CA1159739A - Dilatation catheter method and apparatus - Google Patents

Dilatation catheter method and apparatus

Info

Publication number
CA1159739A
CA1159739A CA000369816A CA369816A CA1159739A CA 1159739 A CA1159739 A CA 1159739A CA 000369816 A CA000369816 A CA 000369816A CA 369816 A CA369816 A CA 369816A CA 1159739 A CA1159739 A CA 1159739A
Authority
CA
Canada
Prior art keywords
catheter
balloon
vessel
cord
inverted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
CA000369816A
Other languages
French (fr)
Inventor
Thomas J. Fogarty
Albert K. Chin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CA000369816A priority Critical patent/CA1159739A/en
Application granted granted Critical
Publication of CA1159739A publication Critical patent/CA1159739A/en
Expired legal-status Critical Current

Links

Abstract

Abstract of the Disclosure A balloon catheter wherein the balloon is inverted within the distal end of the catheter for eversion therefrom and extrusion through a partially occluded blood vessel in response to the exertion of internal fluid pressure on the balloon. The catheter is designed to extrude through the occluded vessel in advance of substantial lateral expansion and, upon full extension, is adapted to expand to a condition at least partially dilating the occlusion. A cord connected to the balloon and extending through the catheter provides means whereby tension may be applied to the balloon to reinvert it within the catheter A reservoir in communication with the inner lumen of the catheter provides a closed fluid-filled system whereby the balloon may be sequentially everted and reinverted without venting outside of the system.

Description

11 ~ 1159739`

¦ Tit.le DILATATION CA~HETER METHOD AND APPARATUS

Background of the Invention _ The present invention relates to a method and apparatus for use in dilating occluded blood vessels. The invention is particularly concerned with such a method and apparatus wherein dilatation is achieved through means of a balloon element which is initially inverted within the distal end of a catheter and, in use, extruded through and expanded within the occlusion being treated. The invention is intended for use in treating either ~ arterial or venous occlusions.

,, Prior art efforts for the treatment of occluded blood vessels have relied primarily upon the employment of bypass ~, vessels or some surgical technique whereby the occlusion is physicially removed from the vessel being treated. Another recent technique for treating occluded vessels relies upon the insertion of some type of an instrument into the vessel to ,, dilate the occlusion through a stretching or compressing process.
The present invention is concerned with a technique of the latter ~20~ ~ type.
:
A principal problem with the employment of techniques ~wherein instruments are inserted into the vessel to effect ~,dilataticn by compression or stretching is that the instruments ~may damage the vessel and/or dislodge material therefrom.
25~ ~ Another problem with such techniques is that it has been very ~i difficult to place the instruments used therefor in highly occluded or small diameter vessels. These problems have result~
primarily from the construction and size of the instruments. In one~such technique, the instruments take the form of progres-30~ ; sively larger catheters which are successively forced through `" -`` 1 1~9739 the vessel being treated. In another technique, the instruments have taken the form of an inflatable catheter which is forced into place within the occluded area to be treated and, once in p:Lace, inflated. These prior catheters, although flexible, are S ¦ necessarily somewhat hard and inelastic, in order to enable the catheter to be advanced large distances through the arterial or venous systems. The inherent hardness of these catheters contribute to the problems of vessel damage and material dis-lodgement mentioned previously.

Summary of the Invention The present invention relies on an apparatus and method ; wherein a highly flexible balloon is inverted within the distal end of a flexible catheter and everted from the catheter for extrusion through the occluded section of the vessel to be lS treated. The b~lloon and catheter are so designed that the balloon may symmetrically evert from the catheter and extrude i through the occlusion in anisotropic fashion in advance ofsubstantial lateral expansion of the balloon. Eversion of the balloon from the catheter is effected through means of the application of internal fluid pressure to the catheter. Once the balloon is in place within the occluded section of the ~; vessel, continued fluid pressure is applied to laterally expand f ;~ the balloon and dilate the occlusion. The process of laterally expanding the balloon to dilate the occlusion may be pulsed by ~25~ ~ repeatedly increasing and decreasing the fluid pressure within 1~ ~ the catheter. In the preferred embodiments, a cord element : extends through the catheter and is connected to the balloon to reinvert the balloon within the catheter after treatment of ^ the occlusion is complete.
~'~
3C A principal object of the invention is to provide an inflatable catheter for use in dilating arterial or venous , . .

1S9~39 occlusions without injury to the vessel being treated or dis-lodgment of material therefrom.

Another object is to provide an inflatable catheter for use in dilating arterial or venous occlusions, such that a a soft, inflatable dilating portion is advanced through the occluded area in a gentle manner, with no need to force a hard catheter through the occluded area prior to dilatation.

Another and more specific object is to provide such a catheter wherein the inflatable element is initially inverted within the end of the catheter and, upon being placed in close proximity to the occlusion to be treated, everted for extrusion through the occlusion in advance of substantial lateral expansion.
I
Still another object of the invention is to provide such a catheter wherein the inflatable element is evertable from the catheter in a syn~etrical fashion.
.
Yet another object of the invention is to provide such a catheter wherein a mechanism is contained within the catheter i for reinverting the inflatable element afterits expansion for dilatation purposes.

Another objéct related to the latter object is to provide such a mechanism which assures that the inflatable element, or fragments thereof, cannot separate from the catheter.

Another object is to provide such a catheter wherein the reinversion mechanism includes a secondary catheter extending ~ through the primary catheter and the inflatable element to enable ;¦ ~ the taking of pressure measurements or the making of injections - without removal of the catheter from the vessel being treated.
~1 A further object of the invention is to provide an I -- in1atable catheter which enables the dilatation of select 59~39 limited areas of the vessel being treated.

A further specific object of the invention is to provide an inflatable dilatation catheter wherein the catheter body may be of a diameter less than the lumen of the vessel being t:reated and the inflatable element is initially inverted within the distal end of the catheter.

A further object of the invention is to provide an inflatable dilatation catheter which may be extruded into place within an occluded section of the vessel being treated without materially disturbing the occlusion and, once in place, may be repeatedly laterally expanded and contracted to subject the occlusion to pulsing dilatation.

The foregoing and other objects will become more apparent when viewed in light of the following detailed descrip-tion and accompanying drawings.

Brief Description of the Drawings Fig. 1 is a perspective view illustrating an occluded vessel in the process of being treated by a first embodiment of the invention, with parts of the vessel broken away and shown in section;

Fig. 2 is an elevational cross-sectional view illus-trating the catheter of the first embodiment and a phantom line representation of a vessel to be treated, as the catheter would appear when being directed to an occluded section of the vessel;

Fig. 3 is a cross-sectional elevational view similar to Fig. 2, illustrating the first embodiment catheter in associ-atlon with a ~essel being treated, as the inflatable element appears when first extruded through the occluded section of the vessel;

Fig. 4 is a cross-sectional elevational view, similar to Fig. 3, illustrating the inflatable element, after it has expanded to dilate the occlusion being treated;

Fig. 5 is a cross-sectional elevational view, similar to Fig. 4, illustrating the inflatable element after completion of the dilatation treatment and reinversion of the element into the catheter;

Fig. 6 is a cross-sectional elevational view of a second embodiment of the catheter with solid lines showing the inflatable element in the inverted condition and phantom lines showing the inflatable element in progressive stages of eversion and lateral expansion;

Fig. 7 is a cross-sectional elevational view illustrat-ing the catheter of a third embodiment of the invention and a phantom line representation of a vessel to be treated, as the catheter would appear when being directed to the occluded section of the vessel;

Fig. 8 is a cross-sectional elevational view, similar to Fig. 7, illustrating the third embodiment catheter in associa-~ tion with a vessel being treatedJ as the inflatable element appear when first extended through the occluded section of the vessel;
', Fig. 9 is a cross-sectional elevational view, similar ; to Fig. 8, illustrating the third embodiment inflatable element ~- after it has expanded to dilate the occlusion being treated; and Fig. lO is a cross-sectional elevational view, similar to Fig. 9, illustrating the third embodiment inflatable element after completion of the dilatation treatment and reinversion of the element into the catheter.

~, . .

t t` `~

` ~ 9 7 3 9 . Description of the First Embodiment _ Fig. 1 illustrates a blood vessel 10 partially occluded by an occlusion 12. As shown, the vessel takes the form of an artery and the occlusion is what is commonly known as an arterio-S sclerotic plaque or atheroma. This is the type of adhering occlusion with which the inventive apparatus and method is expected to find primary application. It should be understood, I however, that the invention is applicable in treating other types of occluded vessels wherein dilatation is desired. For example, the invention may be used in treating occlusions resulting from fibromuscular-dysplasia in veins.

The principal elements of the first embodiment apparatus shown in Fig. 1 comprise: a flexible generally inelastic catheter 14 fabricated of an inert polymer material such as Dacron; a balloon element 16 fabricated of a highly elastic resilient material, such as latex, said element having a mouth portion (attachment ~shoulder~ 18 peripherally secured to the distal end of the catheter 14 and a body portion 20 initially inverted within the catheter; a cord 22 extending through the 20 ~ catheter 14 and connected at one end of the body portion 20 of the balloon element; a syringe 24 connected to the proximate end of the catheter 14 through an intermediate tubular coupling 26, said syrin~e having a cylinder 28 with a positive displacement piston plunger 30 sealinqly and slidably received therein, which ~,Z5 plunger has the proximate end of the cord 22 connected thereto;
-~ a flexible reservoir 32 removably connected in fluid communication J :: ~ with the interior of the coupling 26 through means of a tubular lateral extension 34 formed as part of the coupling; and a selectively operable shut-off valve 36 interposed in the extension ;~ ~ 34. The catheter may ~ary in length, depending upon the applica-I tion in which it is intended to be used, and commonly measures ~-l up to 30 inches in length. Cross-sectional dimensions of the . ,.

~ - ~ 159~39 ¦ catheter may vary,depending upon the application, and are ¦ generally chosen so that the outside diameter of the catheter is ¦ equal to about one-half the inner diameter of the nonoccluded ¦ lumen of the vessel being treated. In one typical embodiment, the ¦ catheter and associated balloon element have the following ¦ dimensions:
Catheter Body Dimensions I
¦ O.D. : .085 inches ¦ I.D. : .060 inches ¦ Leng,h: Variable up to about 30 inches ¦ Balloon Element Dimensions When Detached from Catheter Reduced Diameter Body O.D.: .034 inches Reduced Diameter Body I.D.: .020 inches Reduced Diameter Body Thickness : .007 inches Attachment Shoulder O.D. : .14 inches Attachment Shoulder Thickness : .007 inches Attachment Shoulder Length: .26 inches ; Attached Balloon Dimensions Uninflated Inverted Length: .20 inches Inflated Length After Eversion : .70 inches Inflated O.D. : .16 inches ~, In the preferred embodiment, the length, wall thickness, and O.D.
; ~ of the balloon element are such that the element does not drag on -' the inner walls of the catheter when the element is everted out of the catheter symmetrically. The balloon element should ideally have a length no more than a~out 25 times the I.D. of the catheter .

The material and relative thicknesses of the balloon . element are chosen so that expansion of the balloon element out ~;l of the end of the catheter takes place in anisotropic fashion wi~h the element first eVerting but of the catheter in advance of;~substantial lateral expansion and then, after eversion, ~5~39 laterally expanding in response to tne continued exertion of fluid pressure internally of the catheter. Once everted out of the catheter, the bal~oon element is designed to laterally expand to an outside diameter equal to or greater than the I.D. of the nonoccluded vessel being treated. Although such characteristics may be achieved through the employment of an elastomeric balloon element such as that of the foregoing example, it is anticipated that similar characteristics may be achieved by fabricating the balloon element of a folded generally inelastic flexible material such as polyvinyl chloride, which is adapted to first evert to an extended condition and then unfold to a laterally expanded condition.

The cord 22 should be flexible and generally inelastic and of such a length that it will not restrict eversion of the balloonelement 16 as it is moved from the inverted condition shown in Fig. 2 to the extended condition shown in Fig. 3. To permit such unrestricted extension of the balloon element, the cord is ideally provided with a slack portion, as shown in the cylinder 28 illustrated in Fig. 2. The cord should also, ; 20 however, be of such a length that retraction of the plunger 30 beyond a predetermined limit functions to reinvert the balloon element wlthin the distal end of the catheter, as shown in Fig. 5.

The catheter 14, syringe 24 and reservoir 32 contain an incompressible fluid F. Preferably, this fluid is radiopague in order to facilitate the radiographic monitoring of the position of the catheter ana progress of the dilatation procedure.
The valve 36 provides means whereby this fluid may be selectively captured between the balloon element 16 and the piston 30 (i.e., when the valve is closed) or permitted to charge into and out of the reservoir 32 (i.e., when the valve 36 is open). In either condition, however, the reservoir 32 assures that the catheter 14 ~9 i3~

is al~a~s filleo ~ith fluid Prior to the dilatation proceàure, b~th the catheter and the reservoir are pul-ged of air and filled with fluid. The reservoir is aetached from the ca.heter, both portions are separately filled, and the reservoir ano catheter are rea1:tached. With the valve in the open condition, as it would be in the ~ig. 4 conaition, the piston plunaer 30 may be re.racted to tension the cord 22 and, thus, draw the balloon element 16 into the reinverted conditicn within the catheter.
With the yalve 36 closed, the piston plunger 3~ may be compressed to subject the catheter 14 to internal pressure and, thus, evert the balloon element out of the end of the catheter, as shown in Fig- 3. In the preferred mode of operation, the piston plunger 30 is depressed to a predetermined degree prior to closing of the valye 36 to provide for carefully controlled expansion of the balloon element by depression of the plunger and zssure that the cord 22 is slack throughout eversion of the balloon element out o~ the catheter. Suitable indicia may be provided on .he syringe 24 to index the point of plunger travel at which the valve 36 should be closed. The preferred construction also includes a shoulder 37 on the plunger 30 for abuiment with the end of the cylinder 28 to limit inward movement of the plunger. -In using the first embodiment catheter to practice themethoa of the present 1nvention, an incision is first made in the vessel to one side of the occlusion to be treated and then the distal end of the catheter 14 is introduced into the vessel through the incision. The catheter is then fed through the vessel ¦ to position the distal end .hereof proxinlate one end of the occlusion, as shown in Figs. 1 and 2. At or prior to this time, the position of the plunger 30 is adjusted and the valve 36 is closed. With the catheter so positioned and the plunger s~
conditioned, the next step is to apply pressure to the plunger, as shown in ~ig. 3, to subject the ca heter to internal fluid ~ ,; "
_ g_ ' Il ~ 15~739 pressure and evert the body portion of the balloon element there-from for extrusion through the occlusion 12. In the preferred mode, during such eversion, the balloon element extends axially without substantial lateral expansion. Once the balloon element has extruded through the occlusion 12, the application of con-tinued fluid to the catheter through the plunger 30 functions to laterally expand the balloon element as shown in Fig. 4 and, thus, dilate the occlusion. Such expansion and dilatation may be pulsed by moving the plunger 30 in and out. Throughout the placement and dilatation process, the progress of the treatment may be radio-graphically monitored. The extent of stretching during the dilatation process as a result of lateral expansion of the balloon may vary somewhat, depending upon the circumstances involved.
Ideally, the balloon is expanded so as to have an outside diameter equal to or slightly greater than the internal diameter of the nonoccluded vessel.

Once the dilatation is complete, the valve 36 is opened and the plunger 30 is retracted, as shown in Fig. 5, to tension the cPrd 22 and, thus, reinvert the balloon element within the catheter. At this point, the catheter may be removed from the vessel, and the incision through which the catheter was introduced may be closed. It is also possible, depending upon the circum-stances involved, that the catheter may be moved into a further section of the occlusion being treated, or on to a successive occlusion prior to removal of the catheter. In such a case, the balloon element would be everted and re-expanded, as shown in ~igs. 2, 3 and 4 for each successive dilatation treatment and, ultimatel~, the balloon element would be reinverted and the catheter removed from thé vessel.

Description of the Second Embodiment The embodiment of Fig. 6 corresponds to that of the first embodiment, with the exception that the balloon element, ' .~ .. . .

designated 16a, is not provided with a cord to draw it back into the reinverted condition within the catheter, designated 14a.
Other than this difference, the structure and mode of operation of the embodiment shown in Fig. 6 would be identical to that of the first embodiment described in the foregoing discussion with respec to ~igs. 1 to 5. with the Fig. 6 embodiment, reinversion is achiev?d through means of the vacuum created within the catheter 14a by retraction of the plunger of the syringe ~not illustrated) associated with the catheter 14a. It is also possible that the Fig. 6 balloon element might be permitted to remain in the ex-tended, but uninflated, condition during the course of removal of the catheter 14a after a dilatation treatment. Once the catheter 14a is removed from the vessel being treated, external means could be used to assist in reinversion of the balloon element.

Description of the Third Embodiment The principal difference between the third embodiment, illustrated in Figs. 7 to 10, and the first embodiment described in the foregoing discussion with respect to Figs. 1 to 5 is that the third embodiment employs an annular balloon element 16b in place of the closed bulbous element 16, and a tubular cord element in the form of a flexible catheter 22b in place of the simple cord 22. The purpose of these differences is to provide a passage (i.e., the passage through the catheter 22b and the annular bal-loon element 16b) through which pressure within the vessel being treated may be measured, or injections into the vessel may be n,ade.
For the latter purpose, the plunger 30b (see Fig. 7) is provided with a passage through which the catheter 22b extends and a syring~
38 is connected to the proximate end of the catheter 22b.

The vessel and occlusion depicted in Figs. 7 to 10 correspond to those of Figs. 1 to ~ and, accordingly, are desig-nated by the numerals 10 and 12, respectively. The elements of 11 ~ 159739 the third embodiment catheter and inflating mechanism which correspond to those of the first embodiment are designated in Figs. 7 to 10 by numerals corresponding to those used in Figs. 1 to 5, as follows: catheter 14; syringe 24; tubular coupling 26;
cylinder 28; fleY.ible reservoir 32; tubular lateral extension 34;
and, shut-off valve 36.

The mouth portion (attachment shoulder) of the element 16b is designated 18b and the body portion of the element 16b is designated 20b. In the preferred construction, the balloon element 16b is fabricated of latex. The inner catheter 22b to which the balloon element 16b is connected may be fabricated of any suitable material, such as Dacron or polyvinyl chloride.
Ideally, the material from which the catheter 22b is fabricated is flexible and generally inelastic.

; 15 Like the balloon element 16, the annular balloon ¦ element 16b is fabricated so that it may evert out of the end of the catheter 14 in anisotropic fashion, with the balloon element first everting out of the catheter in advance of substantial lateral expansion and then, upon eversion, being laterally expansible in response to the continued exertion of fluid pressure internally of the catheter 14. The catheter 22b serves a function similar to the cord 22 and should be flexible and generally inelastic and of such a length that it will not restrict ev~rsion of the balloon element 16b out of the catheter 14. To permit such unrestricted extension of the element 16b, the ; catheter 22b is ideally provided with a slack portion, as shown in the cylinder 28 in Fig. 7. The catheter 22b should also, however, be of such a length that retraction of the plunger 3Ob beyond a predetermined limit functions to reinvert the element 16b within the distal end of the catheter 14, as shown in Fig. 10.

~12-~ 15973~
The third embodiment catheter 14, s~ringe 24 and reserv~ir 32 contain an incompressible fluid F and operate, in cooperation with the valve 36, in the same manner described in the foregoing discussion with respect to the first embodiment.
A stop shoulder 37b, corresponding to the afore~escribed shoulder 37, is provided on the ~lunger 30b to limit inward movement of the plunger relative to the cylinder 28.

'~he third embodiment catheter is used to practice the method of ~he invention in essentially the same manner described in the foregoing discussion with respect to the first embodiment.
During this use, an incision is first made in the vessel to one side of the occlusion to be treated and then the distal end of the catheter 14 is introduced into the vessel through the incision ~he catheter is then advanced through the vessel to a position proximate one end of the occlusion and, once so positioned, the plunger 30b is used to first evert the element 16b out of the catheter 14 and through the occlusion and ,hen t~ exp~nd the element 16b laterally to dilate the occlusion. As in the first embodiment catheter, the element 16b is extruded through the occlusion in advance of substantial lateral expansion of the element. Expansion of the element for dilatation purposes may be pulsed by moving the plunger 30b in and out and the progress of dilatation may ~e radiographically monitored. The extent of ~; stretching during the dilatation process may vary somewhat, depen~ing up~n the circumstances involved. Generally, the element ; 16b is expanded so as to have an outside diameter equal to or slightly greater than the internal diameter of the nonoccluded ; section of the vessel being treated.

Figs. 7, 8, 9 and 10 show the successive steps in practicing the invention. In Fig. 7, the catheter is shown as , it would appear when being directed to the situs of the occlusion.
.
~ 13-~59i3g Fig. 8 sho~s the catheter as it would appear ~hen the element 16b is initially expanded for extrusion through the occlusion. From this figure, it will be seen that the catheter 22b is àra~n through the occlusion with the element 16b and, thus, pro~ides a pzssage through the element 16b. Fig. 9 sho~s the element 16b as it would appear when inflated to dilate the occlusion 12.
In Pig. 10, thecatheter is shown in the condition it would assume when tne valve 36 is opened and the plunger 30b is retracted to tension the catheter 22b and, thus,reinvert the element 16b within the catheter 14. With the element 16b so reinverted, the catheter may be moved to another situs within the vesse- for fur.her dilatation treatment, or removed from the vessel.

~ The lumen of the catheter 22b provides means whereby injections or pressure mezsurement can be made while the third embodiment catheter 14 is in place in a vessel. Such injections or measurements can be made at any time as the lumen of the catheter 22b remains open at all times.
'~
Conclusion Although preferred embodiments of the invention have ; 20 been illustrated and described, it should be understood that the invention is notintended to be limited to the specifics of these embo~iments, but rather is definea by the accompanying ¦ -1aims ,, ,~
.
,~ ~
~ 14-.

Claims (10)

The embodiments of the invention in which an exclusive property or privilege is claimed are defined as follows:
1. Apparatus for dilating a partially occluded section of a blood vessel, said apparatus comprising: an elongated flexible generally inelastic catheter having an outside diameter less than the internal diameter of the nonoccluded vessel;
balloon means inverted within the catheter, said balloon means having a mouth peripherally sealed to the distal end of the catheter and being evertable out of the catheter in response to the exertion of fluid pressure within the catheter for substan-tially anisotropic expansion out of the catheter and through the occluded section of the vessel in advance of substantial lateral expansion and, upon eversion out of the catheter, being laterally expansible in response to the continued exertion of fluid pressure internally of the catheter to an outside diameter equal to or greater than the internal diameter of the vessel; and means to selectively impart internal pressure to the catheter.
2. An apparatus according to Claim 1 wherein the balloon means comprises a bag having an outside diameter wall thickness and length such that the bag does not drag on the inner walls of the catheter when everted out of the catheter symmetri-cally.
3. An apparatus according to Claim 2, wherein the catheter has an outside diameter approximately equal to one-half the internal diameter of the nonoccluded vessel.
4. An apparatus according to Claim 1 wherein the balloon means, when in the inverted condition within the catheter, has a length no more than twenty-five times the internal diameter of the catheter.
5. An apparatus according to Claim 1 further comprising cord means extending through the catheter and connected to the balloon means, said cord means having a length greater than that of the catheter whereby the balloon may be fully everted out of the catheter without resistance by said cord means and, upon release of internal fluid pressure from the catheter, being tensionable to reinvert the balloon means within the catheter; and means to selectively apply tension to the cord means.
6. An apparatus according to Claim 5 wherein: the cord means comprises a flexible catheter; and, the balloon means comprises an annular elastomeric member having the inner periphery thereof sealingly secured to the cord means catheter and the outer periphery thereof sealingly secured to the catheter within which the balloon means is inverted.
7. Apparatus for dilating a partially occluded section of a blood vessel, said apparatus comprising an elongated flex-ible catheter adapted for passage through the vessel; balloon means inverted within the catheter, said balloon means having a mouth peripherally sealed to the distal end of the catheter and being evertable out of the catheter in response to the exertion of fluid pressure within the catheter for eversion out of the catheter and extrusion through the occluded section of the vessel in advance of substantial lateral expansion and, upon eversion out of the catheter, being laterally expansible in response to continued exertion of fluid pressure internally of the catheter to an outside diameter sufficiently large to at least partially dilate the occlusion; and means to selectively impart internal pressure to the catheter.
8. An apparatus according to Claim 7 wherein the means to selectively impart internal pressure to the catheter com-prises a syringe connected to the proximal end of the catheter, said syringe having a piston movable in a first direction for displacing fluid into the catheter and a second direction for displacing fluid out of the catheter; and wherein said apparatus further comprises cord means extending through the catheter and connected between the balloon and piston to permit unrestricted eversion and expansion of the balloon means in response to movement of the piston in the first direction and to exert re-inverting tension force on the balloon in response to movement of the piston beyond a predetermined limit in the second direction.
9. An apparatus according to Claim 8 wherein: the cord means comprises a flexible catheter; and, the balloon means comprises an annular elastomeric member having the inner periphery sealingly secured to the cord means catheter and the outer periphery thereof sealingly secured to the catheter within which the balloon means is inverted.
10. An apparatus according to Claim 8, further com-prising: a reservoir interposed between the catheter and syringe;
valve means to selectively open and close said reservoir to fluid communication with the catheter.
CA000369816A 1981-01-30 1981-01-30 Dilatation catheter method and apparatus Expired CA1159739A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA000369816A CA1159739A (en) 1981-01-30 1981-01-30 Dilatation catheter method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CA000369816A CA1159739A (en) 1981-01-30 1981-01-30 Dilatation catheter method and apparatus

Publications (1)

Publication Number Publication Date
CA1159739A true CA1159739A (en) 1984-01-03

Family

ID=4119048

Family Applications (1)

Application Number Title Priority Date Filing Date
CA000369816A Expired CA1159739A (en) 1981-01-30 1981-01-30 Dilatation catheter method and apparatus

Country Status (1)

Country Link
CA (1) CA1159739A (en)

Similar Documents

Publication Publication Date Title
US4271839A (en) Dilation catheter method and apparatus
US4315512A (en) Piston extension balloon dilatation catheter apparatus and method
EP0044333B1 (en) Veriable length dilatation catheter apparatus
CA1326198C (en) Pressurized manual advancement dilatation catheter
CA1160127A (en) Calibrating dilatation catheter method and apparatus
US6689098B2 (en) Occlusion device
EP0112388B1 (en) Tubular extrusion catheter
US5338299A (en) Balloon catheter
US5334153A (en) Catheter purge apparatus and method of use
USRE32348E (en) Miniature balloon catheter method and apparatus
CA1150130A (en) Double lumen dilatation catheter
US5171297A (en) Balloon catheter
JP3690815B2 (en) Small section catheter
US5868776A (en) Overlay dual balloon catheter and method for use thereof
US4213461A (en) Miniature balloon catheter
US5752932A (en) Intravascular catheter with a recoverable guide wire lumen and method of use
CA2797832C (en) Apparatus for introducing a fecal management appliance
US5411509A (en) Embolectomy catheter
JPS61501492A (en) Double lumen expansion catheter
WO1998009670A9 (en) Overlay dual balloon catheter and method for use thereof
WO2002058781A2 (en) Intravascular occlusion balloon catheter having hair venting means
CA1159739A (en) Dilatation catheter method and apparatus
JPS6141216B2 (en)
MXPA99002595A (en) Overlay dual balloon catheter and method for use thereof
GB2257631A (en) Artery expander

Legal Events

Date Code Title Description
MKEX Expiry
MKEX Expiry

Effective date: 20010103