow. Thus, under conditions of high humidity or in the presence of free moisture bentonite can "gell" and become sticky or of reduced flowability, even becoming held to passageway or chamber walls despite applicat-ions of forces to the particles to remove them (such as the force of flowing water being charged to an automatic washing machine). Such adherence could be significantly disadvantag-eous for a desirably free flowing commercial particulate de-tergent product and could lead to a lesser degree of acceptance of the product by the consumer. Even when flowability through production lines during the manufacturing and packaging pro-cesses, and flowability from the dispensing carton when the i2~ 7 product ls being employed by the ultimate consumer are satisfactory, the presence of bentonite can cause the detergent composition particles to be held to appliance part walls, especially charging compartment walls, of washing machines equipped with means for automatically charging detergent composition to the wash water in the machine tub or drum, when such particles and the bentonite present are moistened. In such circumstances the bentonite may tend to swell, with the production of moist adherent surfaces, so that the particles may resist removal from surfaces against which they are resting. For example, in washing machines and other appliances equlpped with automatic dispensers or charging compartments, the detergent particles may not entirely fall from the dlspenser or be washed out of the dispenser, especially if the dispenser walls had been wet before addition of the detergent.
Failure to dispense part of the desired charge to the washing machine diminishes the effective detergent and softener concentratlons of the wash water and can lead to inaccurate detergent and softener concentrations being employed. Also, it may create an unsightly bulld-up, which may be objectionable to the consumer. In either situation the result is undesirable and should be avoided, if possible.
-2a-~,, ~ rJ~
12fi~ ~17 The invention provides particles useful for incorporation into a particulate heavy du~-y detergent compo3itlon for use in automatic washing machines made of compositions selected from ~he group consisting of, (a) bentonite with which there is included a dispensing assisting proportlon of a siliconate or a dispensing assisting derivative thereof;
~ b) sodium perborate at least partially coated wlth a siliconate or a derivative thereof; and, (c) enzyme at least partially coated with a siliconate or a derlvatlve thereof.
The invention of the parent applicatlon provides a heavy duty laundering and textlle softenlng particulate detergent compositlon, useful for automatic machine washing of laundry in water and dl~pensable from a charging or dispensing compartment, of such a machine by action of water being fed through such compartment, comprilses a bullt synthetic organic deterqent whlch iB an anionic or nonionic detergent or a mixture thereof, a building proportion of a builder for the synthetic organlc detergent whlch ls a water soluble or water lnsoluble bullder or a mixture thereof, and a softening proportion of bentonite, with the bentonite being in particles wlth whlch there ls included a dispensing assisting proportion, preferably at least 0.15%, of a siliconate or a dispensing assisting derivative thereof. In preferred embodiments of the invention the synthetic organic deter-gent includes both an anionic detergent, which is prefer-ably a sodium linear higher alkylbenzene sulfonate, and a nonionic detergent, which is preferably a condensation product of a higher fatty alcohol and polyethylene oxide, a higher fatty acid soap is present, the builder salt is primarily pentasodium tripolyphosphate or NTA or a mixture thereof, with a small proportion of sodium silicate, the bentonite is a swellinq bentonite of a moisture content of at least 3~, the siliconate is an alkali metal lower alkyl siliconate, more preferably potassium methyl siliconate, and 5 to 35% of a bleaching agent which releases oxygen in aqueous solution at elevated temperature, such as sodium perborate, is present. Also within the invention are methods for making the improved products that have been described herein.
The synthetic organic detergent(s) employed will normally be either nonionic or anionic and very preferably will be a combination of both, but suitable amphoteric or ampholytic detergents, such as those sold under the Miranol trademark, may also be used in conjuction with nonionics and anionics in the present compositions. Cationic deter-gents, such as the quaternary ammonium halides, e.g., those sold under the Arosurf trademark, can also serve as supple-mentary fabric softeners in these products but normally will not be used Various synthetic anionic organic detergents, such as those characterized as sulfonates and sulfates, usually as alkali metal or sodium salts, may be employed, but those '' ~26~7 which are most preferred are linear higher alkyl benzene sulfonates, higher alkyl or fatty alcohol sulfates and higher fatty alcohol polyethoxy or polyethoxylate sulfates.
Preferably, in the higher alkyl benzene sulfonates the higher alkyl is linear and of 10 to 14 carbon atoms, more preferably 11 to 13, e.g., 12, and the sulfonate is a sodium salt. The alkyl sulfate is preferably a higher fatty alkyl or alcohol sulfate of 10 to 16 carbon atoms, more preferably 12 to 14 carbon atoms, e.g., 12, and is also employed as the sodium salt The higher fatty alcohol polyethoxy sulfates will preferably be of 10 to 18 carbon atoms, more preferably 12 to 16, e.g., 12, in the higher fatty alcohol, the ethoxy content will preferably be from 3 to 30 ethoxy groups per mol, more preferably 3 or 5 to 20, and the detergent will be a salt of sodium. Thus, it will be seen that the alkyls of the sulfonates and sulfates are preferably linear or fatty higher alkyls of 10 to 18 carbon atoms, the cation is preferably sodium, and when a polyethoxy chain is present the sulfate is at the end thereof.
Other useful anionic detergents include the higher olefin sulfonates and paraffin sulfonates, e.g., the sodium salts wherein the olefin or paraffin groups are of 10 to 18 carbon atoms. Specific examples of the preferred detergents are sodium dodecyl benzene sulfonate, sodium tallow alcohol polyethoxy (3 EtOI sulfate, and sodium hydrogenated tallow alcohol sulfate. In a~dition to the preferred anionic deter-gents mentioned, others of this well known group may also be present, especially in only minor proportionS with respect to those previously described. Also, mixtures thereof may be employed and in some cases such mixtures can be superior lZ6~417 to single detergents.
Although various nonionic detergents of satis-factory physical characteristics may be utilized, including condensation products of ethylene oxide and propylene oxide with each other and with hydroxy-containing aromatic and aliphatic bases, such as nonyl phenol and Oxo-type alcohols, it is highly preferred that the nonionic detergent be a higher fatty alkoxy poly-lower alkoxy lower alkanol, which may also be described as a condensation product of ethylene oxide ~and/or propylene oxide) and higher fatty alcohol.
In such products the higher fatty alkoxy or alcohol i~ of 10 to 16 carbon atoms, preferably 12 to lS carbon atoms, and the nonionic detergent contains from about 3 to 20 lower alkoxy groups, preferably 5 to lS, and more preferably 9 to 13 ethylene oxide groups per mol, e.g., 11.
The builder for the synthetic organic detergent, which helps to improve the washing action of the detergent, is either a water soluble or a water insoluble builder or a mixture thereof. Of course, mixtures of water soluble builders may also be utilized, e.g., polyphosphate and NTA
(nitrilotriacetic acid salt, normally the sodium salt), but of the water insoluble builders usually only the zeoliteswill be present, although mixtures of such zeolites may also be found to be advantageous. While zeolites are useful com-ponents of the present compositions, generally it will be preferable to employ water soluble builder(s), and often such will be the only builder(s) present.
The water soluble builder or mixture thereof employed may be one or more of the conventional materials that have been used as builders or suggested for such purpose.
These include inorganic and organic builders, and mixtures , '~ , ~ -6-6~7 62301-1221D
thereof. Among the inorganic builders those of preference are the various phosphates, preferably polyphosphates, e.g., tri-polyphosphates and pyrophosphates, such as pentasodium tripoly-p~osphate and tetrasodium pyrophosphate. Trisodium nitrilotri-acetate (NTA), preferably employed as the monohydrate, and other nitrilotriacetates, such as disodium nitrilotriacetate, are preferred organic builders. The designation NTA, which normally stands for nitrilotriacetic acid, in this specifica-tion is employed to also refer to the various salts thereof, preferably the alkali metal salts and most preferably the tri-sodium salt. Sodium tripolyphosphate, sodium pyrophosphate and NTA may be utilized in hydrated forms, which are often pre-ferred, but anhydrous forms may also be used. Of course, carbonates, such as sodium carbonate, are useful builders and may desirably be employed, alone or in conjunction with bicar-bonates, such as sodium bicarbonate. When the polyphosphates are employed it may be preferred to have sodium pyrophosphate present with sodium tripolyphosphate in proportion from l:lO to 10:1, preferably 1:5 to 5:1 with respect to it, with the total 20 proportion of both builders being about the same as that mentioned herein for the sodium tripolyphosphate. Other water soluble builder~ that are considered to be effective include the various other inorganic and organic phosphates, borates, e.g., borax, citrates, gluconates, EDTA and iminodiacetates.
Preferably the various builders will be in the forms of their alkali metal salts, either the sodium or potassium salts, or a mixture thereof, but sodium salts are normally more preferred.
¦ In eome instances, as when neutral or slightly acidic detergent compositions are being produced, acid forms of the builders, especially of the organic builders, may be preferable but .
, ~ - 7 --;,'', ~
~ " ~ .. . .
', :~- ' ' ' : ' " :
1~60~17 62301-122lD
normally the salts will either be neutral or basic in nature.
The silicates, preferably sodium silicate of Na2O:SiO2 ratio within the range of 1:1.6 to 1:3.0, preferably 1:2 to 1:2.8, e.g., 1:2.35 or 1:2.4, also serve as builder salts but because of their strong binding properties and because they could promote objectionable adherence of detergent particles to dispenser walls they are considered to be special cases of builders, and relatively small proportions thereof will be pregent (such proportions will be described separately from the other builders). When it is desired for greater proportions of silicate to be in the detergent composition it may be prefer-able for hydrated sodium silicate particles to be post-added to spray dried particles containing other builder(s).
The water insoluble builders, as that term is em-ployed in the present specification, are those which help to improve the detergency of synthetic organic detergents, especially that of synthetic anionic organic detergents, and in such cases the mechanism for increasing detergency appears to be related to water softening effects of the builder, such as calcium and/or magnesium ion removal from the wash water, usually by an ion exchange mechanism. While it is within the invention to utilize water insoluble builders other than the zeolites, as a practical matter, at the present time, the zeolites are the principal such insoluble builders that are ; used.
The zeolites employed include crystalline, amorphous ~ and mixed crystalline-amorphous zeolites, of both natural and ; synthetic origins. Preferably, such materials are capable of reacting sufficiently rapidly with calcium ions so that, alone or in conjunction with other water softening compounds in the . . .
' ' '' 1~6~ ~17 62301-1221D
detergent, they soften the wash water before adverse reactions of such ions with othe~ components of the synthetic organic detergent composition occur. The zeolites employed may be characterized as having a high exchange capacity for calcium ionl which is normally from about 200 to 400 or more milligram equivalents of calcium carbonate hardness per gram of the aluminosilicate, preferably 250 to 350 mg. eq./g.
Although other ion exchanging zeolites may also be utilized, normally the finely div,ided synthetic zeolite build-er particles employed in the practice of this invention will beof the formula (Na2)x(A123)y(sio2)zW H20 wherein x is 1, y is from 0.8 to 1.2, preferably about 1, z is from 1.5 to 3.5, preferably 2 to 3 or about 2, and w is from 0 to 9, preferably 2.5 to 6. The zeolite should be a univalent cation-exchanging zeolite, i.e., it should be an alumino-silicate of a univalent cation such as sodium or potassium.
Crystalline types of zeolites utilizable as good ion exchangers in the invention, at least in part, include zeolites of the following crystal structure groups: A, X, Y, L, morden-ite and erionite, of which types A, X and Y are preferred.
Mixtures of such molecular sieve type zeolites can also be useful, especially when type A zeolite is present. These crystalline types of zeolites are well known in the art and have been described in many patents in recent years for use as detergent composition builders.
i2~ 17 Crystalline zeolites of ion exchanging and water softening properties that are preferred are those which are in hydrated or water loaded form, containing bound water in an amount from about 4~ up to about 36% of the zeolite total weight, depending on the type of zeolite used, and are ~' . ...
1~6(~417 preferably hydrated to about 15 to 70% of their capacitiesD
Normally, water contents are in the range of about S to 30~, preferably about 10 or 15 to 25~, such as 17 to 22%, e.g., 20%.
Preferably the zeolite should be in a finely divided state, with the ultimate particle diameters being up to 20 microns, e.g., 0.005 or 0.01 to 20 microns, more preferably being from 0.01 to 15 microns, e.g., 3 to 12 microns, and especially preferably being of 0.01 to 8 microns mean particle size, e.g., 3 to 7 microns, if cry-stalline, and 0.01 to 0.1 mlcron, e.g., 0.01 to 0.05 micron, if amorphous. Although the ultimate particle sizes are much lower, usually the zeolite particles will ~e of sizes within the range of No's. 100 to 400 sieves, preferably 140 to 325. However, they may sometimes be agglomerated, separ-ately with spray dried detergent composition particles, to sizes like those of the particles, for example, +10 or 25~.
Although sodium sulfate and sodium chlroide and other filler salts possess no building properties they are sometimes utilized in detergent com~ositions for filling characteristics, and sodium sulfate is especially u~eful as a processing aid. In addition to increasing the volume and weight of the product to facilitate measuring, they also sometimes improve bead stabilities and physical propertieS
of the detergent composition beads in which they are incor-porated. Nevertheless, because the present compositionS are satisfactory without any fillers being present, such are often preferably avoided entirely or any proportion thereof present may be minimized.
The softening clay that is an important component lZ6~ 62301-1221D
of the present detergent compositions is of the type character-ized as "bentonite". Bentonites are colloidal clays (aluminum silicates) containing montmorillonite. They are of varying compositions and are obtainable from natural deposits in many countries, including Italy, Spain, U.S.S.R., Canada and the United States (principally Wyoming, Mississippi and Texas).
The bentonites which are useful in accordance with the present invention are those which have "lubricating" and dispersing properties, which are associated with swelling capacity in water. Although some bentonites, principally those which may be characterized as calcium (or magnesium) bentonites, have low or negligible swelling capacities, these may be converted or "activated" so as to increase such swelling capacity. Such conversion may be effected by appropriate treatment with alkaline material, preferably aqueous sodium carbonate solu-tion, in a manner known in the art, to insert sodium (or potassium) into the clay structure. In addition to improving the swelling capacity of the bentonite, which benefits fabric softening and dispensing capabilities thereof, the sodium carbonate solution treatment of the non-swelling clay or poorly flowing clay replaces, for example, 5 to 100~, 10 to 90~ or 15 to 50~ of the divalent metal content thereof, with sodium, ' , ~
lZ60 ~17 62301-1221D
and thereby improves the exchange capacity of the clay for water hardness ions, such as those of calcium and magnesium.
The resulting byproducts, calcium carbonate and magnesium carbonate, are left with the bentonite, and appear to have desirable adjuvant properties in the final products.
Although ion exchange capacities of bentonites have been mentioned in the patent literature as being relevant to softening capacity, it is a feature of the present invention that good textile softening is obtainable with sodium benton-ites of comparatively low ion exchange capacities. Whether theswelling bentonite (also called sodium bentonite herein) is a naturally occurring clay or is obtained by alkali treatment of a non-swelling or poorly swelling bentonite, it may be used in the present textile softening detergent compositions. Treated Italian bentonites have been found to be especially useful and are considered most appropriate for products intended for European markets. For American markets Wyoming bentonite is often preferable and such does not have to be treated because it already contains sodium ion in the bentonite structure and has swelling properties. Analysis of a typical Italian benton-ite (after alkali treatment) shows that it may contain 66.2% of SiO2, 17.9% of A12O3, 2.80% of MgO, 2.43% of Na2O, 1.26% of Fe2O3, 1.15% of CaO, 0.14% of Tio2 and 0.13% of K2O. A typical Wyoming or western bentonite (untreated) may contain from 64.8 126~ ~17 62301-1221D
to 73.0~ of sio2, 14 to 18% of A12O3, 1.6 to 2.7% of MgO, 0.8 to 2.8~ of Na20, 2~3 to 3.4% of Fe203, 1.3 to 3.1% of CaO and 0.4 to 7.0~ of K2O. Thus, it is seen that the compositions of the bentonites are quite different although both types have swelling properties. It is considered that if the ~a2O content of the clay is at least about 0.5%, preferably at least 1% and more preferably at least 2% (the equivalent proportion of K20 may also be taken into account) the clay will be satisfactorily swelling for the purposes of the present invention, with satisfactory softening and dispersing properties in aqueous suspencion. While it is expected that proportions of the various constituents of the swelling bentonites (which may herein be referred to as sodium bentonites, whether natural or "activated") within the ranges between the typical analysis given will result in useful components of the present composi-tions, it is also considered that the percentages of the components of the natural swelling bentonite may be raised or lowered about 10% and that the typical analysis of the treated bentonite may be expanded +10%, with the bentonites within those ranges still being useful. Additionally, other swelling bentonites may be substituted, at least in part. Generally the useful bentonites will have swelling capacities of at least 1 or 2 milliliters per gram, more preferably at least 5 or 10 ml./g. Of course, higher swelling capacity bentonites will also be useful. Normally the range of swelling capacities
2~i ,~ . .
.-:
lZ60~i7 62301-1221D
will be from 5 to 30 ml./~. and frequently will be in the 5 to 20 ml./g. range.
The sodium bentonite or swelling bentonite will normally be agglomerated before being blended with spray dried built detergent beads and any other adjuvants to be post-added.
Such agglomeration will be carried out in known manner, as by utilizing moisture spray application to tumbling bentonite powder, extrusion, compaction, pan agglomeration or other tech-nique. However, it is highly desirable that the bentonite be in finely divided powder form before agglomeration so that when the agglomerate breaks up in the wash water the particles of bentonite will be small enough to be effective lubricants, as deposited on the laundry. Thus, it will normally be desirable for essentially all of the bentonite powder, before asglomera-tion, to pass through a No. 100 sieve (U.S. Sieve Series), with at least 99% passing such a sieve and with over a major propor-tion thereof passing through a No. 200 sieve, preferably with less than about 30% by weight of the particles failing to pass through such a sieve and more preferably with no more than 20%
resting on such sieve.
Also important to promote ready break-ups of benton-ite agglomerates and dispersion in the wash water, so that the minute particles thereof may be adhered to textile fibers to soften them, is the moisture content of the bentonite.
i ~ :
'''''''' ~
. ~ ~
~ - 15 -''-: ~
..
:
~, .
, . , lZ6~417 62301-1221D
Although it is desirable to limit the free moisture content of the bentonite utilized to about 10~ or so, with moisture con-tents above 15~ not normally being employed, it is even more important to make certain that the bentonite includes enough free moisture, most of which is considered to be present between adjacent plates of the bentonite, to facilitate quick disintegration of the bentonite and any adjacent materials in the particles when such particles or detergent compositions containing them are brought into contact with water, such as wash water. It has been found that at least about 2%, prefer-ably at least 3% and more preferably, about 4% or more of water should be present in the bentonite (so-called "internal"
moisture), and that the bentonite should not be dried so that less than such percentages of water are even temporarily present in it. In other words, overdrying to the point where the bentonite loses its internal moisture can significantly diminish the utility of the present compositions. When the bentonite moisture content is too low the bentonite does not aid in satisfactorily swelling and disintegrating the agglomer-ated beads in the wash water.
Preferred swelling bentonites of the types describedabove are sold under the trade marks Laviosa and Winkelmann, e.g., Laviosa AGB and Winkelmann G 13, both of which are treat-ed Italian b~ntonites, and Mineral Colloid ~o. 101 (and other si~ilar designations) corresponding to Thixo-Gels No's. 1, ~.
12604i7 62301--1221D
2, 3 and 4 (marketed by Benton Clay Company, an affiliate of Georgia Kaolin Co.). As will be described later, the treated bentonites will also preferably be free of grit and will preferably have been further processed by grinding to a fine powder before agglomeration. Usually the commercial bentonite used will have a pH in water (at 6% concentration) in the range of 8 to 9.4, a maximum free moisture content of about 8~, a specific gravity of about 2.6 and a viscosity, at 10~ concen-tration in water, within the range of 5 to 30 centipoises, preferably 10 to 30 cp.
The siliconate, which is employed in conjunction with the bentonite, preferably to coat it, and also can be used to coat the detergent composition particles, and which acts to inhibit sticking of the bentonite and the detergent to charging compartment walls of an automatic washing machine (and to walls of other "containers" for the product), is one which may be easily applied to the bentonite and which can at least partial-ly coat the particles thereof and inhibit their adhesion to walls of a compartment in which they may be stored temporarily, even when such walls are damp or wetO The siliconate is a salt of siliconic acid, preferably an alkali metal salt thereof, and the siliconic acid is preferably a lower alXyl siliconic acid.
While it is desirable that the salt-forming metal or other cation be one which will produce a water soluble siliconate, so , ~_ ~26(~ ~17 62301-1221D
that it may be applied to the bentonite in aqueous solution, such may not be necessary and it is contemplated that water dispersible siliconates will also be utilized. Furthermore, it is within the invention to employ lipophilic siliconates, which may be applied in organic solvent solution o~ in aqueous organic solvent solution, or in corresponding emulsions or dispersions. The alkali metal of the siliconate is preferably either sodium or potassium, but other salt-forming cations may also be utilized providing that the siliconate is suitable for the present purposes. It is contemplated that other alkali metal salts of siliconic acids than the lower alkyl siliconates may be utilized, including both aliphatic and aromatic silicon-ates, but the lower alkyl siliconates, wherein the lower alkyl i8 of 1 to 3 or 4 carbon atoms, e.g., potassium methyl silicon-ate and sodium propyl siliconate, are considered to be pre-ferred. Instead of employing the siliconate an equivalent charge of the corresponding siliconic acid and a corresponding base may be utilized.
For most effective results it is much preferred to employ the lower alkyl siliconates previously described but it is recognized that such compounds may polymerize, at least partially, to siliconic or other film-forming and foam-inhibiting compounds or polymers and accordingly it is within the broader bounds of this invention to utilize such "deriva-tive" materials directly, at least in part, as a component of ~' -'' ' 126~417 62301-1221D
the present detergent compositions. When such a derivative of the siliconate is employed it will be one which aids in improv-ing the dispensing of the bentonite beads or detergent composi-tion particles from a charging compartment of an automatic washing machine, such as a compartment wherein the particulate contents are washed out by the flow of water into the washing tub of the machine.
Although the operation of the present invention should not be considered to be limited by the mechanism to be described, it may well be that the water soluble alkali metal lower alkyl siliconates (which may also be described as alkali metal lower alkyl silanolates), may be converted to polymethyl siloxanes, as by the action of atmospheric carbon dioxide or other acidic acting material, which could also result in the production of alkali metal carbonate, such as sodium carbonate, a useful builder salt. The polymethyl siloxanes are known to be hydrophobic and it is possible that their presence is the cause of the improved properties of the coated bentonite (or other detergent particles) with respect to being of improved dispensing properties from the charging compartment of an auto-matic washing machine. The production of siloxanes by the described reaction has been mentioned in the text Chemistry and Tcchnology of Silicones, by Walter Noll, published by Academic Press in 19~8. However, although silicones have been included in detergent compositions in the past, often for their anti-., .
.
:
. . . . ....
i~.60~17 foaming properties, no disclosure of the use of water soluble siliconates to coat bentonite and detergent particles to pro-mote free release from damp surfaces of charging compartments, as in the present invention, is known and such process and the resulting compositions are considered to be unobvious from the prior art.
The water soluble soap, which is a desirable com-ponent of the present detergent compositions and which has a useful foam limiting action in the wash water, which is especially advantageous for side loading or horizontal tub washing machines, is normally a higher fatty acid soap of alkali metal, such as sodium or potassium, with sodium soaps being highly preferred. Such soaps may be made from natural fats and oils, such as those from animal fats and greases and from vegetable and seed oils, for example, tallow, hydrogenated tallow, coconut oil, palm kernel oil, and corresponding "natural" and synthetic fatty acids, and that they are normally of 10 to 24 carbon atoms, preferably 14 to 18 carbon atoms.
Preferably such soaps are of hydrogenated tallow or hydrogen-ated tallow fatty acids, e.g., stearic acid. The water solublesoap will preferably be chosen so as to have a desirable balance of good detergent properties, effective foam reducing effect and other good physical properties. Specifically, among those other physical properties will be desirable hardness, good binding effect and limited tendency to produce adhesive gels under use conditions. It has been found that the sodium hydrogenated tallow soaps satisfy these conditions best but even compositions containing them are desirably also treated '~.
lZ~17 62301-122]D
with siliconate to furt}ler inhibit adhesion to damp compartment walls. of course, for compositions wherein foaming is desir-able the soap content is lowered, the soap is omitted or a lower fatty acid soap, e.g., sodium laurate, may be used instead.
Bleaching agents do not have to be incorporated in all of the detergent compositions of this invention but for best cleaning and whitening of laundry it is often preferable that a bleach be employed. When the wash water temperature in the automatic washing machine is high enough sodium perborate is the bleaching agent of choice because the elevated tempera-ture, especially when it is above 80C. (and it may be almost up to the boiling point, e.g., 90 or 95C.) can cause decom-position of the perborate and release of bleaching oxygen from it. Thus, under such conditions the sodium perborate, which is often referred to as sodium perborate tetrahydrate or sodium borate perhydrate, and which will usually have an active oxygen content of at least about 10%, releases such oxygen without the need for employment of an activating agent or decomposition catalyst. When lower temperature laundering is undertaken, either in cold water or hot water, for example, at temperatures from 20C. to 60C, the sodium perborate will not usually sufficiently decompose to satisfactorily bleach textiles ~7' ~'~
126~417 62301-1221D
being washed and in such circums~ances an activator will be employed or another suitable bleaching agent will be used, also usually with an activator. Many such systems have been described in the literature, most of which belong to the class of peroxygen compounds, such as persulfuric acid, peracetic acid, performic acid, perphthalic and perbenzoic acid, and salts thereof, such as the alkali metal and alkaline earth metal salts, e.g., sodium and magnesium salts. Various aetivators for such compositions are known whieh promote the controlled release of oxygen from them in hot and cold water systems, ineluded among which aetivators are heavy metal salts, such as copper salts, and various inorganic and organic eom-pounds, whieh have been deseribed in the art. Among the lower temperature bleaches that which is preferred is magnesium dimonoperoxyphthalate. Of eourse, various other oxygen releas-ing bleaehing materials sueh as the hydroperoxides, may be employed and in the proper circumstanees ehlorine releasing bleaching materials can be ineorporated in the present detergent eompositions.
Various adjuvants may be present in the crutcher mix from whieh base beads or detergent eompositions may be spray dried, or sueh adjuvants may be post-added, with the deeision as to the mode of addition often being determined by the physieal properties of the adjuvant, its resistance to heat, its resistanee to degradation in the aqueous eruteher medium, ~ ' , lZ6~17 62301-1221D
and its volatility. Among the adjuvants often employed are enzyme powders, which normally are post-added to the base beads because they are heat sensitive. These rnay be any of a variety of commercially available products, included among which are Alcalase*, manufactured by Novo Industri, A/S, and Maxatase*, both of which are alkaline proteases (subtilisin). Among specific enzyme preparations that may be employed are Novo Alcalase 2M* (2 Anson units per gram) and Maxatase P 440,000.
Although the alkaline proteases are most frequently employed, amylolytic enzymes, such as alpha-amylase, may also be util-ized. The mentioned compositions usually contain active enzymes in combination with an inert powered vehicle, such as sodium or calcium sulfate, and the proportion of active enzyme may vary widely, usually being from 2 to 80% of the commercial preparation. In this specification proportions referred to are of the enzyme preparations, not the active part thereof.
Among the fluorescent brighteners those most commonly employed are the stilbene brighteners, e.g., Tinopal 5 BM*, especially in extra concentrated form. Among the stilbene compounds are cotton brighteners, such as those sometimes referred to as CC/DAS brighteners, derived from the reaction product of cyanuric chloride and the disodium salt of diamino-stilbene disulfonic acid, including variations thereof with respect to substituents on the triazine and aromatic rings.
This class of brighteners is known in the detergent art and will mo~t often be used when bleaching components are not * trade mark 126~3~17 present in the final product. When it is desired for the detergent composition to include a bleach, such as sodium perborate or other oxidizing bleach, bleach stable brighteners may be incorporated in the crutcher mix. Among these there may be mentioned the benzidine sulfone disulfonic acids, naphtho-triazolyl stilbene sulfonic acids and benzimidazolyl deriva-tives. Polyamide brighteners, which also may be present, include aminocoumarin or diphenyl pyrazoline derivatives, and polyester brighteners, which can also be used, include naphtho-triazolyl stilbenes. Such brighteners are normally used astheir soluble salts, e.g., sodium salts, but they may be charged as the corresponding acids. The cotton brighteners will usually comprise major proportions of the brightener systems employed.
When it is desired that the product made be entirely or partially colored, various suitable dyes and dispersible pigments may be employed. When blue dyes, such as Acilan blue, or pigments, such as ultramarine blue, are utilized they may have a dual effects of serving to color some or all of the detergent composition particles, or particles of components of the detergent composition, and helping to give the washed laundry a desirable bluish tint. Coloring of agglomerated bentonite particles by suitable dyes or pigments may be especially desirable because natural bentonite sometimes may be off-color, so that the agglomerates may be converted from '~.
particles that look dirty to those which are of attractive color and appearance.
Perfumes employed, which are usually heat sensitive and may contain volatiles, including a solvent, such as alcohol or a suitable glycol, polyol or hydrocarbon, are normally of synthetic perfumery materials, sometimes mixed with natural components, and generally will include alcohols, aldehydes, terpenes, fixatives and/or other normal perfume components, known in the art.
In addition to the adjuvants mentioned there may also be present flow promoting agents, anti-setting materials employed to prevent premature gelation of the crutcher mix, dispersion aids, anti-redeposition agents and, in some cases, additional softening agents, e.g., cationic softeners such as the quaternary ammonium halides, e.g., dimethyldioctadecyl ammonium chloride. However, as was indicated previously, normally the cationic softening agents will not be employed and if used, they will be post-added.
Of course, water is present in the crutcher from which the spray dried component of the present composition is made, wherein it serves as a medium for dissolving or dispers-ing the various components of the spray dried beads. There-fore, some water, in both free and hydrate forms, is in the product. Similarly, water may be employed to agglomerate the bentonite and perborate powers and dissolve the siliconate.
~- - 25 --: .. .... . ..
126~17 62301-1221D
While it may be preferred to employ deionized water, so that the hardness ion contents thereof may be very low and so that metallic ions that can promote decomposition of any organic materials which may be present will be minimized, city or tap water may be utilized instead and sometimes, for economic or supply reasons, will be used exclusively. Normally the hard-ness content of such water will be no greater than about 300 parts per million, as calcium carbonite.
The proportions of the various components in the final product of this invention will be such as to result in their being effective as a fabric softening detergent, from flowing and of improved dispensability from a charging compart-ment of an automatic washing machine by action of wash water passing through such compartment. The proportion of anionic detergent will normally be from 3 to 10% of the final product, preferably 3 to 7% and more preferably 4 to 6~, e.g., 5%.
Usually the nonionic detergent content will be from 1 to 5%, preferably 2 to 4%, e.g., 3 or 4%. In those instances when nonionic detergent is not being employed the proportion of anionic detergent may be increased by as much as 5% and in cases in which the anionic detergent is omitted the nonionic detergent content may be increased by up to 10%, providing that the detergent composition remains satisfactorily dispensable.
While it is possible for effective detergent compositions to be made without either the anionic or nonionic detergent, such products will not be as useful as preferred compositions of .~`,..
126~)41~
thi~ invention. The builder content will generally be in the range of 20 to 75%, preferably 30 to 50% (and such is often preferably entirely water soluble builder salt) and more preferably 30 to 40%, e.g., about 35%. As was previously indicated, sodium tripolyphosphate and NTA are preferred water soluble builders, which may be the sole builders employed.
When they are utilized in mixture the mixture will preferably contain from lO to 90% of one of them, with the balance being the other such builder, and within such ranges preferred pro-portions may be 20 to 80% and 40 to 60%, and complementing percentages. Similar ranges of percentages are appliaable when the builder i8 a mixture of water soluble builder salt and water insoluble builder, æuch as a zeolite.
The bentonite content of the textile softening deter-gent,~preferably in the form of a siliconate coated agglomerate of more finely divided bentonite powder particles, will be a satlsfactorily softening proportion thereof, which usually will be within the range of 5 to 25%, preferably lO to 20%, more preferably 14 to 18%, e.g., about 16%.
The ~iliconate used will be employed in a proportion - sufficient to have the desired dispensing assisting e~ffect and such~proportion will normally be from 0.05 to 1%, preferably 0.15 to ~1%, although up to 3% can be employed. A preferred ranqe of proportions of the siliconate is from 0.1 or 0.15 to 0.~3 or 0.4%, for examples, 0.15% or 0.3%. When the siliconate u~ed to cover agglomerated bentonite only, on a coated bentonite agglomerate basis the siliconate ;~:,s~
~ 27 -lZ6(~;117 content will usually be at least 0.15%, often 0.15 to 5%, preferably O .15 to 1% and more preferably 0.15 to 0.5~, e.g., 0.4%.
When a fatty acid soap is present the pro~ortion thereof will usually be no greater than 10%. A preferred range of soap contents is from 2 to 6%, more preferably from 2 to 4~, e.g., 3~. When a bleaching agent is present the proportion thereof will usually be within the range of 5 to 35%, preferably 15 to 25~, e.g., 20~. However, it will be kept in mind that such proportions are based on employment of sodium perborate and will be modified when other oxidizing agents are utilized, so as to have approx-imately the same bleaching effect (or active oxygen content). The moisture content of the product, which does not include hydrate moisture which is not removable during standard heating at 105C. for two hours, will usually be within the range of 3 to 20%~ with the higher percentages thereof bei.ng permissible when a substantial proportion, at least 1/4 and preferably at least 1/2 of the moisture is in hydrate form. A preferred moisture content is from 5 to 17% and the more preferred such content is from 10 to 15~. Any moisture not removable by the standard test mentioned above is considered to be a part of the compound in which it is present as a hydrate, e.g., a zeolite.
The total proportion of various adjuvants which may also be present in the detergent composition will usually be no more than 20%, preferably being limited to 15% and i26~417 62301-1221D
more preferably to 10%. Although water soluble sodium silicate has building properties, especially with respect to its action against magnesium ions in hard water, because it also acts as a binder the proportion thereof present will not be limited by the builder content proportions previously given and will be considered herein with other adjuvants for the present composi-tions. Usually it will constitute no more than 8% of the product, with a normal range of 1 to 5%, preferably 2 to 4%, e.g., 3%. The content of filler salt, such as sodium sulfate, when it is present, will also normally be limited, to no more than 10%, and will normally constitute from 0.5 to 5~, prefer-ably 0.5 to 2%, e.g., 1 or 1.5% of the product. The percentage of proteolytic enzyme used will normally be from 0.1 to 2%, preerably 0.2 to 1%, e.g., 0.3%, and the percentage of optical brightener dye will be from 0.1 to 2%, preferably 0.1 to 0.5~, e.g., about 0.2%. Perfume content will normally be from 0.05 to 2%, preferably 0.1 to 1%, and more preferably 0.2 to 0.5%, e.g., about 0.3%. Among other ad~uvants it may sometimes be desirable to have present small proportions of particular sequestering agents and flow promoters. Among such materials a preferred sequestrant is diethylenetriamine pentaacetic acid, magnesium salt (magnesium DTPA) but other diethylenetriamine acetates may be substituted for it. Magnesium silicate is a preferred flow promoter, which also may serve as a carrier for .
1:`
~ - 29 -. ~
,~
.. ..
, . ~: . : ,. .
,, ~, ~ .. , ., . , , . -, . :
~260~17 the sequestrant. Commercially, a miXtULe of such products i~
available comprising 15% of the magnesium DTPA and 85~ of MgSiO3 and when such is employed the proportion thereof is preferably from 0.1 to 1%, more preferably 0.1 to 0.5~, e.g., 0.2%. Proportions of the sequestrant (or stabilizer) may be from 0.01 to 0.2%, preferably 0.02 to 0.1%, and for the MgSiO3 concentrations are in the range of 0.1 to 0.9~, preferably 0.2 to 0.5%. Amounts of other adjuvants employed will be such as to accomplish the purpose for which the adjuvant is included in the detergent composition but normally such proportions will not be in excess of 1 or 2% and generally will be within the range of 0.05 to 1~.
In addition to the detergent composition containing synthetic organic detergent, builder, bentonite and siliconate, with soap, bleach and adjuvants often also being present, also within the present invention are siliconate-treated bentonite, siliconate-treated perborate and siliconate-treated enzyme.
For the siliconate-treated bentonite the siliconate content will be from 0.2 to 10%, preferably 0.5 to 5% and more prefer-ably l to 3%. For the corresponding detergent compositionwithout bentonite and for the enzyme and perborate the propor-tions of siliconate will be the same as those for the final ; detergent composition but such proportions may be increased from 10 to 100%, depending on conditions and the proportions of the various adjuvants in the detergent composition.
!.
, ~
S' '~
'~'' ;', '' i260417 62301-1221D
To make the products of this invention known spray drying, agglomerating and mixing techniques (preferably all three) may be employed. Because such are not considered to be significant features of the invention they will be referred to only briefly herein. In the spray drying operation a crutcher mix containing various components desired to be present in the spray dried bead and sufficiently stable to withstand the crutching and spray drying operations, such as detergent, builder and suitable adjuvants, is spray dried from an aqueous crutcher mix, which normally will contain from about 40 to about 70 or 75% of solids, preferably 50 to 65% thereof, with the balance being water. The crutcher mix may contain the anionic detergent and a portion or all of the nonionic deter-gent, although usually no more than 5~ of nonionic detergent (on the basis of the final product) will be in the crutcher (the rest, if any, being post-added). All of the builder or mixture of builders will normally be added in the crutcher, although this is not neces~ary. The bentonite is preferably ~eparately agglomerated and i8 post-added to the spray dried product but sometimes it may be incorporated in the crutcher mix. Aqueous silicate solution, stable fluorescent brightening dye, soap and filler aalt are usually added in the crutcher, together with any stable pigment and other colorants that may be employed. Instead of charging a neutralized detergent the 126(~9~17 crutcher may be utilized as a neutralizing vessel, in which anionic organic detergent acid is neutralized with aqueous caustic. Such acid, for example, may be dodecylbenzene sul-fonic acid containing about 45 to 50~ of active ingredient, which may be neutralized with an aqueous sodium hydroxide solu-tion, such as one containing 38% Na2O. If the alkylbenzene is sulfonated with sulfur trioxide the active ingredient content of the acid may be as high as 99%. A higher fatty acid mixture may also be neutralized in the crutcher with the detergent acid to produce a desired higher fatty acid soap-detergent mixture.
The crutcher mix may be spray dried in a conventional spray tower, utilizing either concurrent or countercurrent flow. Normally the mix will be at a temperature in the 20 to 80C. range, preferably 40 to 70C. and will be spray dried in a tower in which the drying air is at a temperature of 200 to 400C., to produce spray dried beads of particle sizes in the range of ~0'8. 10 to 100 (U.S. Sieve Series) sieves. Any particles that are outside the desired range may be removed by screening and may be reprocessed. The beads made have a bulk 20 density in the range of 0.3 to 0.6 g./ml., e.g., 0.5 g./ml.
They are of a moisture content in a range which may be as broad a~ about 3 to 20% but normally will be about 10 to 15%.
After production of the spray dried portion of the compositions other components thereof may be mixed with the beads or sprayed onto them (and onto other components of the "
, .
, , ''' '~ `
126~417 62301-1221D
product, when desired). Generally it will be preferred for the bentonite, enzyme, bleach, and any other particulate products, such as those in powder, agglomerate or prill form (except the siliconate), which are intended to be post-added to the spray dried beads, to be mixed with them, after which any liquids (including siliconate in solution) to be post-added may be sprayed onto the mixture. However, orders of post-addition of components may be varied and sometimes part of the particulate material may be post-added after one or more of the liquids.
Two or more of the particulate materials may be pre-mixed before post-addition and similarly, mixtures of liquids may also be made.
Solvents may be employed for various components to be applied as liquids and in some cases emulsions may be employed.
Thus, while the siliconate is preferably applied in solution form, in water, if a less soluble siliconate is employed it may be applied as an aqueous emulsion. In some instances it may be desirable to utilize the siliconate in an aqueous emulsion with perfume and/or nonionic detergent. However, it is much pre-erred first to coat the unperfumed detergent composition withan aqueous siliconate solution spray and subsequently to spray perfume onto the "siliconated" product. In some instances it may be desirable to extend the perfume with a suitable solvent, ~; su~h as a comparatively odorless alkylate (hydrocarbon).
; Instead o spraying the siliconate onto the mixture of spray f~
Ji~
.~
~ 33 -'~ ~
, i~6~)~17 62301--1221D
dried (or otherwise manufactured to similar product character-istics) detergent beads, bentonite agglomerate, enzyme prill~
or agglomerates, and perborate particles in mixture, the sili-conate may be applied to such individual components separately or in various co~binations. Such can be accomplished with separate sprays of siliconate, in which case the proportion thereof deposited on the different components may be readily controllable, or a single siliconate spray may be directed onto different feed streams of such components as they enter a suit-able mixer. When nonionic detergent is post-added (and it will sometimes be preferred that all of the nonionic detergent be added in the crutcher so that the siliconate will be of great-est dispensing assisting effect) it may be sprayed onto or otherwiee satisfactorily applied to the surfaces of the spray dried beads before admixing with the other particulate com-ponents of the final product and before application of silicon-ate spray thereto. Also, as previously indicated, the nonionic detergent, in liquid form, may be mixed with the siliconate and/or perfume to be sprayed onto the product, in which case it may act like an emulsifier.
The apparatus for effecting the various mixings and SprayingB i8 known in the art and accordingly will not be described in detail herein. Spraying may be through conven-tional nozzles, usually of wide spray pattern design, but other types of spraying equipment may also be employed. The mixers : - 34 -.. .
. .
: :
12f~ 17 62301--1221D
may be of various designs but preferably in~lude revolving inclined tubes or drums, inside which spraying may be effected.
However, V-shaped blenders, especially those of continuous feed design, and other commercial powder blenders can also be satisfactory.
The amount of siliconate that will be sprayed onto the surfaces of the various particulate components of the detergent composition will be such that the final product in-cludes a dispensing assisting proportion of the siliconate (or a derivative thereof). Because it is thought that the benton-ite agglomerates can to some extent interfere with satisfactory dispensing of the particulate detergent composition from the feed chamber of an automatic washing machine (of the "European type"), it may be preferable for a greater proportion of sili-conate to be applied to such bentonite agglomerate particles, e.g., up to 5~, when such is feasible. In some cases only the bentonite particles will be treated with the siliconate, in which instances the proportion of siliconate in the final detergent composition may often be decreased, e.g., by as much as 50~. Applications of the siliconate involve addition of moisture to the composition being treated, when the siliconate i8 in aqueous solution or emulsion (but not if in non-aqueous solution). Such can either be desirable or not, depending on the moisture content and the properties of the detergent composition and processing apparatus. Accordingly, the concentration of siliconate ' ~
"~ -'~
~ ,~,.... .. .
,.:
, :. : :
12f~ 7 in the spray liquid may be adjusted. of course, the greater the volume of the spray and the greater the dilution of the siliconate the more uniformly a spray may be distribùted on the particulate material. On the other hand, if the product is borderline or too high in moisture concentration a dilute siliconate s~ray may exacerbate this condition. Generally the concentration of siliconate in the liquid will be at least 5%, and preferably will be at least 10%. Because the siliconate is completely miscible with water higher concentrations may be employed, which are usually within the ranges of 5 or 10 to 25 or 50~.
The various mixing and spraying operations will normally take place at about room temperature but operations in the range of 10 to 40C., preferably 20 to 30C., are preferred. The particle sizes of the materials being coated with siliconate will usually be like those of the final product, within the No's. 10 to 100 or 200 sieve range (the perborate and enzyme ranges may extend to No. 200). The agglomerated bentonite particles will be those resulting from agglomeration or compaction of more finely divided particles, such as those of which over 50% pass through a No. 200 sieve. Such particles will be essentially grit-free and will normally have from 0.05 or 0.15 to 3 or 5~, preferably 0.1 or 0.15 to 0.5 or 1% of siliconate, such as potassium methyl siliconate or sodium propyl siliconate, sprayed onto the surfaces thereof to at least partially coat such surfaces. They may be colored with a suitable dye or pigment, such as Acilan Brilliant Blue FFR*, or such or other suitable colorant may be applied with the siliconate.
* trade mark 126~417 62301-1221D
The siliconate does not obscure the color. Sometimes the bentonite agglomerates may be larger than the other particles in the product, e.g., 10 to 50% greater in diameter, to accentuate their difference. In many instances the bentonite agglomerates will preferably be of sodium carbonate treated bentonite (such treatment improves the color of off-color clay) and will contain magnesium carbonate and/or calcium carbonate therein, resulting from such treatment. When the particles are only partially coated with siliconate it is desirable for at least 10% of the surface area (of the equivalent spheres) to be covered by the siliconate, and more preferably a greater percentage will be covered, e.g., 50%, to facilitate dispensing. Similar considerations and conditions apply when the en~yme, bleach and detergent particles are being treated, with the exception that in such cases a lesser proportion of siliconate may be employed than that used for coating bentonite agglomerates.
In the various cases mentioned above the coating of the solid siliconate will normally be on the outer 1% of the ~ 20 thicknesses of the particles. For example, for a particle that -~ i8 one millimeter in thickness such a siliconate coating would ~I be about 5 microns thick. Preferably the coating will be on the out~er 0.5~ of the particle bead diameter, more preferably the outer 0.2~ thereof. Of course, when only partial coatings are~applied and when greater percentages of siliconate are ~J'`~
: ,~ ` :` :: `
,,"
,,, ~, `
':: ~:, , ,. . .. :: : .
~:` ` . : . ......
1~6~417 62301-1221D
utilized, as when only the bentonite agglomerates are coated, the siliconate thicknesses will be greater, but preferably less than 2%. Normally, such thicknesses will be at least 0.05~ of the particle thickness.
The products and processes of this invention posses many advantages, several of which have already been mentioned.
With respect to the products, the application of siliconate to particle surfaces, even when the entire particle is not covered with the siliconate, improves the dispensing characteristics of such particle without having any adverse effects. Thus, deter-gent compositions of the types described herein, and the particulate components of such compositions mentioned, are easier to dispense from a charging compartment of an automatic washing machine of the European type than are control products untreated with siliconate. This difference is most pronounced with respect to the agglomerated bentonite particles. The tests for comparing such results are practical use tests, employing a variety of different makes of such European washing machines, with the evaluator noting the number of particles remaining in the charging compartment after a normal charging and dispensing Operation# or after repeated such operations.
To accentuate the differences and make the test more difficult, the walls of the charging compartment are first wet to promote adherence to them of the bentonite (and other materials). To ~ simulate such a test one may sprinkle equal weights of test and ; ~ control product onto a wet horizontal surface, allow them to , ,~
. .
~ 3~
~': ' '' ' ' ' lZ60~17 stand for one or two minutes, and then direct a gentle spray of water onto the particles for a measured time, e.g., 30 seconds, after which the numbers of particles may be compared. By such tests the products of this invention show a marked improvement over the controls; normally one may expect to obtain less than half the number of particles still adhering to the pre-moistened surfaces when the "experimental" product is used, compared to the control. Often no particles will be adhering to the pre moistened surface when at least 0.15% of siliconate is used, several particles will be sticking when at least 0.05%
but less than 0.15% of siliconate is employed, and an appre-ciable number of particles will be adhering when no siliconate i8 present.
While most of the detergent will be charged to the waehing tub in normal use of the automatic washing machine so that the retention of some particles in the charging chamber may not initially be more than psychologically objectionable, with repeated washings greater numbers may be retained, thereby changing the composition of the fabric softening detergent and possibly even qignificantly affecting the charge weight. Also, the appearance of the charging compartment with particles retained therein i~ unsatisfactory and can lead to consumer rejection of the product. Because of the different washing techniques employed in America, coating bentonite detergent part~icles with siliconate may not be as important there but it . : ~
~ is considered that the presence of the siliconate on the s~ particle will assist in making the detergent more stable and ,:~
,~
::
,, ~ 39 -~.. , ., .. . ~,, 126()~17 more freely flowing, especially in damp conditions, and will help to counteract any gelation of the bentonite under such conditions.
In addition to promoting dispensing, the siliconate also has the desirable effect of preventing excessive foaming of the detergent composition in aqueous solution. The benton-ite also helps to limit foaming and the combination is superior to the individual components. The siliconate also appears to have a stabilizing effect on enzymes and bleaches coated with it and helps to prevent interaction between perfume components and other detergent constituents, thereby helping to stabilize the perfume. It can also have such an effect on colorants.
Yet, these various advantages are obtained without the dis-advantages of the product being excessively hydrophobic, because it is initially water soluble. It does not interfere with the desired quick dissolving and dispensing of the deter-gent components and does not appear to cause an objectionable buil~up of hydrophobic deposits on washed and softened laundry.
It does not interfere with the particular softening effect of the hydrophilic bentonite and does not interfere with the good detergency of the composition. The detergent compositions resulting are excellent laundry detergents and effectively soften washed laundry, as has been established by comparative tests against similar compositions containing neither bentonite nor siliconate. The products are satisfactorily free flowing and of desired bulk density and appearance. They are also non-dusting, which may at least in part be attributable to the siliconate.
~ 40 ~
lZ~ 7 62301-1221D
Processes in which siliconate solutions or emulsions are sprayed onto detergent, bentonite and other detergent com-ponent particles are easily carried out and do not require special equipment. Due to the water solubility of the silicon-ate it may be applied in aqueous solvent without adding other components to the detergent formula. Yet, it can also be emulsified or otherwise distributed with other detergent com-ponents. The processes lend themselves to modification to allow different concentrations of siliconate on different detergent components. The coating materials do not gel or thicken objectionably, do not block spray nozzles and do not form gummy deposits in the spraying and mixing equipment. The siliconate may be applied at room temperature because it does not require heating, as do some other protective coating materials. The siliconate can be retained principally on the surfaces of the particles, allowing less to be employed while still producing the desired dispensing assisting effect. Also, apparently due to the nature of the siliconate or derivative thereof on the detergent or component particle, it is effective even when the particle is not completely covered by it.
The following examples illustrate but do not limit this invention. Unless otherwise indicated, all parts are by weight and all temperatures are in C.
:126~
A crutcher mix totalling 3,199.5 kilograms of mater-ial is ~ade by reacting 364 kg. of dodecylbenzene sulfonic acid (Dobane JNQ [48.8% active ingredient]) and 167 kg. of hydrogen-ated fatty acids (16 to 18 carbon atoms per mol of fatty acid) with 47 kg. of caustic soda (38% ~a20) in an aqueous medium containing a suitable proportion (to maintain the reaction) of 952 kg. of city water (300 p.p.m. hardness, as CaC03). The balance of such water is employed to cool the reaction mix, as desirable, and to dilute other components of the crutcher mix.
Subsequently there are added to the crutcher 242 kg. of aqueous sodium silicate solution (Na20:SiO2 = 1:2.4) at a 44.1% solids concentration, 7.5 kg. of fluorescent stilbene type brightener, 7 kg. of Sydex 808 (85% MgSiO3 and 15% magnesium DTPA), 1,252 kg. of hydrated sodium tripolyphosphate (TPP "H"), 54 kg.
of anhydrous sodium sulfate (99.5~ pure) and 107 kg. of a non-ionic detergent, which may be considered as the condensation product of 11 mols of ethylene oxide with one mol of higher fatty alcohol having 12 to 15 carbon atoms per mol.
The crutcher mix is heated for about an hour, with stirring, so that its temperature rises to about 55C., after which it is pumped to a spray drying tower where it is sprayed at elevated pressure through multiple spray nozzles into drying air at a temperature of about 300C. From the spray drying particles of a moisture content of about 12%
~' ' ` : ' 126()417 result, most of which are within the No's. 10 to 100 sieve range. Particles outside this range are screened out.
63 1 Parts of the spray dried powder (bulk density of about 0.4 g./ml) are then blended with 0.3 part of prilled proteolytic enzyme (Alcalase, of 2 Anson units per gram, although Maxatase P 440,000 may be sub-stitu~ed), 20 part of granular sodium perborate and 16 parts of agglomerated bentonite. All such powders are of particle sizes within the particle size range for the spray dried detergent composition component but smaller particles of the enzyme and perborate may also be employed, down to about No. 200. The bentonite particles are com-posed of 82.3 parts of anhydrous bentonite, 16.1 parts of water, 1.5 parts of sodium silicate (previously des-cribed) and 0.06 part of Acilan Brilliant Blue dye, with the dye being applied to the surface of the particles.
The bentonite particles are made by agglomeration of more finely divided particles of bentonite (Laviosa AGB)*
with the dilute sodium silicate solution (in the water), after which they are dyed. The bentonite employed is one which has been treated with sodium carbonate to replace calcium and magnesium therein with sodium (see the pre-ceding specification for description of this material) and from which a natural content of gritty material (hard enough to be difficult to smash with a hammer) had been removed, after treatment, by centrifugal separation. The moisture content of suitable agglomerated bentonite may be varied and can be as low as 3%, when mixed with other components of the present softening detergent.
* trade mark 12~ 7 Onto the mixture of spray dried beads, enzyme, perborate and colored bentonite particles, in an inclined drum mixer, there is sprayed a mix of 0.5 part of the non-ionic detergent, 0.25 part of Rhodorsil Siliconate 51 T
(50~ solution of potassium methyl siliconate) and 0.25 part of detergent perfume. The sprayin~ is regulated so that the liquid sprayed evenly coats the particles in the mixer or tumbling drum to produce about 100 parts of uni-form product.
The final product is of particle sizes within the range of No's. 10 to 60 sieve, a bulk density of about 0.5 g./ml. and a moisture content of about 12% (although on standing this may be reduced to about 9~). The particulate fabric softening detergent resulting is free flowing and attractive in appearance, with the somewhat larger (averaging 20 to 200% greater in diameter) blue agglomerat~d bentonite particles contrasting with the other white particles, and is non-dusting.
The product made is subjected to practical laundry - 20 testing and is found to be an excellent detergent with desir-' able fabric softening properties. When evaluated, it is noted that it is more readily dispensable, leaving fewer particles behindin the charging compartment of a European ; type automatic washing machine, than a control in which the siliconate coating is not present. This is especially important when the bentonite particles are larger, since ~f' ~;
they may tend more to adhere to wet chamber walls during dispensing.
~: :
~ fl,: :
~ ~ -44-,,' "' . .. .
- , . ,-. ": .
lZ6V417 When the above experiment is repeated but wlth 100 kg. of dodecylbenzene sulfonic acid, 1,324 kg. of TPP"H" and 0.6 part of Rhodorsil Siliconate 51 T being employed instead of the amounts previou~ly used the product resulting is of as satisfactory physical properties and functions but additionally is even more readily automatically dispensable, leaving no particles behind in the charging compartment of a European type automatic washing machine.
In modifications of the above example the anionic detergent is replaced by equal weights, respectively, of sodium lauryl sulfate, sodium hydrogenated tallow alcohol sulfate and sodium tallow alcohol polyethoxy (3EtO) sulfate. Alternative-ly, mixtures of such materials, e.g., equal parts of sodium dodecylbenzene sulfonate and sodium hydrogenated tallow alcohol sulfate, are employed together. In all such cases the final detergent composition resulting is one which is an excellent textile softening laundry detergent. All such products are also of improved dispensing characteristics, when tested by the methods previously described. Similar results are also obtain-able when, instead of the anionic detergent being varied, thenonionic detergent is changed, being replaced by a block co-polymer of Propylene oxide and ethylene oxide, such as Pluronic L-44 or L-62, nonyl phenol polyoxyethylene (12 EtO) glycol or a condensation product of C12_1s fatty alcohol with 3 or 7 mols of ethylene oxide per mol, or with a mixture of two or more of suc~ detergents, e.g., in equal parts.
~ When half or all of the sodium tripolyphosphate is ; replaced by NTA the final product is also a satisfactory ~;
:
' , . .
;, , ~ .
126V~17 detergent, with softening properties, and is of improved dispensing properties compared to a control of the same formula without the siliconate.
When the soap is omitted from theformUla dimin-ished foam control results but otherwise the product is acceptable and is li~e those previously described. When the sodium perborate is replaced by other bleaching agents, such as sodium persulfate and magnesium dimonoperoxyphthalate, good bleaching and cleaning by the product is still obtain-able. When known activators foroxidizin~ agents arepresent bleaching may be effected by use of the composition at lower temperatures than those near the boil (which are normally employed in the processes of this example to obtain maximum bleaching activity). When it is desired to include more silicate in the product the amount of silicate is doubled by post-adding similarly sized hydrous sodium silicate particles with the other post-added part-iculate solids. When sodium propyl siliconate is substi-tuted for potassium methyl siliconate comparable products are obtainable and this is also the case when siliconates of lesser degrees of water solubility are employed in replacement of some, e.g., 25~, of the other siliconates.
The procedures of Example 1 are varied by applying the siliconate, in aqueous solution (20~ solids), as a finely divided spray (preferably with the spray drop-lets being "micron sized", e.g., 1 to 50 or 1 to 10 microns in diameter), or otherwise as satisfactorily small sized liquid droplets, to each of the particulate components to be blended together separately before such blending. The various coated particles are all of bulk densities in the prescribed range (0.3 to 0.6 g./ml., e.g., 0.5 g./ml.). Subsequently, the perfume is similarly sprayed onto the mix. The nonionic detergent is not post-sprayed but instead, is incorporated in the crutcher mix.
The resulting product is one which is also of improved dispens-ing properties. The siliconate coated agglomerated bentonite, spray dried detergent composition beads (without bentonite), 10 enzyme and perborate can all be separately produced and stored, and subsequently are useful for formulating fabric softening detergents of different compositions and different desired properties, e.g., coated bentonite plus uncoated spray dried beads.
A softening detergent like that of the first formula of Example 1 is made from a crutcher mix of 10.24 parts of the dodecylbenzene sulfonic acid, 2.81 parts of the hydrogenated fatty acid, 0.81 part of the caustic soda, 26.54 parts of 20 water, 37.2 parts of pentasodium tripolyphosphate (hydrated), 6.8 parts of sodium silicate solution, 0.21 part of fluorescent brightener, 1.46 parts of sodium sulfate and 3.0 parts of the ^ nonionic detergent, added sequentially. This is spray dried by ~, ~
S the method described in Example 1 to produce 62.5 parts of a ,~
product of similar bulk density and particle size. The spray dried particles are then mixed with 0.3 part of proteolytic enzyme 20.0 parts of the sodium perborate granules, 16.0 parts of the agglomerated bentonite and 0.2 part of Sydex 808, and onto the .
. ~ ~
~ 47 -.'. X
'~' i, ~- . .. . ~ . . .
lZ6~ 17 tumbli~g Dowder mix there is sprayed a blend of 0.3 part of the detergent perfume and 0.4 part of C10 13 linear alkylate, and 0.15 part of potassium methyl siliconate is sprayed onto the product in suitable liquid state, pre-ferably dissolved in water (50% concentration). The product made is of better dispensing properties for dis-pensing from the charging compartment of an automatic washing machine in normal use. It e~hibits a slightly greater foaming tendency than the similar products of Example 1. When 0.3 part of the siliconate is used the dispensing properties of the detergent composition are further improved.
When, instead of employing an agglormerated sodium carbonate-treated Italian bentonite from which grit has been removed, as in Example 1, a competitive product (Winkelmann agglomerate) or a Wyoming type ben-tonite, such as that sold underlthe trade mark Mineral Colloid No. 101 (formerly Thixogel No. 1) is employed, similar final products are obtained which are good soft-ening detergents and are readily dispensed. Also, ~henother lower alkyl siliconates, such as sodium propyl siliconate, are utilized, comparable results are obtainable.
When the Acilan Blue dye, used to color the bentonite agglomerates, is replaced by ultramarine blue, good color-ing and bluing effects are also obtained. Similarly, when the siliconate is applied only to the agglomerated bentonite, with the total proportion of siliconate in the product being the same, or 50% less in some cases, the properties of the detergent resulting are similar to those previously described and dispensing is also improved, compared to control.
4~7 EX~1PLE 4 When the proportions of the various components in the preceding Examples are modified +10~, +20% and +30~, maintaining them within the ranges previously given and keeping the ratios of anionic detergent to nonionic detergent within the range of about 1:1 to 3:1, the ratio of total detergent content to builder content within the range of about 1:3 to 1:8 and the ratio of sodium bento-nite to total detergent within the range of about 1:1 to 2:1, products of properties similar to those described in Example 1 are obtained. Such is also the case when the water soluble builder salt(s) of Example 1 are replaced with zeolite A (20% hydrated) and when any of a variety of synthetic anionic and nonionic detergents is employed in mixture, optionally with an amphoteric detergent, such as one of the Miranol type. Also, the invention may be used to improve the dispensing properties of various other bentonites and particulate detergent compositions of widely different formulas, densities (0.2 to 0.9 g./ml.) and sizes (preferably No. 10-40 sieve).
The invention has been described with respect to various illustrations of preferred embodiments thereof but is not to be limited to these because one of ordinary skill in the art, with the present specification before him, will be able to utilize substitutes and equivalents without departing from the invention.
.-:
lZ60~i7 62301-1221D
will be from 5 to 30 ml./~. and frequently will be in the 5 to 20 ml./g. range.
The sodium bentonite or swelling bentonite will normally be agglomerated before being blended with spray dried built detergent beads and any other adjuvants to be post-added.
Such agglomeration will be carried out in known manner, as by utilizing moisture spray application to tumbling bentonite powder, extrusion, compaction, pan agglomeration or other tech-nique. However, it is highly desirable that the bentonite be in finely divided powder form before agglomeration so that when the agglomerate breaks up in the wash water the particles of bentonite will be small enough to be effective lubricants, as deposited on the laundry. Thus, it will normally be desirable for essentially all of the bentonite powder, before asglomera-tion, to pass through a No. 100 sieve (U.S. Sieve Series), with at least 99% passing such a sieve and with over a major propor-tion thereof passing through a No. 200 sieve, preferably with less than about 30% by weight of the particles failing to pass through such a sieve and more preferably with no more than 20%
resting on such sieve.
Also important to promote ready break-ups of benton-ite agglomerates and dispersion in the wash water, so that the minute particles thereof may be adhered to textile fibers to soften them, is the moisture content of the bentonite.
i ~ :
'''''''' ~
. ~ ~
~ - 15 -''-: ~
..
:
~, .
, . , lZ6~417 62301-1221D
Although it is desirable to limit the free moisture content of the bentonite utilized to about 10~ or so, with moisture con-tents above 15~ not normally being employed, it is even more important to make certain that the bentonite includes enough free moisture, most of which is considered to be present between adjacent plates of the bentonite, to facilitate quick disintegration of the bentonite and any adjacent materials in the particles when such particles or detergent compositions containing them are brought into contact with water, such as wash water. It has been found that at least about 2%, prefer-ably at least 3% and more preferably, about 4% or more of water should be present in the bentonite (so-called "internal"
moisture), and that the bentonite should not be dried so that less than such percentages of water are even temporarily present in it. In other words, overdrying to the point where the bentonite loses its internal moisture can significantly diminish the utility of the present compositions. When the bentonite moisture content is too low the bentonite does not aid in satisfactorily swelling and disintegrating the agglomer-ated beads in the wash water.
Preferred swelling bentonites of the types describedabove are sold under the trade marks Laviosa and Winkelmann, e.g., Laviosa AGB and Winkelmann G 13, both of which are treat-ed Italian b~ntonites, and Mineral Colloid ~o. 101 (and other si~ilar designations) corresponding to Thixo-Gels No's. 1, ~.
12604i7 62301--1221D
2, 3 and 4 (marketed by Benton Clay Company, an affiliate of Georgia Kaolin Co.). As will be described later, the treated bentonites will also preferably be free of grit and will preferably have been further processed by grinding to a fine powder before agglomeration. Usually the commercial bentonite used will have a pH in water (at 6% concentration) in the range of 8 to 9.4, a maximum free moisture content of about 8~, a specific gravity of about 2.6 and a viscosity, at 10~ concen-tration in water, within the range of 5 to 30 centipoises, preferably 10 to 30 cp.
The siliconate, which is employed in conjunction with the bentonite, preferably to coat it, and also can be used to coat the detergent composition particles, and which acts to inhibit sticking of the bentonite and the detergent to charging compartment walls of an automatic washing machine (and to walls of other "containers" for the product), is one which may be easily applied to the bentonite and which can at least partial-ly coat the particles thereof and inhibit their adhesion to walls of a compartment in which they may be stored temporarily, even when such walls are damp or wetO The siliconate is a salt of siliconic acid, preferably an alkali metal salt thereof, and the siliconic acid is preferably a lower alXyl siliconic acid.
While it is desirable that the salt-forming metal or other cation be one which will produce a water soluble siliconate, so , ~_ ~26(~ ~17 62301-1221D
that it may be applied to the bentonite in aqueous solution, such may not be necessary and it is contemplated that water dispersible siliconates will also be utilized. Furthermore, it is within the invention to employ lipophilic siliconates, which may be applied in organic solvent solution o~ in aqueous organic solvent solution, or in corresponding emulsions or dispersions. The alkali metal of the siliconate is preferably either sodium or potassium, but other salt-forming cations may also be utilized providing that the siliconate is suitable for the present purposes. It is contemplated that other alkali metal salts of siliconic acids than the lower alkyl siliconates may be utilized, including both aliphatic and aromatic silicon-ates, but the lower alkyl siliconates, wherein the lower alkyl i8 of 1 to 3 or 4 carbon atoms, e.g., potassium methyl silicon-ate and sodium propyl siliconate, are considered to be pre-ferred. Instead of employing the siliconate an equivalent charge of the corresponding siliconic acid and a corresponding base may be utilized.
For most effective results it is much preferred to employ the lower alkyl siliconates previously described but it is recognized that such compounds may polymerize, at least partially, to siliconic or other film-forming and foam-inhibiting compounds or polymers and accordingly it is within the broader bounds of this invention to utilize such "deriva-tive" materials directly, at least in part, as a component of ~' -'' ' 126~417 62301-1221D
the present detergent compositions. When such a derivative of the siliconate is employed it will be one which aids in improv-ing the dispensing of the bentonite beads or detergent composi-tion particles from a charging compartment of an automatic washing machine, such as a compartment wherein the particulate contents are washed out by the flow of water into the washing tub of the machine.
Although the operation of the present invention should not be considered to be limited by the mechanism to be described, it may well be that the water soluble alkali metal lower alkyl siliconates (which may also be described as alkali metal lower alkyl silanolates), may be converted to polymethyl siloxanes, as by the action of atmospheric carbon dioxide or other acidic acting material, which could also result in the production of alkali metal carbonate, such as sodium carbonate, a useful builder salt. The polymethyl siloxanes are known to be hydrophobic and it is possible that their presence is the cause of the improved properties of the coated bentonite (or other detergent particles) with respect to being of improved dispensing properties from the charging compartment of an auto-matic washing machine. The production of siloxanes by the described reaction has been mentioned in the text Chemistry and Tcchnology of Silicones, by Walter Noll, published by Academic Press in 19~8. However, although silicones have been included in detergent compositions in the past, often for their anti-., .
.
:
. . . . ....
i~.60~17 foaming properties, no disclosure of the use of water soluble siliconates to coat bentonite and detergent particles to pro-mote free release from damp surfaces of charging compartments, as in the present invention, is known and such process and the resulting compositions are considered to be unobvious from the prior art.
The water soluble soap, which is a desirable com-ponent of the present detergent compositions and which has a useful foam limiting action in the wash water, which is especially advantageous for side loading or horizontal tub washing machines, is normally a higher fatty acid soap of alkali metal, such as sodium or potassium, with sodium soaps being highly preferred. Such soaps may be made from natural fats and oils, such as those from animal fats and greases and from vegetable and seed oils, for example, tallow, hydrogenated tallow, coconut oil, palm kernel oil, and corresponding "natural" and synthetic fatty acids, and that they are normally of 10 to 24 carbon atoms, preferably 14 to 18 carbon atoms.
Preferably such soaps are of hydrogenated tallow or hydrogen-ated tallow fatty acids, e.g., stearic acid. The water solublesoap will preferably be chosen so as to have a desirable balance of good detergent properties, effective foam reducing effect and other good physical properties. Specifically, among those other physical properties will be desirable hardness, good binding effect and limited tendency to produce adhesive gels under use conditions. It has been found that the sodium hydrogenated tallow soaps satisfy these conditions best but even compositions containing them are desirably also treated '~.
lZ~17 62301-122]D
with siliconate to furt}ler inhibit adhesion to damp compartment walls. of course, for compositions wherein foaming is desir-able the soap content is lowered, the soap is omitted or a lower fatty acid soap, e.g., sodium laurate, may be used instead.
Bleaching agents do not have to be incorporated in all of the detergent compositions of this invention but for best cleaning and whitening of laundry it is often preferable that a bleach be employed. When the wash water temperature in the automatic washing machine is high enough sodium perborate is the bleaching agent of choice because the elevated tempera-ture, especially when it is above 80C. (and it may be almost up to the boiling point, e.g., 90 or 95C.) can cause decom-position of the perborate and release of bleaching oxygen from it. Thus, under such conditions the sodium perborate, which is often referred to as sodium perborate tetrahydrate or sodium borate perhydrate, and which will usually have an active oxygen content of at least about 10%, releases such oxygen without the need for employment of an activating agent or decomposition catalyst. When lower temperature laundering is undertaken, either in cold water or hot water, for example, at temperatures from 20C. to 60C, the sodium perborate will not usually sufficiently decompose to satisfactorily bleach textiles ~7' ~'~
126~417 62301-1221D
being washed and in such circums~ances an activator will be employed or another suitable bleaching agent will be used, also usually with an activator. Many such systems have been described in the literature, most of which belong to the class of peroxygen compounds, such as persulfuric acid, peracetic acid, performic acid, perphthalic and perbenzoic acid, and salts thereof, such as the alkali metal and alkaline earth metal salts, e.g., sodium and magnesium salts. Various aetivators for such compositions are known whieh promote the controlled release of oxygen from them in hot and cold water systems, ineluded among which aetivators are heavy metal salts, such as copper salts, and various inorganic and organic eom-pounds, whieh have been deseribed in the art. Among the lower temperature bleaches that which is preferred is magnesium dimonoperoxyphthalate. Of eourse, various other oxygen releas-ing bleaehing materials sueh as the hydroperoxides, may be employed and in the proper circumstanees ehlorine releasing bleaching materials can be ineorporated in the present detergent eompositions.
Various adjuvants may be present in the crutcher mix from whieh base beads or detergent eompositions may be spray dried, or sueh adjuvants may be post-added, with the deeision as to the mode of addition often being determined by the physieal properties of the adjuvant, its resistance to heat, its resistanee to degradation in the aqueous eruteher medium, ~ ' , lZ6~17 62301-1221D
and its volatility. Among the adjuvants often employed are enzyme powders, which normally are post-added to the base beads because they are heat sensitive. These rnay be any of a variety of commercially available products, included among which are Alcalase*, manufactured by Novo Industri, A/S, and Maxatase*, both of which are alkaline proteases (subtilisin). Among specific enzyme preparations that may be employed are Novo Alcalase 2M* (2 Anson units per gram) and Maxatase P 440,000.
Although the alkaline proteases are most frequently employed, amylolytic enzymes, such as alpha-amylase, may also be util-ized. The mentioned compositions usually contain active enzymes in combination with an inert powered vehicle, such as sodium or calcium sulfate, and the proportion of active enzyme may vary widely, usually being from 2 to 80% of the commercial preparation. In this specification proportions referred to are of the enzyme preparations, not the active part thereof.
Among the fluorescent brighteners those most commonly employed are the stilbene brighteners, e.g., Tinopal 5 BM*, especially in extra concentrated form. Among the stilbene compounds are cotton brighteners, such as those sometimes referred to as CC/DAS brighteners, derived from the reaction product of cyanuric chloride and the disodium salt of diamino-stilbene disulfonic acid, including variations thereof with respect to substituents on the triazine and aromatic rings.
This class of brighteners is known in the detergent art and will mo~t often be used when bleaching components are not * trade mark 126~3~17 present in the final product. When it is desired for the detergent composition to include a bleach, such as sodium perborate or other oxidizing bleach, bleach stable brighteners may be incorporated in the crutcher mix. Among these there may be mentioned the benzidine sulfone disulfonic acids, naphtho-triazolyl stilbene sulfonic acids and benzimidazolyl deriva-tives. Polyamide brighteners, which also may be present, include aminocoumarin or diphenyl pyrazoline derivatives, and polyester brighteners, which can also be used, include naphtho-triazolyl stilbenes. Such brighteners are normally used astheir soluble salts, e.g., sodium salts, but they may be charged as the corresponding acids. The cotton brighteners will usually comprise major proportions of the brightener systems employed.
When it is desired that the product made be entirely or partially colored, various suitable dyes and dispersible pigments may be employed. When blue dyes, such as Acilan blue, or pigments, such as ultramarine blue, are utilized they may have a dual effects of serving to color some or all of the detergent composition particles, or particles of components of the detergent composition, and helping to give the washed laundry a desirable bluish tint. Coloring of agglomerated bentonite particles by suitable dyes or pigments may be especially desirable because natural bentonite sometimes may be off-color, so that the agglomerates may be converted from '~.
particles that look dirty to those which are of attractive color and appearance.
Perfumes employed, which are usually heat sensitive and may contain volatiles, including a solvent, such as alcohol or a suitable glycol, polyol or hydrocarbon, are normally of synthetic perfumery materials, sometimes mixed with natural components, and generally will include alcohols, aldehydes, terpenes, fixatives and/or other normal perfume components, known in the art.
In addition to the adjuvants mentioned there may also be present flow promoting agents, anti-setting materials employed to prevent premature gelation of the crutcher mix, dispersion aids, anti-redeposition agents and, in some cases, additional softening agents, e.g., cationic softeners such as the quaternary ammonium halides, e.g., dimethyldioctadecyl ammonium chloride. However, as was indicated previously, normally the cationic softening agents will not be employed and if used, they will be post-added.
Of course, water is present in the crutcher from which the spray dried component of the present composition is made, wherein it serves as a medium for dissolving or dispers-ing the various components of the spray dried beads. There-fore, some water, in both free and hydrate forms, is in the product. Similarly, water may be employed to agglomerate the bentonite and perborate powers and dissolve the siliconate.
~- - 25 --: .. .... . ..
126~17 62301-1221D
While it may be preferred to employ deionized water, so that the hardness ion contents thereof may be very low and so that metallic ions that can promote decomposition of any organic materials which may be present will be minimized, city or tap water may be utilized instead and sometimes, for economic or supply reasons, will be used exclusively. Normally the hard-ness content of such water will be no greater than about 300 parts per million, as calcium carbonite.
The proportions of the various components in the final product of this invention will be such as to result in their being effective as a fabric softening detergent, from flowing and of improved dispensability from a charging compart-ment of an automatic washing machine by action of wash water passing through such compartment. The proportion of anionic detergent will normally be from 3 to 10% of the final product, preferably 3 to 7% and more preferably 4 to 6~, e.g., 5%.
Usually the nonionic detergent content will be from 1 to 5%, preferably 2 to 4%, e.g., 3 or 4%. In those instances when nonionic detergent is not being employed the proportion of anionic detergent may be increased by as much as 5% and in cases in which the anionic detergent is omitted the nonionic detergent content may be increased by up to 10%, providing that the detergent composition remains satisfactorily dispensable.
While it is possible for effective detergent compositions to be made without either the anionic or nonionic detergent, such products will not be as useful as preferred compositions of .~`,..
126~)41~
thi~ invention. The builder content will generally be in the range of 20 to 75%, preferably 30 to 50% (and such is often preferably entirely water soluble builder salt) and more preferably 30 to 40%, e.g., about 35%. As was previously indicated, sodium tripolyphosphate and NTA are preferred water soluble builders, which may be the sole builders employed.
When they are utilized in mixture the mixture will preferably contain from lO to 90% of one of them, with the balance being the other such builder, and within such ranges preferred pro-portions may be 20 to 80% and 40 to 60%, and complementing percentages. Similar ranges of percentages are appliaable when the builder i8 a mixture of water soluble builder salt and water insoluble builder, æuch as a zeolite.
The bentonite content of the textile softening deter-gent,~preferably in the form of a siliconate coated agglomerate of more finely divided bentonite powder particles, will be a satlsfactorily softening proportion thereof, which usually will be within the range of 5 to 25%, preferably lO to 20%, more preferably 14 to 18%, e.g., about 16%.
The ~iliconate used will be employed in a proportion - sufficient to have the desired dispensing assisting e~ffect and such~proportion will normally be from 0.05 to 1%, preferably 0.15 to ~1%, although up to 3% can be employed. A preferred ranqe of proportions of the siliconate is from 0.1 or 0.15 to 0.~3 or 0.4%, for examples, 0.15% or 0.3%. When the siliconate u~ed to cover agglomerated bentonite only, on a coated bentonite agglomerate basis the siliconate ;~:,s~
~ 27 -lZ6(~;117 content will usually be at least 0.15%, often 0.15 to 5%, preferably O .15 to 1% and more preferably 0.15 to 0.5~, e.g., 0.4%.
When a fatty acid soap is present the pro~ortion thereof will usually be no greater than 10%. A preferred range of soap contents is from 2 to 6%, more preferably from 2 to 4~, e.g., 3~. When a bleaching agent is present the proportion thereof will usually be within the range of 5 to 35%, preferably 15 to 25~, e.g., 20~. However, it will be kept in mind that such proportions are based on employment of sodium perborate and will be modified when other oxidizing agents are utilized, so as to have approx-imately the same bleaching effect (or active oxygen content). The moisture content of the product, which does not include hydrate moisture which is not removable during standard heating at 105C. for two hours, will usually be within the range of 3 to 20%~ with the higher percentages thereof bei.ng permissible when a substantial proportion, at least 1/4 and preferably at least 1/2 of the moisture is in hydrate form. A preferred moisture content is from 5 to 17% and the more preferred such content is from 10 to 15~. Any moisture not removable by the standard test mentioned above is considered to be a part of the compound in which it is present as a hydrate, e.g., a zeolite.
The total proportion of various adjuvants which may also be present in the detergent composition will usually be no more than 20%, preferably being limited to 15% and i26~417 62301-1221D
more preferably to 10%. Although water soluble sodium silicate has building properties, especially with respect to its action against magnesium ions in hard water, because it also acts as a binder the proportion thereof present will not be limited by the builder content proportions previously given and will be considered herein with other adjuvants for the present composi-tions. Usually it will constitute no more than 8% of the product, with a normal range of 1 to 5%, preferably 2 to 4%, e.g., 3%. The content of filler salt, such as sodium sulfate, when it is present, will also normally be limited, to no more than 10%, and will normally constitute from 0.5 to 5~, prefer-ably 0.5 to 2%, e.g., 1 or 1.5% of the product. The percentage of proteolytic enzyme used will normally be from 0.1 to 2%, preerably 0.2 to 1%, e.g., 0.3%, and the percentage of optical brightener dye will be from 0.1 to 2%, preferably 0.1 to 0.5~, e.g., about 0.2%. Perfume content will normally be from 0.05 to 2%, preferably 0.1 to 1%, and more preferably 0.2 to 0.5%, e.g., about 0.3%. Among other ad~uvants it may sometimes be desirable to have present small proportions of particular sequestering agents and flow promoters. Among such materials a preferred sequestrant is diethylenetriamine pentaacetic acid, magnesium salt (magnesium DTPA) but other diethylenetriamine acetates may be substituted for it. Magnesium silicate is a preferred flow promoter, which also may serve as a carrier for .
1:`
~ - 29 -. ~
,~
.. ..
, . ~: . : ,. .
,, ~, ~ .. , ., . , , . -, . :
~260~17 the sequestrant. Commercially, a miXtULe of such products i~
available comprising 15% of the magnesium DTPA and 85~ of MgSiO3 and when such is employed the proportion thereof is preferably from 0.1 to 1%, more preferably 0.1 to 0.5~, e.g., 0.2%. Proportions of the sequestrant (or stabilizer) may be from 0.01 to 0.2%, preferably 0.02 to 0.1%, and for the MgSiO3 concentrations are in the range of 0.1 to 0.9~, preferably 0.2 to 0.5%. Amounts of other adjuvants employed will be such as to accomplish the purpose for which the adjuvant is included in the detergent composition but normally such proportions will not be in excess of 1 or 2% and generally will be within the range of 0.05 to 1~.
In addition to the detergent composition containing synthetic organic detergent, builder, bentonite and siliconate, with soap, bleach and adjuvants often also being present, also within the present invention are siliconate-treated bentonite, siliconate-treated perborate and siliconate-treated enzyme.
For the siliconate-treated bentonite the siliconate content will be from 0.2 to 10%, preferably 0.5 to 5% and more prefer-ably l to 3%. For the corresponding detergent compositionwithout bentonite and for the enzyme and perborate the propor-tions of siliconate will be the same as those for the final ; detergent composition but such proportions may be increased from 10 to 100%, depending on conditions and the proportions of the various adjuvants in the detergent composition.
!.
, ~
S' '~
'~'' ;', '' i260417 62301-1221D
To make the products of this invention known spray drying, agglomerating and mixing techniques (preferably all three) may be employed. Because such are not considered to be significant features of the invention they will be referred to only briefly herein. In the spray drying operation a crutcher mix containing various components desired to be present in the spray dried bead and sufficiently stable to withstand the crutching and spray drying operations, such as detergent, builder and suitable adjuvants, is spray dried from an aqueous crutcher mix, which normally will contain from about 40 to about 70 or 75% of solids, preferably 50 to 65% thereof, with the balance being water. The crutcher mix may contain the anionic detergent and a portion or all of the nonionic deter-gent, although usually no more than 5~ of nonionic detergent (on the basis of the final product) will be in the crutcher (the rest, if any, being post-added). All of the builder or mixture of builders will normally be added in the crutcher, although this is not neces~ary. The bentonite is preferably ~eparately agglomerated and i8 post-added to the spray dried product but sometimes it may be incorporated in the crutcher mix. Aqueous silicate solution, stable fluorescent brightening dye, soap and filler aalt are usually added in the crutcher, together with any stable pigment and other colorants that may be employed. Instead of charging a neutralized detergent the 126(~9~17 crutcher may be utilized as a neutralizing vessel, in which anionic organic detergent acid is neutralized with aqueous caustic. Such acid, for example, may be dodecylbenzene sul-fonic acid containing about 45 to 50~ of active ingredient, which may be neutralized with an aqueous sodium hydroxide solu-tion, such as one containing 38% Na2O. If the alkylbenzene is sulfonated with sulfur trioxide the active ingredient content of the acid may be as high as 99%. A higher fatty acid mixture may also be neutralized in the crutcher with the detergent acid to produce a desired higher fatty acid soap-detergent mixture.
The crutcher mix may be spray dried in a conventional spray tower, utilizing either concurrent or countercurrent flow. Normally the mix will be at a temperature in the 20 to 80C. range, preferably 40 to 70C. and will be spray dried in a tower in which the drying air is at a temperature of 200 to 400C., to produce spray dried beads of particle sizes in the range of ~0'8. 10 to 100 (U.S. Sieve Series) sieves. Any particles that are outside the desired range may be removed by screening and may be reprocessed. The beads made have a bulk 20 density in the range of 0.3 to 0.6 g./ml., e.g., 0.5 g./ml.
They are of a moisture content in a range which may be as broad a~ about 3 to 20% but normally will be about 10 to 15%.
After production of the spray dried portion of the compositions other components thereof may be mixed with the beads or sprayed onto them (and onto other components of the "
, .
, , ''' '~ `
126~417 62301-1221D
product, when desired). Generally it will be preferred for the bentonite, enzyme, bleach, and any other particulate products, such as those in powder, agglomerate or prill form (except the siliconate), which are intended to be post-added to the spray dried beads, to be mixed with them, after which any liquids (including siliconate in solution) to be post-added may be sprayed onto the mixture. However, orders of post-addition of components may be varied and sometimes part of the particulate material may be post-added after one or more of the liquids.
Two or more of the particulate materials may be pre-mixed before post-addition and similarly, mixtures of liquids may also be made.
Solvents may be employed for various components to be applied as liquids and in some cases emulsions may be employed.
Thus, while the siliconate is preferably applied in solution form, in water, if a less soluble siliconate is employed it may be applied as an aqueous emulsion. In some instances it may be desirable to utilize the siliconate in an aqueous emulsion with perfume and/or nonionic detergent. However, it is much pre-erred first to coat the unperfumed detergent composition withan aqueous siliconate solution spray and subsequently to spray perfume onto the "siliconated" product. In some instances it may be desirable to extend the perfume with a suitable solvent, ~; su~h as a comparatively odorless alkylate (hydrocarbon).
; Instead o spraying the siliconate onto the mixture of spray f~
Ji~
.~
~ 33 -'~ ~
, i~6~)~17 62301--1221D
dried (or otherwise manufactured to similar product character-istics) detergent beads, bentonite agglomerate, enzyme prill~
or agglomerates, and perborate particles in mixture, the sili-conate may be applied to such individual components separately or in various co~binations. Such can be accomplished with separate sprays of siliconate, in which case the proportion thereof deposited on the different components may be readily controllable, or a single siliconate spray may be directed onto different feed streams of such components as they enter a suit-able mixer. When nonionic detergent is post-added (and it will sometimes be preferred that all of the nonionic detergent be added in the crutcher so that the siliconate will be of great-est dispensing assisting effect) it may be sprayed onto or otherwiee satisfactorily applied to the surfaces of the spray dried beads before admixing with the other particulate com-ponents of the final product and before application of silicon-ate spray thereto. Also, as previously indicated, the nonionic detergent, in liquid form, may be mixed with the siliconate and/or perfume to be sprayed onto the product, in which case it may act like an emulsifier.
The apparatus for effecting the various mixings and SprayingB i8 known in the art and accordingly will not be described in detail herein. Spraying may be through conven-tional nozzles, usually of wide spray pattern design, but other types of spraying equipment may also be employed. The mixers : - 34 -.. .
. .
: :
12f~ 17 62301--1221D
may be of various designs but preferably in~lude revolving inclined tubes or drums, inside which spraying may be effected.
However, V-shaped blenders, especially those of continuous feed design, and other commercial powder blenders can also be satisfactory.
The amount of siliconate that will be sprayed onto the surfaces of the various particulate components of the detergent composition will be such that the final product in-cludes a dispensing assisting proportion of the siliconate (or a derivative thereof). Because it is thought that the benton-ite agglomerates can to some extent interfere with satisfactory dispensing of the particulate detergent composition from the feed chamber of an automatic washing machine (of the "European type"), it may be preferable for a greater proportion of sili-conate to be applied to such bentonite agglomerate particles, e.g., up to 5~, when such is feasible. In some cases only the bentonite particles will be treated with the siliconate, in which instances the proportion of siliconate in the final detergent composition may often be decreased, e.g., by as much as 50~. Applications of the siliconate involve addition of moisture to the composition being treated, when the siliconate i8 in aqueous solution or emulsion (but not if in non-aqueous solution). Such can either be desirable or not, depending on the moisture content and the properties of the detergent composition and processing apparatus. Accordingly, the concentration of siliconate ' ~
"~ -'~
~ ,~,.... .. .
,.:
, :. : :
12f~ 7 in the spray liquid may be adjusted. of course, the greater the volume of the spray and the greater the dilution of the siliconate the more uniformly a spray may be distribùted on the particulate material. On the other hand, if the product is borderline or too high in moisture concentration a dilute siliconate s~ray may exacerbate this condition. Generally the concentration of siliconate in the liquid will be at least 5%, and preferably will be at least 10%. Because the siliconate is completely miscible with water higher concentrations may be employed, which are usually within the ranges of 5 or 10 to 25 or 50~.
The various mixing and spraying operations will normally take place at about room temperature but operations in the range of 10 to 40C., preferably 20 to 30C., are preferred. The particle sizes of the materials being coated with siliconate will usually be like those of the final product, within the No's. 10 to 100 or 200 sieve range (the perborate and enzyme ranges may extend to No. 200). The agglomerated bentonite particles will be those resulting from agglomeration or compaction of more finely divided particles, such as those of which over 50% pass through a No. 200 sieve. Such particles will be essentially grit-free and will normally have from 0.05 or 0.15 to 3 or 5~, preferably 0.1 or 0.15 to 0.5 or 1% of siliconate, such as potassium methyl siliconate or sodium propyl siliconate, sprayed onto the surfaces thereof to at least partially coat such surfaces. They may be colored with a suitable dye or pigment, such as Acilan Brilliant Blue FFR*, or such or other suitable colorant may be applied with the siliconate.
* trade mark 126~417 62301-1221D
The siliconate does not obscure the color. Sometimes the bentonite agglomerates may be larger than the other particles in the product, e.g., 10 to 50% greater in diameter, to accentuate their difference. In many instances the bentonite agglomerates will preferably be of sodium carbonate treated bentonite (such treatment improves the color of off-color clay) and will contain magnesium carbonate and/or calcium carbonate therein, resulting from such treatment. When the particles are only partially coated with siliconate it is desirable for at least 10% of the surface area (of the equivalent spheres) to be covered by the siliconate, and more preferably a greater percentage will be covered, e.g., 50%, to facilitate dispensing. Similar considerations and conditions apply when the en~yme, bleach and detergent particles are being treated, with the exception that in such cases a lesser proportion of siliconate may be employed than that used for coating bentonite agglomerates.
In the various cases mentioned above the coating of the solid siliconate will normally be on the outer 1% of the ~ 20 thicknesses of the particles. For example, for a particle that -~ i8 one millimeter in thickness such a siliconate coating would ~I be about 5 microns thick. Preferably the coating will be on the out~er 0.5~ of the particle bead diameter, more preferably the outer 0.2~ thereof. Of course, when only partial coatings are~applied and when greater percentages of siliconate are ~J'`~
: ,~ ` :` :: `
,,"
,,, ~, `
':: ~:, , ,. . .. :: : .
~:` ` . : . ......
1~6~417 62301-1221D
utilized, as when only the bentonite agglomerates are coated, the siliconate thicknesses will be greater, but preferably less than 2%. Normally, such thicknesses will be at least 0.05~ of the particle thickness.
The products and processes of this invention posses many advantages, several of which have already been mentioned.
With respect to the products, the application of siliconate to particle surfaces, even when the entire particle is not covered with the siliconate, improves the dispensing characteristics of such particle without having any adverse effects. Thus, deter-gent compositions of the types described herein, and the particulate components of such compositions mentioned, are easier to dispense from a charging compartment of an automatic washing machine of the European type than are control products untreated with siliconate. This difference is most pronounced with respect to the agglomerated bentonite particles. The tests for comparing such results are practical use tests, employing a variety of different makes of such European washing machines, with the evaluator noting the number of particles remaining in the charging compartment after a normal charging and dispensing Operation# or after repeated such operations.
To accentuate the differences and make the test more difficult, the walls of the charging compartment are first wet to promote adherence to them of the bentonite (and other materials). To ~ simulate such a test one may sprinkle equal weights of test and ; ~ control product onto a wet horizontal surface, allow them to , ,~
. .
~ 3~
~': ' '' ' ' ' lZ60~17 stand for one or two minutes, and then direct a gentle spray of water onto the particles for a measured time, e.g., 30 seconds, after which the numbers of particles may be compared. By such tests the products of this invention show a marked improvement over the controls; normally one may expect to obtain less than half the number of particles still adhering to the pre-moistened surfaces when the "experimental" product is used, compared to the control. Often no particles will be adhering to the pre moistened surface when at least 0.15% of siliconate is used, several particles will be sticking when at least 0.05%
but less than 0.15% of siliconate is employed, and an appre-ciable number of particles will be adhering when no siliconate i8 present.
While most of the detergent will be charged to the waehing tub in normal use of the automatic washing machine so that the retention of some particles in the charging chamber may not initially be more than psychologically objectionable, with repeated washings greater numbers may be retained, thereby changing the composition of the fabric softening detergent and possibly even qignificantly affecting the charge weight. Also, the appearance of the charging compartment with particles retained therein i~ unsatisfactory and can lead to consumer rejection of the product. Because of the different washing techniques employed in America, coating bentonite detergent part~icles with siliconate may not be as important there but it . : ~
~ is considered that the presence of the siliconate on the s~ particle will assist in making the detergent more stable and ,:~
,~
::
,, ~ 39 -~.. , ., .. . ~,, 126()~17 more freely flowing, especially in damp conditions, and will help to counteract any gelation of the bentonite under such conditions.
In addition to promoting dispensing, the siliconate also has the desirable effect of preventing excessive foaming of the detergent composition in aqueous solution. The benton-ite also helps to limit foaming and the combination is superior to the individual components. The siliconate also appears to have a stabilizing effect on enzymes and bleaches coated with it and helps to prevent interaction between perfume components and other detergent constituents, thereby helping to stabilize the perfume. It can also have such an effect on colorants.
Yet, these various advantages are obtained without the dis-advantages of the product being excessively hydrophobic, because it is initially water soluble. It does not interfere with the desired quick dissolving and dispensing of the deter-gent components and does not appear to cause an objectionable buil~up of hydrophobic deposits on washed and softened laundry.
It does not interfere with the particular softening effect of the hydrophilic bentonite and does not interfere with the good detergency of the composition. The detergent compositions resulting are excellent laundry detergents and effectively soften washed laundry, as has been established by comparative tests against similar compositions containing neither bentonite nor siliconate. The products are satisfactorily free flowing and of desired bulk density and appearance. They are also non-dusting, which may at least in part be attributable to the siliconate.
~ 40 ~
lZ~ 7 62301-1221D
Processes in which siliconate solutions or emulsions are sprayed onto detergent, bentonite and other detergent com-ponent particles are easily carried out and do not require special equipment. Due to the water solubility of the silicon-ate it may be applied in aqueous solvent without adding other components to the detergent formula. Yet, it can also be emulsified or otherwise distributed with other detergent com-ponents. The processes lend themselves to modification to allow different concentrations of siliconate on different detergent components. The coating materials do not gel or thicken objectionably, do not block spray nozzles and do not form gummy deposits in the spraying and mixing equipment. The siliconate may be applied at room temperature because it does not require heating, as do some other protective coating materials. The siliconate can be retained principally on the surfaces of the particles, allowing less to be employed while still producing the desired dispensing assisting effect. Also, apparently due to the nature of the siliconate or derivative thereof on the detergent or component particle, it is effective even when the particle is not completely covered by it.
The following examples illustrate but do not limit this invention. Unless otherwise indicated, all parts are by weight and all temperatures are in C.
:126~
A crutcher mix totalling 3,199.5 kilograms of mater-ial is ~ade by reacting 364 kg. of dodecylbenzene sulfonic acid (Dobane JNQ [48.8% active ingredient]) and 167 kg. of hydrogen-ated fatty acids (16 to 18 carbon atoms per mol of fatty acid) with 47 kg. of caustic soda (38% ~a20) in an aqueous medium containing a suitable proportion (to maintain the reaction) of 952 kg. of city water (300 p.p.m. hardness, as CaC03). The balance of such water is employed to cool the reaction mix, as desirable, and to dilute other components of the crutcher mix.
Subsequently there are added to the crutcher 242 kg. of aqueous sodium silicate solution (Na20:SiO2 = 1:2.4) at a 44.1% solids concentration, 7.5 kg. of fluorescent stilbene type brightener, 7 kg. of Sydex 808 (85% MgSiO3 and 15% magnesium DTPA), 1,252 kg. of hydrated sodium tripolyphosphate (TPP "H"), 54 kg.
of anhydrous sodium sulfate (99.5~ pure) and 107 kg. of a non-ionic detergent, which may be considered as the condensation product of 11 mols of ethylene oxide with one mol of higher fatty alcohol having 12 to 15 carbon atoms per mol.
The crutcher mix is heated for about an hour, with stirring, so that its temperature rises to about 55C., after which it is pumped to a spray drying tower where it is sprayed at elevated pressure through multiple spray nozzles into drying air at a temperature of about 300C. From the spray drying particles of a moisture content of about 12%
~' ' ` : ' 126()417 result, most of which are within the No's. 10 to 100 sieve range. Particles outside this range are screened out.
63 1 Parts of the spray dried powder (bulk density of about 0.4 g./ml) are then blended with 0.3 part of prilled proteolytic enzyme (Alcalase, of 2 Anson units per gram, although Maxatase P 440,000 may be sub-stitu~ed), 20 part of granular sodium perborate and 16 parts of agglomerated bentonite. All such powders are of particle sizes within the particle size range for the spray dried detergent composition component but smaller particles of the enzyme and perborate may also be employed, down to about No. 200. The bentonite particles are com-posed of 82.3 parts of anhydrous bentonite, 16.1 parts of water, 1.5 parts of sodium silicate (previously des-cribed) and 0.06 part of Acilan Brilliant Blue dye, with the dye being applied to the surface of the particles.
The bentonite particles are made by agglomeration of more finely divided particles of bentonite (Laviosa AGB)*
with the dilute sodium silicate solution (in the water), after which they are dyed. The bentonite employed is one which has been treated with sodium carbonate to replace calcium and magnesium therein with sodium (see the pre-ceding specification for description of this material) and from which a natural content of gritty material (hard enough to be difficult to smash with a hammer) had been removed, after treatment, by centrifugal separation. The moisture content of suitable agglomerated bentonite may be varied and can be as low as 3%, when mixed with other components of the present softening detergent.
* trade mark 12~ 7 Onto the mixture of spray dried beads, enzyme, perborate and colored bentonite particles, in an inclined drum mixer, there is sprayed a mix of 0.5 part of the non-ionic detergent, 0.25 part of Rhodorsil Siliconate 51 T
(50~ solution of potassium methyl siliconate) and 0.25 part of detergent perfume. The sprayin~ is regulated so that the liquid sprayed evenly coats the particles in the mixer or tumbling drum to produce about 100 parts of uni-form product.
The final product is of particle sizes within the range of No's. 10 to 60 sieve, a bulk density of about 0.5 g./ml. and a moisture content of about 12% (although on standing this may be reduced to about 9~). The particulate fabric softening detergent resulting is free flowing and attractive in appearance, with the somewhat larger (averaging 20 to 200% greater in diameter) blue agglomerat~d bentonite particles contrasting with the other white particles, and is non-dusting.
The product made is subjected to practical laundry - 20 testing and is found to be an excellent detergent with desir-' able fabric softening properties. When evaluated, it is noted that it is more readily dispensable, leaving fewer particles behindin the charging compartment of a European ; type automatic washing machine, than a control in which the siliconate coating is not present. This is especially important when the bentonite particles are larger, since ~f' ~;
they may tend more to adhere to wet chamber walls during dispensing.
~: :
~ fl,: :
~ ~ -44-,,' "' . .. .
- , . ,-. ": .
lZ6V417 When the above experiment is repeated but wlth 100 kg. of dodecylbenzene sulfonic acid, 1,324 kg. of TPP"H" and 0.6 part of Rhodorsil Siliconate 51 T being employed instead of the amounts previou~ly used the product resulting is of as satisfactory physical properties and functions but additionally is even more readily automatically dispensable, leaving no particles behind in the charging compartment of a European type automatic washing machine.
In modifications of the above example the anionic detergent is replaced by equal weights, respectively, of sodium lauryl sulfate, sodium hydrogenated tallow alcohol sulfate and sodium tallow alcohol polyethoxy (3EtO) sulfate. Alternative-ly, mixtures of such materials, e.g., equal parts of sodium dodecylbenzene sulfonate and sodium hydrogenated tallow alcohol sulfate, are employed together. In all such cases the final detergent composition resulting is one which is an excellent textile softening laundry detergent. All such products are also of improved dispensing characteristics, when tested by the methods previously described. Similar results are also obtain-able when, instead of the anionic detergent being varied, thenonionic detergent is changed, being replaced by a block co-polymer of Propylene oxide and ethylene oxide, such as Pluronic L-44 or L-62, nonyl phenol polyoxyethylene (12 EtO) glycol or a condensation product of C12_1s fatty alcohol with 3 or 7 mols of ethylene oxide per mol, or with a mixture of two or more of suc~ detergents, e.g., in equal parts.
~ When half or all of the sodium tripolyphosphate is ; replaced by NTA the final product is also a satisfactory ~;
:
' , . .
;, , ~ .
126V~17 detergent, with softening properties, and is of improved dispensing properties compared to a control of the same formula without the siliconate.
When the soap is omitted from theformUla dimin-ished foam control results but otherwise the product is acceptable and is li~e those previously described. When the sodium perborate is replaced by other bleaching agents, such as sodium persulfate and magnesium dimonoperoxyphthalate, good bleaching and cleaning by the product is still obtain-able. When known activators foroxidizin~ agents arepresent bleaching may be effected by use of the composition at lower temperatures than those near the boil (which are normally employed in the processes of this example to obtain maximum bleaching activity). When it is desired to include more silicate in the product the amount of silicate is doubled by post-adding similarly sized hydrous sodium silicate particles with the other post-added part-iculate solids. When sodium propyl siliconate is substi-tuted for potassium methyl siliconate comparable products are obtainable and this is also the case when siliconates of lesser degrees of water solubility are employed in replacement of some, e.g., 25~, of the other siliconates.
The procedures of Example 1 are varied by applying the siliconate, in aqueous solution (20~ solids), as a finely divided spray (preferably with the spray drop-lets being "micron sized", e.g., 1 to 50 or 1 to 10 microns in diameter), or otherwise as satisfactorily small sized liquid droplets, to each of the particulate components to be blended together separately before such blending. The various coated particles are all of bulk densities in the prescribed range (0.3 to 0.6 g./ml., e.g., 0.5 g./ml.). Subsequently, the perfume is similarly sprayed onto the mix. The nonionic detergent is not post-sprayed but instead, is incorporated in the crutcher mix.
The resulting product is one which is also of improved dispens-ing properties. The siliconate coated agglomerated bentonite, spray dried detergent composition beads (without bentonite), 10 enzyme and perborate can all be separately produced and stored, and subsequently are useful for formulating fabric softening detergents of different compositions and different desired properties, e.g., coated bentonite plus uncoated spray dried beads.
A softening detergent like that of the first formula of Example 1 is made from a crutcher mix of 10.24 parts of the dodecylbenzene sulfonic acid, 2.81 parts of the hydrogenated fatty acid, 0.81 part of the caustic soda, 26.54 parts of 20 water, 37.2 parts of pentasodium tripolyphosphate (hydrated), 6.8 parts of sodium silicate solution, 0.21 part of fluorescent brightener, 1.46 parts of sodium sulfate and 3.0 parts of the ^ nonionic detergent, added sequentially. This is spray dried by ~, ~
S the method described in Example 1 to produce 62.5 parts of a ,~
product of similar bulk density and particle size. The spray dried particles are then mixed with 0.3 part of proteolytic enzyme 20.0 parts of the sodium perborate granules, 16.0 parts of the agglomerated bentonite and 0.2 part of Sydex 808, and onto the .
. ~ ~
~ 47 -.'. X
'~' i, ~- . .. . ~ . . .
lZ6~ 17 tumbli~g Dowder mix there is sprayed a blend of 0.3 part of the detergent perfume and 0.4 part of C10 13 linear alkylate, and 0.15 part of potassium methyl siliconate is sprayed onto the product in suitable liquid state, pre-ferably dissolved in water (50% concentration). The product made is of better dispensing properties for dis-pensing from the charging compartment of an automatic washing machine in normal use. It e~hibits a slightly greater foaming tendency than the similar products of Example 1. When 0.3 part of the siliconate is used the dispensing properties of the detergent composition are further improved.
When, instead of employing an agglormerated sodium carbonate-treated Italian bentonite from which grit has been removed, as in Example 1, a competitive product (Winkelmann agglomerate) or a Wyoming type ben-tonite, such as that sold underlthe trade mark Mineral Colloid No. 101 (formerly Thixogel No. 1) is employed, similar final products are obtained which are good soft-ening detergents and are readily dispensed. Also, ~henother lower alkyl siliconates, such as sodium propyl siliconate, are utilized, comparable results are obtainable.
When the Acilan Blue dye, used to color the bentonite agglomerates, is replaced by ultramarine blue, good color-ing and bluing effects are also obtained. Similarly, when the siliconate is applied only to the agglomerated bentonite, with the total proportion of siliconate in the product being the same, or 50% less in some cases, the properties of the detergent resulting are similar to those previously described and dispensing is also improved, compared to control.
4~7 EX~1PLE 4 When the proportions of the various components in the preceding Examples are modified +10~, +20% and +30~, maintaining them within the ranges previously given and keeping the ratios of anionic detergent to nonionic detergent within the range of about 1:1 to 3:1, the ratio of total detergent content to builder content within the range of about 1:3 to 1:8 and the ratio of sodium bento-nite to total detergent within the range of about 1:1 to 2:1, products of properties similar to those described in Example 1 are obtained. Such is also the case when the water soluble builder salt(s) of Example 1 are replaced with zeolite A (20% hydrated) and when any of a variety of synthetic anionic and nonionic detergents is employed in mixture, optionally with an amphoteric detergent, such as one of the Miranol type. Also, the invention may be used to improve the dispensing properties of various other bentonites and particulate detergent compositions of widely different formulas, densities (0.2 to 0.9 g./ml.) and sizes (preferably No. 10-40 sieve).
The invention has been described with respect to various illustrations of preferred embodiments thereof but is not to be limited to these because one of ordinary skill in the art, with the present specification before him, will be able to utilize substitutes and equivalents without departing from the invention.
Claims (11)
PROPERTY OR PRIVILEGE IS CLAIMED ARE DEFINED AS FOLLOWS:
1. Particles useful for incorporation into a particulate heavy duty detergent composition for use in automatic washing machines made of compositions selected from the group consist-ing of:
(a) bentonite with which there is included a dispensing assist-ing proportion of a siliconate or a dispensing assisting derivative thereof;
(b) sodium perborate at least partially coated with a silicon-ate or a derivative thereof; and, (c) enzyme at least partially coated with a siliconate or a derivative thereof.
(a) bentonite with which there is included a dispensing assist-ing proportion of a siliconate or a dispensing assisting derivative thereof;
(b) sodium perborate at least partially coated with a silicon-ate or a derivative thereof; and, (c) enzyme at least partially coated with a siliconate or a derivative thereof.
2. Particles according to claim 1 wherein the bentonite is agglomerated.
3. Particles according to claim 2 which contain from 0.05 to 3% of alkali metal lower alkyl siliconate or dispensing assisting derivative thereof at the surfaces of the particles.
4. Particles according to claim 3 which are of sizes in the range of No's 10 to 100, United States Sieve Series, form-ed after sodium carbonate treatment of bentonite containing magnesium and/or calcium to produce sodium bentonite, with the resulting magnesium carbonate or calcium carbonate therewith, and which are coated or partially coated by 0.05 to 1% of pot-assium methyl siliconate.
5. Particles according to claim 2, wherein the dispens-ing assisting proportion of siliconate or dispensing assist-ing derivative thereof is at least 0.15%.
6. Particles of sodium perborate according to claim 1 of sizes in the range of NO's. 10 to 200, United States Sieve Series.
7. Particles according to claim 6 which are coated with from 0.05 to 1% of potassium methyl siliconate.
8. Particles of enzyme of claim 1 of sizes in the range of No's. 10 to 200, United States Sieve Series.
9. Particles according to claim 8 which are coated with from 0.05 to 1% of potassium methyl siliconate.
10. A method of manufacturing agglomerated bentonite part-icles, useful for incorporation in a particulate heavy duty de-tergent composition which is dispensable from the charging com-partment of an automatic washing machine by action of water being fed through such compartment, which comprises applying to surfaces of agglomerated bentonite particles a dispensing assist-ing proportion of a siliconate or a dispensing assisting derivative thereof.
11. A method according to claim 10 wherein the agglomerat-ed bentonite particles are of particle sizes within the range of No. 10 to 100 United States Sieve, and are agglomerates of essentially grit-free particles of sodium bentonite which pass through a No. 100 United States Sieve and of which over 50% pass through a No. 200 United States Sieve, and wherein 0.05 to 1%
of potassium methyl siliconate is sprayed onto surfaces of the agglomerated particles to at least partially coat them.
of potassium methyl siliconate is sprayed onto surfaces of the agglomerated particles to at least partially coat them.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA000508962A CA1260417A (en) | 1982-04-08 | 1986-05-12 | Laundry softening detergent |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US06/366,712 US4419250A (en) | 1982-04-08 | 1982-04-08 | Agglomerated bentonite particles for incorporation in heavy duty particulate laundry softening detergent compositions. |
US366,713 | 1982-04-08 | ||
US06/366,713 US4421657A (en) | 1982-04-08 | 1982-04-08 | Heavy duty laundry softening detergent composition and method for manufacture thereof |
US366,712 | 1982-04-08 | ||
CA000425408A CA1209934A (en) | 1982-04-08 | 1983-04-07 | Laundry softening detergent |
CA000508962A CA1260417A (en) | 1982-04-08 | 1986-05-12 | Laundry softening detergent |
Publications (1)
Publication Number | Publication Date |
---|---|
CA1260417A true CA1260417A (en) | 1989-09-26 |
Family
ID=27167337
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA000508962A Expired CA1260417A (en) | 1982-04-08 | 1986-05-12 | Laundry softening detergent |
Country Status (1)
Country | Link |
---|---|
CA (1) | CA1260417A (en) |
-
1986
- 1986-05-12 CA CA000508962A patent/CA1260417A/en not_active Expired
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4421657A (en) | Heavy duty laundry softening detergent composition and method for manufacture thereof | |
US4419250A (en) | Agglomerated bentonite particles for incorporation in heavy duty particulate laundry softening detergent compositions. | |
US4414130A (en) | Readily disintegrable agglomerates of insoluble detergent builders and detergent compositions containing them | |
GB2138037A (en) | Heavy duty fabric softening detergent | |
CA1174935A (en) | Spray dried base beads and detergent compositions | |
IE52739B1 (en) | Base beads for manufacture of detergent compositions | |
GB2123848A (en) | Soil release promoting nonionic detergent composition | |
US4569772A (en) | Stabilization of polyethylene terephthalate-polyoxyethylene terephthalate soil release promoting polymers | |
GB2120293A (en) | Laundry softening detergent | |
US4482630A (en) | Siliconate-coated enzyme | |
US4482477A (en) | Particulate detergent containing siliconate, composition and method for manufacture thereof | |
US4571303A (en) | Built nonionic detergent composition containing stabilized polyethylene terephthalate-polyoxyethylene terephthalate soil release promoting polymer | |
GB2172311A (en) | Clay-salt fabric softening particulate agglomerate, for detergent compositions | |
US5026400A (en) | Built particulate detergent containing a narrow range alcohol ethoxylate and a pet-poet copolymer soil release agent | |
JPH0649878B2 (en) | Fabric softener agglomerate | |
US4715969A (en) | Controlling viscosity of fabric softening heavy duty liquid detergent containing bentonite | |
US4908039A (en) | Built particulate detergent containing a narrow range alcohol ethoxylate and a PET-POET copolymer soil release agent | |
JPH046760B2 (en) | ||
US5080820A (en) | Spray dried base beads for detergent compositions containing zeolite, bentonite and polyphosphate | |
US4482471A (en) | Siliconate-coated sodium perborate | |
IE58675B1 (en) | Controlling viscosity of fabric softening heavy duty liquid detergent containing bentonite | |
US5024778A (en) | Spray dried base beads for detergent compositions containing zeolite, bentonite and polyphosphate | |
US4844831A (en) | Use of metasilicate/silica combination granulate in detergent compositions for washing machines | |
NO852159L (en) | PARTICULAR, CONSTRUCTED, NON-IONIC DETERGENTS AND PROCEDURES IN THE PREPARATION OF THIS | |
CA1260417A (en) | Laundry softening detergent |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MKEX | Expiry |