CA1190859A - Oral compositions - Google Patents

Oral compositions

Info

Publication number
CA1190859A
CA1190859A CA000425482A CA425482A CA1190859A CA 1190859 A CA1190859 A CA 1190859A CA 000425482 A CA000425482 A CA 000425482A CA 425482 A CA425482 A CA 425482A CA 1190859 A CA1190859 A CA 1190859A
Authority
CA
Canada
Prior art keywords
caries
snf2
ppm
oral
oral composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
CA000425482A
Other languages
French (fr)
Inventor
John P. Viccaro
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unilever PLC
Original Assignee
Unilever PLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unilever PLC filed Critical Unilever PLC
Priority to CA000425482A priority Critical patent/CA1190859A/en
Application granted granted Critical
Publication of CA1190859A publication Critical patent/CA1190859A/en
Expired legal-status Critical Current

Links

Landscapes

  • Cosmetics (AREA)

Abstract

ABSTRACT

The invention relates to an oral composition having anti-caries and anti-plaque activity comprising 0.01 to 3% by weight of stannic ammonium f1uoride [Sn(NH4)2F6]

Description

J. 370/1 ORAL COMPOSITIONS
_ This invention relates to compositions for the care of the oral cavity.

The efficacy of fluorine in the prevention of dental caries is well established (see for example US Patents 3 029 191, 3 070 510 and 3 227 617). The acceptance of fluoride ions as an anticariogenic agent is based essentially on the observation that among the many topical agents that have been tested in clinical ~rials only those that contain fluorine have been effective in reducing caries. Fluorine-free salts tested have not prevented caries formation.

~ It is known that sodium hexafluorostannate (Na~SnF6) applied topically to the teeth has a caries inhibiting effect (Caries Res. 3, 315-325, 196~).

We have now found that stannic ammonium fluoride, Sn(NH4)2F6, (which may also be called ammonium hexafluorostannate),as well as having an anti-caries effect also has a plaque inhibiting effect (which has not bee~
reported for sodium hexafluorostannate) and furthermore that stannic ammonium hexafluorostannate has an important practical advantage over the use of sodium 3 hexafluorostannate in that it has a significally better taste than the sodium compound~

` -:lE3 21 - ~ - J.37~/l Accordingly the invention provides an oral composition having anti-caries and anti-plaque activity comprising O.Ol to 3% by weight of stannic ammonium fluoride tSn(NH4)2F~

The synthesis of Sn(NH~)2F6 is described in J.Am.Chem.Soc~ 80, 2662, 1958.

In the preparation of therapeutic or prophylactic oral compositions incorporating Sn(NH4)2F6, a suitable carrier or oral media well known in the art is used. Adjuvants such as colouring agents, flavours, humectants, abrasives, detergents, preservati~es, I!
emollients and the like and other therapeutic agents compatible with Sn(NH4)2F6 may also be included.

The oral composition is preferably in the form of a toothpaste or mouthwash. A particularly suitable amount of the Sn(NH4)2F6 is such as to provide from lO00 to l500 ppm of fluoride ion. However, the amount may conveniently range from lO0 to 3000 ppm.

The following Experiments and Examples illustrate the invention. Percentages are by weight~

The Sn(NH4)2~6 employed in the following experiments was synthesised according to the method of Haendler and Johnson (J~Am.Chem.Sec. 80, 2662, 1958).
The analytical details were as follows:

Theoretical % _a~tical %
Sn 44.18 45.64 NH413.41 12.65 F 42.41 43.l4 Cariogenic Bacteria used for testing the effect of - 3 - ~.370/1 Sn(NH4)2F6 were ~ s mutans (strains coded 6715 and OMZ-176), Streptococcus_sanguis (strains coded 10556 and 10557), Streptococcus salivarius (strains coded SS4 and H257), and Lactobacillus casei.
All of the above organisms were maintained as lyophilised cultures until the time for use.

An aqueous solution of Sn(NH4)2F6 has a pH of about 3.8 as compared to a pH of 3.0 for SnF2. This higher pH characteristic eliminates some of the formulation problems encountered with the strong acid effect of SnF2 The preferred pH of oral compositions containing Sn~NH4)2F6 is from 3.5 to 8Ø A 1000 ppm F
solution of Sn(NH4~2F6 was sta~le- It did not become hazy on standing after several weeks. In contrast, a SnF2 solution developed turbidity, probably due to oxy-fluoride formation, after 24 hours at room temperature.

SnF2 at conc~ntrations equivalent to 1000 ppm and
2~ 2500 ppm released, respectively,80% and 45% of the available F. Sn(NH~)2F6 displayed the same . ionisation values as SnF2. The corresponding values for Na2SnF6 are 73% and 38~, respectively. Thus Na2SnF6 is less ionised than Sn(NH4)2F6, Sn(NH4)~F6 is significantly better tasting han a2 n 6 A comparative test was carried out with a panel of 3 assessors, and tasting (20 sec. rinse with 10 ml of test solution containing 1000 ppm F ) was performed
3 with coded solutions or on a blind basis~ The finding that Sn(NH4)2F6 had a significantly less metallic taste than Na2SnF6 was the unanimous decision of the three judges. Sn(NH~)2F6 was also much less astringent and metallic tasting than the uncomple~ed fluoride salt SnF2 at equal molar concentratiOnS.
- 4 - J.370/l A similar blind test was conducted to compare the taste of Sn(NH4)2F6 with that of SnF25 This showed that Sn(NH4)2F6 had a significantly less metallic taste than SnF2 and this was the unanimous decision of the three judges.

It is generally agreed that oral bacteria are responsible for tooth decay. Therefore, a reduction of the cariogenic flora usually results in a decrease in caries formation. The inhibitory action of the test compounds was determined by adding each salt, at known concentrations, to a culture of cariogenic bacteriaO After 24 hours at 37C
bacterial growth was monitored as a change in optical density. A dose response curve (concentration of salt vs.
~rowth) for each cornpound against each bacterial isolate was plotted in order to obtain the concentration of test - agent which would cause a 50% inhibition in growth (ID/50).
This is a useful ranking index since it is not always possible to obtain complete inhibition with weak germicidal agents. Only those compounds which were able to elicit an ID/50 response were considered as inhibitory agents.

The ~edium used for ba~terial growth experiments . was Trypticase Soy Broth (B.B.L.: Baltimore Biological Labs. r Baltimore, MD) supplemented with 0.1% Tween 80 (the word Tween is a trade mark) and 0.05~ sodium thioglycollate. The test organisms, as lyophilised cells, were grown overnight in 50 mls of growth medium in a vacuum desiccator with an atmosphere of 97% CO2/3% H2 at 35Co T~lese cultures were then used at a 0.2~ inoculum to prepare second stage seed flasksO The test media (lOml) consisting of growth medium plus the potential inhibitors, contained in 16 x 12Q mm screw top test tubes, were inoculated with the second stage seed cultures to given -an absorbancy reading of 0.05~ Immediately after inoculation the cultures were incubated for 24 hours under anaerobic
- 5 - J.370/1 conditions.
The growth medium was sterilised by autoclaving, whereas the poten~ial inhibitors (as aqueous solutions) were sterilised by filtering each solution separately through a Millipore membrane (0.22 /u).

Absorbance at 600 nm versus a medium control was used as a measure of growth on a Beckman Model B
spectrophotometer. All absorbancy readings were determined in 16 mm x 120 mm Kimax test tubes. This instrument was linear to 0.60 OD units; thus, all cultures displaying values above this range were diluted with the control, accordingly.

TABLE I
INHIBITICN OF BACT~RIAL ~ROWTH

I 50 (mM/L) 20S.mutans S.salivarius ~ L.casei 6715 _Z~176 SS4 H-257 10556 10557 Salts , * SnCl2 2.26 3.68 1.45 3.64 1.27 1088 3-6.0 * SnF2 1.50 2.28 2.45 0.74 0.44 0.84 2~97 * ~n(NH4~6 1~20 1.43 1.65 0.40 0.22 0.39 2.53 * NaF 7.3 16.30 13.40 3.77 1.18 1.82 >12.00 The above values are the means of triplicate experiments.

3 The results show that Sn(NH~)2F~ was more inhibitory than the non-fluoride salts and NaF, with no apparent changes in specificities. The ID/50 values, recalculated as ppm F , again show (Table II) that Sn(NH4)2F6 is over-all more active than NaF.
- 6 - J.370/1 TABLE II
INHIBITION OF BACTERIAL GROWTH BY FLUORINE SALTS

ID/50 (ppm F) S~mutans SOsalivarius S.sanguis L.casei Salts NaF 138 309 255 72 22 35 352 * SnF2 56 87 93 29 17 32 113 ~n(~H4~6 1~7 163 188 46 25 45 288 It should be noted that Sn(NH4)2F6, which is the stannic form of tin~ was less active than the stannous form SnF2.

Dental plaque is a film on the surface of teeth.
This layer is the result of bacterial growth and is composed chiefly of microorganisms, proteinaceous materials and microbial by~products, such as glucans and organic acids~ Plaque is not only primarily responsible for caries formation but it is also implicated in gingival diseases. Because the results described herein above have demonstrated that Sn(NH4)2F6 possesses antibacterial activityl it is obvious that Sn(N~4)2F6 will also reduce plaque formation.

The following are examples of a toothpaste and a mouthwash composition of the invention.

3o 5i9
- 7 - J.370/1 EXAMPLE I
~ The following is an example of a toothpaste composition according to the invention -Silica xerogel 13.00 Silica aerogel 22.00 Sorbitol (70% solution)41.50 Sn(NH4)2F6 0.24 Sodium lauryl sulphate7.00 Colour 0.04 Flavour 3.00 Sodium Saccharin 0.12 Sodium Benzoate 0O06 Titanium Dioxide 0-35 Glycerine 7O53 Water Balance to 100%
-The following is an example of a mouthwash~
composition according to the present invention.

, Ethanol 15.00 Propylene Glycol 10.00 Glycerol 12.00 Flavour, Colour 0.90 Polyoxyethylene (20) monolaurate 2.10 Sodium lauryl sulphate 0.33 Sn(NH4)2F6 0.024 Buffer 18.00 Hydrochloric acid (to pH 4.1) q s Water Balance to 100%

Although the examples herein show the use of Sn(NH4)2F6 in dentifrice and mouthwash preparations,
- 8 - J.370/1 the compounds of the present invention may also be incorporated in other oral preparations or formulations such as for example chewing gums and lozenges.

Claims (3)

THE EMBODIMENTS OF THE INVENTION IN WHICH AN EXCLUSIVE PROPERTY
OR PRIVILEGE IS CLAIMED ARE DEFINED AS FOLLOWS:
1. An oral composition having anti-caries and anti-plaque activity comprising 0.01 to 3% by weight of stannic ammonium fluoride [Sn(NH4)2F6)].
2. An oral composition as claimed in Claim 1, wherein the amount of Sn(NH4)2F6 is sufficient to provide 1000 to 1500 ppm of available fluoride ion.
3. An oral composition as claimed in Claim 1 in the form of a toothpaste or mouthwash.
CA000425482A 1983-04-08 1983-04-08 Oral compositions Expired CA1190859A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA000425482A CA1190859A (en) 1983-04-08 1983-04-08 Oral compositions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CA000425482A CA1190859A (en) 1983-04-08 1983-04-08 Oral compositions

Publications (1)

Publication Number Publication Date
CA1190859A true CA1190859A (en) 1985-07-23

Family

ID=4124965

Family Applications (1)

Application Number Title Priority Date Filing Date
CA000425482A Expired CA1190859A (en) 1983-04-08 1983-04-08 Oral compositions

Country Status (1)

Country Link
CA (1) CA1190859A (en)

Similar Documents

Publication Publication Date Title
US5688492A (en) Oral hygiene composition
US5188820A (en) Method of inhibiting plaque on teeth by applying an oral composition
US4664906A (en) Oral compositions
US5330748A (en) Dentifrices containing zinc oxide particles
CA2146330C (en) Antibacterial mouthwash
EP3086796B1 (en) Prebiotic oral care methods using a saccharide
US4205061A (en) Oral antimicrobial compositions
RU2287322C2 (en) Antibacterial preparation for cleaning teeth of improved properties against dental covering and for refreshed breathing
US10307357B2 (en) Prebiotic oral care compositions containing an alkyl glycoside
EP0616520B1 (en) Phytate-antimicrobial compositions in oral care products
US4430324A (en) Ammonium fluorometallate containing compositions
EP0510158B1 (en) Improved anti-plaque compositions comprising a combination of morpholinoamino alcohol and metal salts
EP0641190B1 (en) Oral hygiene composition
EP0426213B1 (en) Oral compositions
US20060153959A1 (en) Flavour compositions
EP2399576B1 (en) Use of antibacterial compounds for the oral cavity hygiene
US5827503A (en) Method and composition for treating periodontitis
GB2210264A (en) Antigingival/antiplaque compositions
CA1190859A (en) Oral compositions
EP0121013B1 (en) Oral compositions
EP0376162B1 (en) Dental plaque inhibitor
CA1190860A (en) Oral compositions
US4024238A (en) Oral hygiene method
EP0121012B1 (en) Oral compositions
NO831876L (en) ORAL PREPARATION

Legal Events

Date Code Title Description
MKEC Expiry (correction)
MKEX Expiry