CA1103959A - Inertial method of centering a constantly circular rim on its hub and corresponding rotary device - Google Patents

Inertial method of centering a constantly circular rim on its hub and corresponding rotary device

Info

Publication number
CA1103959A
CA1103959A CA334,155A CA334155A CA1103959A CA 1103959 A CA1103959 A CA 1103959A CA 334155 A CA334155 A CA 334155A CA 1103959 A CA1103959 A CA 1103959A
Authority
CA
Canada
Prior art keywords
rim
hub
masses
arm
localized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
CA334,155A
Other languages
French (fr)
Inventor
Pierre Poubeau
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Airbus Group SAS
Original Assignee
Airbus Group SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Airbus Group SAS filed Critical Airbus Group SAS
Application granted granted Critical
Publication of CA1103959A publication Critical patent/CA1103959A/en
Expired legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/30Flywheels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49764Method of mechanical manufacture with testing or indicating
    • Y10T29/49771Quantitative measuring or gauging
    • Y10T29/49776Pressure, force, or weight determining
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/21Elements
    • Y10T74/2117Power generating-type flywheel
    • Y10T74/2119Structural detail, e.g., material, configuration, superconductor, discs, laminated, etc.

Abstract

ABSTRACT OF THE DISCLOSURE

The invention relates to an inertial method and device enabling the centering of a circular rim on its hub to be ensured and giving a practical solution to the problem of the static and dynamic balancing of rotors. The device comprises a rim, a hub, at least one linking arm with two branches passing around the hub.
Masses localized at the ends of the arms ensure, in the course of rotation, the holding fast, by pressure, of the arm to the rim, on the one hand, and by traction on the branches on the other hand, of the arm to the hub, Anisotropic masses distributed between the arms keep the circularity of the rim constant. Electro-mechanical means ensure the static and dynamic balancing of the arm-rim-hub-assembly. The invention may be used for the rotors of kinetic energy storage system.

Description

INERTIAL ME~HOD OF CENTERING A CONSTAN~LY
CIRCU~AR RIM ON ITS HUB AND CORRESPONDING
RO~ARY DEVICE

BACKGROUND OF i~HE INVENTION
1. Field of the Invention The present invention relates to a method of centering a constantly circular rim on a hub and the rotary device which corresponds to it.
2. Description of the Prior Art : Systems of storing kinetic energy lead to the development of rotors whose useful element is constituted : by a rim driven at high peripheral speed in order to ,: .
obtain a high kinetic energy per unit of mass.
Thus, rotors, in their present most developed form, are constituted by several functional elements:
- the central portion or hub supported by magnetio su~pension? and:the magnetic circuit of the motor, " '`: ` :
15~ - - the rim which constitutes the largest part of the moment of inertia~ -~ the linkages by arms between the central portion :~ or hub and the rim, .

, : , . . .` :' . . : '' . -.
': ` - :
~ , . . .
- :
, 2 ~ 9 - the static and dynamic balancing means.
Several difficult problems however underlie the operation of such systems of storing kinetic energy.
The high centrifugal stresses in the rim which undergoes an elongation whose value exceeds the deformation limit occuring in current devices;
Certain constructiDns which may be considered thus lead to relative elongations of the rim which can reach 31o whilst the improvement in the breaking stress - 10 characteristics and in the continuous operation of composite materials even leads to the possibility of elongations reaching or exceeding 5%;
Rigid fastening of the rim or hub thus becomes almost impossible for several reasons connected with the fact that it is not firstly possible to contemplate carrying out this fastening by a bolt or other systems cutting the fibers of composite materials or destroying the homogeneity of the rim, for example of fused silica, ~; and that subsequently the linking arms undergoing themselves considerable centrifugal stresses but different from that ,~, . . . .
of the rim lead, for the same material and for a uniform cross-section ~ to an elongation substantially one thirdof ~ ~ .
that o~ the rim whence a tendency to breakage under tensile i~ ~ stre s in the arm-hub and arm-rim connecting zones and this, whatever the type of linkage concerned.
In the same way, the methods of fastening by friction" between arm ard rim contemplated in certain case9 to absorb the expansion of the latter, cannot be ; ~
: ~ : . -., ~: - . ~ -- ~ -' ~ ' . ' 1 retained on account of the impossibility of preserving the centering of the rotor in the course of rotation.
To thi.s lack of suitable means for connecting the rim to the hub, must be added considerations of stability of the static and dynamic balancing, which amounts to maintaining, for all rotary speeds, coincidence between the axis of the rotor centering systems and the axis of inertia of said rotor; which coincidence must be kept stable despite the elongation of the rim of the rotor under centrifugal stresses as well as the var- -iations in temperature and the cumulative effect of these para-mete.rs with the aging effect.
Lastly, the lift in the gravitational field of the rim who~e mass can exceed 100 tons, requires a particular confor~
mation of the rotor7 For certain application, Applicant studied previousi .
types of rotors with a su~-circular conformation in which the central portion of the rotor was provided with radial arms on which.was wound, in a polygonal shape, a filamentary material constituting the rim.
~: 20 On rotation, the rim takes up in these cases~ under the effect of centrifugal forces r a shape comprised between a - polygon and a circle, the resultant of the forces connected with .
the tension in the filament then always being directed towards the axis, resulting thus in compression of the arms.
. If the shape of the rim were initially circular, the centr.ifugal force would introduce an elongation of the ~, : ;
~ O

.: -3 : . - . . . . --.

4 ~1~3~?~9 material involving a fastening on the arms, difflcult or impossible to realize, which would make the latter work in extension, an effect adding to the elongation that they ~mdergo themsel~es according to the previously explained system.
The optimization of such a configuration leads to an initial shape comprised between the polygonal shape and the limit of sub-circularity in order to still ensure compression on the arms.
~wo rotors of this type were constructed in 1972 ; and tested up $o 18,000 rpm; one was of steel wire wound on a hub with radial arms of light alloy, the other, of steel strip wound on the same type of hub.
Save for some limited applications, rotors with a sub-circular conformation present a certain number of drawbacks connected with the fact that the alternate flexions of the rim, at the rhythm~ of the variations in rotary speed, fatigue the material in the zones where it is supported on the radial arms and that it is difficult to position a device at the level of the rim, to cancel ~: the static and dynamic unbalance.
Accordingly, it i8 an object of the present ~ , invention to pro~ide a method of centerin~ a circular rim : on its hub, which does not present the aforesaid drawbacks 25~ and which offers in addition a practical solution to the problem of this static and dyn~mic balancing of rotors.
. .~ .
, , ~: , , , ' ,,. . . ~ ,.
. - .

BRIEF DESCRIPTION O~ 'rHE DRA~INGS

The invention will, in any case, be well understood from the description which follows, in conjunction with the accompanying drawings, which will include by way of example, a possible embodiment of the method in accordance with the invention.
In the drawings:
Figure 1 is a diagrammatic perspective view, with a pOrtiQn torn away, showing the arrangement of the various elements for practising the invention;
Figure 2 is a diagrammatic plan view showing more particularly the positioning of the balancing means.
Any design applying rotors must involve a method -; . of linkage betwe~n the rim and the hub enabling in ; 15 addition the centering thereof.
If in a theoretical view regarding the structure of rotors, one considers a thin rim of radius R and of dia~eter D centered at 0 and ~ thin bar of length AB = D
centered at C on which the rim rests and one examines the elongations of the rim and the bar for equal rotary speeds involving the same peripheral speeds for the rim and for ~, the end~ A and B of the bar, by assuming, for explanation and without this being a construotion stress~ that the rim and the bar are constitubed of materials having the ; 25 same density ~ and the same modulus of elasticity E, it is seen that:
he stress in the rim j is then orl ~V
where V is the peripheral speed of the rim and that the !` ~ , ' .

~3 corresponding elongation is:
(~ R) i = - v2R (1) The stre~s in the bar b, zero at A and B, increases to a maxi~un at C ~.hose value is:

1 ~ 2 ~ -2 = 2 V
whilst the elongation on the radii CA = CB = R takes the value:
( ~ R) = ~ ~ V2R (2) Comparison of the relationships (1) and (2) shows that it is not possible to center the rim by the bar with-out introducing linkages at A and B, which will themselves introduce stresses to ensure the coincidence of the bar-rim contact points.
~hese linking stresses have numerous drawbacks of different types:
. ~6 almost impossibility of constructing these linkages without alterin~ or d`eteriorating the characteris-tics of the rim, such as cuts in the fibers of composite materials, etc.;
:~ ~ 20 - ~introduction of deformations of the rim at the level of these linkages whence additional bending and fatigue stresses o~ the material related to the speed cycles.
; GENERAL DESCRIP~ION OF THE INVENTION

In aocordance with the method of the invention, localized masses K and K' of the same value m are made ~ast , , ~ :
j - : . : . , ~ :.

- - : :
,, ,, , . , , , . ,~ , ,, :
,,, . - ~ , . .

~$'Q;~9 to the bar, at its ends A and B. In rotation, these masses are subject to centrifugal forces:
FA = ~B = m V
and the bar thus undergoes an additional elongation.
The total elongation of the bar under the effect of the centrifuga~ forces applied to its elements, combined with the traction of the localized masses K and K', becomes, at the radius, equal to that of the rim if:
- mO ~~~ ~ s R

where s is the cross-section of the bar.
If m takes a value higher than mO, the bar tends to lengthen more than the rim, which results in the local-ized mass~s K and K' exerting pressure on the rim.
~ his pressure can easily be regulated to the desired value for a given speed by adjusting the separ~tion m f m with respect to mO.
Eowever, and without particular precaution, the pressure of the arms of the bar on the rim can leadi''to an alteratlon in circularity according to the rotary speed.
20' To this end, the method according to the invention provide~ also an arrangement of masses distributed supported equally over the whole inner surfaoe of the rim~ out~ide of the~ supportlng areas of the arms~ so that the centri-fugal force~supplied to this said mass places it in 25~ ~uniform pressUre on the rim, ln order that the circularity ;is~thus preserved w'nate~er the rotary 8peed contemplated.
he pressure thus exerted on the inside of the : ~ . . ~ . . . . . . . .

8 ~3~;9 rim has another advantage which becomes all the more significant as the configuration departs from that of the thin rim.
In fact, in the case where the rim is thick, the inner layers of the material undergo weaker centrifu-gal stresses than the outer layers and the radial stresses resulting therefrom reduce the performance of the whole, By increasing the circumferential stress in the inner layers of the rim, the resulting pressure of the arms and of the distributed load reduces or can even cancelj if necessary, the radial stress which tends to dissociate the outer layers from the inner layers according to a well-known so-called "delaminating" effect.
An adjustment of the parameters permits, of course, the placing Qf the rim under constant circumferential stress conditions and weak or even zero radial extension stress or compression conditions.
In addition, the choice of the anisotropy of the material, constituting the distributed mass, can enable also the reinforcement of the axial mechanical characteris-tics, for example, o~ a-rim which is long with respect to its diameter.
DESCRIPTION OF PREFERRED l~BODIMENTS
If reference is made to Figures 1 and 2, it is seen that the device according to the invention is character-` ized, according to its essential constituent elements, by a - rim 1, a hub 2 and at least one linking arm such as 3 :

:, ., , . , .

: . . ,. . ~ .. . .

~ $~:3~
g supported internally on the rim 1 and which includes localized masses such as 30a, 31a at its en~s.
~ he thus-constituted rotor assembly is completed, normally, by the upper suspension system 5 and the lower suspension system 6 which can include also the rotor drive or power recovery system as well as the balancing device which will be discussed below.
The suspension systems may be, in a developed form, of the magnetic bearing type and the generator motor of the ironless permanent magnet type.
In the form shown in ~ Figure 1 and which *.~.
relates to a large size rotor, the arms are four in number in alternate orthogonal arrangement and the points effecting the contact o~ the centers of the support surfaces of the arms 3a, 3b, 3c, 3d with the inside of the rim are marked a, a' - b,b' - c,c' and d,d' whilst the localized masses are themselves marked 30a, 31a, 30b, 31b, ...
The conformation of e~ach of the arms 3,as shown in Figures 1 and 2, permits an important feature of the ~; 20 invention to appear.
In fact, the wire or lamina form used or more generally the conformation of an anisotropic material used to constitute eaoh arm branch 3alt 3a2, 3bl, 3b2 i9 utilized to pa89 around both the localized masses 30a, 31a,... and the hub 2.
In a way, the tensile stresses appearing i~ eacharm branch and which are the best suited to the filamentary or laminar material concerned are exploited ~o "gripl' the I:

. , ~ .

! . ; . , . . - .
, ~ ., , , ~ ' ... ' - . , ' ' ' ' ' . . ' ` ' .: , - -.
'' ' ' ~ . :: .' ' ' :

' . ' ~ .

~ 9 hub and thus constitute the principle i-tself of the mechanical performance of the assembly.
In the course of rotation, the centrifugal forces appearing in the localized masses in fact place the branches of thearms intraction and the thus-generated stresses cause the appearance of ~wo resultants directed towards the axis of rotation Z,Z' and through this fact is manifested during the whole time of rotation.
The invention relates notably in this case to defining a method of linkage by arms between a rim and a hub and it is of little importance to consider the mode of construction of this rim which is circular in constitution and which must remain so.
Thus,any means of rim construction may be envisaged, w~ether it is of the filamentary, laminar or even monolithic type.
Quite evidently, the linking zones around the points a,a', b,b', c,c', d,d' are initially formed by gluing but the latter methol only constitutes a useful addltion to ensure the holding of the rim during the periods of arrest of the rotation.
In a preferred embodiment and in the present state of the art, the various elements may advantageouslybut ; not exclusively be constructed in various ways:
~he rim is of a circumferential winding of the filamentary type, glass fiber, carbon polyimide or polyamide, boron filament, steel wire orstrip oreven ofa monolithic material such as fused silica, high stren~t~

'. :: , : ,.
. , - - --' ~- ~ . ' . -. ~ ' . ' , ' ' , .: , :.

- .. .. ..
- .
3~59 steel, etc.
~ he localized masses are of a very dense material such as lead, impoverished uranium, steel, ... in the solid formt of wires or of fabrics in an or~anic or metallic binder or in powder form in an organic or metallic binder.
The distributed masses 4 are of materials constituted by a fabricof fibers mechanically stronger in a direction parallel to the axis of rotation and hence anisotropic,coated in a binder and thus forming a body by gluing with the rim, said binder being capable of having a relatively lowmodulus so as to constitute, in directions other than longitudinal, a flexible material.
This fabric must be perforated on a level wit~ tlle arm-15 rim linking zones.
The arm may be of a material having a very highmodulus and a density less than that of the rim whilst preserving a capacity for elongation equal to that of this rim. These properties are favorable to the stability of the bala~cing in accordance with the speed,at the same time as the deformations in directions perpendicular to those of the arms are reduced.
In addition, these arms are distributed along the hub and the rim in accordance with an arran~ement and a number which appears best as a function of the problem to be resolved.
hey may advantageously be wound of crossed ~, ~ fibers on a mandrel and coated in resin in order to improve :~ .

'' ' , ., .. .. ~ :

. .
- .
, . ' ~

" 12 their resistance to the axial holding forces of the rim.
~he application of rotors of large size of com- - -posite materials, endowed with large rim thickness relative to the radius, renders the solution of the static and dynamic balancing problem very difficult through-out the whole range of rotary speed and the invention will now provide a solution to this problem.
Referring to ~igure 2, it can be seen that the localized masses 30a and 31a of the arm 3aare linked ~0 together by a junction element 7 which passes through an `Y`` opening formed in the hub 2 and that this element can act differentially on the radial resultant of the forces applied to these masses.
Due to the fact of its small relative diameter with respect-to that of the rim, the hub is subjected to weak centrifugal stresses and may, through this fact accept machined apertures of small size, which is the case of the passage of the junction element 7.
This junction element is under zero or weak tension when the rim is at rest but in the course of rotation it undergoes, besides its own centrifugal stresses, those , resulting from thetraction of the Iocalized masses 30a, 31a which should, for this reason, be dimensioned aooordingly~
In the axial zone, the junction element 7 is A ~ ~ 6 ~. 6 h~ 6 IV ~ _ ~ 25 made fast to a threaded portion~8 whioh passes into a nut :
~ fast to a tangential wheel 9, worm screw 10 system.
.
~; This tange~tial wheel will, under the effeot of the worm screw lO driven by a motor (not shown),displace theelement ; '"' ,. . .
~: - ` ,., - ' ~

:

13 ~ 9 8 in one direction or the other according to its own direction of rotation defined from suitable balancing sensors 11-12 of the inducti~e or capacitative type, for example~
It is to be noted that the balance-actuatingdevices are situated in a central portion of the hub and hence in a zone where the centrifugal accelerations are weak.
In addition, the driving power and the control signals of the motors pass from the stator portion of the - 10 installation to the rotor -through a transformer with a ; fixed primary and rotary secondary without mechanical or electrical contact between the rotor i~nd stator. Any other LF or HF coupling system could,of course,be contemplated.
In summary, the invention is applied more particularly, but not exclusively, to rotors of large size in uses directed to the storage and restitution from a fraction of a kilowatt hour to several megawatt hours in fixed or movable installations, whether or not integrated with electrical distribution networks.
Although the above-mentioned magnetic bearings are particularly suitable for very extended uses without inter-vention, it may be co~templated to substitute for them more conventional means such as ball-bearings or fluid bearings, gas, oil or again self-lubricating bearings such as silver doped polyimide, for example.
In~general~ the present invention has only been described and shown by way of preferential example and . i ~':`i :

~1 .

. . . . .

.

.
~ ~ .

14 ~!3~9 equivalents could be introduced into its constituent elements according to the sector of activity without however departing from the scope of the invention, which is defined in the appended claims.
Thus, in the case of the utilization of the filamentary material in wires or strips, this material could be buried in a material having a low elastic modulus and a high coefficient of elasticity.

- ,' , , , :

~ .: : -

Claims (11)

The embodiments of the invention in which an exclusive property or privilege is claimed are defined as follows:
1. Inertial method enabling the centering of a circular rim on its hub to be ensured, said method consisting of:
connecting the hub to the rim by means of at least one linking arm with two branches;
conforming said linking arm so that masses of a very dense material are localized at the ends of its branches and its branches pass around said hub;
said masses acting inertially, under the action of centrifugal force, to ensure the holding fast by pressure of each branch against the rim as well as the making fast by pres-sure of said branches against the hub;
keeping the circularity of said rim constant, through-out the whole range of rotary speeds, by means of other masses distributed against the rim, between the arms and acting under the effect of centrifugal force;
ensuring the longitudinal rigidity as well as the long-itudinal mechanical strength of the rim by an anisotropic confor-mation of the material constituting said distributed masses;
and effecting static and dynamic balancing of the rim, arm and hub assembly by electro-mechanical means responsive to sensor means acting differentially on said masses localized at the ends of the branches of the linking arm.
2. Inertial method according to Claim 1, wherein the link-ing arm is conformed in an anisotropic material so that the branches pass around the hub.
3. Inertial method according to Claim 1, wherein the link-ing arm is conformed so that its branches pass around said localized masses.
4. Inertial method according to Claim 1, wherein said electro-mechanical means acting differentially on the localized masses are arranged in the zone of the rotary axis, within the hub.
5. Inertial rotary device enabling the centering of a circular rim on its hub to be ensured, comprising:
a rim, a hub, at least one linking arm with two branches between the rim and the hub; masses of a very dense material localized at the ends of at least one linking arm; anisotropic masses distributed against the rim, between the ends of said arm in contact with the rim; electro-mechanical balancing action means and sensors, said rim, hub, linking arm, localized masses, distributed masses, electro-mechanical means and sensors being arranged so as: to permit the holding fast by pressure of the ends of the arms on the rim and the holding fast by pressure of the branches of each arm against the hub by means of the inertial action of the localized masses, under the effect of centrifugal force; keeping the circularity of the rim constant by means of the inertial action of the distributed masses, under the effect of centrifugal force; ensuring the longitudinal rigidity and the longitudinal mechanical strength of the rim, by means of the anisotropic conformation of the material constituting the dis-tributed masses; and obtaining the static and dynamic balancing of the rim, arm, hub assembly by the effect of the electro-mechan-ical means acting differentially on the localized masses from sensors.
6, Rotary device according to Claim 5, wherein the rim is constituted of an anisotropic material.
7. Rotary device according to Claim 5, wherein the rim is of the monolithic type.
8. Rotary device according to Claim 5, wherein the aniso-tropy of the distributed masses is effected by a particular arrangement of coated woven material according to which the com-posite has high mechanical strength in a direction parallel to the axis of rotation.
9. Rotary device according to Claim 8, wherein the coating binder has a relatively low modulus so as to constitute in the directions other than longitudinal a flexible material.
10. Rotary device according to Claim 5, wherein said electro-mechanical means with balancing action include a junction element for the localized masses passing through the hub, said element being provided at its central portion, with a threaded portion engaged in a nut forming a tangential wheel driven by a motorized worm screw so that the direction of rotation of said tangential wheel determines the direction of the differential action to be applied to the localized masses to modify the resultant of the radial forces to which they are subjected.
11. Rotary device according to Claim 10, wherein the sensors deliver signals which actuate the balancing motor in the desired direction.
CA334,155A 1978-08-29 1979-08-21 Inertial method of centering a constantly circular rim on its hub and corresponding rotary device Expired CA1103959A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR7824955A FR2434968A1 (en) 1978-08-29 1978-08-29 INERTIAL PROCESS OF CENTRAL OF A CONSTANTLY CIRCULAR RIM ON ITS HUB AND CORRESPONDING ROTARY DEVICE
FR7824.955 1978-08-29

Publications (1)

Publication Number Publication Date
CA1103959A true CA1103959A (en) 1981-06-30

Family

ID=9212177

Family Applications (1)

Application Number Title Priority Date Filing Date
CA334,155A Expired CA1103959A (en) 1978-08-29 1979-08-21 Inertial method of centering a constantly circular rim on its hub and corresponding rotary device

Country Status (8)

Country Link
US (1) US4263819A (en)
JP (1) JPS5532994A (en)
CA (1) CA1103959A (en)
CH (1) CH637190A5 (en)
DE (1) DE2934710C2 (en)
FR (1) FR2434968A1 (en)
GB (1) GB2028979B (en)
IT (1) IT1120546B (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2458005A1 (en) * 1979-05-29 1980-12-26 Aerospatiale METHOD FOR PRODUCING A SUBCIRCULAR TYPE ROTOR AND ROTORS IMPLEMENTING THIS METHOD, IN PARTICULAR FLYWHEEL ROTORS
US4286475A (en) * 1979-09-26 1981-09-01 The Garrett Corporation Composite material flywheel hub
SE8100722L (en) * 1980-02-20 1981-08-21 Escher Wyss Ag ROTOR FOR HYDROELECTRIC MACHINE
FR2503808A1 (en) * 1981-04-14 1982-10-15 Aerospatiale METHOD FOR PRODUCING A HIGH-SPEED ROTOR AND ROTOR USING SAID METHOD
US4546264A (en) * 1983-10-24 1985-10-08 The Boeing Company Relating cellular energy generating and storage device
FR2574491B1 (en) * 1984-12-07 1989-01-06 Europ Agence Spatiale ENERGY STORAGE WHEEL
US7679245B2 (en) * 2001-09-17 2010-03-16 Beacon Power Corporation Repulsive lift systems, flywheel energy storage systems utilizing such systems and methods related thereto
KR100806227B1 (en) 2003-05-01 2008-02-22 나바텍 리미티드 Low drag submerged asymmetric displacement lifting body, watercraft including the same and watercraft hull having the same
JP2016050627A (en) * 2014-08-29 2016-04-11 株式会社ジェイテクト Flywheel

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2731833A (en) * 1956-01-24 jones
DE128454C (en) *
DE132548C (en) *
CH43220A (en) * 1908-02-13 1909-04-16 Vevey Atel Const Mec Machine part capable of rotating with high circumverential speed
US2757050A (en) * 1953-06-09 1956-07-31 Contraves Ag Suspension arrangement for oscillation about an axis
GB1203244A (en) * 1967-04-15 1970-08-26 A A Jones And Shipman Ltd Balancing unit
US3488998A (en) * 1967-08-24 1970-01-13 Charles A Bonsor Balancing device
US3741034A (en) * 1970-09-02 1973-06-26 Williams D Inertial energy storage apparatus
JPS5013741A (en) * 1973-06-06 1975-02-13
GB1466647A (en) * 1974-03-18 1977-03-09 Univ Johns Hopkins Multi-ring filament rotor
FR2282737A1 (en) * 1974-08-22 1976-03-19 Inst Rech Transports WHEEL STRUCTURE ADAPTED TO LARGE ANGULAR SPEEDS AND METHOD OF MANUFACTURING THE SAME
US4036080A (en) * 1974-11-29 1977-07-19 The Garrett Corporation Multi-rim flywheel
DE2622295A1 (en) * 1976-05-19 1977-12-01 Canders Wolf Ruediger Kinetic energy storing flywheel - is made of fibre reinforced plastics which is used for rim and wound spokes

Also Published As

Publication number Publication date
GB2028979B (en) 1982-06-16
IT1120546B (en) 1986-03-26
GB2028979A (en) 1980-03-12
IT7950116A0 (en) 1979-08-28
FR2434968B1 (en) 1982-04-23
CH637190A5 (en) 1983-07-15
FR2434968A1 (en) 1980-03-28
US4263819A (en) 1981-04-28
JPS5532994A (en) 1980-03-07
DE2934710C2 (en) 1986-03-20
DE2934710A1 (en) 1980-03-13

Similar Documents

Publication Publication Date Title
US6867520B2 (en) Electro-mechanical battery
US8808096B2 (en) Flywheel
EP2411699B1 (en) A flywheel
CA1103959A (en) Inertial method of centering a constantly circular rim on its hub and corresponding rotary device
EP0566678B1 (en) Methods and apparatus for energy storage
US5566588A (en) Flywheel rotor with conical hub and methods of manufacture therefor
US6144129A (en) Spring mounting for an electric generator
US4596158A (en) Tuned gyroscope with dynamic absorber
US9273755B2 (en) Method and apparatus for balancing a flywheel
EP0240514A4 (en) Permanent magnet rotor assembly with fibrous wrap.
JPH01279116A (en) Magnetic bearing to which permanent magnet receiving holding power in axial direction is mounted
MXPA04002435A (en) Flywheel energy storage systems.
JP2011509647A (en) Flywheel system
JPS6025319B2 (en) vibration absorber
US6211589B1 (en) Magnetic systems for energy storage flywheels
Mulcahy et al. Test results of 2-kWh flywheel using passive PM and HTS bearings
US4102221A (en) Cross-ply composite flywheel
WO1997024537A1 (en) Backup bearings for extreme speed touch down applications
EP0363227B1 (en) Yarn winding apparatus
Li et al. Manufacture and testing of a magnetically suspended 0.5-kWh flywheel energy storage system
EP3227986B1 (en) Devices and methods for increasing energy and/or power density in composite flywheel energy storage systems
Ramanujam et al. Whirling and stability of flywheel systems, part I: Derivation of combined and lumped parameter models
US20010003900A1 (en) Fly wheel for storing rotational energy
EP0016807A1 (en) Molded inertial sensor
Kirk et al. The open core composite flywheel

Legal Events

Date Code Title Description
MKEX Expiry