CA1124010A - Pitch composition - Google Patents

Pitch composition

Info

Publication number
CA1124010A
CA1124010A CA349,882A CA349882A CA1124010A CA 1124010 A CA1124010 A CA 1124010A CA 349882 A CA349882 A CA 349882A CA 1124010 A CA1124010 A CA 1124010A
Authority
CA
Canada
Prior art keywords
pitch
composition
halogenated organic
organic compounds
carbon dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
CA349,882A
Other languages
French (fr)
Inventor
Abe Limonchik
Neil G. Richardson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Domtar Inc
Original Assignee
Domtar Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Domtar Inc filed Critical Domtar Inc
Priority to CA349,882A priority Critical patent/CA1124010A/en
Priority to AU61160/80A priority patent/AU6116080A/en
Priority to DE19803030479 priority patent/DE3030479A1/en
Priority to NO802509A priority patent/NO802509L/en
Priority to GB8030026A priority patent/GB2074147B/en
Priority to FR8025986A priority patent/FR2480295A1/en
Priority to JP18270280A priority patent/JPS56147887A/en
Application granted granted Critical
Publication of CA1124010A publication Critical patent/CA1124010A/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10CWORKING-UP PITCH, ASPHALT, BITUMEN, TAR; PYROLIGNEOUS ACID
    • C10C3/00Working-up pitch, asphalt, bitumen
    • C10C3/02Working-up pitch, asphalt, bitumen by chemical means reaction
    • C10C3/026Working-up pitch, asphalt, bitumen by chemical means reaction with organic compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/528Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite obtained from carbonaceous particles with or without other non-organic components
    • C04B35/532Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite obtained from carbonaceous particles with or without other non-organic components containing a carbonisable binder

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Civil Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Working-Up Tar And Pitch (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Ceramic Products (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Gyroscopes (AREA)

Abstract

ABSTRACT OF THE DISCLOSURE

The pitch compositions taught herein, upon carbon-ization, result in relatively oxidation-resistant carbon bodies. The compositions comprises pitch containing therein small quantities of fire retardant-like compositions having afterglow-inhibiting properties and which comprise halogenated organic compounds.

Description

2'~

Field of Invention :
The present invention relates to pitch composi-tions, which produce oxidation-resistant carbon bodies.
Background of Invention/Prior Art A preponderant number of applications which entail the use of coal tar or petroleum pitches requi-re the carbonization of the pitch material. Examples of carbonization processes include coking and graphitization.
During the carbonization process, it is normal to lose between 25 and 65% of the binder, the exact loss being dependent on the volatile content of the pitch. The loss of volatiles to the environment is additionally undesirable in that they constitute a source of air pollution. It is common practice in the industry to indicate this weight loss by the fraction of the starting material which remains upon carbonization, eg. the fraction of the material ~emaining upon coking is called the "coking value" of the pitch. This characteristic is particularly important if the pitch is to be used as a binder for coke filler in the formation of 20 coked carbon bodies.
A problem encountered with baked carbon bodies obtained from pitches is their relatively high oxidation rate, which is particularly noticeable when they are used as refrac~ory materials or as electrodes. This oxidation rate ; can be attributed to such factors as the porosity of the carbon body, its specific surface and the inorganic impurities present in the carbon body.
Techniques hitherto employed to decrease this oxidation rate include pressure impregnation or coating of previously baked carbon bodies with aqueous solutions of oxidation retardant materials such as phosphates, silicates, etc., after which the carbon bodies are rebaked to drive away the moisture. While the former technique requires pressure treating equipment and large volumes of an often expensive impregnant, neither technique succeeds in inhibit-ing oxidation throughout the interior of the carbon body.
It is also known (British Patent 865,320) to add oxidation inhibitors to the coke filler-pitch mix before baking. This technique has the disadvantage of requiring large amounts (4 to 20 parts by weight of the additive to 100 parts by weight of the carbonaceous mix) of the addi-tive, which is expensive in comparison to the base material being treated. Such large amounts of additive can also have a deleterious effect if the~carbon body resulting upon bak-ing this mix, is used as an electrode. Additionally, the additive, normally being incombustible constitutes a sub-stantial portion o the electrode which can contaminate the product as the electrode is consumed should any residue be left behind.
It is therefore the object of the present inven-tion to provide a pitch composition, which upon carboniza-tion yields a carbon body having improved oxidation resis-tance.
Brief Description of the Invention The present invention relates to a pitch composi-tion comprising:
(A) a pitch material, and (B) an effective amount of an active component comprising at least one of a class of halogenated organic compounds which decompose at temperatures between the softening point and the carbonization temperature of the pitch material, wherein said component constitutes at most 2% of ~4~

saia composition. In another aspect, the present invention relates to a process for making said pitch composition.
Detailed Description of the Invention According to the present invention, a pitch compo-sition having modified properties is prepared by the incor-poration into pitch of a compound (or compounds) selected from the group of compounds indicated above. The addition to pitch is carried out at a temperature at which the pitch has a reduced viscosity thus permitting easy stirrability.

The temperature at which this component will be incorporated into the pitch will preferably be between the softening point of the pitch material and the temperature at which the low hoiling components in the pitch are lost, in order to at least partiall~ prevent their loss. The latter temperature will be about 250-300C. The compound is incorporated into the pitch merely by stirring the additive into the pitch.
The compound should be added in a state which permits it to be easily distributed throughout the pitch e.g. if the -additive is solid at the temperature of addition it should be in a finely comminuted form (about 100 mesh) befo~e addition, or if it is a gas, it may be incorporated by sparging it through the molten pitch. Normally the additive will constitute less than about 2% by weight of the mixture while more typically it will constitute less than about 1 by weight.
The compounds mentioned earlier are often used as fi,re-retardants which demonstrate afterglow inhibition and can be broadly described-as those which decompose at tempe-ratures between the softening point and the carbonization halogenated organics temperature of the pitch. Such a restriction would ensure that the component is capable of being distributed in its "active" form throughout the pitch,
3~

an~ this "active" form e~ists before the pitch material is carbonized. By carbonization, it is intended to imply a state of carbon formation such that the dispersion and "activity" of the compounds is inhibited by the formation of a coke phase. The formation of such a coke phase will usually be substantially complete by about 500C and accord-ingly the introduction of the compound into the pitch and its distribution in its "active" form throughout the pitch should take place at a temperature below this carbonization temperature.
The compounds will typically have boiling points above about 40C. Examples of such compounds are chlorinated rubbers (such as "Parlon" (TM)), l-chloronaphthalene, hexachlorobenzene, pentachloroethane and 1-2 dichloroethane, etc. However the use of similar compounds, in an analogous manner, or formation insitu (eg.
by the sparging of chlorine gas through the molten pitch) should be evident to persons skilled in the art. The resultant pitch composition will normally contain less than ~0 about 0.4~ by weight of chlorine. The use of large excesses of the active component could, in fact, decrease or ; eliminate the gains accruing from the practice of this invention. Accordingly, the level of the component in the pitch should be carefully determined for the given ; component-pitch combination. Similar and equivalently ; useful compositions which lie within the ambit of the in-; vention are commercially used fire retardants such as those sold under the trademark "Phosgard" and having the general formula C~ ,O~ C~--!', C~!c Ha,CJ~ C~3 l ~C~zc~ n where n lies in the range of 0 to 5, and has an avera~e value of about 1 The pitch composition is prepared by heating the pitch to a temperature above its softening point in order to ~2~

render it stirrable. If the additive is a solid it should be finely ground before addition to the pitch in order to facilitate its distribution throughout the pitch. The addi-tive is stirred into the pitch and the stirring-is normally continued for a few hours until the additive is believed to be distributed throughout the pitch. In the case when the additive is gaseous, and the compound is formed insitu, as in the case of chlorine gas which can be added by sparging the gas through the molten pitch while it is stirred thus permitting reaction of the gas with the pitch components, thereby forming the desired compound insitu.
The pitch composition prepared according to the present invention will contain an effective amount of the active component which will be less than about 2~ by weight of the composition. The minimum effective amount will normally not be less than 0.1%. This composition when coked, (or otherwise carbonized) will result in a carbon body having improved oxidation resistance. In practice, this level of addition will be determined by successive trials, and in most cases will be less than about 0.8 percent by weight of the pitch~ It should be noted that the various compounds which fall within this class of halogenat-ed organic compounds need not be used in a mutually exclusi-ve fashion and various combinations may be employed~
There are usually other advantages which accompany the formation of a relatively oxidation-resistant carbon body from the pitch composition of this invention. One of the most desirable and frequently encountered characteris-tics of these pitch compositions is the increase in yield of 3Q carbonaceous material from a given amount of pitch, follow-ing incorporation of the additive therein. More particu-larly when such a pitch is coked, there is usually an ~z~

increase in the coking value of the pitch. While there are additive levels which correspond to a maximum in the carbon-ization value for the composition, it should be noted that these levels can be quite distinct from the respective additive levels for a minimum in the oxidation rate. The level of additive employed in practice will therefore be dependent upon the desired characteristics.
Depending on the additive used, further advantages can accrue to the user of the composition. For example, the use of Phosgard (TM) as the additive results in the use of diminished quantities of the pitch to form an adequately extrudable electrode.
It is not entirely clear how the addition of such miniscule quantities of the additive can affect the oxida-tion rate so greatly. A mechanism postulated to explain this outcome is the reaction between the additive and the constituents of the pitch which tend to catalyze the oxida-tion of the carbon body. The additive may alternatively effect changes in the stxucture of the resultant carbon body thus rendering it oxidation-resistant.
Example 1 This example illustrates the effect on pitch of the addition of Phosgard (TM) thereto. The Phosgard (TM) and the pitch were weighed into a beaker, the mixture heated to about 190C to facilitate stirring. The mixture was stirred with a variable speed heavy duty sti-rrer at 190 +
10C for about 90 minutes.
A variety of pitches having various levels of quinoline insoluble (Q.I.~ and iron content were treated according to this techni~ue. Each pitch was treated with different levels of "Phosgard" (TM) to test the variation of the pitch properties as a function of the additive level.

The pitch additive mixtures were cok~d in cruci-bles containing 5g of the mixture using a 24 hour carboniza-tion cycle at a heating rate of 40C/hr. The resulting coke was weighed to obtain the coking value of the treated pitch.
The coke was crushed and 2g. of the 40/60 mesh fraction were charged to a tube. This sample was purged with nitrogen for 30 minutes to remove moisture and oxygen.
With the nitrogen flowing, the tube was placed in a furnace set at an average temperature of 950 ~ 5C. When the sample had attained uniform temperature, the supply of nitrogen was cut off and carbon dioxide was passed through the sample for two hours. At the end of two hours, the passage of carbon dioxide through the sample was stopped and nitrogen was passed through the sample for 30 minutes to purge it of the residual gaseous oxidation products. The sample was then removed from the furnace, cooled and then reweighed. The average carbon dioxide oxidation rate was obtained from these two weighings. This form of oxidation is believed to he the principal source of oxidation within the carbon anode during the electrolytic produc~ion of aluminum, contributing to the loss of electrode strength. The carbon dioxide oxidation is also believed to be responsible for the accelerated consumption of the binder at the interface between the filler carbon and bind2r and at the anode-salt interface.
The results which are summarized in Table I helow illustrate the variation in the coking value and the carbon dioxide oxidation rate with the Q.I. and iron content, as well as the different additive levels corresponding to the optimum coking value and the optimum carbon dioxide reaction rate for a given pitch. It will additionally be evident upon an examination of the entries in Table I, that in some of the cases (eg. pitches (b) and (c)) there exist optimum levels of Phosgard (TM) addition and an excess of the additive can have a deleterious effect on the carbon dioxide oxidation rate. Similarly, there is a decrease in the rate of increase in the coking value with increases in the level of the additive beyond the optimum level.
TABLE I

Q.I. (%) Phosgard Coking CO2 Reaction Rate 1~ Pitch (Fe ppm) Added (%) Value (%) (% Burnoff) hr ~ . . , (a) 6.1 0.0 ~9.4 5.50 (3300) 0.2 51.1 5060 0.4 49.8 5.05 0.8 49.6 2.00 1.5 49.7 1.70 (b) 14.1 0 65.3 0.67 (206) 0.4 64.1 0.57 0.6 63.8 0.42 2~ 0.8 64.1 0.51 1.0 64.7 0.5~

(c) 19.0 0 66.3 0.69 (77) 0.2 66.8 0.41 0.4 ~7.4 0.32 0.6 67.9 0.34 0.8 6~.5 0.42 1.0 68.6 0.49 1.2 68.8 0.44 (d) 25.0 0 65.2 0.10 - 30 (115) 0.2 66.8 0.12 0.3 68.8 0.4 6g.2 0.13 0.6 69.4 0.10 -0.8 69.6 (e) 35.0 0 66.95 0.47 (465) 0.2 69.50 0.27 0.4 68.10 0.05 (f) 19.0* 0 60.2 0.62 (280) 0.2 62.8 0.33 0.4 52.2 0.07 *50:50 mixture of coal tar pitch (e~ and petroleum pitch.

Example 2 This example illustrates the change in the proper-ties of an electrode pitch treated according to the present invention. Coal tar pitch containing 25~ Q.I. (identical to pitch (d) of Example 1) was treated with 0.4% by weight of "Phosgard" (TM).
Samples of pitch with and without "Phosgard" (TM) were mixed with filler coke in an amount corresponding to about 70% of the coke-pitch mixture to form a Soderberg paste with acceptable flow characteristics. The required amount was determined by the elongation test, and is termed the "binder requirement". Upon addition of "Phosgard" (TM), it was noted that the binder required for an acceptable paste diminished by about 6.25~.
The Soderberg paste was baked for 48 hours at a temperature of 970C to form the test electrodes and the coking value of the pitch in the paste was determined.
These test electrodes were then evaluated as to their air-oxidation susceptibility. A test electrode 50 mm in length and 20 mm in diameter was suspended from a torque balance in a vertical ~ube furnace with forced air at about 525~C flow-ing past at a rate of 4 l/m (corresponding to a linear velo-city of 22 cm/s). Readings were taken on the torque balance at 5 minute intervals until the weight of the specimen h-ad decreased by 30%. The rate of oxidation was expressed in g.cm.~2h.~1 and is tabulated in Table II . Addition of "Phosgard" (T~) noticeably decreased the air~oxidation rate. Other properties of the electrode such as resistivity and air permeability were measured and their values are sum-marized in Table II below.
Tests identical to the preceding were carried out with a 19% Q.I. pitch (pitch (c) of Example 1) which con-tained 0, 0.6 and 1.2% by weight of added "Phosgard" (TM).
These results are also summarized in Tables II . It is readily noted that the resistivity, air permeability and air oxidation rate values obtained show similar qualita~ive variations with improvements being demonstrated in each upon aadition of "Phosgard" (TM) to an optimum value, and a loss of the improvement upon further addition of "Phosgard" (TM), (eg. between (c).2 and (c).3, as reflected in resistivity, air permeability and air oxidation values). In fact, the values o the air permeability and the air oxidation rate are higher with 1.2~ Phosgard (TM) than in its absence.

~2a~

o o ~ ~ r r~
o ~ o ~
a~ v .....
S~ ~1 JJ ~ C C O G O
~ X ~ ~
~ 0 ~-~, ~ 1 ~O ~ ~ u r~ ~ ~ U~

r1 ~î
I~ ~ CO ~ ~O
U~
~ 6 O
~y _ a~
o~ o o ~ o ~-,~ ~ ~ ~ o o ~ ~ ~ r~
H r~ a~ P
aJ m ~;--~1 _1 _ E~ ~
u~ ~r ~ o U~ ~
~D ~ u~ ut o~
-E~
~P 1.9 ~ I ~

tq o S

-~n ~ cn ~

.....
~ ~ ~ O V
U~

Exa ple 3 The effect of "Phosgard" (TM) addition to petrole-um pitches was tested in a series of experiments in which varying quantities of "Phosgard" (TM) were incorporated in the pitch by a method similar to that used in Example l.
The pitch additive mixtures were then coked in a fashion identical to that used in Example l, yielding the coking values of the treated pitches. The results are tabulated in Table IV below and show an increase in the coking value cor-responding to an increase in the "Phosgard" (TM) added to the pitch~
Table III
Added "Phosgard" (TM) Coking Value t%) (~ by wt) _ .
0 48.1 0.3 48.~
0.6 ~9-7 0.8 49.9 l.0 5001 1.4 50.4 Example 4 A l9~ Q~Io coal tar pitch (pitch (c) of Example l) was mixed with a chlorinated rubbery sold under the trademark "Parlon S-30;" and coked in substantially the same manner as in Example l. The coking value, density and the carbon dioxide reaction rate were measured. This was repeated using hexachlorobenzene, pentachloroethane, l-chloronaphthalene and 1,2 dichloroethane as the additives to the pitch. The results which are summarised in Table ~
below, indicate the degree to which the coking value and the carbon dioxide reaction rate are influenced by the additive.

- - -.

~ .
G~
~4_ t~ O 5 ~ ~ ~ r ~ ~
to C ~ ~ ~
~ ~ . . - .. .. .. ..
r:4 C C C O C C G C O C C
~`i ~
C, ~

~_ r m ~ o ~ r- ~ r -' E3ct~ o ~ ~ o o _I ~1 U~ o ~ ~ ~ o o o o o o o o C
a) ~ o o o ~ ~ ~ ,~ ~ ~ _I
Ci --_ ~_ c ~ ~ ~ ~ ~ o r~ o r u~
. .. .. O
4~ ~ ~ ~ a~ cn o o~
O ~ ~ ~ o r ~ ~ ~D ~ ~ ~D
U

C ~
.~, _ o o C~ o o o o o o o ~ ~ ~ N ~r ~ ~ ~ ~ ~ ~r O ~ ~9 ~ ~o ~ U: ~ ~o I ~ ~ ~1 . U ~
~ ~r m u ~ O
J~
.~, r, Ln o . . .
~ ~ ~o ~9 CI Z ~ ~) _~ ~I N ~'1 .

~1 O

C

~a Q Q S~ C C ~ ~ ~ S
~ D a~
r~:1 ~ N N ~:: S .S~
~ P; P:; ~ C ~ JJ ~ ~ O O
ro a) a~ J S ~ ~
~:J ~ ~ Q S~ O O ~ QJ O O
~15 ~ aJ o c~
s~ O O C C ~S
,a ~ o o ~ 1 0 0 ~ O
C C ~ ~ ~1 ~: S 5 ::~ ,~ ~ O O O 0 '13 O Ll ~ O O ta as ,~
~4 a) o o (15 t~ v ~1 .c ,~
~ C ~ ~ ~C ~ C C C~ ~
o o s ~ a) ~ aJ a,~ I I ' `
C~ Z U C~ ~ ~r: ~ ~ ~ ~ ~ ~

2~

Modifications to the above will be evident to those skilled in the art without departing from the spirit of the invention as defined in the appended claims.

Claims (8)

    The embodiments of the present invention in which an exclusive property or privilege is claimed are as follows:
  1. Claim 1 A pitch composition comprising:
    a) a pitch material; and b) an active component comprising at least one of a class of:
    halogenated organic compounds which decompose at temperatures between the softening point and the carbonization temperature of the pitch materal, wherein said component is present in an amount effective to reduce significantly the carbon dioxide oxidation rate of the carbonization product of said pitch composition relative to the carbon dioxide reaction rate of the carbonization product of said pitch material and constitutes at most 2% by weight of said composition.
  2. 2. A composition as defined in Claim 1 wherein said halogenated organic compounds are chosen from the group comprising chlorinated rubbers, 1 chloronaphthalene, hexa-chlorobenzene, pentachloroethane and 1, 2 dichloroethane.
  3. 3. A composition as defined in Claim 1, wherein said halogenated organic compound is chosen from the class of compounds having the general formula:

    where n lies in the range of 0 to 5 and has an average value of about 1
  4. 4. A process for making a pitch composition comprising mixing an active component with a pitch material at a temperature at least equal to the softening point of said pitch material, and wherein said component comprises at least a member chosen from the group consisting of halogenated organic compounds which decompose at temperatures between the softening point and the carbonization temperature of the pitch material, wherein said component is present in an amount effective to reduce significantly the carbon dioxide rate of the carbonization product of said pitch composition relative to the carbon dioxide oxidation rate of the carbonization product of said pitch material and constitutes at most 2% by weight of said composition.
  5. 5. A process as defined in Claim 4, wherein said temperature of said pitch is at most 300°C.
  6. 6. A process as defined in Claim 4 or 5, wherein said halogenated organic compounds are introduced into said pitch material by the passage of a chlorine-containing gas through said pitch material.
  7. 7. A process as defined in Claims 4 or 5, wherein said halogenated organic compounds are chosen from the group comprising chlorinated rubbers, l-chloronaphthalene, hexachlorobenzene, pentachloroethane and 1,2 dichloroethane.
  8. 8. A process as defined in Claims 4 or 5, wherein said halogenated organic compounds are chosen from the class of compounds having the general formula:

    where n lies in the range of 0 to 5 and has an average value of about 1.
CA349,882A 1980-04-15 1980-04-15 Pitch composition Expired CA1124010A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CA349,882A CA1124010A (en) 1980-04-15 1980-04-15 Pitch composition
AU61160/80A AU6116080A (en) 1980-04-15 1980-08-07 Pitch containing halogenated organic compounds
DE19803030479 DE3030479A1 (en) 1980-04-15 1980-08-12 METHOD FOR THE PRODUCTION OF OXYGEN-RESISTANT CARBON BODIES AND MEASURES SUITABLE FOR THIS
NO802509A NO802509L (en) 1980-04-15 1980-08-22 BEKSAMMENSETNING.
GB8030026A GB2074147B (en) 1980-04-15 1980-09-17 Pitch compositions
FR8025986A FR2480295A1 (en) 1980-04-15 1980-12-08 BRAI COMPOSITION AND PROCESS FOR PREPARING THEM
JP18270280A JPS56147887A (en) 1980-04-15 1980-12-23 Pitch composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CA349,882A CA1124010A (en) 1980-04-15 1980-04-15 Pitch composition

Publications (1)

Publication Number Publication Date
CA1124010A true CA1124010A (en) 1982-05-25

Family

ID=4116710

Family Applications (1)

Application Number Title Priority Date Filing Date
CA349,882A Expired CA1124010A (en) 1980-04-15 1980-04-15 Pitch composition

Country Status (7)

Country Link
JP (1) JPS56147887A (en)
AU (1) AU6116080A (en)
CA (1) CA1124010A (en)
DE (1) DE3030479A1 (en)
FR (1) FR2480295A1 (en)
GB (1) GB2074147B (en)
NO (1) NO802509L (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5133781A (en) * 1990-12-21 1992-07-28 Texaco Inc. Compatibilization of asphaltenes in bituminous liquids using bulk phosphoalkoxylation
US5703148A (en) * 1993-09-09 1997-12-30 Total Raffinage Distribution S.A. Asphalt-polymer compositions, process for making same and uses thereof
FR2714672B1 (en) * 1993-12-30 1996-03-22 Total Raffinage Distribution Improved bitumen compositions, their preparation process and their applications.

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2247375A (en) * 1937-12-16 1941-07-01 Atlantic Refining Co Treatment of bituminous materials
GB865320A (en) * 1957-09-10 1961-04-12 Union Carbide Corp Improvements in and relating to oxidation resistant articles

Also Published As

Publication number Publication date
GB2074147A (en) 1981-10-28
JPS56147887A (en) 1981-11-17
GB2074147B (en) 1984-03-14
FR2480295A1 (en) 1981-10-16
AU6116080A (en) 1981-10-22
NO802509L (en) 1981-10-16
DE3030479A1 (en) 1981-10-22

Similar Documents

Publication Publication Date Title
US4613375A (en) Carbon paste and process for its manufacture
US3194855A (en) Method of vibratorily extruding graphite
EP0754746A1 (en) Needle coke for graphite electrode and process for producing the same
CA1124010A (en) Pitch composition
US4100314A (en) Method for increasing the strength and density of carbonaceous products
US3563705A (en) Method of inhibiting puffing in the manufacture of graphite bodies
US4298396A (en) Pitch compositions
KR100768384B1 (en) Coal tar blend and plug for outlet for molten metal
US5550176A (en) Room temperature setting carbonaceous cement with increased electrical conductivity and flexural strength
JPH02272094A (en) Method for control of puffing of coke produced from coal tar pitch
CA1129607A (en) Phosphorus - modified pitches
Heintz Influence of coke structure on the properties of the carbon-graphite artefact
CA2086858C (en) Sinterable carbon powder
RU2337895C2 (en) Method of natural clayey suspension manufacturing for electrode material production
US4770825A (en) Process for producing electrodes from carbonaceous particles and a boron source
US2992901A (en) Production of artificial graphite
US3505090A (en) Process for the production of carbon articles
EP0109839B1 (en) Method of making graphite electrodes
DE2528184C3 (en) Process for the production of unfired basic refractory materials
CA1187653A (en) Oxidation-resistant pitches
RU2257341C1 (en) Fine-grain graphite preparation process
US3658476A (en) Method for producing a graphite article
KR100503226B1 (en) Coal blending method for producing metallurgical coke
EP0717019B1 (en) Carbon axial face seal
JPH11292615A (en) Crucible for melted metal and its production

Legal Events

Date Code Title Description
MKEX Expiry