CA1095445A - Collagen soft contact lens - Google Patents

Collagen soft contact lens

Info

Publication number
CA1095445A
CA1095445A CA293,326A CA293326A CA1095445A CA 1095445 A CA1095445 A CA 1095445A CA 293326 A CA293326 A CA 293326A CA 1095445 A CA1095445 A CA 1095445A
Authority
CA
Canada
Prior art keywords
collagen
contact lens
soft contact
gel
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
CA293,326A
Other languages
French (fr)
Inventor
Albert L. Rubin
Teruo Miyata
Michael W. Dunn
Kurt H. Stenzel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Opticol Corp
Original Assignee
Opticol Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Opticol Corp filed Critical Opticol Corp
Application granted granted Critical
Publication of CA1095445A publication Critical patent/CA1095445A/en
Expired legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/04Contact lenses for the eyes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/041Lenses
    • G02B1/043Contact lenses

Abstract

ABSTRACT Soft contact lenses are made from molubilized, de?atted, transparent, cross-linked collagen, and/or chemically-modified collagen.

Description

1()9~4S

This invention relates to a soft contact lens consisting of collagen and/or chemical modifications of such collagen.
The invention also relates to the production of such lenses preferably by irradiation of the collagen substance in a lens mold with gamma rays.
Contact lenses have been known as a commercial product for over 25 years. Contact lenses to date have been made from chemically synthesized materials which do not occur in nature.
For example, most early contact lenses were made from poly-methylmethacrylate or chemical modifications thereof, fromhydroxyethylmethacrylate, from cellulose acetate butyrate, from silicones, etc. To the knowledge of the applicants no lens, prior to this invention, was made from naturally occurring animal materials and especially from materials having physio-logical and immunological properties possessed by constituents of the eye itself, e.g., the cornea. The state of the art on contact lenses is reviewed in a current article "A Contact Lens Update" --Contact Lens Forum, p. 16-23 tMay 1976).
The chemistry, molecular structure and biochemical pro-perties of collagen have been well established. An up-to-date review article by the current inventors (Annual Review of Biophysics and Bioengineering, Vol. 3, pO 231-253, 1974) contains an excellent compilation of references on the subject.
Collagen is a major protein of connective tissue such as skin, cornea, etc., and can be solubilized, separated and purified by the treatment with proteolytic enzymes (other than collagenase), e.g., proctase, pepsin, trypsin and pronase.
Enzyme solubilized collagen is telopeptides-poor, relatively inexpensive, and useful as a biomedical material. The collagen is redispersed as a clear aqueous gel up to 30% (the balance being essentially water) and placed in a lens mold (glass, brass, stainless steel, and/or plastic) and gamma-irradiated to poly-merize the collagen. A collagen soft `~! ' -1-10954~5 contact lens prepared by this method is optically clear, flexible, stable and com~ortable to wear.
Collagen has been used by the present inventors in various drug and medical applications, e.g., as a vehicle for drug delivery in opthalmic application; as dialysis membranes; as vitreous implants, and in other medical and surgical applications. Their studies have been published widely in medical journals. The inventors know of no utilizations of collagen described hereunder as a soft contact lens material prior to their own discovery.
The present invention is illustrated in detail in the fol-lowing description: Calfskin collagen was used as a starting material, but other sources such as steer hide, cowhide and pigskin may also be utilized. Dehaired and cleaned skin is solu-bilized with a protelytic enzyme (pepsin for example) and solubilized collagen is precipitated at pH 7 after inactivation of enzyme activity by caustic treatment at pH 10. Precipitated solubilized collagen is defatted by repeated extractions with ethanol-ethyl ether mixture (1:1). This defatting process is essential to obtain transparent collagen gel for lens production.
Solubilized collagen contains many NH2 and COOH groups in its structure, and chemical modifications of the m~lecule can be readily made, e.g., all or some of the amino groups may be ' acylated by reaction with a mixture of acetic anhydride and acetic acid, or other anhydride such as succinic anhydride. All or some of the carboxyl groups contained in the molecule may be esterified by the standard reaction with acidified alcohol, preferable a water soluble aliphatic alcohol, such as methanol, ethanol, etc.
In the above reactions the isoelectric point of collagen can be controlled, either negative or positive, or completely neutralized.
Excellent soft contact lenses have been made from succinylated and methylated collagen.
Gels having collagen concentrations ranging from 1% to 30 can be utilized for lens production, but the preferable concentration is 1% to 20% with the balance being water. As the collagen content of the gel increases substantially above about 20%, the material becomes gummy and difficult to handle and work. A collagen soft contact lens of higher water content is more pliable, superior in oxygen diffusion and more -com~ortable to wear. However, the mechanical strength of the lens is improved with decreasing water content.
Cross-linking of the solubilized transparent collagen is necessary in order to stabilize the molecule. Cross-linking is accomplished by irradiation with gamma or ultraviolet rays or by heating, drying or simple aging. Cross-linking can also be accomplished by treating with certain chemicals such as aldehyde, e.g., formaldahyde, glutaraldahyde or with acids such as chromic acid. The mechanism of cross-linking of collagen is well-known and has been fairly well documented. In the preparation of soft contact lenses in accordance with this invention, the preferred cross-linking method is irradiation in the presence of nitrogen. ,~
Nitrogen atmosphere is preferred to air because the presence of nitrogen increases the cross-linking of collagen while maintaining the rate of breakdown of collagen at a low level. Irrad~ation is preferred to chemical treatment since the irradiation process introduces no po~ntially toxic foreign material into the collagen gel structure.
The effectiveness of gamma-irradiation is a function of the collagen concentration of the gel and of the atmosphere of ~he~ irradiation. For example, the gamma-irradiation in presence of air induces some damage of the collagen molecule concurrent with introduction of cross-linkages. The irradiation in the presence of nitrogen minimizes the destruction of collagen and enhances gel stabilization by cross-linking. The optimal ir-radiation dose depends on the collagen concentration. Irradiation 9~ 4S

of 500 ~ 900 K rads at a dose rate of 82 K rads per hour is necessary to introduce enough cross-linkages into 5% collagen gel; however, a dose of 1200 ~ 1600 K rads is required for 10%
collagen gel in presence of nitrogen.
Chemically modified collagens can be also used as a lens material as well as native collagen (without chemical modification). Since native collagen is soluble in acidic pH, clear gel is obtained only below about pH 4Ø Lens material made from this gel must be neutralized. On the other hand, chemically modified collagen such as succinylated collagen, or ; methylated collagen is soluble in physiologic condition (pH 6 -8); and neutralization of the lens material is not necessary.
The effect of gamma-irradiation is similar on native and chemically modified collagens.
Glass, stainless steel, brass and plastics (teflon, polyethylene, polycarbonate) may be used as a lens mold material.
Glass and metals are generally preferable to plastics because of the stability against gamma-irradiation.
The present invention may be further understood from the following examples:
Example 1 - Fresh calfskin (about 5 kg.) was dehaired, -cleaned by shaving and cut into small pieces. The skin was solubilized in 10 liters of water (pH 2.5, HCl) by addition of 1 g of pepsin (approximate ratio of enzyme to collagen is 1/400) and kept at 20C for five days with intermittent stir-ring. The resulting viscous solubilized collagen was filtered through cheesecloth, its pH adjusted to 10 by NaOH and allowed to stand for 24 hours at 4C to inactivate the pepsin. The pH of collagen was then adjusted to 7 to 8 (HCl~ and collagen precipitate was collected by centrifuging. Fatty constituents were then removed from the collagen. To one part of collected collagen was added two parts of fat solvent, e.g., ethanol-ethyl ether mixture ~1:1) and the mixture was homogenized in a Waring blender.
Collagen was separated from solvent by squeezing in cheesecloth and homogenized again with the same volume of solvent. After being squeezed it was air-dried to remove solvent and redissolved in acidified water (pH about 3.0) to make collagen gel.
On the lower concave part of a lower lens mold (glass) was placed 0.2 g of 5% clear collagen gel and centrifuged for 30 minutes at 3000 rpm at 10C to make the collagen gel spread evenly across the mold surface. After 10 minutes evacuation in vacuum, the upper convex part of the lens mold was pushed onto the lower mold containing the collagen gel and the entire mold transferred to an irradiation vessel. The vessel was flushed and filled with nitrogen and gamma-irradiated for 10 hours at a dose rate of 82 K rads per hour. The molded collagen lens was neutralized by phosphate-saline buffer, (pH 7.2) and transferred to normal saline.
The lens was placed on the convex part of a teflon mold, frozen and trephined while the lens was frozen. The finished lens was kept in normal saline solution. This lens is optically clear, flexible and stable, and displays excellent properties as a soft contact lens.
The irradiation was carried out in a Gammator M type gamma irradiator obtained from Radiation Machinery Corporation, Par-sippany, New Jersey and such irradiation equipment is not part of the inventive subject matter hereunder. The glass vessel containing the lens mold during irradiation was a standard, relatively wide-mouth, two-hole rubber-stopped vessel permitting removal of air and filling with nitrogen.
The lens molds (which likewise do not form part of this invention), were manufactured from brass, glass and plastic. The iO95~45 mold consists of a lower concave part and an upper convex part.
The surface of the convex part, when the mold is closed, reaches the surface of the concave section, except for the desired thickness of the collagen lens. The desired thickness is approximately 0.4 millimeters, preferably about 0.3 milli-meters. Most lens material was finished with a trephine (cylindrical instrument with one razor-sharp circular cutting end), to a tapered edge lens. Instead of trephining, however, a lathe operation may also be used to finish the lens material.
Example 2 - A soft lens was prepared by a procedure similar to Example 1 except 12~ collagen gel, a stainless steel mold and irradiation time of 20 hours were substituted. Again the resulting lens was optically clear, flexible and stable, and displayed excellent properties as a soft contact lens.
Example 3 - Solubilized, defatted collagen prepared in Example 1 was succinylated by the following procedure: Five grams of collagen were solubilized in 2 liters of acidified water (pH 3.0, HCl) and the pH thereafter adjusted to 9.0 by NaOH solution. Acetone solution (100 ml) containing 2 g succinic anhydride was gradually added to the collagen suspension.
During the addition of succinic anhydride the pH of collagen suspension was maintained at about 9.0 by NaOH solution. Suc-cinylated collagen was precipitated by acidification to about pH 4.2~ washed repeatedly with water and freeze-dried. Trans-parent 2.5% succinylated collagen gel of pH 7 was placed on the lower mold part (brass) indicated and processed in the same way as Example 1 except that 8 hours irradiation was employed.
The resulting lens was completely transparent, pliable, and sufficiently strong to function as a soft contact lens. It is very comfortable to wear.

~., :~ ' 1~9S445 All of the lenses prepared above are susceptible of modification to prescription values by known optical techniques.
Thus, soft contact collagen lenses can be prepared for use by patients requiring known normal sight corrective measures, e.g., incorporation of spherical power.
The advantages of soft lens made from solubilized col-lagen from a medical standpoint are summarized as follows:
1. Successful implantation of a material into the corneal stroma requires that the material be inert and highly permeable to water, nutrients, oxygen and carbon dioxide. To date collagen is the only material used for contact lenses that can be so implanted without subsequent re~ection.
All other materials used for contact lenses are x;~
extruded when implanted in the cornea.
2. The collagen/water ratio of the cornea and the ' collagen contact lens are strikingly similar.
These two materials are closely related struc-turally, physiologically and immunologically.
All other contact lens materials are totally unrelated to the collagen protein of the cornea.
The advantages from the consumer or wearer standpoint are summarized as follows:
1. The gas and water vapor permeability of the collagen membrane make it ideally suited for a constant wear contact lens without disrupting essential metabolic processes in the cornea.
2. The similarity of this protein and the principal 9S~5 protein of the cornea make allergic and toxic reactions between the two vexy unlikely.
3. The low cost of preparation of the collagen lens material indicates a low cost to the consumer.
4. Collagen contact lenses are soft, pliable and trans-par~nt. Spherical power can be incorporated into them.

Claims (30)

The embodiments of the invention in which an exclusive property or privilege is claimed are defined as follows:
1. A soft contact lens consisting of solubilized, de-fatted, cross-linked, transparent collagen.
2. A soft contact lens of claim 1 in which the colla-gen is chemically-modified collagen.
3. A soft contact lens of claim 2 in which the chemi-cally-modified collagen is acylated collagen.
4. A soft contact lens of claim 2 in which the chemi-cally-modified collagen is succinylated collagen.
5. A soft contact lens of claim 2 in which the chemi-cally-modified collagen is esterified collagen.
6. A soft contact lens of claim 5 in which the chemi-cally-modified collagen is methylated collagen.
7. A method for producing a soft contact lens which comprises solubilizing collagen, removing fatty constituents therefrom, converting the solubilized, defatted collagen to a transparent gel, forming a lens-shaped material from such gel, and cross-linking the lens-shaped gel.
8. A process according to claim 7 in which the collagen is solubilized by treatment with a proteolytic enzyme.
9. A process according to claim 7 in which the cross-linking is carried by irradiation with gamma rays in the pre-sence of nitrogen.
10. The process of claim 7 in which the collagen concen-tration of the gel is in the range of 1% to 30%.
11. A process according to claim 7 in which the collagen is succinylated prior to shaping and cross-linking.
12. A process according to claim 7 in which the colla-gen is methylated prior to shaping and cross-linking.
13. As an article of manufacture a soft contact lens consisting of a lens-shaped, subsequently cross-linked gel of solubilized, defatted collagen, said gel comprising 1.0 to 30.0 wt.% collagen and the balance water.
14. A soft contact lens of claim 13 in which the lens-shaped collagen gel is chemically cross-linked.
15. As an article of manufacture a soft contact lens consisting of a lens-shaped, subsequently cross-linked gel of enzyme-solubilized, telopeptide-poor, defatted collagen, said gel comprising 1.0 to 30.0 wt.% collagen and the ba-lance water.
16. A soft contact lens of claim 15 in which the colla-gen gel content is 1 to 20 wt.%.
17. A soft contact lens of claim 15 in which the colla-gen gel content is 5 to 12 wt.%.
18. A soft contact lens of claim 15 in which the colla-gen is chemically-modified collagen.
19. A soft contact lens of claim 18 in which the colla-gen is esterified collagen.
20. A soft contact lens of claim 19 in which the colla-gen is methylated collagen.
21. A soft contact lens of claim 18 in which the colla-gen is acylated collagen.
22. A soft contact lens of claim 21 in which the colla-gen is succinylated collagen.
23. A method for the manufacture of a soft contact lens which comprises solubilizing collagen from a source thereof to produce a collagen extract, removing fatty constituents from the extract, converting the extracted and defatted col-lagen to form a transparent gel having a collagen concentra-tion of 1 - 30 wt.% forming said contact lens of such gel and cross-linking the lens.
24. A method according to claim 23 in which the lens-shaped gel is chemically cross-linked.
25. A method for the manufacture of a soft contact lens which comprises treating a source of collagen with a proteo-lytic enzyme to produce an extract of telopeptide-poor colla-gen, removing fatty constituents from the extract, converting the extracted, defatted collagen to form a transparent gel having a collagen concentration of 1 to 30 wt.%, forming said contact lens of such gel, and cross-linking the lens.
26. A process according to claim 25 in which the cross-linking is carried out by irradiation with gamma rays in the presence of nitrogen.
27. The process of claim 25 in which the collagen con-centration of the gel is in the range of 1% to 30% with the balance being water.
28. The process of claim 25 in which the transparent gel is formed into a lens in a lens mold.
29. A process according to claim 25 in which the colla-gen is succinylated prior to shaping and cross-linking.
30. A process according to claim 25 in which the colla-gen is methylated prior to shaping and cross-linking.
CA293,326A 1976-12-22 1977-12-19 Collagen soft contact lens Expired CA1095445A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US75355676A 1976-12-22 1976-12-22
US753,556 1976-12-22

Publications (1)

Publication Number Publication Date
CA1095445A true CA1095445A (en) 1981-02-10

Family

ID=25031149

Family Applications (1)

Application Number Title Priority Date Filing Date
CA293,326A Expired CA1095445A (en) 1976-12-22 1977-12-19 Collagen soft contact lens

Country Status (7)

Country Link
JP (1) JPS5378854A (en)
CA (1) CA1095445A (en)
DE (1) DE2757084C2 (en)
FR (1) FR2375616A1 (en)
GB (1) GB1568136A (en)
HK (1) HK14681A (en)
MY (1) MY8400343A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2963348D1 (en) * 1978-10-18 1982-09-02 Essilor Int Hydrogels from natural protein polymers, their production and soft contact lenses made from them
US4268131A (en) * 1979-04-11 1981-05-19 Opticol Corporation Fiber collagen contact lens
US4273734A (en) * 1979-09-24 1981-06-16 Maurice Seiderman Casting of polyelectrolytes in hydrogel molds
FR2565160B1 (en) * 1984-06-04 1987-03-06 Essilor Int PROCESS FOR PRODUCING A FLEXIBLE CONTACT LENS OF NATURAL PROTEIN POLYMER (S), AND CONTACT LENS THUS OBTAINED
JPH02103691U (en) * 1989-02-06 1990-08-17

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4939174A (en) * 1972-08-19 1974-04-12
FR2251426A1 (en) * 1973-11-19 1975-06-13 Frigitronics Of Conn Inc Soft contact lens prepn - from water absorptive polyurethane polymer
AR207867A1 (en) * 1974-07-04 1976-11-08 Smith & Nephew Res A LIGHTLY INTERLACED HYDROGEL COPOLYMER

Also Published As

Publication number Publication date
DE2757084C2 (en) 1986-09-04
FR2375616A1 (en) 1978-07-21
MY8400343A (en) 1984-12-31
JPS555089B2 (en) 1980-02-04
JPS5378854A (en) 1978-07-12
GB1568136A (en) 1980-05-29
HK14681A (en) 1981-04-24
FR2375616B1 (en) 1981-12-04
DE2757084A1 (en) 1978-07-06

Similar Documents

Publication Publication Date Title
US4223984A (en) Collagen soft contact lens
US4268131A (en) Fiber collagen contact lens
US4264155A (en) Collagen contact lens
US4260228A (en) Collagen gel contact lens and method of preparation
US4505855A (en) Transparent non-fibrilized collagen material by ultracentrifugation
US4946450A (en) Glucan/collagen therapeutic eye shields
US4581030A (en) Collagen replacement prothesis for the cornea
US4969912A (en) Human collagen processing and autoimplant use
US5219895A (en) Collagen-based adhesives and sealants and methods of preparation and use thereof
JP2520858B2 (en) Collagen treatment method for facilitating crosslinking of collagen
US5259998A (en) Method for casting dissolvable ophthalmic shields in a mold
FR2604895A1 (en) PROCESS FOR OBTAINING COLLAGEN OPHTHALMOLOGIC COATINGS AND COATINGS PREPARED THEREBY
CA1095445A (en) Collagen soft contact lens
EP0191994B1 (en) Solution for use in viscosurgery and/or as a vitreous substitute
US5856120A (en) Method of preparing a biological material for use in ophthalmology
US5322648A (en) Process for forming shaped collagen devices
US6037144A (en) Method of preparing a biological material for use in ophthalmology
US4748152A (en) Succinylated atelocollagen solution for use in viscosurgery and as a vitreous substitute
JPS62250412A (en) Contact lens and its production
NL7900716A (en) Flexible soft contact lens - contg. opt. denatured, defatted, solubilised, crosslinked, transparent collagen
KR840002487B1 (en) Collagen contact lens
JPH03259927A (en) Gel composition and its production
CN115569236B (en) Soft ophthalmic implant material and preparation method thereof
US5993796A (en) Biocompatible polymeric materials, methods of preparing such materials and uses thereof
CH641898A5 (en) Soft contact lenses composed of optionally chemically modified collagen

Legal Events

Date Code Title Description
MKEX Expiry
MKEX Expiry

Effective date: 19980210