CA1232513A - Method and apparatus for longitudinal orientation of wood chips - Google Patents
Method and apparatus for longitudinal orientation of wood chipsInfo
- Publication number
- CA1232513A CA1232513A CA000485810A CA485810A CA1232513A CA 1232513 A CA1232513 A CA 1232513A CA 000485810 A CA000485810 A CA 000485810A CA 485810 A CA485810 A CA 485810A CA 1232513 A CA1232513 A CA 1232513A
- Authority
- CA
- Canada
- Prior art keywords
- discs
- disc
- wood chips
- cooperating
- rotating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B27—WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
- B27N—MANUFACTURE BY DRY PROCESSES OF ARTICLES, WITH OR WITHOUT ORGANIC BINDING AGENTS, MADE FROM PARTICLES OR FIBRES CONSISTING OF WOOD OR OTHER LIGNOCELLULOSIC OR LIKE ORGANIC MATERIAL
- B27N3/00—Manufacture of substantially flat articles, e.g. boards, from particles or fibres
- B27N3/08—Moulding or pressing
- B27N3/10—Moulding of mats
- B27N3/14—Distributing or orienting the particles or fibres
- B27N3/143—Orienting the particles or fibres
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Wood Science & Technology (AREA)
- Forests & Forestry (AREA)
- Dry Formation Of Fiberboard And The Like (AREA)
- Preliminary Treatment Of Fibers (AREA)
Abstract
METHOD AND APPARATUS FOR LONGITUDINAL
ORIENATION OF WOOD CHIPS
Abstract of the Disclosure In a procedure for the longitudinal orientation of chips, particularly during the manufacturing of OSB boards, spaced apart discs are located on rotating shafts sequentially one after the other. The discs are positioned above a forming belt that receives the chips after they are oriented by the discs. The discs are located on each of the shafts, and these discs together with the longitudinal side walls of an enclosure for the discs, function to longitudinally orient the wood chips to the point of deposit upon the forming belt.
ORIENATION OF WOOD CHIPS
Abstract of the Disclosure In a procedure for the longitudinal orientation of chips, particularly during the manufacturing of OSB boards, spaced apart discs are located on rotating shafts sequentially one after the other. The discs are positioned above a forming belt that receives the chips after they are oriented by the discs. The discs are located on each of the shafts, and these discs together with the longitudinal side walls of an enclosure for the discs, function to longitudinally orient the wood chips to the point of deposit upon the forming belt.
Description
2~ ~7~ 3 l',-u~ o~n(l o.l t,he InVi'Tlti.Oi`
Tlle present invention relates to a procedure or toe longitudinal orientation of wood chips and the like, particularly during the production of OSB boards (Oriented Strandboard).
Discs rotating in the direction as chip flow are positioned above a moving base that receives the chips. The discs are arraned on shafts at corresponding distances from the moving base, and the discs are eauidistant from one another.
A device for production of a particleboard containing oriented wood particles of varying dimensions is kno~m from I~Test German Patent 11 74 053 in which a number of orientation elements5 movable in relation to one another and connected with a dri~-e device, are arranged on a plane inclined to the horizontal. The orientation elements are generally parallel to one another, form.ing narrow orientation passages. The width of these passages and the distance between the lower edges of the ori.entation elements and the surface on which the layer of chips is formed are only slightly greater than the average length of the wood particles. Due to the movements of the orientation elements relative to one another and the distance between the elements, such a device for longitudinal orientation of chips is not suitable for longitudinal orientation of chips during the production of OSB boards. The distance between the orientation elements allows the chips, which are to be longitudinally oriented, to assume positions at right angles to the longitudinal orientation, since the longest guidance of the chips to be longitudinally oriented generally occurs only along the co7.~lon chord of two adjacent elements and the adjacent elements are :~3~
Since the or_entation ele~lents locat:ed on other shafts affect a positioning of chips to be longitudinally oriented over a distance whicn is only slightly greater than the average lengths of the wood ?articles, the major portion of the chips to be longitudinally oriented does not fall through these orientation elements in a properly oriented manner. Since they are not influenced by the orientation elements, they are generally deposited onto the receiving base in an arbitrary and unoriented manner. Also, since the orientation elements on one shaft are located at a distance from one another which is at least double the average length of ,he t~ood particles, many of the chips do not fall through the elements in a properly oriented manner.
There nas been no lack of attempts to eliminate the short-comings with respect to chip orientation. For example, devices are Inown in r.~hich stationary metal grids are arranged in the transport direction and extended below the shafts carrying the orientation discs whereby the individual discs also extend into these grids. Attempts have been made to force a longitudinal orientation of the chi?s by means of spiked devices arranged on the discs. Yr~owever, the result is a device in ~7hich the passage width in the unaffected area of the grid is only slightly greater than nalf the average length of the wood particles, and the width of each passage through the grid is decreased at the entrance area to the grid, namely by the intruding discs. Moreover, in cases of extreme errors in the chip dimensions or lf splinter material is ?resent, blockages may occur.
Ox tioll ?~ "I no W;t~ lcr~asill,~ dip dimensions ancl reach heir maximum when strands are to be oriented.
The strands to be oriented consist of wood particles with dimensions which do not correspond to those chip dimensions defined for production of normal particleboards. In this case, wood particles (strands) are to be oriented which are preferably 70 em long, 10 - 30 my wide and 0.5 - 1 mm thick. Furthermore, it is impossible to avoid splinters and extreme overdimensions in I this type of wood processing, unless additional and costly sorting devices and devices for after-treatment are provided.
Sugary of the Invention Accordingly, an object of the present invention is a process for the longitudinal orientation of wood strands in the manufacture of particleboard which is simple, effective and economical.
Another object of the invention is an apparatus for the longitudinal orientation of strands which is highly effective and economical.
The purpose of the invention is a procedure and a device for executing the procedure whereby an unequivocal guidance takes place in the entire vertical area of the longitudinal orientation of wood strands in the manufacture of particleboard. No elements in the orientation area obstruct an oriented deposit of the strands or cause blockages. By means of rotating vertical discs at specific distances from one another, complete guidance of the strands to be oriented is accomplished up to a point directly above the moving base.
Tilting of the chips, particularly of the strands, functions to significantly contrlbute to the non-blocking entrance of the strands between the diccs.
Interacting discs may be provided on several sequentially arranged shafts to form partitions in a rotating disc grid. By selecting appropriate distances between the discs of about half the average chip length, complete orien-tation is achieved.
Different disc diameters may also be used to accomplish proper chlp orien-tation, according to the invention.
Also, the discs may partially touch each other and exert a cleaning action when sliding past one another.
Moreover, the outermost discs may be provided with radial spikes on their outer sides in order to keep the area between the housing and the outermost disc-free of chips.
Blockages of these passage openings are thus prevented.
In summary, the present invention may be considered as providing a method for the longitudinal orientation of wood chips, particularly in the manufacture of OSB boards, comprising the steps of providing an arrangement of spaced apart discs on rotating shafts mounted parallel to one another above a moving forming belt upon which the wood chips are deposited, position-ing one side surface of each disc directly adjacent one sidesurface of a cooperating disc on an adjacent shaft, positioning the opposite side surface of each disc away from the opposite side surface of a cooperating disc on an adjacent shaft by an amount significantly greater than the spacing between the other side surfaces of cooperating discs, rotating the shafts and the discs thereon, flowing wood chips onto the rotating discs, longitudinally orienting the wood chips between the side sur-faces of the discs, and depositing the longitudinally oriented wood chips onto the forminy belt.
The above method may be ca:rried out by way of an apparatus for the longitudinal orientatlon of wood chips of varying lengths, particularly during the manufacture of OSB boards, comprising a rotating closed disc grid through which wood chips pass, the grid including an arrangement of horizontally disposed rotatable shafts mounted parallel to one another and extending in a longitudinal direction one after the other, a plurality of equally spaced apart vertically disposed discs connected to each shaft, each disc having a first slde surface longitudinally oriented and closely adjacent a first side surface of a cooperating disc on an adjacent shaft, the opposite side surface of each disc being spaced away from the opposite side surface of a cooperating disc on an adjacent shaft by an amount significantly greater than the spacing between the first side surfaces of cooper-ating discs, and the spacing between the discs on the shafts being predetermined and approximately one half the average chip length of the wood chips passing through the grid.
BRIEF DESCRIPTION OF TOE DRAWINGS
Novel features and advantages of the present inven-tion in addition to those noted above will become apparent to those skilled in the art from a reading of the following detailed description in conjunction with the accompanying drawing wherein similar reference characters refer to similar parts and in which:
2~ 3 Figure 1 is a side elevational view with portions in section illustrating a wood chip orientation device as is well known in the prior art;
Figure 2 is a sectional view taken along line 2-2 of Figure l;
Figure 3 is a sectional view taken along line 3-3 of Figure l;
Figure 4 is a sectional view taken along line 4-of Figure l;
_ 58 -32~
l' :i g i ; a . e e l to , i o ll a p o r i i s i O I I
illustrating apparatus for longitudinal orientation of wood chips, according to the present invention;
Figure 6 is a sectional view taken along line 6-6 of Figure 5;
Figure 7 is a sectional view taken along line 7-7 of Figure 5;
Figure 8 is a sectional view taken along line 8-8 of Figure 5;
Figure 9 is a top plan view with portions in section illustrating modified apparatus for the longitudinal orientation of wood chips, according to the present invention;
Figure 10 is a side elevational view with portions in section illustrating another apparatus according to the present invention;
Figure 11 is a sectional view similar to Figures 6-8 but illustrating another arrangement of the orientation discs; and Figure 12 is a diagrammatic view illustrating large and small orientation discs on a rotatable shaft and wood chips being aligned by the discs.
Detailed Description of the Invention Referring in more particularity to the drawing, Figure 1 shows a non-oriented chip mass 5 brought to a depositing station on a forming belt 1 via a first set of discs 2 and a second set of discs 3 arranged on rotating shafts 4. The chip mass 5 passes through the rotating dlscs and is deposited onto belt 1 in the form of mat 6 Shafts 4 are located in a housing 16 which can be moved vertically in order to be adjusted to the scattering angle of the chip. A prime rkover 17 is connected to move the housing 16.
The one tioIl coon t-o the state of the <~ is achieved by mealls of the first set of discs 2 and the second set of discs 3. As shown in the sectional views of Figures 2 and 3, the projection of the first set of discs 2 overlaps the second set of discs 3 only in a very small area. Basically, the orientation of the chi?s depends upon the distance 7 between the discs 2 of the first set and the distance 7a between the discs 3 ox the second set. These distances 7 and 7a are equal to one another. Only along a vertical plane 13, which is vertical to the transport direction and parallel to the shafts 4 and which contains the common chords of the first set of discs 2 and the second set of discs 3, will there be an orientation by means of an additional distance 8 between the first set of discs 2 and the second set ox discs 3. The moderate orientation effect of such an orientation device is apparent, since the distances 7 and 7a, which extend over the entire vertical height of the discs 2,3 does not cause any orientation effect on those chips which are shorter than these disLances. Additionally, variable free spaces`
9 are created in the axial direction of the rotating shafts, through which material to be oriented can also exit. This contributes to further deterioration of the orientation effect.
The sectional view of Figure 4 further illustrates that the arrangement of Iigure 1 only orients chips in areas 12 where the discs 2,3 overlap one another. Total guidance of the chips from the theoretical entry to the first and second sets of discs 2,3 to the theoretical exit therefrom only occurs in the area of planes 13.
pi rip to f {I of its ice to present invention. Tr- sectiollal views through Figure S clea-;ly show that non-oriented chip flow 5 :is transported through a rotating closed disc grid 11 consisting of the first set of discs 2 and the second set of discs 3. Grid ll maintains complete vertical guidance of the chips from first contact with the discs at point 14 to the last contact point with the discs at point 15.
Unlike the prior art9 the overlapping discs are very close to one another and the spacing 10 between the discs 2 or discs 3 is quite close.
The closed rotating disc grid 11 consisting of the first set of discs 2 and the second set of discs 3 may be lifted ln relation to the for~ling belt 1 in such a manner that, according to the scattering angle of the oriented chips, it can be aligned over the chip mass 6 for production of OSB boards.
Figures 1 through 8 serve to clarify the significant differences between the state of the art and the present invention with respect to the function of a grid through which the strands and chips are not guided in the case of the state of the art but through which such chips and strands are guided from entry -to exit according to this invention.
Figures 10-12 show an alternate embodiment wherein additional action is achieved by an arrangement that includes adjacent large and small discs. Each shaft 4 carries an alternating arrangement of large discs 2(3) and small discs 2'(3'). The spacing between the discs is represented by reference numeral 10.
~2~3 houcing lG, ich sha~-s carry the first lalge disos 2 aTId e first small discs 2' as well as the second large di.scs 3 ar.d the second small discs 3'. A resulting slot l between the housing 16 and the large first and small second plates 2,3', is interrupted by discs 18, having spikes 19 which are also arranged on the shafts 4. The discs 18 and spikes 19 remove the chips or strands accumulating in that area and they are transported through the slot 17.
The device of Figure 10 also includes an arrangement that preliminarily disentangles the chip mass to be oriented for production of OSB boards, and the further feature of a thro7-back roller. The firs large discs 2 and the first small discs 2' art arranged alternately on a shaft 4 and thus form a wave-shaped contour, perpendicular to the forward direction identified by arrow 19. The same applies to the second large disc 3 and the second small disc 3' which are arranged on the next rotating shaft 4. Several such shafts 4 provi.ded with discs 2,2'!and
Tlle present invention relates to a procedure or toe longitudinal orientation of wood chips and the like, particularly during the production of OSB boards (Oriented Strandboard).
Discs rotating in the direction as chip flow are positioned above a moving base that receives the chips. The discs are arraned on shafts at corresponding distances from the moving base, and the discs are eauidistant from one another.
A device for production of a particleboard containing oriented wood particles of varying dimensions is kno~m from I~Test German Patent 11 74 053 in which a number of orientation elements5 movable in relation to one another and connected with a dri~-e device, are arranged on a plane inclined to the horizontal. The orientation elements are generally parallel to one another, form.ing narrow orientation passages. The width of these passages and the distance between the lower edges of the ori.entation elements and the surface on which the layer of chips is formed are only slightly greater than the average length of the wood particles. Due to the movements of the orientation elements relative to one another and the distance between the elements, such a device for longitudinal orientation of chips is not suitable for longitudinal orientation of chips during the production of OSB boards. The distance between the orientation elements allows the chips, which are to be longitudinally oriented, to assume positions at right angles to the longitudinal orientation, since the longest guidance of the chips to be longitudinally oriented generally occurs only along the co7.~lon chord of two adjacent elements and the adjacent elements are :~3~
Since the or_entation ele~lents locat:ed on other shafts affect a positioning of chips to be longitudinally oriented over a distance whicn is only slightly greater than the average lengths of the wood ?articles, the major portion of the chips to be longitudinally oriented does not fall through these orientation elements in a properly oriented manner. Since they are not influenced by the orientation elements, they are generally deposited onto the receiving base in an arbitrary and unoriented manner. Also, since the orientation elements on one shaft are located at a distance from one another which is at least double the average length of ,he t~ood particles, many of the chips do not fall through the elements in a properly oriented manner.
There nas been no lack of attempts to eliminate the short-comings with respect to chip orientation. For example, devices are Inown in r.~hich stationary metal grids are arranged in the transport direction and extended below the shafts carrying the orientation discs whereby the individual discs also extend into these grids. Attempts have been made to force a longitudinal orientation of the chi?s by means of spiked devices arranged on the discs. Yr~owever, the result is a device in ~7hich the passage width in the unaffected area of the grid is only slightly greater than nalf the average length of the wood particles, and the width of each passage through the grid is decreased at the entrance area to the grid, namely by the intruding discs. Moreover, in cases of extreme errors in the chip dimensions or lf splinter material is ?resent, blockages may occur.
Ox tioll ?~ "I no W;t~ lcr~asill,~ dip dimensions ancl reach heir maximum when strands are to be oriented.
The strands to be oriented consist of wood particles with dimensions which do not correspond to those chip dimensions defined for production of normal particleboards. In this case, wood particles (strands) are to be oriented which are preferably 70 em long, 10 - 30 my wide and 0.5 - 1 mm thick. Furthermore, it is impossible to avoid splinters and extreme overdimensions in I this type of wood processing, unless additional and costly sorting devices and devices for after-treatment are provided.
Sugary of the Invention Accordingly, an object of the present invention is a process for the longitudinal orientation of wood strands in the manufacture of particleboard which is simple, effective and economical.
Another object of the invention is an apparatus for the longitudinal orientation of strands which is highly effective and economical.
The purpose of the invention is a procedure and a device for executing the procedure whereby an unequivocal guidance takes place in the entire vertical area of the longitudinal orientation of wood strands in the manufacture of particleboard. No elements in the orientation area obstruct an oriented deposit of the strands or cause blockages. By means of rotating vertical discs at specific distances from one another, complete guidance of the strands to be oriented is accomplished up to a point directly above the moving base.
Tilting of the chips, particularly of the strands, functions to significantly contrlbute to the non-blocking entrance of the strands between the diccs.
Interacting discs may be provided on several sequentially arranged shafts to form partitions in a rotating disc grid. By selecting appropriate distances between the discs of about half the average chip length, complete orien-tation is achieved.
Different disc diameters may also be used to accomplish proper chlp orien-tation, according to the invention.
Also, the discs may partially touch each other and exert a cleaning action when sliding past one another.
Moreover, the outermost discs may be provided with radial spikes on their outer sides in order to keep the area between the housing and the outermost disc-free of chips.
Blockages of these passage openings are thus prevented.
In summary, the present invention may be considered as providing a method for the longitudinal orientation of wood chips, particularly in the manufacture of OSB boards, comprising the steps of providing an arrangement of spaced apart discs on rotating shafts mounted parallel to one another above a moving forming belt upon which the wood chips are deposited, position-ing one side surface of each disc directly adjacent one sidesurface of a cooperating disc on an adjacent shaft, positioning the opposite side surface of each disc away from the opposite side surface of a cooperating disc on an adjacent shaft by an amount significantly greater than the spacing between the other side surfaces of cooperating discs, rotating the shafts and the discs thereon, flowing wood chips onto the rotating discs, longitudinally orienting the wood chips between the side sur-faces of the discs, and depositing the longitudinally oriented wood chips onto the forminy belt.
The above method may be ca:rried out by way of an apparatus for the longitudinal orientatlon of wood chips of varying lengths, particularly during the manufacture of OSB boards, comprising a rotating closed disc grid through which wood chips pass, the grid including an arrangement of horizontally disposed rotatable shafts mounted parallel to one another and extending in a longitudinal direction one after the other, a plurality of equally spaced apart vertically disposed discs connected to each shaft, each disc having a first slde surface longitudinally oriented and closely adjacent a first side surface of a cooperating disc on an adjacent shaft, the opposite side surface of each disc being spaced away from the opposite side surface of a cooperating disc on an adjacent shaft by an amount significantly greater than the spacing between the first side surfaces of cooper-ating discs, and the spacing between the discs on the shafts being predetermined and approximately one half the average chip length of the wood chips passing through the grid.
BRIEF DESCRIPTION OF TOE DRAWINGS
Novel features and advantages of the present inven-tion in addition to those noted above will become apparent to those skilled in the art from a reading of the following detailed description in conjunction with the accompanying drawing wherein similar reference characters refer to similar parts and in which:
2~ 3 Figure 1 is a side elevational view with portions in section illustrating a wood chip orientation device as is well known in the prior art;
Figure 2 is a sectional view taken along line 2-2 of Figure l;
Figure 3 is a sectional view taken along line 3-3 of Figure l;
Figure 4 is a sectional view taken along line 4-of Figure l;
_ 58 -32~
l' :i g i ; a . e e l to , i o ll a p o r i i s i O I I
illustrating apparatus for longitudinal orientation of wood chips, according to the present invention;
Figure 6 is a sectional view taken along line 6-6 of Figure 5;
Figure 7 is a sectional view taken along line 7-7 of Figure 5;
Figure 8 is a sectional view taken along line 8-8 of Figure 5;
Figure 9 is a top plan view with portions in section illustrating modified apparatus for the longitudinal orientation of wood chips, according to the present invention;
Figure 10 is a side elevational view with portions in section illustrating another apparatus according to the present invention;
Figure 11 is a sectional view similar to Figures 6-8 but illustrating another arrangement of the orientation discs; and Figure 12 is a diagrammatic view illustrating large and small orientation discs on a rotatable shaft and wood chips being aligned by the discs.
Detailed Description of the Invention Referring in more particularity to the drawing, Figure 1 shows a non-oriented chip mass 5 brought to a depositing station on a forming belt 1 via a first set of discs 2 and a second set of discs 3 arranged on rotating shafts 4. The chip mass 5 passes through the rotating dlscs and is deposited onto belt 1 in the form of mat 6 Shafts 4 are located in a housing 16 which can be moved vertically in order to be adjusted to the scattering angle of the chip. A prime rkover 17 is connected to move the housing 16.
The one tioIl coon t-o the state of the <~ is achieved by mealls of the first set of discs 2 and the second set of discs 3. As shown in the sectional views of Figures 2 and 3, the projection of the first set of discs 2 overlaps the second set of discs 3 only in a very small area. Basically, the orientation of the chi?s depends upon the distance 7 between the discs 2 of the first set and the distance 7a between the discs 3 ox the second set. These distances 7 and 7a are equal to one another. Only along a vertical plane 13, which is vertical to the transport direction and parallel to the shafts 4 and which contains the common chords of the first set of discs 2 and the second set of discs 3, will there be an orientation by means of an additional distance 8 between the first set of discs 2 and the second set ox discs 3. The moderate orientation effect of such an orientation device is apparent, since the distances 7 and 7a, which extend over the entire vertical height of the discs 2,3 does not cause any orientation effect on those chips which are shorter than these disLances. Additionally, variable free spaces`
9 are created in the axial direction of the rotating shafts, through which material to be oriented can also exit. This contributes to further deterioration of the orientation effect.
The sectional view of Figure 4 further illustrates that the arrangement of Iigure 1 only orients chips in areas 12 where the discs 2,3 overlap one another. Total guidance of the chips from the theoretical entry to the first and second sets of discs 2,3 to the theoretical exit therefrom only occurs in the area of planes 13.
pi rip to f {I of its ice to present invention. Tr- sectiollal views through Figure S clea-;ly show that non-oriented chip flow 5 :is transported through a rotating closed disc grid 11 consisting of the first set of discs 2 and the second set of discs 3. Grid ll maintains complete vertical guidance of the chips from first contact with the discs at point 14 to the last contact point with the discs at point 15.
Unlike the prior art9 the overlapping discs are very close to one another and the spacing 10 between the discs 2 or discs 3 is quite close.
The closed rotating disc grid 11 consisting of the first set of discs 2 and the second set of discs 3 may be lifted ln relation to the for~ling belt 1 in such a manner that, according to the scattering angle of the oriented chips, it can be aligned over the chip mass 6 for production of OSB boards.
Figures 1 through 8 serve to clarify the significant differences between the state of the art and the present invention with respect to the function of a grid through which the strands and chips are not guided in the case of the state of the art but through which such chips and strands are guided from entry -to exit according to this invention.
Figures 10-12 show an alternate embodiment wherein additional action is achieved by an arrangement that includes adjacent large and small discs. Each shaft 4 carries an alternating arrangement of large discs 2(3) and small discs 2'(3'). The spacing between the discs is represented by reference numeral 10.
~2~3 houcing lG, ich sha~-s carry the first lalge disos 2 aTId e first small discs 2' as well as the second large di.scs 3 ar.d the second small discs 3'. A resulting slot l between the housing 16 and the large first and small second plates 2,3', is interrupted by discs 18, having spikes 19 which are also arranged on the shafts 4. The discs 18 and spikes 19 remove the chips or strands accumulating in that area and they are transported through the slot 17.
The device of Figure 10 also includes an arrangement that preliminarily disentangles the chip mass to be oriented for production of OSB boards, and the further feature of a thro7-back roller. The firs large discs 2 and the first small discs 2' art arranged alternately on a shaft 4 and thus form a wave-shaped contour, perpendicular to the forward direction identified by arrow 19. The same applies to the second large disc 3 and the second small disc 3' which are arranged on the next rotating shaft 4. Several such shafts 4 provi.ded with discs 2,2'!and
3,3' are arranged in series in the housi7g 16 in such a manner that in each case the large discs on one shaft 4 cooperate ~iith the small discs on the subsequent shaft 4. The non-oriented chip mass 5, which has been disentangled in advance by the preliminary disentanglement rollers 20,21, is fed to the upper entry of the closed rotating disc grid 11. A throw-back roller 22? which cooperates with the last rotating shaft 4, is a suitable means for returning chip material which is too long and which may have advanced too far. The returned material is significantly longer than a double grid separation. The throw-back roller 22 is provided with spikes 23.
~2~ 3 At opyosite one of the ho~lsing l all~i]iar~ devices 24,'5, are provided, by means of which the housing 16 mav be tilted in relation to the horizontal position of the forming belt in accordance with the scattering angle of the oriented chip mass 6 (see double arrow 27). The preliminary disentanglement rollers 1 20,21, and the throw-back roller 22 Jay be arranged in a separate, encased structure 26, into which the unsorted chip flow 5 falls from above. As can be clearly recognized from Figure 11, there is a constant guidance of the flow to be oriented during the orientation process, namely by utilization of large first discs 2 and small second discs 3', from the first contact point with a disc at 14a to the last contact point with a disc at l5a. The chip material to ye oriented is actually and completely guided over the entire height of the orientation device.
If the device o figure 10 is operated without the preliminary disentanglement rollers 20,21, the rotation directions of the subsequent rotating shafts 4 may be selected alternately clockwise and counterclockwise. In those cases where the last rotating shaft rotates clockwise, it is recommended to use the throw-back roller 22, which is located above the last shaft and to let it rotate clockwise. In those cases where the last rotating shaft 4 rotates counterclockwise, the throw-bac~ roller may be eliminated, such as shown in Figure 5 for example.
Furthermore, Figure 11 schematically represents an arrangement of rotating shafts 4 having improved self-cleaning action. With its outer side surface 30, the disc 2a cooperates with the inner side surface 31 of the disc 3a. The outer side surface of disc 3a cooperates with the inner side surface 31 of the disc 2. However, it is also possible to arrange the disc 2,3, 2a and 3a in such a reversed manner that in each case, the inner l(j .
side sur~ace~ Al ox to- sli?-sc(luen~ do coo~)era~e wit the I f'' side surface 30 of the preceding disc in order to achieve additional self-cleani~.g action.
With relerence to an example of large discs and small discs 2,2' andlor 3,3' mounted on a shaft 4, Figure 12 shows as a result of the various diameters of subsequent discs how a chip 29 ?enetrates into the grid, having a grid separation 10 slightly treater than half the length of the chip. This result is due to the fact that the distance bet~7een equally large discs 2(3) or small disc 2'(3') is only slightly greater than the average length of a chip to be oriented.
~2~ 3 At opyosite one of the ho~lsing l all~i]iar~ devices 24,'5, are provided, by means of which the housing 16 mav be tilted in relation to the horizontal position of the forming belt in accordance with the scattering angle of the oriented chip mass 6 (see double arrow 27). The preliminary disentanglement rollers 1 20,21, and the throw-back roller 22 Jay be arranged in a separate, encased structure 26, into which the unsorted chip flow 5 falls from above. As can be clearly recognized from Figure 11, there is a constant guidance of the flow to be oriented during the orientation process, namely by utilization of large first discs 2 and small second discs 3', from the first contact point with a disc at 14a to the last contact point with a disc at l5a. The chip material to ye oriented is actually and completely guided over the entire height of the orientation device.
If the device o figure 10 is operated without the preliminary disentanglement rollers 20,21, the rotation directions of the subsequent rotating shafts 4 may be selected alternately clockwise and counterclockwise. In those cases where the last rotating shaft rotates clockwise, it is recommended to use the throw-back roller 22, which is located above the last shaft and to let it rotate clockwise. In those cases where the last rotating shaft 4 rotates counterclockwise, the throw-bac~ roller may be eliminated, such as shown in Figure 5 for example.
Furthermore, Figure 11 schematically represents an arrangement of rotating shafts 4 having improved self-cleaning action. With its outer side surface 30, the disc 2a cooperates with the inner side surface 31 of the disc 3a. The outer side surface of disc 3a cooperates with the inner side surface 31 of the disc 2. However, it is also possible to arrange the disc 2,3, 2a and 3a in such a reversed manner that in each case, the inner l(j .
side sur~ace~ Al ox to- sli?-sc(luen~ do coo~)era~e wit the I f'' side surface 30 of the preceding disc in order to achieve additional self-cleani~.g action.
With relerence to an example of large discs and small discs 2,2' andlor 3,3' mounted on a shaft 4, Figure 12 shows as a result of the various diameters of subsequent discs how a chip 29 ?enetrates into the grid, having a grid separation 10 slightly treater than half the length of the chip. This result is due to the fact that the distance bet~7een equally large discs 2(3) or small disc 2'(3') is only slightly greater than the average length of a chip to be oriented.
Claims (4)
PROPERTY OR PRIVILEGE IS CLAIMED ARE DEFINED AS FOLLOWS:
1. A method for the longitudinal orientation of wood chips, particularly in the manufacture of OSB boards, comprising the steps of providing an arrangement of spaced apart discs on rotating shafts mounted parallel to one another above a moving forming belt upon which the wood chips are deposited, position-ing one side surface of each disc directly adjacent one side surface of a cooperating disc on an adjacent shaft, positioning the opposite side surface of each disc away from the opposite side surface of a cooperating disc on an adjacent shaft by an amount significantly greater than the spacing between the other side surfaces of cooperating discs, rotating the shafts and the discs thereon, flowing wood chips onto the rotating discs, longitudinally orienting the wood chips between the side sur-faces of the discs, and depositing the longitudinally oriented wood chips onto the forming belt.
2. A method as in claim 1 wherein the side surfaces of the rotating discs function to tilt the wood chips during orientation thereof.
3. A method as in claim 1 wherein one side surface of each disc touchingly engages one side surface of a cooperating disc on an adjacent shaft.
4. Apparatus for the longitudinal orientation of wood chips of varying lengths, particularly during the manufacture of OSB boards, comprising a rotating closed disc grid through which wood chips pass, the grid including an arrangement of horizontally disposed rotatable shafts mounted parallel to one another and extending in a longitudinal direction one after the other, a plurality of equally spaced apart vertically disposed discs connected to each shaft, each disc having a first side surface longitudinally oriented and closely adjacent a first side surface of a cooperating disc on an adjacent shaft, the opposite side surface of each disc being spaced away from the opposite side surface of a cooperating disc on an adjacent shaft by an amount significantly greater than the spacing between the first side surfaces of cooperating discs, and the spacing between the discs on the shafts being predetermined and approximately one half the average chip length of the wood chips passing through the grid.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP84111261.8 | 1984-09-21 | ||
EP84111261A EP0175015B1 (en) | 1984-09-21 | 1984-09-21 | Method and apparatus for the longitudinal orientation of particles |
Publications (1)
Publication Number | Publication Date |
---|---|
CA1232513A true CA1232513A (en) | 1988-02-09 |
Family
ID=8192165
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA000485810A Expired CA1232513A (en) | 1984-09-21 | 1985-06-28 | Method and apparatus for longitudinal orientation of wood chips |
Country Status (5)
Country | Link |
---|---|
US (1) | US4666029A (en) |
EP (1) | EP0175015B1 (en) |
CA (1) | CA1232513A (en) |
DE (1) | DE3483044D1 (en) |
FI (1) | FI79968C (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6752256B2 (en) | 2002-08-26 | 2004-06-22 | Forintek Canada Corp. | System for improving wood strand orientation in a wood strand orienter using rotating orienting fingers |
Families Citing this family (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE9116304U1 (en) * | 1991-04-17 | 1992-10-01 | Künnemeyer, Fritz | Spring bar for spring frame |
FI97112C (en) * | 1992-08-17 | 1996-10-25 | Sunds Defibrator Loviisa Oy | Device for spreading fibers, especially shavings |
US5325954A (en) * | 1993-06-29 | 1994-07-05 | Trus Joist Macmillan | Orienter |
US5487460A (en) * | 1994-07-29 | 1996-01-30 | Macmillan Bloedel Limited | Short strand orienter |
US5443894A (en) * | 1994-07-29 | 1995-08-22 | Ucar Carbon Technology Corporation | Fire retardant oriented strand board structure element |
US5404990A (en) * | 1994-08-12 | 1995-04-11 | Macmillan Bloedel Limited | Vane type orienter |
EP0800902B1 (en) * | 1996-04-11 | 2002-03-06 | Dieffenbacher Schenck Panel GmbH | Method for continuous manufacturing of a mat for boards of wooden or like material |
US5740898A (en) * | 1996-10-24 | 1998-04-21 | Macmillan Bloedel Limited | Method and apparatus for laying up strands |
US6241073B1 (en) | 2000-02-28 | 2001-06-05 | Cae Machinery Ltd. | Wood aligning and orienting conveyor |
DE10224497A1 (en) * | 2002-05-31 | 2003-12-11 | Dieffenbacher Gmbh Maschf | Device for the longitudinal orientation of elongated wood chips |
DE10230606B4 (en) | 2002-07-08 | 2016-09-08 | Dieffenbacher GmbH Maschinen- und Anlagenbau | Device for the longitudinal orientation of elongated wood chips |
DE10304133A1 (en) * | 2003-02-03 | 2004-08-05 | Dieffenbacher Gmbh + Co. Kg | Device for orienting elongated wood chips |
DE10321116B4 (en) * | 2003-05-09 | 2010-03-25 | Dieffenbacher Gmbh + Co. Kg | Device for the longitudinal orientation of elongated wood chips |
US7513768B2 (en) * | 2003-09-18 | 2009-04-07 | United States Gypsum Company | Embedment roll device |
US7445738B2 (en) * | 2003-09-18 | 2008-11-04 | United States Gypsum Company | Multi-layer process and apparatus for producing high strength fiber-reinforced structural cementitious panels |
US7670520B2 (en) * | 2003-09-18 | 2010-03-02 | United States Gypsum Company | Multi-layer process for producing high strength fiber-reinforced structural cementitious panels with enhanced fiber content |
US7754052B2 (en) * | 2006-11-01 | 2010-07-13 | United States Gypsum Company | Process and apparatus for feeding cementitious slurry for fiber-reinforced structural cement panels |
US20080099133A1 (en) * | 2006-11-01 | 2008-05-01 | United States Gypsum Company | Panel smoothing process and apparatus for forming a smooth continuous surface on fiber-reinforced structural cement panels |
US7524386B2 (en) * | 2006-11-01 | 2009-04-28 | United States Gypsum Company | Method for wet mixing cementitious slurry for fiber-reinforced structural cement panels |
US7513963B2 (en) * | 2006-11-01 | 2009-04-07 | United States Gypsum Company | Method for wet mixing cementitious slurry for fiber-reinforced structural cement panels |
FI122575B (en) * | 2006-12-04 | 2012-03-30 | Dieffenbacher Panelboard Oy | Apparatus for scattering fibers such as chips |
KR100868989B1 (en) * | 2007-05-23 | 2008-11-17 | 엠파워(주) | Method of fabricating superhydrophobic silica chain powders |
DE102007029697A1 (en) | 2007-06-27 | 2009-01-08 | Dieffenbacher Gmbh + Co. Kg | Method for scattering a pressed material mat in the course of the production of lightweight material panels and a device for carrying out the method |
DE102013226510B4 (en) * | 2013-12-18 | 2016-10-27 | Mayfair Vermögensverwaltungs Se | Device and method for producing a plate |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1174058B (en) | 1959-09-09 | 1964-07-16 | Abitibi Power & Paper Company | Device for the production of oriented particle board containing wood particles of different dimensions |
DE2535382C3 (en) * | 1975-08-08 | 1978-10-19 | G. Siempelkamp Gmbh & Co, 4150 Krefeld | Spreader |
DE2851779C2 (en) * | 1978-11-30 | 1984-05-30 | G. Siempelkamp Gmbh & Co, 4150 Krefeld | Spreading device |
-
1984
- 1984-09-21 DE DE8484111261T patent/DE3483044D1/en not_active Expired - Fee Related
- 1984-09-21 EP EP84111261A patent/EP0175015B1/en not_active Expired - Lifetime
-
1985
- 1985-06-26 US US06/748,844 patent/US4666029A/en not_active Expired - Lifetime
- 1985-06-28 CA CA000485810A patent/CA1232513A/en not_active Expired
- 1985-08-22 FI FI853222A patent/FI79968C/en not_active IP Right Cessation
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6752256B2 (en) | 2002-08-26 | 2004-06-22 | Forintek Canada Corp. | System for improving wood strand orientation in a wood strand orienter using rotating orienting fingers |
Also Published As
Publication number | Publication date |
---|---|
DE3483044D1 (en) | 1990-09-27 |
FI853222L (en) | 1986-03-22 |
FI853222A0 (en) | 1985-08-22 |
FI79968C (en) | 1990-04-10 |
EP0175015A1 (en) | 1986-03-26 |
FI79968B (en) | 1989-12-29 |
EP0175015B1 (en) | 1990-08-22 |
US4666029A (en) | 1987-05-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1232513A (en) | Method and apparatus for longitudinal orientation of wood chips | |
US5325954A (en) | Orienter | |
US4308227A (en) | Method of forming a mat for making particleboard | |
US3115431A (en) | Method and apparatus for making oriented wood particle board | |
CA1155377A (en) | Apparatus for aligning chips during the manufacture of chipboards | |
JPH0437193B2 (en) | ||
FI98276C (en) | Apparatus for length screening of elongated particles | |
CA1177435A (en) | Apparatus for forming mats, especially for the production of particleboard | |
FI86516B (en) | SKIVRASTER SAMT FOERFARANDE FOER ATT SILA KORNFORMIGT MATERIAL. | |
CA1225575A (en) | Device for orientation of chips | |
AU684205B2 (en) | Vane type orienter | |
JPH0661539B2 (en) | Automatic sorter | |
CA1049575A (en) | Row by row tier forming with spaces in a stacking system | |
CA1203464A (en) | Static dropless flake aligner for producing composite wood material | |
US5676236A (en) | Vane orienter with wipers | |
WO1996016776A1 (en) | Device for levelling a particulate material web | |
US4440287A (en) | Flake aligner including baffles supported on continuously moving conveyor | |
EP1153718B1 (en) | Device for distributing granular material onto a continously travelling support | |
CA2430216A1 (en) | Apparatus for longitudinally orienting elongated wood chips | |
EP0149287A1 (en) | Flake aligner | |
US3284266A (en) | Manufacture of particle board | |
JPH053275Y2 (en) | ||
EP1442856A2 (en) | Apparatus for orienting wood strands | |
CA1185517A (en) | Shingle packaging system | |
Barnes | Orientation of OSB and particleboard strands for high-strength oriented strand lumber and panel products. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MKEX | Expiry |