CA1148767A - Quill drive with variable feed - Google Patents

Quill drive with variable feed

Info

Publication number
CA1148767A
CA1148767A CA000412100A CA412100A CA1148767A CA 1148767 A CA1148767 A CA 1148767A CA 000412100 A CA000412100 A CA 000412100A CA 412100 A CA412100 A CA 412100A CA 1148767 A CA1148767 A CA 1148767A
Authority
CA
Canada
Prior art keywords
quill
ball screw
shaft
drive
ball
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
CA000412100A
Other languages
French (fr)
Inventor
Larry Evans
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CA000343271A external-priority patent/CA1139967A/en
Application filed by Individual filed Critical Individual
Priority to CA000412100A priority Critical patent/CA1148767A/en
Application granted granted Critical
Publication of CA1148767A publication Critical patent/CA1148767A/en
Expired legal-status Critical Current

Links

Landscapes

  • Drilling And Boring (AREA)

Abstract

ABSTRACT OF THE DISCLOSURE

The present invention provides a quill drive with longitudinal feed comprising: a quill shaft slidably mounted with-in one end of a housing for movement along its longitudinal axis;
a spindle shaft rotatably mounted for rotation with respect to said quill shaft and carried longitudinally by said quill shaft during its longitudinal movement; means for longitudinally moving said quill shaft; means for rotationally driving said spindle shaft; said means for longitudinally moving said quill shaft com-prising a ball nut fixedly attached to the innermost end of said quill; a ball screw threadingly engaging said ball nut, and means for rotationally driving said ball screw; an adjustable stop for fixedly establishing the maximum longitudinal motion of said quill, said stop being a ring with a threaded inner diameter, said ring threadingly engaging the innermost end of said ball screw, the threaded portion of said ball screw extending along the length of said ball screw a distance, said ring abutting said ball nut when the maximum motion of said quill is reached.

Description

37~7 The present invention relates ~enerally to the field of quill drives for machine tools and, in particular, to quill drives having an infinitely variable feed.
This application is a divisional application of copend-ing application No. 343,271 filed January 8, 1980.
Constituted in the prior art are the following United States Patent Nos. 3,955,629, 3,160,033, 3,711,212, 2,905,440,
2,768,539, 3,640,147, 3,740,161, 3,561,544, 3,859,001, and 3,885, 635. All of the above patents do not anticipate the present invention in that they use a multiplicity of motors for varying feed rate, or use planetary gears and clutches to vary feed rate, or use an offset feed mechanism, or they drive a ball nut arrange-ment to accomplish the feed function.
In the opinion of the Applicant Patent Nos. 3,859,001 and 3,885,635 constitute the most relevant prior art to the present invention in that a ball nut disposed in the longitudinal center of the unit is driven to achieve the feed operation. The mechanical complexity of this arrangement renders its design more expensive. Patent No. 3,885,635 drives a ball nut in the longi-tudinal center of the unit as well to achieve the feed drive,and in addition, Patent No. 3,885,635 uses two feed drive motors operating at different speeds with clutches to vary the feed rate.
Clearly, the two patents cited as the closest art are far more complex than the present invention and more costly in their con-struction.

..~..

~8767 The present invention relates to a quill drive having a housing adapted for mounting on machine tools of various types. The quill housing has a longitudinal bore which slidingly supports a quill which, in turn, is longi-tudinally advanced by means of a ball nut and screw. The quill is of hollow construction and it rotatably supports, by means of bearings, at its interior a spindle shaft. The spindle shaft is rotatably driven by a spindle drive means and it is advanced longitudinally with the quill.

A gear box, fixedly attached at one end to the quill housing, provides a mounting for a quill drive motor and a spindle drive motor. A gear box cover is attached to the other end of the gear box. A train of gears provides a means whereby the quill drive motor drives the ball screw.
The gear box housing and gear box cover provide support for the bearings which support the gears therebetween.
The ball screw is rotatably supported by bearings in the quill housing and the gear box cover. An input shaft which drives the spindle shaft is rotatably supported by a bearing in the ball screw and the gear box cover. A shiv fixedly attached to the spindle drive motor drives a timing belt which in turn drives a shiv fixedly attached to the input shaft. A simple modification of the gear box wherein the ball screw and spindle are geared to a common input con-verts the quill drive to a tapping drive for producing threaded holes.

L ~1 ~ 7~7 It is therefore, an object of this invention to provide a quill with infinitely variable and reversible feed which is simple in construction, reliable in operation, and inexpensive to produce in comparison to others.
It is further an object of this invention to provide a quill drive which is easily convertible to a tapping drive with a minor rearrangement of the parts.
Another object of the present invention is to provide an adjustable stop for the maximum outward position of the quill that is concentric with the quill is easily adjustable and is accurate and repeatable. A meter relay is provided to stop the advance of the machine when the stop is engaged.
In copending application No. 343,271 there is claimed a quill shaft drive comprising a housing having an opening at one end, an elongate quill shaft of hollow tubular construction mount-ed in said housing for axial sliding movement relative to said housing wherein one end of said quill shaft is projected through said opening in rotatively fixed relationship to said housing, a ball nut fixedly mounted within said quill shaft adjacent the end thereof remote from said opening, a ball screw of hollow tubular construction threadably received within said ball nut in coaxial relationship to said quill shaft and supported for rota-tion within the quill shaft, a spindle shaft coaxially mounted within said ball screw and coupled to said quill shaft for free rotation relative to said quill shaft and said ball screw in axially fixed relationship to said quill shaft and axially movable relationship relative to said ball screw, an input shaft coaxi-ally received within said spindle shaft and mounted for rotation in said housing, spline means coupling said input shaft to said spindle shaft, first reversible drive means for driving said ball screw in rotation to advance or retract said quill shaft, and second drive means for driving said input shaft in rotation.

37~7 According to the present invention there is provided a quill drive with longitudinal feed comprising: a quill shaft slidably mounted within one end of a housing for movement along its longitudinal axis, a spindle shaft rotatably mounted for ro-tation with respect to said quill shaft and carried longitudinally by said quill shaft during its longitudinal movement; means for longitudinally moving said quill shaft; means for rotationally driving said spindle shaft; said means for longitudinally moving said quill shaft comprising a ball nut fixedly attached to the innermost end of said quill; a ball screw threadingly engaging said ball nut, and means for rotationally driving said ball screw;
an adjustable stop for fixedly establishing the maximum longitud-inal motion of said quill, said stop being a ring with a threaded inner diameter, said ring threadingly engaging the innermost end of said ball screw, the threaded portion of said ball screw ex-tending along the length of said ball screw a distance, said ring abutting said ball nut when the maximum motion of said quill is reached.
Other objects, advantages and applications of the pre-sent invention will become apparent to those skilled in the artof quill drives when the accompanying description of one example of the best mode for practicing the invention is read in con-junction with the accompanying drawing.
The description herein makes reference to the accompany-ing drawings wherein like reference numerals refer - 3a -8'767 to like parts throughout the several views, and wherein:
FIG. 1 is a cross-sectional view of one example of a quill drive constructed in accordance with the principles of the present invention;
FIG. 2 is a fragmentary, enlarged, sectioned view of a drive train arranged for tapping using timing belts;
FIG. 3 is a fragmentary, enlarged, sectioned view of a drive train arranged for tapping using a gear train;
FIG. 4 is a side elevational view of the quill drive illustrated in FIG. 1;
FIG. 5 is a front view of the quill drive of FIG. 4;
FIG. 6 is a top view of FIG. 4 showing a standard limit switch assembly;
FIG. 7 shows a typical electrical circuit for the operation of the quill drive;
FIG. 8 illustrates the quill drive of FIG. 1 with another embodiment of a stop for controlling the fully extended position of the quill; and FIG. 9 is a cross-sectional view of FI~. 1 taken along plane 9-9 of FIG. 1.

DESCRIPTION OF THE PREFERRED EMBODIMENT
___ ___________________________________ Referring now to the drawings and, in particular, to FIG. 1 wherein there is illustrated one example of the present invention in the form of quill drive 20. The drive 20 comprises a quill housing 40 having a longitudinal bore 21 which slidingly supports a quill 38. One end of a gear box housing 25 is fixedly attached to the quill housing 40.
A quill drive motor 50 is attached to the gear box housing '767 25. A spindle drive motor 22 is supported by a bracket 23 which, in turn, is carried by the housing 40. A gear box cover 36 is fixedly attached ts the other end of the gear box housing 25.
A shiv 24 is fixedly attached to the shaft of the spindle drive motor 22 such that the shiv 24 transmits power to a belt 28 which in turn drives a second shiv 26 that is fixedly attached to and rotatably drives an input shaft 30.
The input shaft 30 is rotatably supported by a bearing 31 in gear box cover 36 and a bearing 33 in a ball screw 44.
Input shaft 30 has along its inner end a male spline 32 which slidingly and drivingly engages a female spline 35 disposed in the center of a spindle shaft 34.
A torque reaction bar 51 is attached .o the lower end of quill 38 at its spindle end by means of a threaded fastener 53. A bore 55 in quill housing 40 slidingly engages reaction bar 51, preventing rotation of quill 38 thereby.
Spindle shaft 34 is rotatably mounted within and longitudinally carried by a pair of bearings 39 in quill 38.
A seal retainer 41 supports a shaft seal 45 which rotatingly seals spindle 34 against the seepage of lubricant thereby.
Quill 38 is slidably supported by a longitudinal bore 21 in quill housing 40. A seal 49 slidingly seals quill 38, pre-venting the seepage of lubricant thereby. Quill 38 is tubu-lar in shape, and at its innermost end it fixedly supports a ball nut 42. Ball nut 42 threadingly engages ball screw 44 which is rotatably supported by a bearing 43 in housing 36 and bearing 47 in housing 40. A gear 46 is drivingly attached by a key 49 to ball screw 44. Ball screw 44 is driven by an idler gear 48 and a pinion 52. Idler gear 48 ~8767 is rotatably supported by a pair of bearings 61 in gear case 25 and cover 36. Pinion 52 is fixedly attached to the shaft of a Servo motor 50. Servo motor 50 is a variable speed, two-direction motor which provides means to move quill 38 longitudinally in either direction at any desired speed.
Ball screw 44 has its innermost end threaded along the outside diameter for a predetermined distance. A stop ring 54 threadingly engages a threaded portion 45 of ball ! screw 44. When quill 38 is fully extended, stop ring 54 contacts the inner end of ball nut 42, preventing further motion. The position at which quill 38 is stopped is varied by rotflting stop ring 54, moving it axially along the inner end of ball screw 44. A set screw 56 locks stop ring 54 in place. An access hole 60 allows adjustment of stop ring 54 (FIG. 9). ~emoving a plug 61 allows stop ring 54 to be rotated by means of a screw driver or the like, thereby moving stop ring 54 axially along ball screw 44 by means of thread 45. When the desired position of stop ring 54 is established, set screw 56 is tightened and plug 61 is reinstalled.
The fully extended position of the quill 38 can be controlled by means of limit switches which are cam operated and adjustable in a conventional manner. However, this method has inaccuracies caused by deflection of the parts~
inertia of the moving parts, dirt or chips on the cam or rollers, wear, etc. The use of stop ring 54 is positive; it is concentric to the quill and highly repeatable with great accuracy. A meter relay 136 (FIG. 7) is provided as part of the electrical circuit to stop the motion of the quill when the stop ring 54 comes against ball nut 42.

The adjustable meter relay 137 (FIG. 7) is included in the electrical circuit to provide a load sensitive machining operation allowing a maximum rate of feed for a maximum amount of metal removal consistent with the capacity of the machine or the desired machine finish.
~ eferring now to FIG. 8 wherein there is illustrated another means for adjusting the maximum exten-sion of quill 38. Quill 38 has its innermost end threaded along its outside diameter for a distance. A stop rin~ 54' threadingly engages the threaded portion 47' of quill 38'.
When quill 38' is extended to the adjusted amount, stop ring 54' contacts the end wall of housing 40, preventing further motion. The position at which quill 38' is stopped is varied by rotating stop ring 54', moving it axially along the threaded portion of quill 38'. A set screw 56' locks stop ring 54' in place. Access hole 60 allows adjustment of the stop ring 54' using a screw driver or the like as in the embodiment illustrated in FIG. 9. The meter relay 136 (FIG.
7) is provided as part of the electrical circuit to stop the rotation of the ball screw and the quill motion when stop ring 541 contacts the housing.
Referring now to FIG. 2 wherein gear box 70' has been adapted for tapping. Housing 25' is fixedly attached at one end to quill housing 40 by suitable threaded fasteners (not shown). A reversible drive motor 50' having a shaft 24 is fastened to housing 25'. A gear train comprising pinion gear 70, idler gear 72 and driven gear 74 transmits the rotation of shaft 24 to ball screw 44. Ball screw 44 is rotationally supported by bearings 43 and 47. A female 7t~7 keyway on gear 70 is driven by a mating male key on shaft 24. Gear 70 is rotationally supported by bearings 140 and 141 in bearing housing 27' and has at its end a threaded portion ~or threadingly engaging a nut 62'. The outer races of bearings 140 and 141 abut shoulders in bearing housing 27'. A shiv 62 is rotationally supported by gear shaft 70.
Tightening bearing nut 62' axially aligns gear 70 and shiv 62 by means of bearings 140 and 141, abutting their shoulders in bearing housing 27' at their outer races. A
key 63 rotationally affixes gears 70 to shiv 62. Shiv 62 drives timing belt 64, and timing belt 64 drives a shiv 58 which is rotationally attached to input shaft 30 and drives input shaft 30 by means of a key 63'. Input shaft 30 is rotationally supported by bearing 31' in bearing housing 27'. Bearing nut 30' threadingly engages a thread on the end of shaft 30 to hold shiv S8 in its axial position.
The gear ratio between gear 70 and gear 74 is con-veniently selected so that only a variation in the diameter of shiv 58 and shiv 62 is required to change $he amount of advance quill 38 makes per revolution of spindle shaft 34.
To make, for example, on a piece to be machined, a thread having twelve threads per inch, the shivs 58 and 62 are selected to give an advance of quill 38 (FIG. 1) in the amount of 1/12 inch per revolution of input shaft 30. A
cover 142 is attached to the end of the bearing housing 27' using threaded fasteners (not shown). Cover 142 conceals the belt 64 and shivs 58 and 62.
Referring now to FIG. 3 wherein gear box 70' has been adapted for heavy-duty tapping. Shivs 58 and 62 and timing belt 64 have been replaced by a meshing set of gears 76, 77, 78 and 80 which perform the same function as the parts replaced. ~ears 76 and 80 directly replace shivs 58 and 62 on their respective shafts 30 and 70. Gears 77 and 78 are each rotatably supported by a pair of bearings 143 mounted in bearing housing 27r and cover 142' respectively.
Gear 77 is only partly shown in FIG. 3, and its supporting bearings are not shown because the center of gear 77 is not in the plane of the section.
]o ~eferring now to FIG. 6 wherein a standard limit switch assembly is illustrated. A cam bar 82 is attached to quill 38 by screws 84. Cam bar 82 moves longitudinally with quill 38. In the position shown, quill 38 is retracted and a limit switch 86 is actuated by a cam 88, holding the quill in the retracted position. To cycle the machine, a cycle start button (not shown) is pressed and the quill moves for-ward in the rapid advance mode until a limit switch 90 is actuated by a cam 92 which places the quill into the feed mode. The quill advances in its feed mode until a cam 96 actuates limit switch 94 which activates a dwell followed by an automatic return motion, returning the quill to its original position where limit switch 86 is actuated by cam 88 and the machine is ready for another cycle.
Referring now to PIGo 7 wherein a typical wiring diagram for the quill drive is shown. To place the machine in operation, the main switch 98 is first closed. Current then flows to the power transformer 100 and the control transformer 102. ~hen the master start button 104 is pressed, the relay 106 is energized and holds itself closed. If the sel-ector switch 108 is in the "m2nual" position to the left, nothing happens. If selector switch is in the "auto" position the spindle motor 110 starts by closing the relays 112. Use of the "manual" position allows the unit to be cycled without the spindle running preventing tool damage. When the unit is in the "manual" position, the quill position can be jogged by pressing the cycle start button 114 which energized the rapid forward relay 116. The unit will move "rapid forward" as long as button 114 is pressed until the feed switch 118 is closed by its cam. When feed switch 118 is closed a relay 120 is ener-gized and relay 116 is deenergized. Relay 120 energizes a relay 122 and holds it in until the limit switch 124 is closed ener-gizing the dwell timer 126 which holds closed for a preset time then it opens. When 126 opens, relay 122 is opened stopping the feed and pressing button 114 after this has no erfect.
Pressing the button 128 returns the unit by energizing a relay 130. Returning the quill to actuate limit switch 132 which allows the quill to again be jogged forward by pressing button 114.
With selec~r switch 108 in its "auto" postion, press-ing button 114 energizes relay 116 which holds itself closed and which moves the quill forward in rapid feed until switch 118 is closed energizing relay 120. This holds the unit in "feed"
until limit switch 124 is closed energizing time delay 126.
This stops the feed and holds the quill in position for a preset time after which 126 opens which energizes relay(s) 130 (and 134) for rapid return. The quills longitudinal motion comes to a stop when limit switch 132 is reached i7 and closed by its cam. Meter relay 136 protects the Servo motor from overload in the event that a tool becomes jammed or too rapid a feed is used or any other misuse might occur.
The controller 138 can be programmed to give the desired longitudinal motion to the quill in any of its modes; even a pecking motion for deep hole drilling can be used.
While in the above description of the preferred embodiment an electric Servo motor is used to longitudinally move the quill, it is obvious to those skilled in the art that a hydraulic motor, pneumatic motor or the like could be used to achieve the desired result.
The present invention provides a ball screw actuated, infinitely variable, feed guill drive having all mechanical and electrical components. This quill drive is suitable for reaming, boring, spot facing, chamfering, hollow milling, recessing, drilling, deep hole drilling and tapping. The drive can be used either singly or in multiples on advanced types of machine tools or transfer machines.
The present invention has a unique arrangement of very few parts in a simple assembly providing many advan-tages of both versatility of application and maintenance-free operation. The above attributes are accomplished without sacrificing any of the advantages of hydraulics, such as compactness or ease of adjustments, to vary perfor-mance and flexibility. There are no clutches or other engagement and disengagement devices. The gears can be replaced by timing belts and shivs or "V" belts for lighter work. No planetary gears or harmonic drive is required.

The simplicity of design becomes spparent when it is com-pared to other mechanical feed units which use two or three motors and/or clutches and brake arrangements to provide rapid feed, machining feed, dwell, and rapid return. In the present invention, the spindle drive has only two moving parts. The rapid advance and feed drive consists of a quill assembly having a ball nut, a ball screw, three gears or a belt and shiv assembly. A11 functions of the machining cycle are performed by means of a DC Servo motor and controller which provides complete control of rate of rapid approach, rate of feed, and rate of rapid return. The amount of thrust in feed, amount of thrust in dwell and automatic returr. when overloaded is also controllable. With the addition of a resolver to the motor, limit switches can -be eliminated and the cycle controlled by programmable controller or computer. The spindle motor can be either AC
or DC and can be turned off for tool set up. Another embodiment of the present invention converts the quill drive for tapping. When arranged for tapping, only the rear housing and gears or belts are changed and only the revers-ible DC motor is used for the feed drive and spindle drive which are geared or belted by means of a timing belt to pro-duce the required threads per inch. The thrust capability of the unit (3200 pounds) exceeds self-contained hydraulic units presently available that mount on the same hole pattern. Due to the center thrust design and the bearing construction, the spindle and quill are inherently stable even under high-load conditions. The extreme flexibility of the unit is evident by the special cycles which are easily obtained, such as jump gap, dual feed, back feed, dual back ~8'~67 feed, forward and back feed, peck feed and any combination of these, with single or multiple spindle head applications.
A tool change mechanism and single in-line positive stops are standard equipment. Mounting position is not critical;
in fsct vertical nose up or down, wall mounted or ceiling mounted or any angle in between will not affect its operation. All bearings are grease packed for life and the quill can be lubricated by gravity or automatic system.
An internal, maximum out-position stop is provided.
The stop is easily adjusted through an access hole in the housing. The stop's being concentric with the quill pro-vides a precise, repeatable stop with great accuracy com-pared to the conventional external stop which is mounted on the machine frame and is offset from the quill center.
Having thus described my invention, what I claim is:

Claims

THE EMBODIMENTS OF THE INVENTION IN WHICH AN EXCLUSIVE
PROPERTY OR PRIVILEGE IS CLAIMED ARE DEFINED AS FOLLOWS:
1, A quill drive with longitudinal feed comprising:
a quill shaft slidably mounted within one end of a housing for movement along its longitudinal axis; a spindle shaft rotatably mounted for rotation with respect to said quill shaft and carried longitudinally by said quill shaft during its longitudinal move-ment; means for longitudinally moving said quill shaft; means for rotationally driving said spindle shaft; said means for longitudinally moving said quill shaft comprising a ball nut fixedly attached to the innermost end of said quill; a ball screw threadingly engaging said ball nut, and means for rotationally driving said ball screw; an adjustable stop for fixedly establish-ing the maximum longitudinal motion of said quill, said stop being a ring with a threaded inner diameter, said ring threadingly en-gaging the innermost end of said ball screw, the threaded portion of said ball screw extending along the length of said ball screw a distance, said ring abutting said ball nut when the maximum motion of said quill is reached.
CA000412100A 1980-01-08 1982-09-23 Quill drive with variable feed Expired CA1148767A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA000412100A CA1148767A (en) 1980-01-08 1982-09-23 Quill drive with variable feed

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CA000343271A CA1139967A (en) 1980-01-08 1980-01-08 Quill drive with variable feed
CA000412100A CA1148767A (en) 1980-01-08 1982-09-23 Quill drive with variable feed

Publications (1)

Publication Number Publication Date
CA1148767A true CA1148767A (en) 1983-06-28

Family

ID=25669025

Family Applications (1)

Application Number Title Priority Date Filing Date
CA000412100A Expired CA1148767A (en) 1980-01-08 1982-09-23 Quill drive with variable feed

Country Status (1)

Country Link
CA (1) CA1148767A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112855887A (en) * 2021-03-19 2021-05-28 易通共享技术(广州)有限公司 Electronic braking variable-tension driver for vehicle
CN115230771A (en) * 2022-08-16 2022-10-25 西南交通大学 Motor shaft temperature monitoring and control system of rail transit train

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112855887A (en) * 2021-03-19 2021-05-28 易通共享技术(广州)有限公司 Electronic braking variable-tension driver for vehicle
CN112855887B (en) * 2021-03-19 2022-03-29 易通共享技术(广州)有限公司 Electronic braking variable-tension driver for vehicle
CN115230771A (en) * 2022-08-16 2022-10-25 西南交通大学 Motor shaft temperature monitoring and control system of rail transit train
CN115230771B (en) * 2022-08-16 2024-03-15 西南交通大学 Motor shaft temperature monitoring and control system of rail transit train

Similar Documents

Publication Publication Date Title
US4201271A (en) Quill drive with variable feed
DE69907365T2 (en) Tapping unit
US4087890A (en) Compound lathe
CH631097A5 (en) MACHINE TOOL.
USRE31627E (en) Quill drive with variable feed
EP0516343B1 (en) Portable drilling apparatus
EP0837748B1 (en) Tube end squaring tool
CA1148767A (en) Quill drive with variable feed
CA1248742A (en) Live tooling turret
US4926709A (en) Motion transmitting systems for machinery & machine tools
US4911588A (en) Tapping apparatus
US4621405A (en) Drive mechanism for the main spindle of a rotating tool turret machine
US5639191A (en) Short coupled hydraulic lead screw tapping apparatus
US4288182A (en) Machining apparatus tool feed and retract system
US5953970A (en) Electronically programmable servo-controlled power feed and spindle drive system for an automatic screw machine
CA1091068A (en) Tapping attachment for a machine tool
US5970768A (en) Machine base for supporting vertical movement of forming racks for rolling power transmission formations
CN2199004Y (en) Domestic tool machine
SU1748990A1 (en) Multipurpose machine with automatically changeable tool
JPS5914426A (en) Tapping device
RU2086386C1 (en) Single-spindle power head
DE3300734A1 (en) Feed drive for a multi-spindle machine
US4275624A (en) Internal adjustable grooving bar
AU717358B2 (en) Line boring machine
SU1119797A1 (en) Multispindle dual automatic machine for cutting threads by taps

Legal Events

Date Code Title Description
MKEX Expiry