CA1126713A - Aircraft wing structure - Google Patents
Aircraft wing structureInfo
- Publication number
- CA1126713A CA1126713A CA343,926A CA343926A CA1126713A CA 1126713 A CA1126713 A CA 1126713A CA 343926 A CA343926 A CA 343926A CA 1126713 A CA1126713 A CA 1126713A
- Authority
- CA
- Canada
- Prior art keywords
- fence
- wing
- aircraft
- concave edge
- foil
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Catching Or Destruction (AREA)
Abstract
Abstract:
The present invention relates to an improved fluid fence which reduces drag on a fluid foil moving through a fluid environment and an airfoil or aircraft wing structure with an elongated U-shaped or scimitar-shaped open fence having a concave edge and attached at its extremities to the fluid foil with its concave edge adjacent the surface of the fluid foil to provide an unobstructed opening between the surface of the foil and the concave edge of the fence.
The present invention relates to an improved fluid fence which reduces drag on a fluid foil moving through a fluid environment and an airfoil or aircraft wing structure with an elongated U-shaped or scimitar-shaped open fence having a concave edge and attached at its extremities to the fluid foil with its concave edge adjacent the surface of the fluid foil to provide an unobstructed opening between the surface of the foil and the concave edge of the fence.
Description
~2~7~
Aircraft wing structure .
The invention relates to an improved fluid fence, and to an airfoil or aircraft wing structure having an open fence on its surface.
When a solid object is moved through a fluid, turbulence is created in the fluid, the amount of turbulence depend-ing, to a large extent on the shape of the solid. Fluidvortices are usually created which result in resistance to movement of the object; this resistance to movement is often termed "drag". When an aircraft wing, for example, passes through air creating lift, ~he pressure on the lower surface of the wing is greater than that of its upper surface. Consequently, air flows around the tip of the wing from the lower to the upper surface. The flow of air from the high pressure region below the wing to the low pressure region about it sets up vortices at the wing tips and creates drag on the aircraft. The vortex drag effect is particularly pronounced with aircraft hav-ing low aspect ratios and is greatest during those periods of operations requiring a high angle of wing to air attack, as during take-off, landing, and initial climb operations.
During take-offs and initial climb, vertically disposed fences, provided at the ends of the wings will decrease the drag and produce an increzse in maximum lift. During landing, the fences reduce tip spill from the wings to permit landinc~ at lower speeds.
,.,, ~
,. . ;. . .-:, . . . ~ :
, ~ , ~....... . '': :.
:: : : . . , :
,.. . . -:. , ~ , . :
:- . : ., .:
- .. ~ :: .. .. : , .. :
~2fi7~3 Aircraft wing fences, fins, or dam~ are known to be vse-ful for reducing the aerodynamic drag of aircraft wings and are illustrated and described, for example, in U.S.
Patent 1,724,110.
Wing fences are used also for stability control, parti-cularly in high performance, swept-wing aircraft as de-scribed, for example, in U.S. Patent 2,885,161 which discloses both fixed and retractable wing fences for air-craft.
Although induced drag due to wing tip vortices is espe-cially high during take-off and initial climb periods of operation when the angle of the wing attack relative to the air is high, the drag due to wing tip vortices is minimal during normal level flight conditions where speed and fuel economy are important. As the fence itself im-poses some drag on the aircraft, known as "parasitic drag", the drag of the fence must be balanced against its bene-ficial effect. Under normal or level flight conditions, periods in which the angle of attack of the wing relative to the air is low, a solid fence may have a negative effect on performance of the aircraft due to its parasitic drag.
For this reason, it has been proposed as, for example, in U.S. Patent 2,373,677, to provide detachable wing fences ; for aircraft which may be jettisoned once cruising alti-tude is reached.
-i Wing fences are particularly useful for low aspect ratio aircraft. "Aspect ratio" is a dimensionless number repre-senting the ratio of the square of the span of a wing to its area. For rectangular wings, the aspect ratio is the ratio of the span to the chord. High aspect ratio aircraft, for example, those having long, narror tapered wings, often have no wing fence or only relatively small fences, whereas low aspect rat:io aircraf~, particularly high-performance - . : :. : . . :, ~-~: . ,: , , ,, :
i'7~3 aircraft, very often have large vertical fins, or fences, for stability and performance.
The present invention provides an apparatus and a method for improving the lift-to-drag ratio of an airfoil. In one of its more particular aspects, it relates to an improved aircraft wing fence or dam.
The present invention provides an improved aircraft wing fence, referred to hereinafter ZIS an "open fence`', which substantially reduces the induced drag of the wing at high angles of attac~., for example, during take-off and climb periods, improves landing performance of the air-craft, and at the same time presents reduced parasiticdrag as compared with a solid fence during normal or level flight operations. The aircraft wing fence of this inven-tion is particularly useful for low aspect ratio aircraft, such as small pleasure craft, both powered aircraft and gliders, and for high-performance, swept-wing aircraft.
Throughout this specification, the term "fence" is used interchangeably with "fin", "plate" and "dam", all of which terms are in common use to describe fluid flow de-vices of the type referred to herein as a fence or "fluidfence".
In one preferred embodiment of the invention, an elongated, inverted U-shaped or scimatar-shaped open fence is mounted vertically on the upper surface of an aircraft wing adja-cent the wing tip with the concave edge of the fence nearest the upper surface of the wing whereby an unobstructed open area equal to one sixth to one fourth the total area of the fence, including the open area, is provided between the concave edge of the fence and the upper surface of the wing. The open fence is essentially a flat plate or fin, similar to conventional wing fences and dams except for the - , , :
,. - ~ . . ;
- :- : : ' ,. :: . : ~
- .:
., . . : -. .. ~ .:. - . ~ :.
~ ~ ~: ,, , . . :
-:, , - , -, .
~Z~:i7~
open area between the surface of the wing and the concave inner edge of the open fence. The length of the open fence is preferably 40 to 60 percent of the chord of the wing.
The accompanying drawings illustrate diagrammatically, the open fence of this invention as applied to airfoils, wherein: Fig. 1 of the drawings is an isometric diagram-matic illustration of a powered aircraft equipped with theopen fences of this invention; Fig. 2 is a plan view illustrating an airplane or glider incorporating open fences in its wing structure. Fig. 3 is an elevational view of an airplane wing illustrating the open fence of this invention in one preferred embodiment. Fig. 4 is a diagrammatic illustration of the open fence of this in-vention in various positions relative to an aircraft wing or similar fluid foil. ~-Free flight tests made with a glider having rectangular wings and a span-to-chord ratio of the order of 0.4 to 0.5 indicate that the open fence of this invention is capable of increasing the lift-to-drag ratio of aircraft wings in normal or level flight operations by a factor of 2 as com-pared with the same glider equipped with solid wing tipfences (or no fence). This beneficial effect of lift-to-drag ratio under normal or level flight conditions is accomplished by the use of a fence which allows some of the air to flow around the tip of the wing, passing through the fence onto the upper surface of the wing.
As a possible explanation of the mechanism of the observed beneficial effects of the open fence structure of this invention in improving flight performance of a free flight glider, or other low aspect ratio aircraft, and without any intention of limiting the scope of the claims defining this invention it is believed that the open fence inhibits ... .. .
: : : . - : : . .
- : ~ ,.
,. , . : :
..
~2ti~3 the vortex normally created by the aircraft wings and retains the additional flow of air on the upper wing sur-face, thus either increasing lift for a small increase in drag or retaining lift and reducing induced drag. In either case, the lift-to-drag ratio is substantially increased.
With reference to Fig. 1 of the drawings, a jet powered aircraft is illustrated, having a fuselage or body 2 pro-viding space for passengers or cargo, jet engines 3, a tailsection 4 and low aspect ratio wings 5. Low aspect wing ratio aircraft of the type illustrated are particularly well suited to short hauls or feeder lines having rela-tively short level flights and numerous take-offs and landings. The wings of the aircraft of Fig. 1 are fitted with open fences 6 at or near the wing tips. The fences are arranged along the chord of the wing and perpendicular to the main cross stream dimension of the fuselage 2.
Although the fences are illustrated only on the upper sur-faces of the wings, it is to be understood that they may be fitted also to the lower surface of the wing also if desired. Fluid fences can be useful on the lower surface of aircraft wings, particularly in the case of aircraft used for fire fighting, crop-dusting and STOL (short take-off and landing) type aircraft. The open fences of this invention may be used on either the upper or lower surface of the wing, or on both, or in conjunction with solid fences of conventional design, the particular combination being chosen for best overall performance for the given aircraft with which it is used.
Fig. 2 of the drawings illustrates the application of open fences to a glider or small aircraft, such as various per-sonal or pleasure craft. In this figure, the glider orairplane is pxovided with the usual fuselage 11 having a passenger compartment or canop~ 12, a tail section 13, -: , :
. ~ , : :. , ,.
6'7~3 An optional engine 14, and wings 15. The craft may be propeller driven or jet powered, or both. Open fences 16 are provided at the tips of the wings 15 in accordance with this invention. It will be seen that the fences are perpendicular to the main cross stream dimension of the fuselage 11, i.e., a line between the roots of wings 15.
Fig. 3, an elevational view of the end of a wing showing the open wing fences 6 and 16 as they appear in plan view mounted on the upper surface 17 of an aircraft wing. It will be seen that the concave edge 18 of the fence is nearest the upper surface of the wing, i.e., adjacent the surface, and that an unobstructed open area 19 is provided between the concave edge of the fence and the surface of the wing. The open area 19 preferably amounts to from one sixth to one fourth the total area of the fence, including the open area, although larger or smaller openings may be used.
Fig. 4 illustrates three positions of the open fence rela-tive to the chord of the wing. In Fig. 4A, the fence is placed near the trailing edge of the wing; in Fig. 4B, it is nearer the center of the chord, and in Fig. 4C, it is well forward of the center and relatively near to the leading edge of the wing.
Examples Flight tests were carried out with model gliders having low aspect ratio rectangular wings with twin tail fins and a simulated canopy. All of the tests were conducted under free flight conditions in still air. The results of these tests are summarized in the table below.
In Cases A and B, the wings of the glider were fitted with closed fences; in Case A, the fences were conventional full chord fences on the upper surface of the wing; in Cases Bl and B2, the solid fences were of the same size :, ., . . ,: .
., -- , and shape as the open fences o~ Cases D, E, and F, and were placed in the forward position. Fences Bl, B2, D, E, and F all had a length of approximately 58 percent of the wing chord. The smaller open fence of Case G had a length of approximately 50 percent of that of the wing chord.
Glide C.G. *DRAG, Case Configuration WT, gm L/D Angle %C. gm A Full Chord 7.70 4.6512.13 27.2 1.6189 Closed Fence sl Small Closed 7.334.3 13.09 27.2 1.6603 Fence B2 Small Closed 7.105.3 10.68 28.8 1.3164 Fence C No Fence, 5.4 5.410.49 28.5 0.9833 Basic D Rear Open 6.0 6.68.62~ 29.8 0.8988 Fence E Middle Open 6.45 6.98.25 27.4 0.9251 Fence F Forward Open 6.97.8 7.31 25.8 0.8774 Fence G Smaller Forward 6.98.1 7.04 25.8 0.8454 Open Fence *Drag for total glider, including fins and simulated canopy.
As can be seen, the use of the open fence in Cases F and G reduced the drag of the glider almost half, increasing the lift-to-drag ratio of the glider by 74% as compared with the full chord closed fence. The smaller ~50 percent chord~ open fence in the forward position, Case G reduced the drag of the glider to approximately 64 percent of the drag for Case B2, the best results obtained with a closed fence. The lift-to-drag ratio for the glider equipped with the smal.Ler open fence, Case G, is approximately 50 percent higher than for the glider with no wing fences, Case C.
:: .
: : " ' ~ ` , ~ `: :
` ` :,;
' , ' ~: . ~, ~ , ::
:~2~7~3 Throughout this specification and in the appended claims, the terms elongated "U-shaped" and "scimitar-shaped" are to be taken as equivalent descriptive terms for the shape of the open fence of this invention.
- .. ..
: . , - : . .
... . . . . .
Aircraft wing structure .
The invention relates to an improved fluid fence, and to an airfoil or aircraft wing structure having an open fence on its surface.
When a solid object is moved through a fluid, turbulence is created in the fluid, the amount of turbulence depend-ing, to a large extent on the shape of the solid. Fluidvortices are usually created which result in resistance to movement of the object; this resistance to movement is often termed "drag". When an aircraft wing, for example, passes through air creating lift, ~he pressure on the lower surface of the wing is greater than that of its upper surface. Consequently, air flows around the tip of the wing from the lower to the upper surface. The flow of air from the high pressure region below the wing to the low pressure region about it sets up vortices at the wing tips and creates drag on the aircraft. The vortex drag effect is particularly pronounced with aircraft hav-ing low aspect ratios and is greatest during those periods of operations requiring a high angle of wing to air attack, as during take-off, landing, and initial climb operations.
During take-offs and initial climb, vertically disposed fences, provided at the ends of the wings will decrease the drag and produce an increzse in maximum lift. During landing, the fences reduce tip spill from the wings to permit landinc~ at lower speeds.
,.,, ~
,. . ;. . .-:, . . . ~ :
, ~ , ~....... . '': :.
:: : : . . , :
,.. . . -:. , ~ , . :
:- . : ., .:
- .. ~ :: .. .. : , .. :
~2fi7~3 Aircraft wing fences, fins, or dam~ are known to be vse-ful for reducing the aerodynamic drag of aircraft wings and are illustrated and described, for example, in U.S.
Patent 1,724,110.
Wing fences are used also for stability control, parti-cularly in high performance, swept-wing aircraft as de-scribed, for example, in U.S. Patent 2,885,161 which discloses both fixed and retractable wing fences for air-craft.
Although induced drag due to wing tip vortices is espe-cially high during take-off and initial climb periods of operation when the angle of the wing attack relative to the air is high, the drag due to wing tip vortices is minimal during normal level flight conditions where speed and fuel economy are important. As the fence itself im-poses some drag on the aircraft, known as "parasitic drag", the drag of the fence must be balanced against its bene-ficial effect. Under normal or level flight conditions, periods in which the angle of attack of the wing relative to the air is low, a solid fence may have a negative effect on performance of the aircraft due to its parasitic drag.
For this reason, it has been proposed as, for example, in U.S. Patent 2,373,677, to provide detachable wing fences ; for aircraft which may be jettisoned once cruising alti-tude is reached.
-i Wing fences are particularly useful for low aspect ratio aircraft. "Aspect ratio" is a dimensionless number repre-senting the ratio of the square of the span of a wing to its area. For rectangular wings, the aspect ratio is the ratio of the span to the chord. High aspect ratio aircraft, for example, those having long, narror tapered wings, often have no wing fence or only relatively small fences, whereas low aspect rat:io aircraf~, particularly high-performance - . : :. : . . :, ~-~: . ,: , , ,, :
i'7~3 aircraft, very often have large vertical fins, or fences, for stability and performance.
The present invention provides an apparatus and a method for improving the lift-to-drag ratio of an airfoil. In one of its more particular aspects, it relates to an improved aircraft wing fence or dam.
The present invention provides an improved aircraft wing fence, referred to hereinafter ZIS an "open fence`', which substantially reduces the induced drag of the wing at high angles of attac~., for example, during take-off and climb periods, improves landing performance of the air-craft, and at the same time presents reduced parasiticdrag as compared with a solid fence during normal or level flight operations. The aircraft wing fence of this inven-tion is particularly useful for low aspect ratio aircraft, such as small pleasure craft, both powered aircraft and gliders, and for high-performance, swept-wing aircraft.
Throughout this specification, the term "fence" is used interchangeably with "fin", "plate" and "dam", all of which terms are in common use to describe fluid flow de-vices of the type referred to herein as a fence or "fluidfence".
In one preferred embodiment of the invention, an elongated, inverted U-shaped or scimatar-shaped open fence is mounted vertically on the upper surface of an aircraft wing adja-cent the wing tip with the concave edge of the fence nearest the upper surface of the wing whereby an unobstructed open area equal to one sixth to one fourth the total area of the fence, including the open area, is provided between the concave edge of the fence and the upper surface of the wing. The open fence is essentially a flat plate or fin, similar to conventional wing fences and dams except for the - , , :
,. - ~ . . ;
- :- : : ' ,. :: . : ~
- .:
., . . : -. .. ~ .:. - . ~ :.
~ ~ ~: ,, , . . :
-:, , - , -, .
~Z~:i7~
open area between the surface of the wing and the concave inner edge of the open fence. The length of the open fence is preferably 40 to 60 percent of the chord of the wing.
The accompanying drawings illustrate diagrammatically, the open fence of this invention as applied to airfoils, wherein: Fig. 1 of the drawings is an isometric diagram-matic illustration of a powered aircraft equipped with theopen fences of this invention; Fig. 2 is a plan view illustrating an airplane or glider incorporating open fences in its wing structure. Fig. 3 is an elevational view of an airplane wing illustrating the open fence of this invention in one preferred embodiment. Fig. 4 is a diagrammatic illustration of the open fence of this in-vention in various positions relative to an aircraft wing or similar fluid foil. ~-Free flight tests made with a glider having rectangular wings and a span-to-chord ratio of the order of 0.4 to 0.5 indicate that the open fence of this invention is capable of increasing the lift-to-drag ratio of aircraft wings in normal or level flight operations by a factor of 2 as com-pared with the same glider equipped with solid wing tipfences (or no fence). This beneficial effect of lift-to-drag ratio under normal or level flight conditions is accomplished by the use of a fence which allows some of the air to flow around the tip of the wing, passing through the fence onto the upper surface of the wing.
As a possible explanation of the mechanism of the observed beneficial effects of the open fence structure of this invention in improving flight performance of a free flight glider, or other low aspect ratio aircraft, and without any intention of limiting the scope of the claims defining this invention it is believed that the open fence inhibits ... .. .
: : : . - : : . .
- : ~ ,.
,. , . : :
..
~2ti~3 the vortex normally created by the aircraft wings and retains the additional flow of air on the upper wing sur-face, thus either increasing lift for a small increase in drag or retaining lift and reducing induced drag. In either case, the lift-to-drag ratio is substantially increased.
With reference to Fig. 1 of the drawings, a jet powered aircraft is illustrated, having a fuselage or body 2 pro-viding space for passengers or cargo, jet engines 3, a tailsection 4 and low aspect ratio wings 5. Low aspect wing ratio aircraft of the type illustrated are particularly well suited to short hauls or feeder lines having rela-tively short level flights and numerous take-offs and landings. The wings of the aircraft of Fig. 1 are fitted with open fences 6 at or near the wing tips. The fences are arranged along the chord of the wing and perpendicular to the main cross stream dimension of the fuselage 2.
Although the fences are illustrated only on the upper sur-faces of the wings, it is to be understood that they may be fitted also to the lower surface of the wing also if desired. Fluid fences can be useful on the lower surface of aircraft wings, particularly in the case of aircraft used for fire fighting, crop-dusting and STOL (short take-off and landing) type aircraft. The open fences of this invention may be used on either the upper or lower surface of the wing, or on both, or in conjunction with solid fences of conventional design, the particular combination being chosen for best overall performance for the given aircraft with which it is used.
Fig. 2 of the drawings illustrates the application of open fences to a glider or small aircraft, such as various per-sonal or pleasure craft. In this figure, the glider orairplane is pxovided with the usual fuselage 11 having a passenger compartment or canop~ 12, a tail section 13, -: , :
. ~ , : :. , ,.
6'7~3 An optional engine 14, and wings 15. The craft may be propeller driven or jet powered, or both. Open fences 16 are provided at the tips of the wings 15 in accordance with this invention. It will be seen that the fences are perpendicular to the main cross stream dimension of the fuselage 11, i.e., a line between the roots of wings 15.
Fig. 3, an elevational view of the end of a wing showing the open wing fences 6 and 16 as they appear in plan view mounted on the upper surface 17 of an aircraft wing. It will be seen that the concave edge 18 of the fence is nearest the upper surface of the wing, i.e., adjacent the surface, and that an unobstructed open area 19 is provided between the concave edge of the fence and the surface of the wing. The open area 19 preferably amounts to from one sixth to one fourth the total area of the fence, including the open area, although larger or smaller openings may be used.
Fig. 4 illustrates three positions of the open fence rela-tive to the chord of the wing. In Fig. 4A, the fence is placed near the trailing edge of the wing; in Fig. 4B, it is nearer the center of the chord, and in Fig. 4C, it is well forward of the center and relatively near to the leading edge of the wing.
Examples Flight tests were carried out with model gliders having low aspect ratio rectangular wings with twin tail fins and a simulated canopy. All of the tests were conducted under free flight conditions in still air. The results of these tests are summarized in the table below.
In Cases A and B, the wings of the glider were fitted with closed fences; in Case A, the fences were conventional full chord fences on the upper surface of the wing; in Cases Bl and B2, the solid fences were of the same size :, ., . . ,: .
., -- , and shape as the open fences o~ Cases D, E, and F, and were placed in the forward position. Fences Bl, B2, D, E, and F all had a length of approximately 58 percent of the wing chord. The smaller open fence of Case G had a length of approximately 50 percent of that of the wing chord.
Glide C.G. *DRAG, Case Configuration WT, gm L/D Angle %C. gm A Full Chord 7.70 4.6512.13 27.2 1.6189 Closed Fence sl Small Closed 7.334.3 13.09 27.2 1.6603 Fence B2 Small Closed 7.105.3 10.68 28.8 1.3164 Fence C No Fence, 5.4 5.410.49 28.5 0.9833 Basic D Rear Open 6.0 6.68.62~ 29.8 0.8988 Fence E Middle Open 6.45 6.98.25 27.4 0.9251 Fence F Forward Open 6.97.8 7.31 25.8 0.8774 Fence G Smaller Forward 6.98.1 7.04 25.8 0.8454 Open Fence *Drag for total glider, including fins and simulated canopy.
As can be seen, the use of the open fence in Cases F and G reduced the drag of the glider almost half, increasing the lift-to-drag ratio of the glider by 74% as compared with the full chord closed fence. The smaller ~50 percent chord~ open fence in the forward position, Case G reduced the drag of the glider to approximately 64 percent of the drag for Case B2, the best results obtained with a closed fence. The lift-to-drag ratio for the glider equipped with the smal.Ler open fence, Case G, is approximately 50 percent higher than for the glider with no wing fences, Case C.
:: .
: : " ' ~ ` , ~ `: :
` ` :,;
' , ' ~: . ~, ~ , ::
:~2~7~3 Throughout this specification and in the appended claims, the terms elongated "U-shaped" and "scimitar-shaped" are to be taken as equivalent descriptive terms for the shape of the open fence of this invention.
- .. ..
: . , - : . .
... . . . . .
Claims (7)
FOLLOWS:
1. In combination of a fluid foil designed to create by its motion through a fluid a force component perpen-dicular to the direction of its motion and a fluid fence attached thereto in a plane substantially perpendicular to said foil, the improvement wherein said fence com-prises an elongated U-shaped or scimitar-shaped open fence having a concave edge and a convex edge, said fence attached at its extremities to the surface of said foil with its concave edge adjacent the foil thereby providing an unobstructed opening between the surface of the foil and the concave edge of said fence.
2. In combination with an aircraft wing, an elongated U-shaped or scimitar-shaped open fence having a concave edge and a convex edge and attached at its extremities to said wing with its concave edge nearest the surface of the wing and providing an unobstructed opening between said wing and said fence.
3. An aircraft wing fence as defined in Claim 2 wherein said opening between said wing and said fence has a free cross-sectional area within the range of one sixth to one fourth the cross-sectional area of the entire fence including said opening.
4. An aircraft wing fence as defined in Claim 3 wherein the overall length of said fence is 40 to 60 percent of the wing chord.
5. An aircraft wing fence as defined in Claim 4 wherein said fence is mounted forward of the center of the chord of said wing.
6. An improved aircraft wing fence which comprises an elongated U-shaped or scimitar-shaped open fence having a concave edge and a convex edge and mounted on the upper surface of an aircraft wing substantially along the chord of the wing with its concave edge adjacent the upper surface of the wing and providing an unobstructed opening between the upper surface of the wing and the concave edge of said fence.
7. A structure as defined in Claim 6 wherein said fence is positioned at the tip of the wing.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA343,926A CA1126713A (en) | 1980-01-17 | 1980-01-17 | Aircraft wing structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA343,926A CA1126713A (en) | 1980-01-17 | 1980-01-17 | Aircraft wing structure |
Publications (1)
Publication Number | Publication Date |
---|---|
CA1126713A true CA1126713A (en) | 1982-06-29 |
Family
ID=4116063
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA343,926A Expired CA1126713A (en) | 1980-01-17 | 1980-01-17 | Aircraft wing structure |
Country Status (1)
Country | Link |
---|---|
CA (1) | CA1126713A (en) |
-
1980
- 1980-01-17 CA CA343,926A patent/CA1126713A/en not_active Expired
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4828204A (en) | Supersonic airplane | |
US5407153A (en) | System for increasing airplane fuel mileage and airplane wing modification kit | |
US4598885A (en) | Airplane airframe | |
US8651813B2 (en) | Fluid dynamic body having escapelet openings for reducing induced and interference drag, and energizing stagnant flow | |
US6923403B1 (en) | Tailed flying wing aircraft | |
CA2758220C (en) | Aircraft having a lambda-box wing configuration | |
US2576981A (en) | Twisted wing tip fin for airplanes | |
US6578798B1 (en) | Airlifting surface division | |
US5842666A (en) | Laminar supersonic transport aircraft | |
US3960345A (en) | Means to reduce and/or eliminate vortices, caused by wing body combinations | |
US3625459A (en) | Airfoil design | |
US4739957A (en) | Strake fence flap | |
US8657226B1 (en) | Efficient control and stall prevention in advanced configuration aircraft | |
US20110260008A1 (en) | Fluid flow control device for an aerofoil | |
US4030688A (en) | Aircraft structures | |
IL98630A (en) | All-wing aircraft | |
US8317128B2 (en) | Laminar flow wing optimized for transonic cruise aircraft | |
EP2247498A2 (en) | Wing control devices | |
US5901925A (en) | Serrated-planform lifting-surfaces | |
WO2020101866A1 (en) | Double wing aircraft | |
US6318677B1 (en) | Method and apparatus for generating a stable leading-edge lifting-vortex controller | |
CN113232832A (en) | Amphibious aircraft | |
US4238094A (en) | Aircraft wing fence | |
US3370810A (en) | Stall control device for swept wings | |
US4440361A (en) | Aircraft structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MKEX | Expiry |