CA1257629A - Threaded pipe connection - Google Patents

Threaded pipe connection

Info

Publication number
CA1257629A
CA1257629A CA000474990A CA474990A CA1257629A CA 1257629 A CA1257629 A CA 1257629A CA 000474990 A CA000474990 A CA 000474990A CA 474990 A CA474990 A CA 474990A CA 1257629 A CA1257629 A CA 1257629A
Authority
CA
Canada
Prior art keywords
pipe
coupling
section
threads
thread
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
CA000474990A
Other languages
French (fr)
Inventor
Charles A. Bollfrass
Kenneth D. Chelette
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thread Technology International Inc
Original Assignee
Thread Technology International Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thread Technology International Inc filed Critical Thread Technology International Inc
Application granted granted Critical
Publication of CA1257629A publication Critical patent/CA1257629A/en
Expired legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L15/00Screw-threaded joints; Forms of screw-threads for such joints
    • F16L15/001Screw-threaded joints; Forms of screw-threads for such joints with conical threads
    • F16L15/003Screw-threaded joints; Forms of screw-threads for such joints with conical threads with sealing rings
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • E21B17/02Couplings; joints
    • E21B17/08Casing joints
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L15/00Screw-threaded joints; Forms of screw-threads for such joints
    • F16L15/04Screw-threaded joints; Forms of screw-threads for such joints with additional sealings

Abstract

An Improved Threaded Pipe Connection Abstract In the preferred embodiment, this invention provides a threaded pipe coupling for connection with a conventional threaded pipe end so as to effect improved sealing against internal fluid pressure and against external fluid pressure as may be required in an oil or gas well. The coupling form causes the thread contact pressure to be greater at the maximum and minimum thread contact diameters than exists at intermediate points along the length of thread contact. An auxillary plastic seal that will undergo thermal cycling is also provided.

Description

~25;~

~ 1 ~

Description An Improved Threaded Pipe Connection Technical Field Tapered pipe threads have been used for many years for connecting and sealing the ends of pipes in many industries, such seals being primarily dependent on the use of a paste like sealing compound to ~eal leak paths 05 inherent between conventional matin~ pipe threadsO
However, in far too many cases~ fluid pressures, thermal changes and mechanical forces causP the p~ste to gradually flow out or dry and shrink so as to cause a leak. Recent use of plastic tape wrapped around the male thread before assembly has in some cases, produced better sealing hut in general, the same end result occurs over a period of time.
Su~h leaks occurring in refineries, factories, gas wells and other industries all too frequently oause injuries, deaths~ plant shutdowns and economic losses to workers and companies~

So as to minimize such losses, industry construction and operating codes such as A.S.M.E. have severely limited the use of thread~d pipe connections to small sizes and ~o low pressures, specifying the mandatory use of welded or flanged connections. HoweverO there are needs for high pressure threaded pipe connections where welded or flanged connections cannot be used. Such a need may best be shown for use in oil and gas wells where the hole size and tension load requirements prohibit the use of a flange and the danger of fire prohibits the welding of pipe ends together.

.' $~

~.~Si'7f~i2~
(2) Background Art Several types of pipe joints have been developed over the years for the purpose of solving the leakage problem.
Perhaps the most successful type, depicted in US Patent No. 4,085,951, a special premium cost connection that 05 requires very special care and handling. Said connector has been shown to leak when slight damage occurs on surfaces as at 12 or 14, hence the need for adding the plastic ring 24. However~ no provision has been made for thermal expansion of the "compressible ring" and upon an increase in temperature~ differential thermal expansion of the plastic ring causes an undesireable increase in the connection hoop stress, US Pat~nt 2,907,589 explains the susceptability of the Hydril connector to damage, in columns 1 and 2, which may leak due to a variety of reasons. The same patent discloses another plastic seal ring and although "end clearance may he provided to allow for dirt and sand or for machining tolerances" no definite room is provided for ~0 thermal expansion of the plastic ring. Such a condition may provide an erratic tendency to seal, giving a false assurance in a dangerous situation.

US Patent 2,980,451 discloses a plastic ring deposed intermediate the engaged threads and confined so as to ~extrude" the plastic~ clearly allowing for no thermal expansion of the plastic and allowing for a progressive relaxation of the plastic seal which in the presence of changing t~mperatures and pressures, in time allows leakage. US Patent 3,047,316 also allows for extrusion of a plastic ring but makes no provision for sealing of the plastic ring after thermal bulk contraction occurs.

~:257~
~3~

US Patent 3,572,777 and 3,100,Ç56 show soft seals trapped by the end of the male connector but make no provision to protect the soft seals against: blowout by external pressure; erosion and wear from internal abrasive fluid 05 flow.

Conventional pipe threads utilizing tapered threads wherein the pitch diameter of the mating threads lie along a conical path,~s~L~g~e-~7 are still by far the most iO commonly used, and necessarily have machining tolerance for that taper. After extensive study of experimental and field results over the years~ the American Petroleum Institute has recognized that should the male threaa have a faster taper than the female thread~ even though within tolerance, ~Y_J~R~_Z~ that the seal diameter will be toward the largest diameter of engaged threads which in turn, produces a greater hoop stress on the coupling than would occur had the male thread been machinea with a slower taper than the female thread. Therefore, such threaded connections will be derated pressurewise, due to the lesser thread contact pressures that may be generatea between the male and female threads; using a given wall - thickness of the coupling.

A paper presented by Thomas L. Blose on July 21, 1970 to modify API 8 Round Thread Casing Couplings proposed the use of a second taper within the coupling 9 toward the small end oE the e~gaged threads, having a steeper taper than the remaining threads so as to ensure the maximum ~0 sealing pressure being at the minimum possihle seal diameter, thus preserving a higher pressure rating for the connection. However, no such coupling has been made available to the industry to applicants best knowledge.

- :~L%~i7~ii29 API paper 83-PET presented by the applicants discloses informa-tion relative to the instant invention as does their publication in the "Oil and Gas Journall' on April 4, 1983.

Disclosure of Invention The problems of the prior art are overcome by the presen-t invention which provides a threaded pipe coupling Eor sealing connection with a threaded pipe thread formed on -the periphery of a pipe adjacent the end thereof. The coupling comprises an internal mating pipe thread having a firs-t section of maximum diameter, a second section of lesser diameter and a third section of least diameter. The firs-t section has a smaller taper angle than does the pipe thread with which it mates. The second section has a taper angle substantially the same as the pipe thread and -the third section has a greater taper angle than the pipe -thread.
Upon assembly of the pipe and coupling a greater radial interference, and thence a greater sealing force, is exerted along the first section against external pressure and along the third section against internal pressure than is exerted along the second section.

The present invention therefore provides a threaded pipe connec-tion that ensures greater contac-t pressure between the mating threads at each end of the engaged thread length than -the average con-tact pressure between the entire length of -the engaged -threads. Thus, a seal area is accomplished near the least diameter end of the engaged -threads to thereby gain a higher rating against internal fluid pressure. Also, a seal area against external fluid pressure is accomplished near the greatest diameter of the engaged threads to -thereby prevent external fluid pressure from ac-ting against a lesser thickness of the male thread, to thereby which in turn gain a higher rating against external fluid pressure.

To ensure a seal against high internal pressure even in the absence of sufficient sealing compound and under conditions of changing temperatures, a plastic seal ring may be provided near the small diameter end of the engaged threads within an annular space sufficiently larger in volume than the plastic seal ring so as to allow for thermal expansion without extruding the seal ring by thermal expansion.

Brief Description of Drawings Figure 1 is a fragmentary section of a conventional threaded pipe connection wherein tolerances allow for perfect matching of the tapers.

~ 57~2~3 (5~

Figure 2 is ~he same as Figure 1 except tolerances allow the male thread to have a steeper taper than the female thread~
.

05 Figure 3 illustrates a conventiona~ male pipe thread made up hand tight into a female thread formed according to the present invention.

Figure 4 is the same as Figure 3 except the connection has beel~ made up power tight, to the operating position.

Figure 5 is the same as Figure 4, but with an annular space and plas~ic seal ring added in accord with the present invention.
Figure 6 is an alternative embodiment of the present invention shown in the hand tight position.

Figure 7 is a third embodiment of the present invention chown in the hand tight position, Figure 8 is the same as Figur~ 6 except the connection has been made up power tightO

~5 Figure 9 is an enlarged fragmentary section of Figure 5 to better detail the plastic seal one turn before full power tight makeup~

Figure 10 depicts the plastic seal of Figure 9 after full power tight ma~eup.

Best Mode for Carrying Out the Invention For cooperation with a conven~ional male pipe thread shown as 10 in Figure 3, a coupling formed in accord with the present invention is shown generally at 12, the two 762~

(6) members being made up to the hand tight position.
Coupling 12 comprises a continuous thread as at 14 which may inclu~e three different sections 16, 18 and 20, each having a diferent taper angle. Section 18 may have a 05 taper angle substantially the same as does the male pipe thread 10, section 16 may have a slower taper than does the male pi~e thread and sec~ion 20 may have a faster taper than does the male pipe thread.

When in the hand tight position as depicted in Figure 3, threads of sections 18 or 16 do not engage the male pipe threads fully but only the smallest male thread will fully engage a female threadO After approximately one turn of power tigh~ ~akeup, the first thread contact of section 16 occurs as ~ 21, the largest female thread. After two but before three turns of power tight makeup, all threads between t~e smallest contacting male thread and the largest contacting female thread are in contact. A~ter three turns, the connection is power tight~ When made up power tigh~ as depicted in Figure 4, all threads between the smallest of the male pipe threads and the largest of the coupling threads comprising sections 16, 18 and 20, are engage~ in tight sealing contact. Of course be~ore assembly, a conventional pipe thread sealing compound is applied to the threads so as to seal minute gaps that usually occur between the engaged threads. Thus, it will be appreciated that more thread contact pressure exists at the largest female thread as at 24 and at the smallest male threa~ as at 22 than exists in section 18 because a greater ra~ial elastic deformation of the pipe and coupling ha~ occurred at those two positions than has occurred wit~in section 18o Dotted lines as at 17 and 71 shown within sections 16 and 20, respectively, illustrate the position of thread crests that would be the case in a conventional eoupling per Figure 1~

. ~ ~57 (7) It is now apparent that a maximum sealing effect again~t internal fluid pressure may bP formed at the smallest engaged thread diameter as at 22 and that a maximum sealing ef~ect against external fluia pressure may be 05 formed at the largest engaged thread diameter as at 24~ by practice of the present invention. The seal as at 22 reduces the outward fluid pressure load on section 18 of the coupling to a minimum value and increases the outward fluid pressure load on the male thread to increase thread contact pressure to thereby allow a higher pressure rating for the connection and also provide for an enhancea axial tensile strength of the connection because all threads are in full intimate contact and the full engaged thread height is insured as in 16. The seal as at 24 prevents external fluid pressure from moving to a smaller diameter of the male thread, as to section 18, to thereby force inwardly on a thinner section o~ pipe and thereby reduce the pressure rating against external fluid pressure.

By way of example, a coupling to connect with a 5-1~2~
O.D. long thread 8 round API oil field casing thread may have the following dimensions: .625~+.022 length of section 16; 1.696n+.002 length of section 18; ~975~.030 or -oO02 length of section 20; a 5~40237 pitch dia at the left end of section 16; a 5~3649 pitch diameter at the left end of section 18 and a 5.2589 pitch diameter at the le~t end of section 20. Thus: a taper equal to the API
pipe taper of .0625~/~ would be formed in section 18; a slower taper, . 0600n/~ would be formed in section 16 and a faster taper, .0938~/" would be formed in section 20.

~2~ 6~

18) In some cases due to a poorly machined conventi~nal pipe thread, the conventional sealing compound may not be sufficient to seal off imperfections between the engaged threads. In that event, the pipe coupling may be formed D5 with an annular space as at 26 of Figure 5 by removing a portion of the female thread in section 20. A suitable seal ring of plastic or the like 27 may then be placed in the annular space before assembly of the connection so as to be deformed by and to seal against the male member during make up of the connection. So that the plastic seal ring 27 will not be extruded when the connection experiences an increase in operating temperature, the annular space should be made sufficiently large so as to ~ allow for thermal expansion of the ring.
Figure 9 illustrates plastic ring 27 within space 26 before full power tight makeup. Conical surface 42 formed on the male member adjacent the end thereof, is shown contacting but not moving, preformed cooperating conical 29 surface 44 of ring 27.

Annular space 26 is partially defined by end surfaces 46 and 48 and conical surfaces 50 and 52~ all formed within coupling 1~. Surfaces 50 and 52 have a common circle of intersection as at 54 which contacts outer conical surface 56 of ring 27 before power tight makeup, thereby defining annular space 58 between portions of surface 46~ 50 and 56 and defining annular space 60 between portions o~ surfaces 48~ 52 and 56~ Therefore, before power tight makeup, ring 27 substantially fills annular space 26 except for annular spaces 58 and 60. Ring 27 also pro]ects radially inwardly from space ~6, to conical surfaces 44 and 60 so as to provide sufficient ring volume to cooperate w;th surface 42 50 as to provide proper compression of ring 26~

(9) In Figure 1~, surface 42 is shown advanced to the position of power tight makeup, thereby forcing ring 27 farther into space 26, reducing but not filling spaces 5B and 60.
Ring 27 is also show~ deformed to fill the space between 05 thread flank 62 and surface ~2, which form a minute but a controlled annular relief passage 64 for escape of excess material of rin~ 27, over and above that required to cause ring 27 to seal against surface ~2 and circle 54 to thereby prevent leakage of internal fluid pressure. A
most important feature of the present invention is that the pressure on ring 27 to cause extrusion through passage 64 is not sufficient to cause ring 26 to fill spaces 58 and 60, the portions of surfaces 50 and 52 between 66 and 68 being sufficient to generate en~ugh force on ring 27 required to move it into sealing position depicted in Figure 10. Ring 27 may be made of any suitable material such as Teflon impregnated with glass to achieve the strength, chemical resistance and other characteristics re~-{uired for the service intended.
It is now ob~ious that when the assembled connection is placed in service and is subjected to an increas~ of temperature, that differential bulk expansion of ring 27 will be accomodated by void spaces 58 and 60 such that no further extrusion occurs through passage 64, such that upon return of the temperature to normal, ring 27 will return to the position of Figure 10. Therefore, a plastic seal that will withstand thermal cycling without leaking is provided by the present invention.

~.~5~
( 1 o) Another embodiment of the present invention is illustrated in ~igure b wherein coupling 30 is formed with female threads 32 which have a curvea instead of a conical taper, the instantaneous taper being a minimum at the female 05 thread of largest diameter 34 and increasing to a maximum taper angle as at 36. Taper angles at 34 and 36 may be the same respectively as tapers in sections 16 and 20 of Figure 3.

~ variation of the embodiment of Figure 6 is shown in Figure 7 wherein the coupling has a sin~le conical taper and the pipe has a curved taper 40 to accomplish the same end result as described above. A similar variationf not shown, may be made of Figure 4 wherein the coupling was formed wi~h a single conical taper and the male thread was formed with three sections having a taper near its end slower th~n the coupling taper, an adjacent taper the same as the coupling taper and a third taper faster than the coupling ~aper.
While the variations of the present invention may have certain us~s 7 the preferred embod;men~ is depicted in Figures 3~ 4 and 5 for which applicants have immediate use~

Claims (10)

THE EMBODIMENTS OF THE INVENTION IN WHICH AN EXCLUSIVE
PROPERTY OR PRIVILEGE IS CLAIMED ARE DEFINED AS FOLLOWS:
1. A threaded pipe coupling formed for sealing connection with a tapered pipe thread formed on the periphery of a pipe adjacent the end thereof, the coupling comprising an internal mating pipe thread having: a first section of maximum diameter;
a second section of lesser diameter and a third section of least diameter; the first section having a smaller taper angle than does the pipe thread with which it mates; the second section having a taper angle substantially the same as does the pipe thread with which it mates; the third section having a greater taper angle than does the pipe thread with which it mates such that upon assembly of the pipe and coupling, a greater radial interference and thence a greater sealing force is exerted along the first section against external pressure and along the third section against internal pressure than is exerted along the second section.
2. The invention of claim 1 further comprising: the tapered pipe thread having only one taper.
3. The invention of claim 1 further comprising: suffi-cient contact pressure between pipe and coupling threads in the first section so as to seal against fluid pressure external to the pipe and coupling.
4. The invention of claim 1 or 3 further comprising:
sufficient contact pressure between the pipe and coupling threads in the third section so as to seal against fluid pressures internal to the pipe and coupling.
5. The invention of claim 1 further comprising: a portion of the coupling threads of the third section being removed so as to form an annular space sufficient to receive a ring of plastic suitable for sealing engagement with pipe external surfaces formed around and near the end of the pipe, upon assembly of the pipe and coupling.
6. The invention of claim 5 further comprising: the plastic ring being of smaller volume than the annular space sufficiently to allow for thermal expansion of the plastic ring without forcing adjacent threads from sealing engagement and without causing extrusion of the plastic ring from the annular space due to thermal expansion.
7. The invention of claim 5 further comprising: the annular space being defined by end walls formed by threads within the coupling; and outer wall formed by internal conical surfaces of the coupling which converge and intersect each other intermediate the end walls; and inner wall formed by an exterior conical surface of pipe adjacent the end thereof such that said walls cooperate to compress the ring of plastic upon assembly of the pipe and coupling so as to effect an improved sealing capability of the assembly.
8. The invention of claim 7 wherein: the conical surface of the pipe is formed with a cone angle to the axis of the pipe of approximately 25 degrees.
9. A threaded pipe coupling formed with internal pipe threads for sealing engagement with a pipe having tapered pipe threads around and adjacent the end thereof, an intermediate portion of the coupling threads being removed so as to form an annular space sufficient to receive a ring of plastic for sealing engagement with one or more surfaces near the end of the pipe: the annular space being defined by end walls formed by threads within the coupling; an outer wall formed by conical surfaces converging and intersecting intermediate the end walls;
an inner wall formed by a conical outer surface of the pipe adjacent the end thereof.
10. The invention of claim 9 wherein: the conical surface of the pipe is formed with a cone angle to the axis of the pipe of approximately 25 degrees.
CA000474990A 1984-12-06 1985-02-22 Threaded pipe connection Expired CA1257629A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/US1984/002023 WO1986003570A1 (en) 1984-12-06 1984-12-06 An improved threaded pipe connection
US84/02023 1984-12-06

Publications (1)

Publication Number Publication Date
CA1257629A true CA1257629A (en) 1989-07-18

Family

ID=22182356

Family Applications (1)

Application Number Title Priority Date Filing Date
CA000474990A Expired CA1257629A (en) 1984-12-06 1985-02-22 Threaded pipe connection

Country Status (4)

Country Link
EP (1) EP0203919A1 (en)
CA (1) CA1257629A (en)
MX (1) MX162665A (en)
WO (1) WO1986003570A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4817962A (en) * 1987-12-28 1989-04-04 The Hydril Company Universal tubular connection having a variable metal-to-metal seal width corresponding to material yield strength
CA1322773C (en) * 1989-07-28 1993-10-05 Erich F. Klementich Threaded tubular connection
DE4423820A1 (en) * 1994-07-06 1996-01-11 Voss Armaturen Connection device for pressure lines
DE4428871C2 (en) * 1994-08-08 1996-10-02 Mannesmann Ag Pipe connector
US6554287B1 (en) * 1999-12-09 2003-04-29 Hydril Company Collapsing type seal for expandable tubular connections

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2183644A (en) * 1939-12-19 Threaded joint and apparatus for
US2587544A (en) * 1948-06-01 1952-02-26 United States Steel Corp Threaded joint capable of being quickly made and broken
US2907589A (en) * 1956-11-05 1959-10-06 Hydril Co Sealed joint for tubing
US2980451A (en) * 1957-04-17 1961-04-18 Atlas Pipe Inc Threaded pipe joint having an extrudable generally non-resilient sealing means

Also Published As

Publication number Publication date
EP0203919A1 (en) 1986-12-10
MX162665A (en) 1991-06-13
WO1986003570A1 (en) 1986-06-19

Similar Documents

Publication Publication Date Title
US4588213A (en) Threaded pipe connection
CA1288453C (en) Pipe connectors
CA2497517C (en) Threaded tube joint
US4671544A (en) Seal for threaded pipe connection
US3508771A (en) Joints,particularly for interconnecting pipe sections employed in oil well operations
EP0488912B1 (en) Frustoconical screwthread for tubes
US4473245A (en) Pipe joint
US4619472A (en) Pipe coupling
US4489963A (en) Pipe joint
US3989284A (en) Tubular connection
RU2058505C1 (en) Pressure-tight pipe joint
US4433862A (en) Pipe joint
US4875713A (en) Internally coated tubular system
JP2010533827A (en) Screw joint with elastic seal ring
CA3064278C (en) Compression resistant threaded connection
EP0131622A1 (en) Tubular coupling with improved metal to metal seal.
US5029906A (en) Method and apparatus for forming a ventable seal
US6123368A (en) Two-step, differential diameter wedge threaded connector
CA1257629A (en) Threaded pipe connection
US20060157982A1 (en) Pipe connection
JPH06281061A (en) Threaded joint for oil well
EA021228B1 (en) Sealed tubular connection used in the oil industry
JPH0579583A (en) Pipe joint
GB1564906A (en) Reactive pipe joint
US4432394A (en) Grooved coupling protector

Legal Events

Date Code Title Description
MKEX Expiry