CA1074225A - Marine riser connector - Google Patents

Marine riser connector

Info

Publication number
CA1074225A
CA1074225A CA275,875A CA275875A CA1074225A CA 1074225 A CA1074225 A CA 1074225A CA 275875 A CA275875 A CA 275875A CA 1074225 A CA1074225 A CA 1074225A
Authority
CA
Canada
Prior art keywords
nut
connector
male
lugs
female
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
CA275,875A
Other languages
French (fr)
Inventor
James E. Hampton
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
McEvoy Oilfield Equipment Co
Original Assignee
McEvoy Oilfield Equipment Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by McEvoy Oilfield Equipment Co filed Critical McEvoy Oilfield Equipment Co
Application granted granted Critical
Publication of CA1074225A publication Critical patent/CA1074225A/en
Expired legal-status Critical Current

Links

Landscapes

  • Earth Drilling (AREA)

Abstract

SPECIFICATION
Abstract of the Disclosure A marine riser including a uniquely designed three element connection structure and associated connecting and releasing means for the inhibiting of fatigue failure caused by moments and axial loads resulting from relative motion between the fixed ocean bottom and a floating drilling platform or ship, such as a semisubmersible rig. The system includes a preloaded connection including a female member and a male member coaxially aligned and held in compression by a nut placed in tension. The connection holds riser pipe sections together. The connection is preloaded through a tool to a degree such that when a load equal to the yield strength of the pipe section material is applied to the pipe sections joined by the connector, the compressed faces of the male and female members do not separate from each other.
The degree of preload would be sufficient to maintain the contact between the compressed faces under expected working loads of the pipe sections. The tool operates in conjunction with lugs located on the nut and a flange or platform with mounting holes located on the male member. A lock is provided on the nut to prevent the disengagement of the male and female members after they are brought into compression by the nut. The position of the lock relative to the nut lugs determines the sustained preload of the connection. Seals are provided between the male and female member to prevent leakage of fluid between the interior of the riser connector and the surrounding environment. The connector also includes provision for the support and connection of sections of kill and choke lines.

Description

~07~2ZS

1 Background of the Invention 1. Field of the Invention The present invention relates to a marine riser connector. The invention has been found to be particular.ly useful in the connection of riser sectlons in a long string of low pressure service pipe betweén a floating vessel, such.
as, for example, a semisubmersible rig, and the ocean bottom, and hencé, will be discussed with particular reference thereto. However, the invention is also applicable to other types of risers requiring sealing and high resistance to structural yield as the result of stress oscillation.
2. Description of the Prior Art When floating drilling.rigs, such as, for example, semisubmersible rigs, are operating in deep water, such as, for example, more than 300 feet of water, to drill a well, there are many problems associated with the design of marine risers connecting the drilling rig at the surface to the well located at the ocean bottom. The requirements of~marine risers used with a floating drilling rig differ from those of risers used with a fixed platform drilling rig due to the movlng point of connection at the surface for the riser for a floating drilling rig, both types having a rigid bottom connectlon at the ocean floor.
For a floating drilling rig, the well is completed at the mudline. Mudline completion is essential where floating drilling rigs are used, otherwise, there would be an open hole between the ocean floor and the floating vessel with the potential that the floating vessel would have to move off .he hole, thereby leaving a hazard for pollution. Additionally, ~L074ZZ5 1 the weight of a riser adapted for high pressure service, if the well was not completed at the mudline, would be prohibitive to transport and support. Blowout preventers are, therefore, located at the wellhead, rather than on the rig, allowing the use of a low pressure riser system to connect the wellhead with the drilling vessel. The low pressure riser system is subject to a pressure differential between the static head of the water surrounding the riser and the drilling mud used to resist pressure in the well. To control the well, choke and kill lines must be strung ex$ernally to the drilling portion of the riser and as part of the riser and used in combination with drill pipe located inside the drilling portion of the riser. The riser system is, therefore, a series of sets of pipe sections connected at two common connection points to other sets of similar pipe sections, forming a continuous, fluid tight set of flow conduits from the ocean bottom to a floating platform.
Because of the large distances between the floating drilling rig and the mudline wellhead and because of the movement of the rig, such a riser system and the individual sections thereof will tend to cyclically bend, even though riser tensioners and other structures are provided to minimize the load cycles and degree of bend. Fatigue failure has been experienced by riser connectors between such riser sections as the result of such movement. See, Petroleum Engineer, October, 1974, Pages 36-46; Petroleum Engineer, ..
November 15, 1974, Pages 68-74; Petroleum Engineer, December, 1974, Pages 52-65, Petroleum Engineer, January, 1975, Pages 52-60; _troleum Engineer, February, 1975, Pages 10-17;

.

1 Petroleum Enqineer, March, 1975, Pages 52-67; and Transactions of the Fortieth Annual Meeting of the Soclety of Petroleum Engineers of AIME, Paper SPE 1220.
Several'types of pipe and tool joints have been known and used before, and typlcal examples thereof are shown in:

Composite Catalog of'Oilfield Equipment and Services, 1974-75, Vol. 3, Pages 3984, 4260-64, 4987, pub-lished by World Oil;

Composite 'Catalog of Oilfield Equipment and Services, 1974-75, Vol. 2, Page 1913, published by World . Oil; ' ~' Composite Catalog. of Oilfield Equipment and Services, . 1974-75, Vol. 1, Pages 1138A-1138B, 1635-38 published by World oii; ~ ~
.
Vetco General Catalog, 1974-75, Pages 5186-89,52'04;
,_ .
' Composite Catalog of Oilfield Equi~me~t and Services, ' i972-73, Vol. 3, Pages 3192, 3284~, 3286, 3318-19, 3326, 3692-, 369 ~ 391 ~ 3914-15,-4379, 4509,'~-4520 ~23, 4529-32, 4660, published by World Oil;

Rucker Catalog of Pressure Control Equipment Motion Compensation a~d Tension Control Systems, Page 4455, ' General Catalog OCT Wellhead'Equipment 1974-75, 'Page 1954; -~

' O.C.T. Flow Fittings and Related Equipment, Page 25;

Composite Catalog of Oilfield and Equipment Services, 1972-73, Vol. 2, Pages 1856, 2246,-2416'~-2490,~-2581- 3110,'published by World Oil;

Composite Cataloq of Oilfield and ~quipment Services, ~__ 1970-71, Vol. 3, Pa~es 3514, 3600-02, 3864, 4156-58, 4667-72, 4824~'4828-32, 4885-89, published by World Oil;
Composite Catalog of Oilfield and Equipment Services, 1970-71, Vol. 2, Page 2255~ published by World Oil;' Composite Catalog of Oilfield and Equipment Services, 1970-71, Vol~ 1, Pages 245,'270,~756-5T, 87~r -99 ~ 1821,~published by World Oil;

1074;~:Z5 1 Armco National Oil Field Products Composite Catalog, 1974-75, Page 3725; ~ '.
Regan Forge & E'ngineering Company Catalog, Pages 4156-58;~
Vetco Catalog, ~-Pages 5'196-98;
, U. S. Patent Nos.:
3,853,338 -- issue~ December 10, 1974, to Wiliiam W. Wilson 3,853,339 ~ issued December 10, 1974, to William W. Wilson 3,827,728 ~ issued August 6, 1974, to J. H. Hynes;
3,844,589 ~'issued October 29, 1974, to G. E. Bram;
3,838~873 ~issued.October 1, 1974, to S. J. Gilbert;
3,844,585 ~ issued October 29, 1974, to R. E. Sands, et al;
2,825,585 ~ issued March 4, 1958, to C. L. Griffin;
3,754,609 ~- issued August 28, 1973, to W. R. Garrett;
.2,636,753 ~- issued April 28, 1953, to C. L. Griffin;
2,982,355'- issued May 2, 1961, to O. N. Rodgers;
3,345,.084'' issued October 3, 1967, to J. W. E. Hanes, "et al;
3,345,085 - issued October 3, 1967, to J. W. E. Hanes;
3,098,667 ~'issued July 23, 1963, to E. C. Greenwood;.
2,924,434'~'issued February 9, 1960, to R. R. Potter, et al;
1,539,287 ~ issued May 26, 1925, to R. A. Wilson;
1,605,314 iss.ued November 2, 1926, to R. A. Wilson;
1,507,8.77 ~ issue.d September 9, 1924, to R. A. Wilson;
1,605,315 ~ issued November 2, 1926, to R. A. Wilson;
1,614,.815 issued January 18, 1927, to R. A. Wilson;
1,62g,058~-~,issued May 17, 1927, to R. A. Wilson;
1,637,628~C issued August 2, 1927,.to Edwin C. Weisgerber;
1,668,92 ~ issued May 8, 1928, to.P. Miks;
' 1,645,032~'issued October ll, 1927, to R... A. Wilson;
' 1,671,458~7 issued May 29, 1928, to R. A. Wilson;
2,049,290 ~ issued July 28, 1936, to E. Burns, et al;
2,107,716 ~ issued February 8, 1938, to'J. C. Singleton;
2,228,243~ issued January 14, 1941, to R. C. ~aker;
3,421,580 - issued J.anuary 14, 1969, to J. H. Fowler, .
et al;
3,442,536~/ issued May 6, 1969, to J. H. Fowler;
. - ' 3,224,799 - issued December 21, 1965, to T. L. Blose, ~, et al;
3,114,566 - issued December 17, 1963, to C. J.
Coberly, et al;
2,931,670 ~ issued'April 5, 1960, to W. L..Church;
2,907,589 ~ ssued October 6, 1959, to G. S. Knox;
1,469,pO9 issued September 25, 1923, to C. Overstreet;
Canadian Patent 469,786 - issued November 28, 1950, to Louis Edmund Edwards.
None of these, however,. teaches a quick stabbing riser connector for long riser strings connecting choke and kill ` lines and pipe sections through the use of a male member, a .

74~ZS

1 female member with a nut thereabout, the members and nut being preloaded through the use of multiple broken threads on the male member and the nut. They, therefore, do not solve the problem of failure of a nut type riser connectlon because of fatigue.
Several other types of connection devices have been known and used before, and typical e~amples thereof outside the riser string or tool coupling art and not employing nuts are shown in:
U. S. Patent Nos.:
/
2,773,707 - issued December 11, 1956, to J. Fraser;
1,080,675~ issued December 9, 1913, to P. Berg;
1,019,558~ issued March 5, 1912, to K. H. Thompson;
2,283,974 ~ issued May 26, 1942, to S. V. Dillon;
1,910,161~- issued May 23, 1933, to G. G. Harrington;
725,337 ~- issued April 14, 1903, to C. H. Haeseler;
Re.21,234~ issued October 17, 1939, to W. L. Church;
~ and 2,645,438 -~issued July 14, 1953, to I. Kalikow;
183,891 ~- issued October 31, 1876, to J. G. L.
/ Boettcher;
314,783 - issued March 31, 1885, to G~ W. Beebe;
906,217 ~ issued December 8, 1908, tio E. G. Gaylord;
1,008,551~~issued November I4, 1911, to W. A. Lorenz;
1,311,145 ~ issued July 22, 1919, to W. Zeindler, et al;
222,713~ issued December 15, 1879, to W. A. Lawson;
2,039,787 ~ issued May 5, 1936, to N. O. Fogelstrom;
2,066,956'~ issued January 5, 1937, to G. H. Williams;
2,627,429 _,issued February 3, 1953, to H. C. Engelman;
290,663 - issued December 25, 1883, to D. S. Blue;
2,539,456~ issued January 30, 1951, to G. Meier;
3,275,354 - issued September 27, 1966, to W. N.
Sutliff, et al;
>3,116,g42 ~ issued January 7, 1964, to W. Morello, Jr.;
, 2,828,662 ~ issued April 1, 1958, to J. A. Antal;
Re.13,222~ issued March 28, 1911, to C. H. Chapman;

British Patent 15,375 - issued June 28, 1897, to Craig;

Swiss Patent 373,608 - issued January 15, 1964, to Auguste Ernest Chevalley; and Canadian Patent 642,982 - issued June 19, 1962, to Harl Remington.

None of these devices, however, teaches the use of a male and female member with a nut,- the members in compression and the n~t in tension. - - -- ~7~2Z5 1 Several types of pipe and equipment couplings using a male and female member in conjunction with one or more nuts, some including lugs, have been known and used before, and typical examples thereof are shown in: ' U.S. Patent Nos.:

3,~48,905 - issued November 19, 1974, to V. S. Hammer, et al;
2,295,716 ~ issued September 15, 1942, to O. C. Cox;
787,154'- issued April 11, 1905, to J. J. Delehant;
774,667 ~ issued November 8 t 1904, to W. S. Houser;
3,014,740v'- issued December 26, 1961, to J.D. Bogsian, ' ~ et al;
3,851,901 - issued December 3, 1974, to Cecil M. Sills;
3,827,732 ~issued August 6, 1974, to M. Noguchi, et al;
3,480',300 ~'issued November 25, 1969, to W.C. Jeffery, ~ et al;
2,684,860 - issued July 27, 1'954, to'A. W. Rafferty;
112,958 ~ issued March 21, 1871, to J. B. Ramp;
633,324 ~- issued September 19, 1899, to C. Luke;
1,034,781~- issued August 6, 1912, to J. Gapp;
1,853,411 ~issued April 12, 1932, to H. L. Gentry, et al; and 1,866,863 ~'issued July 12, 1932, to L. L. Richardson.

Great Britain Patent 1,109,623 - issued June 15, 1966, to Ritter Pfandler Corporation.
~one of these, however, show a rlser joint capable of high'pre-stress on mating shoulders.
Summary of the Invention The present invention uses a very simple but highly effective design for a preloaded connector to connect pipe sec-tions of a marine riser from a fixed welI head to a floating platform. It includes a male member, a female member and nut, with a platform connected to the male member for use in preloading the connector. $he nut is used to maintain abutment of hub faces of the male and female members. The present invention, while utilizing a three member connection, utilizes the members to obtain a quick stab connection. The connection, when made up, maintains a low pressure seal and inhibits fatigue failure of the connector by preloading.

1~74225 The connection is preloaded, with the nut placed under tension, so that, when load equal to the yield strength of the pipe is applied to the pipe sections, the male and female members remain abutting. Therefore, the contact between the compressed faces of the male and female members will be maintained under expected working loads on the pipe sections.
Thus, in accordance with the invention, there is provided a connector joint for use with underwater risers, including choke and kill line pipe sections and a first and a second drill string pipe section, to connect a wellhead on the ocean bottom to a floating drilling rig, comprising: a male member having means for connection to such first pipe section, said male member having a shoulder; a female member having means for connection to such second pipe section, said female member having a shoulder and an opening for telescopically receiving said male member until said male shoulder contacts said female shoulder; and compressive means for urging said shoulders together under compressive load for holding said male and female members in compression, said compressive means held in tension while said shoulders are held incompression, and said com-pressive means including a rotatable nut, and means for support-ing such choke and kill line sections while permitting rotation of said nut.
In the preferred embodiment, the low pressure seal is located to permit easy insertion and inspection. It is not subject to wear as a result of rotational forces and rubbing when the connector is preloaded.
In the preferred embodiment, the choke and kill line segments of the riser are also supported by the connector and may be attached to other choke and kill segments prior to connector preloading.

~, ~
_~

` ~74ZZ5 In the preferred embodiment, a portable, mechanical preload tool is used to preload the connector~
Brief Description of the Drawings For a further understanding of the nature and objects of the present invention, reference should be had to the following detailed description, taken in conjunction with the accompanying drawings, in which like parts are given like reference numerals and wherein:
Figure 1 is a schematic view of one installation of the apparatus of the present invention;
Figure 2 is an isometric view, partially in cross-section, of a preferred embodiment of the apparatus of the present invention showing the connector before the nut and female memb~r are joined with the male member;
Figure 3 is an exploded side view of the connector partially in cross section, partially in elevation of the -8a-,_ r~ .

~074ZZ5 1 preferred embodiment of the apparatus of the present inven-tion;
Figure 4 is a top, sectional vi-ew taken along section lines 4-4 of Figure 2 showing the locking and anti-rotation mechanism;
. Figure 5 is a side, sectional view taken along section lines 5-5 of Figure 2 showing the locking mechanism;
Figure 6 is a side cross-sectional view of an alternate nut for the connector of the preferred embodiment of the apparatus of the present invention;
Flgure 7 is a side view, partially in elevation, partially in cross-section, partially in phantom line of the preload tool of the preferred embadiment of the apparatus of the present invention;
Figure 8 is a front view of the block of the preload tool of the preferred embodiment of the apparatus of the present invention; and Figure 9 is a side cross-sectional view of the body of the preload tool of the preferred embodiment of the apparatus oE the ~resent LnventioA.

.

.

... . .

r ~7~2Z5 .
1 Detailed Description of the Preferred Embodiment -Introduction-The preferred embodiment of the marine riserconnector of the present invention may be used .to connect low.pressure marine riser sections between a floating drilling ~essel and the ocean bottom wherein it is important that the connector, using a male and female member held.by a nut, not experience fat1gue faiiure under load oscillations of the . riser sections. A particularly important area of application of the present.inventi~n is in deep-wells having blow out equipment on the ocean bottom wherein positive seals must be kept at all times and provision must also be made for supporting well control choke and klll lines.
In the preferred embodiment of the present inven-tion, the riser section connection is accomplished through the use of a female member, attached -to one pipe sectlon, placed in compressive relationship with .a male member, attached to another pipe section, by a nut. The nut is placed in tension by a tool so that when load equal to the yield strength of the pipe is applied to the pipe sections, the male and female members remain abutting A platform connected to the male member is used, in con~unction with the too~, to preload the connection to the appropriate compressive and tensile force.
A sealing element is provided on the male member to form a seal against an internal wall of the female member to prevent leakage.
The members and nut support choke and kill line sections. .

... . .

7~ZZS

1 Structure And Its Method Of Use - Overview Of Structure -Referring to Pigure 1, there is s~own a perspective view of a riser system connecting wel,l head 10 at the ocean bottom 12 with floating drilling platform 14 at the ocean ,.
- surface 16.
Well'head 10 includes blow out preventers 18,and other equipment (not shown) necessary for the completion of , an undersea well, as is.well known in the art. Extending downwardly.from well head 10 into the ocean bottom 12 is conductor string 20 including surface casing 22 supported by ocean bottom 12 ,as shown generally by force arrows 24 of Figure 1. Located at the top of well head 10 is bottom ball joint 26 with rlser 28 attached thereto. Bottom ball 30int 26 is sized to permit rotation, of riser 28 with respect to th'e fixed p:ortion of ball joint 26. This rotation may'cause excursion of riser 28 from the vertical line 32 concentric with the well head 10, which may be measured at any point, as shown .schematically in two dimensions in Figure 1, by an angle ~ between vertical line 32 and the tangent to the riser and distance X from the vertical lin,e 32.
' , Riser 28 extends from ball joint 26 upwardly toward the ocean surface 16. Riser 28 includes large'diameter sections 34 of riser pipe (Figure 2) connected by riser connections 36. Because the blow out preventers 18 are located at the ocean bottom, for economy, ana also because no other pressure is exerted on the riser pipe, sections 34 usually have a thickness suitable only for the low pressure differentials between the hydrostatic head of the ocean and the pressure of the drilling mud (not shown~ within the ... .

1 sections 34. Riser sections 34 are of sufficient diameter to enclose the bundle of vertical flow lines used for well production, drilling, testing, and compl-etion (not shown).
The number and size of such flow lines, for example, in a production riser, depends upon the subsea manifolding scheme (not shown) and processing method. Refer~ing to Figure 2, riser 28 further includes choke line 38 and kill line 40 rising from well head 10 to the surface 16 of the ocean.
These lines are of suitable thickness for the containment of high pressure fluids to control the well. Choke line 38 and kill line 40 are external to pipe sections 34.
The upper end of riser 28 terminates at upper ball joint 42. Upper ball joint 42 connects to drilling equipment 41 on floating drill rig 14 by slip joint 44 within drill well 46. Riser tensioners 48, for example, of the direct or remote actuated type, included with s~ip joint 44, are also proviaed .
Riser tensioners 48 have sufficient strength to maintain the tension of riser 28 under gravity force indicated by force arrow 49 acting on the center of gravity 51, under buoyant forces acting on the center of buoyancy (not shown), and under wave and current action on the riser 28 and the floating drilling rig 14, as indicated by force arrows 50 and 52, respectively. The resultant horizontal force of forces 50, 52 is indicated by force arrow 54 acting on the center of gravity 51.
Referring to Figure 2, riser connector 36 com-prises three substantially coaxial components: male mem-ber 62, female member 64, and nut 74. When connector 34 is assembled, male member 62 and female member 64 abut, 1~7~225 1 with shoulder 66 of second counterbore 168 of female member 64 in contact with the surface 70 of male extension 120 of male member 62. Aiso, when connector 36 is assembled, sur-face 68 of female member 64 is in close proximity to shoulder 72 of male member 62. Male extension 120 is further provid,ed with O-rings '136 to sealingly engage interior wall 169 of second counterbore 168 of female member 64. Nut 74 has lugs 92 with internal shoulders 76 abutting inclined surface 80 of male member 62 when connector 26 is assembled. Nut' 74 further includes internal shoulder 78 abutting external shoulder 82 of female member 64 when connector 36 is assembled.
Upper inner surface ,180 of beveled section 101 of nut 74 is in contact with surface 157 of female member 64.
- Male Member Structure - , ' Referring to Figure 3, there is shown male member 62 having~male extension 120, body section 122, including lugs 88 and body 84, taperied section 124 and pipe mating section 106. 'Male extension 120 includes upper surface 70 . . .
beveled at 71. ,Male extension 120 joins body 84 at shoulder 126.' The length of male extension 120 from surface 70 to shoulder 126 is approximately equal to the length of second . .
counterbore 168 of the female member 64 from shoulder 66 ~o 'surface 68 (Fig. 2). The width of surface 70 is substantially , equal to the width of, shoulder 66 of'female member 64 (Fig. 2).
Male extension 120 also includes 0-ring groves 132, 134 sized to receive O-rings 136 therein.

- Lugs 88 include front face 144 and straight sides 138, 140 of unequal length adjoining front face 144 and body 84. Side 140 is ionger than side 138'thereby forming lower inclined surface 80. The upper inclined corners 142 of '' 74;~Z5 sides 138, 140 are beveled inwardly toward and connecting to top surface 72. Front fa~e 144 of lug 88 has inwardly beveled upper corner portnon 146 attaching to and completing the boundary of top surface 72. Facing sides 138 and 140 of adjacent lugs 88 are separated to form slots 148. The width of slots 148 is sized to permit passage of lugs 92 of nut 74 between sides 138, lo of adjacent lugs 88. Below lower inclined surfaces 80, body 84 further includes lower surface 150 of approximately the same length as the face 208 of lugs 92 of nut 74. Pipe mating section 106 is of substantially the same radius as pipe sections 34, and has edge 107 and bevel 128 shaped to attach by welding to a pipe section 34 (Fig. 2). The thickness of the body 84 of male member 62 measured from inner surface 400 to surface 148 is, for example, 2.00 inches for a pipe thickness of .4375 inches. The lug thickness is for example, .9 inches for the same pipe thickness.
- Female Member Structure -Referring to Figure 3, there is shown femalemember 64 having pipe mating section 152, inclined portion 154, body 156, and nut support section 158. Pipe mating section 152 includes bevel 160 and planar surface 162 shaped to attach by welding to a pipe section 34 (Fig. 2). Bore ~66 is formed by drilling, rolling or other process in female member 64 approximately parallel to surface 152.
Counterbore 168, larger than bore 166 and having interior wall 169, is formed by drilling, rolling or other process in surface 68. Body 156 is substantially cylindrical, having smooth side 157 of approximately the same length as the length of inner face 180 of beveled section 101 of nut 74.
Nut support section 158 is located at the lower end of body section 156 forming shoulder 82.

1 Outward facing shoulder 82 is of substantially the same width as internal shoulder 78 of nut 74. Nut support section 158 further includes substantially cylindrical outer surface 159. Wall 169 lS substantially parallel to surface 159.
Counterbore 168 extends only partially into nut support section 158 forming shoulder 66 with bore 166. The end 170 of counterbore 168 opposite shoulder 166 is beveled outward sufficiently such as, for example, fifteen degrees from the vertical, to cooperate with bevel 71 o~ male member 62 for insertion of male extension 120 into counterbore 168.
-Nut Structure-Referring to Figure 3, there is shown nut 74 having . tapered lugs 92, body 100 and and beveled section 101.
Bore 180 is formed by drilling, rolling or other means in beveled section 101. Upper, inner edge 182 of bore 180 is beveled to facilitate easy w;thdrawai of engagement of nut 74 from female member 64. Bore 180 includes O-rlng groove 184 sized to receive O-ring 186 therein to sealingly engage outer surface 157 of female member 64.

Beveied section 101 further includes outwardly facing conical section surface 181 with oppositely positioned eyebolt sockets 185 (Figure 6) therein of sufficient width to support eyebolts tnot shown) for handling nut 74. Beveled section 101 may also have grease fitting 183 formed therein by drilling or other means through conical surface 181 and shoulder 78 for lubricating shoulder 78, if desired.
First counterbore 188-of larger diameter than and substantially coaxial with bore 180 is formed by drilling, roll-ing or other means in beveled section 101 and body 100. Shoulder 78 is thereby formed between bore 180 and first counterbore - 188. Fi;rst counterbore 188 includes inner wall 164. Beveled 1 edge 190 is also formed at the inner end of shoulder 78 to facilitate insertion of female member 64 into bore 180.
First counterbore 188 includes groove 192 sized to receive O-ring 194 ~herein to sealingly engage outer surface 159 of female member 64.
Second counterbore 196 is formed by drilling, rolling or other suitable means through lower surface 198 of nut 74. It is of larger diameter and substantially coaxial with first counterbore 188. Second counterbore 196 is bounded by inner wall 204 of cylindrical body 100 of nut 74. Second counterbore 196 forms rounded shoulder 200 at the boundary between first counterbore 188 and second counterbore 196.
Beveled edge 202 is formed at the inner end of shoulder 200 to facilitate insertion of female member 64 into nut 74. Body portion 100 further includes beveled lower portion 203. The thickness of nut 74, measured from inner surface 204 to the outer surface 205, may be, for example, 1.75 inches for a pipe thickness of .4375 inches.
The portion of body 100 between shoulder 78 and sur-face 76 is of sufficient length to permit the engagement of shoulder 78 with shoulder 82 of female member 64 and the engage-ment of surface 76 with surface 80 of male member 62 without the engagement of shoulder 200 with surface 72 of male member 62.
Lugs 92 are located at the end of body 100 opposite beveled section 101. Lugs 92 are shaped by milling or other means. Upper surfaces 76 of lugs 92 are inclined.
Upper surfaces 76 are pitched to mate with surfaces 80 of lugs 88 of male member 84 and urge surfaces 80 upward such as, for example, one one-thousandth of an inch compres-~074ZZ5 1 sive axial movement of surface 80 for one-quarter inch rotational movement of lugs 92.
Lugs.92 also include side surfaces 206 and inward facing surface 208. Surfaces 206, 208 are substantially vertical, terminating at the lower end at lug projection portion 210. Inward facing surface 2~8 also terminates at beveled surface 211 directly below upper surface 76.
Lug projectlon portion 210 extends below beveled lower portion 203. It includes outward facing end 212 of substantially the same slope as beveled lower portion 203.
Lug projection portion 210 further includes substantially vertical sides 214. It also includes inward facing chamfered surface 2L6 to facilitate.the engagement of nut 74 with female member 64. The sides and ends of lug projections 210 form downward facing suxface 96.
, - Locking Structure - :
Referring now to Figures 2, 4, 5, 6, opposite facing holes 218 of suitable size to receive threaded bolt lock 220 are drilled and tapped through body 100 of nut 74. The holes 218 are circum,ferentially separated on body lpO by approxi-mately 180. Threaded bolt lock 220 includes. a head 222, a threaded section 224, and a lug 226. Head 222 may be of any shape, such as, for example, a hexoganal shape. Threaded section 224 has a thread pitch matching the thread pitch .of hole 218 and connects lug 226 with head 222. Lugs.226 are located with respect to lugs 92 to determine the pre].oad amount of compres~sion between male and female members 62, 64 and the tensile load on nut 74. The position of lug 226 relative to lug 96 may be.set, for example, to cause- a preload on the connection requiring an expected working load on pipe sections .. . . .

1 34 approximately equal to the yield strength of pipe sections 34 before surface 68 separates from surface 126. Threaded section 224 may also include a Teflon ring or insert (not shown) for preventing rotation caused by vibration.
Referring to Figure 4, nut 74 is further provided with lock holders 228 in holes 230 or holes 231 (Fig. 6).
Lock holders 228 are positioned in holes 230,-231 drilled into, but not through, body 100. The holes 230, 231 are separated along the circumference of body 100 by approximately 180. Lock holder 228 includes spring 232 held in hole 230, 231 by threaded assembly 236. Plunger 238 of, for example, square cross section, is transvérsely, telescopically engaged with threaded assembly 236. It is at~ached to spring 232 by nuts 234. Hole 230, 231 is fixed in circumferential relation to hole 218 so that bolt head 222 will overlap the corners of plunger 238 during locking engagement thereby preventing rotation of bolt head 222.
- Alternate Nut Structure -An alternate nut configuration is shown in Figure 6. This structure eliminates seals 186, 194, changing the .
shape of surface 164 to llghten the weight of the nut.
Referring now to Figure 6, there is shown nut 240 having tapered lugs 92 attached to body lOO, beveled section 101, and in-clined portion 242 having substantially the same slope as the beveled outer surface 181 of beveled section 101.
Bore 180 is formed by drilling, rolling or other means in beveled section 101. Upper inner edge 244 of bore 180 is beveled to facilitate withdrawal of engagement of nut 74 from female member 64 while eliminating some weight.
Beveled section 101 further i-ncludes outwardly facing conical section surface 181 with oppositely positioned ~074ZZS
1 eyebolt sockets 185 therein of sufficient width to support eyebolts~(not shown) for handling nut 74.
Conical shaped section 242, substantially coaxial to bore 180, with sloped inner sides 244 of larger diameters than bore 180,, is formed adjacent to beveled section 101. Outer surface 248 of conical shaped section 242 is of substantially the same slope as surface 181 thereby forming combined sloped surface 181, 248. Shoulder 78 is thereby formed between bore 180 and conical section 242. Beveled edge 246 is also formed at the inner end of shoulder 78 to facilitate insertion of female member 64 into bore 180. . .
Second counterbore 196 is formed through lower surface 198 of nut 240. It is of larger diameter and substantially coaxial with conical section 242. Second counterbore 196 is bounded by inner wall 204 of cylindrical body 100 of nut 240. Body portion 100 further includes beveled lower portion 203. The thickness of nut 74, measur~d from inner surface 204 to the outer surface 205, may be, for example, 1.75 inches for a pipe thickness of .4375 inches.
The portion of body 100 between shoulder 78 and surface 76 and between surface 76 and sloped sid~s 244 of conical section 242 is of sufficient length to permit the engagement of shoulder 78 with shoulder 82 of female member 64 and the engagement of surface 76 with surface 80 of male member 62 without the engagement of sloped sides 244 with surface 72 of male member 620 Lugs 92 are located at the end of body 100 opposite conical section 242. Lugs 92 are shaped by milling or other means. Upper surfaces 76 of lugs 92 are inclined and ~0 attached to inner wall 204 of body 100.

107~;~Z5 Upper surfaces 76 are pitched to mate with surfaces 80 of lugs 88 of male member 84 and urge surfaces 80 upward such as, for example, one one-thousandth of an inch compressive axial movement of surface 80 for one-ql:larter inch rotational movement of lugs 92.
. Lugs 92 also include side surfaces 206 and inward facing surface 208. Surfaces 206, 208 are substantially vertical, termlnating at the lower end at lug projection por-tion 210. Inward facing surface 208 also terminates at beveled surface 211 directly belo,,w upper surface 76.
Lug projection portion 210 extends..below beveled lower portion 203. It includes outward facing end 212 of substantially the same slope as beveled lower portion 203. Lug projection portion 210 further includes substantially vertical sides 214. It also includes inward facing, chamfered .surface 216 to facilitate the engagement of nut 74 with female member 64.
The sides and ends of lug projections 210 form downward facing surface 96. , Opposite facing holes 218 of suitable size to receive threaded bolt lock 220 are driLled and. tapped through body .
100. The holes 218 are circumferentially separated on body 100 by .approximately lB0. The. thr.eaded bolt lock 220 and lock holder 228 are the same structure as.previously described, except that holes 230 are positioned above holes 218 instead of their being in approximately the same horizontal plane.
-Kill and Choke Line Support Platform Structure-Referring to.Figure 2, there are shown two sections of choke line 38 and kill line 40 having beveled ends 258, 260 respectively at *heir upward end and collars 262, 264 respectively at their lower end. These sections are suspended in fixed - relation to male member 62 hy lower platform 250~ Collars ~0742;25 1 262, 264 have openings 266, 268 respectively therein to telescopically receive, by screw connection or other suitable means, beveled ends 258, 260 respectively.
Lower platform 250 comprises lower ring 252 telescopically engaging pipe section 34. Lower ring 252 is connected by welding or other suitable means (not shown) to pipe mating section 106 of male member 62. LoweE platform 250 further comprises horizontal member 256. Horizontal member 256 has an opening cpaxial with lower ring 252 and of sufficient size to telescopically receive pipe mating section 106 therein. Horizohtal member 256 is connected by welding or other suitable process (not shown) to lower ring 252.
Openings 254 are provided in horizontal member 256. Openings 254 are dimensioned to receive choke and kill Iines 38, 40 therein. Lower platform 250 further comprises reinforcing members 270 positioned at the intersection 272 of lower ring 252 and horizontal mémber 256 by welding or other suitable process. Members 270 are dimensioned to distribute force moments from loads on horizontal member 256 to lower ring 252 without buckling.
The sections of choke line 38 and kill line 40 are also suspended in fixed reiation to female member 64 and nut 74 by middle platform 274, upper platform 276, pipe guide 278, and pipe nut 280.
Middle platform 274 comprises horizontal body portion 282 having center opening 283 therethrough substantially coaxial with nut 74. Center opening 283 is dimensioned for telescopically, rotatably receiving beveled lower portion 203 of nut 74 therein. Center opening 283 includes upwardly facing inner beveled edge 288-of slope substantially the 1 same as the slope of beveled lower portion 203 of nut 74.
The largest diameter of beveled edge 288 is less than-the diameter of middle body portion 100 of nut 74. Horizontal body portion 282 also has two extensions 284 thereon.
Extensions 284 have openings 286 therein. Openings 286 are dimensioned to permit the telescopic insertion of choke and kill lines 38, 40 in the openings 286 but not permit collars 262, 264 to pass therethrough.
Upper platform 276 comprises horizontal body portion 290 having center opening 293 therethrough substanti-ally coa~ial with nut 74. Center opening 293 is dimensioned for telescopically, rotatably receivlng outwardly facing conical surface 181 of nut 74 therein. Center opening 293 includes downwardly facing inner beveled edge 298 of slope substantially the same as~the slope of outwardly facing conical surface 181 of nut 74. The largest diameter of beveled edge 298 is less than the diameter o'f middle body portion 100 of nut 74. Horizontal body portion 290 also has -two extensions 294 thereon. Extensions 294 hav'e openings 296 therein~ Openings 296 are dimensioned to permit the tel~scopic insertion of cho~e and kill lines 38, 40 in the ; openings 286 but not permit nuts 280 therethrough.
The smallest inner diameters of beveled sections 288, 298 are dimensioned to permit relative travel of nut 74 with respect to platforms 274, 276'for insertion of ends 258, 260 into openings 266, 268 respectively of collars 262, 264 respectively after nut lugs 92 have passed through slots 148.
Pipe guide 278 comprises horizontal body portion 300 having center opening 303 therethrough substantially .. ' - .

1 coaxial with female member 64. Opening 303 is dimensioned to permit telescopic insertion of pipe mating section 152 of female member 64. Horizontal body portion 300 is connected to pipe mating section 152 of female member 64 by welding or other suitable means. Pipe guide 278 also has two extensions 304 thereon. Extensions 304 have outwardly facing arcuate sections 306, including retainer fingers 308 with a radius of curvature sufficient to permit close fitting of choke and kill lines 38, 40 therein.
0 . Pipe nuts 280 have cylindrical shapes with bores 309 .therethrough. Bores 309 are dimensioned to permit the telescopic insertion of choke and kill lines 38, 40 therethrough.
Pipe nuts 280 are of a thickness permitting support of the weight of the choke and kill line sections 38, 40 thereon.
The weight of the choke and kill lines 38, 40 is transmitted by nuts 280 to horizontal member 290 supporting nuts 280.
. Nuts 280 are attached to choke and kill lines 38, 40 by screw connection, welding or other suitable means. The location of.such attachments is at a point that maintains 20 . the distance between upwardly facing shoulders 310 of coliars 262, 264 and dow~wardly facing shoulders 312 of pipe nuts 280 approximately equal to the distance between downwardly facing surfaces 314 of extensions 284 and the upwardly facing surfaces 316 of extensions 292.
-Make-up Tool-Referrin.g now to Figures 7, 8, and 9, there is shown make-up tool 318 used for forcing should~r 76 of lugs 92 of nut 74 in contact with surface 80 of lugs 88 of male member 62 to preload connection 36. Make-up tool 318 comprises . lug holder 320, screw pin 322, and block 324.

107~ZZ5 1 Lug holder 320 has lower portion 326 and upper portion 334. Lower portion 325 includes a threaded bore 328 extendlng longitudinally therethrough. Smooth counterbore 330 is formed substantially coaxial with bore 328 by drilling or other means. Counterbore 330 is of larger diameter than bore 328 forming thread shoulder 332 therebetween. Lug holder 320 also includes corner section 333 which is a cut out portion of 'lower section 326. It has horizontal surface 336 and vertical surface 338. Threaded bore 328 terminates at vertical surface 338.
Upper portion 334 includes open rectangular cut out 340 having vertical load bearing side 342, vertical non-load bearing side 345, and horizontal upward facing bottom 347. The length of vertical sides 342, 345 and the width of bottom 347 are such that lug 92 may fit loosely into open rectangular cut out 340.
Screw pin 322 includes head 343 suitable for mechanical or hydraulic turning, such as, for example, a hexogonal head. Screw pin 322 also includes smooth cylindri-cal body 344 attached to and substantially coaxial with head 343. Body 344 is dimensioned to permit telescopic enclosure within counterbore 330 but not pass beyond shoulder 332.
Screw pin 322 further includes smooth reduced diameter section 346 attached to and substantially coaxial with body 344. Substantially curved shoulder 348 is formed at the connection between cylindrical body 344 and section 346.
Reduced diameter section 346 is dimensioned to permit its passage telescopically within the inner diameter of the thread~ of threaded section 328. Screw pin 322 also includes threaded b'olt 350 having thread of the same pitch as threaded ~L074ZZS
section 328. Threaded bolt 350 is attached to and substantially coaxial with reduced diameter section 346.
Threaded bolt 350 is dimensioned and pitched to pass through smooth section 330 and engage threaded section 328. Screw pin 322 further includes bolt extens'ion 352 attached to and substantially coaxial with threaded bolt 350. Bolt extension 352 is' dimensioned to permit lt to telescopically pass within the inner diameter of the threads of threaded section 328.
- Block 324 comprises cylindrical extension section '' 354 attached by swedge section 356 to main body 358. The diameter of extension section 354 is such that it may be inserted within holes 254 of horizontal member 256 of lower , pLatform section 250. Main body 358 includes upper horizontal surface 368, upper vertical sides 360, lower be~eled sides 362, and horizontal bottom 364. Horizontal bottom 364 con-- nects to swedge section 356. Main body 358 further includes partial bore 366 having face 367 at its interior end. Face 367 and bore 366 are positioned in block 324 to be substantially , coaxial with bore 328 when horizontal surface-364 is in substan-tial contact with horizontal member 256 and cylindrical20 extension secti,on 354 is in hole 254. Bore 366 is dimensioned to telescopically receive bolt extension 352 but not threaded bolt 350. The length of bolt extension 352,is greater than the depth of partial bore'366 'of block 324. The height from horizontal surface 364 to horizontal surface 368 is substantially equal to the length of vertical side 338 of lug holder 320.
The width of horizontal surface 364 is such that horizontal ' surface 364 does not extend into hole 254. During use of the tool, block 324 is held in fixed relation to platform 250 by engagement of extension 354 with the sides of hole 254.
, The overall length of bolt 322 from shoulder 348 to ~ - ) 1 the outward facing end of bolt extension 352 is such that - when block 324 is fixed with respect to platform 250 and shou~der 348 contacts with shoulder 332, through rotation of head 343, holder 320 will have moved, such as, for example, one-quarter of an inch, with respect to block 324. The distance of the movement of holder 320 relative to block 324 must be such as to force shoulder 76 of lug 92, through load surface 342, to climb surface 80 and preload the connection to the desired value ~et by the position of locks 220.
-Materials of Construct;on and Coatings-Nut 74, male member 62, and female member 64 are usually made of alloy steel.
Further, parts in sliding contact should be of different hardness to prevent galling. Bearing in mind the I principle that a chain is no ~tronger than its weakest link, I the material~ for the nut 74, male member 62, and female member 64 should be chosen to carry the desired preload. For example, the preload may be set so that the pipe yields in j tension before the connector face~ 68, 126 move apart, thereby in~uring that the connector will be at least as strong as the pipe. For the preload criteria given in this example and presuming riser sections 34 comprise pipe whose sizé is eighteen and three-fourths inches by seven-sixteenth inch wall thickness and whose composition has a yield strength of 52,000 pounds per square inch, a suitable selection for the yield strength of ~he nut would be 120,000 pounds per square inch and for the yield strength of the male member 62 and female member 64 would be 80,000 pounds per square inch.
-Method of Use-In ~ssem~linq connector 36, lower platfonm 250, / f ~74ZZ5 1 with holes 254 telescopically receiving and supporting choke line 38 and kill line 40, is attached to male member 62. Pipe mating section 106 of male member 62 is then attached by weld-ing or other means to lower pipe section 34 (Figure 2). Female member 64 is telescopically inserted within beve.led section 101 -of nut 74 until surface 78 of nut 74 comes to rest on surface 82 of female member 64 and is held there by gravity thereby activating seals 186, 194. Pipe mating section 1~2 of female . member 64 is connected by welding or other means to the upper pipe section 34.
Upper platform 276 is moved along nut 74 until surfaFe 298 meets surface 181 preventing further downward movement of upper platform 276. Choke line 38.a.nd kill line 40 are then inserted into holes 286, 296 of middle platform 274 and upper platform 276 respectively until surfaces 310 of collars 262, 264 respectively contact surfaces 314, 315 respectively of middle platform 274. Middle platform 274 is then moved along nut 74 until surface 288 meets surface 203.
Male member 62 is thereby stabbed into nut 74 while ends 258, 260 are inserted into holes 266, 268 respectively. Adjacent sections 38 and 40 are then attached by welding or other suitable means, completing the make up of the choke line 38 and kill line.40 sec-tions. Nut 74 is then aligned so that lugs 92 are opposite slots 148 and then lowered over male member 62, making a quick stab connection. Nuts 280 are then partially tightened to hold choke line 38.and kill line 40 in place, thereby fixing the relative position of middle pIatform-274 with respect to upper platform 276. Nuts 280 are adjusted to give sufficient slack to permit completing the make-up of the connections. In this manner, platforms 274, 276 are prevented from fa.lling off nut 74 while 1 permitting nut 74 to rotate with respect to platforms 274, 276.
Pipe guide 278 is attached by welding or other means to pipe mating section 152 of female member 64 with choke line 38 and kill line 40 fitting against outwardly facing arcuate surfaces 306 of extensions 304. . ~ . .
. Nut 74 is then rotated relative to platforms 250, 274, 276 and members 62, 64 until lugs 92 contact lugs 88.
Make-up tools 318, may then be located at opposite sides of nut 74 and employed to drive nut 74 to.a preloaded condition.

To install tools'318, extensions 354 of block 324 of tools 318 are inserted into two holes 254 of lower-~platform 250 circumferen-.tially spaced apart by 180. Lug holders 320 are installed with opposite .facing lugs 92 bounded by cut outs 340. Screw pin 322 is inserted into counterbore 330 for each and threaded in bore 328 until extension 352 contacts the opposite face 367 of block 324. Force application means (not shown) is then applied to head 343, forcing extension 352 against face 367 and surface 342 of upper portion 334 against side 206 of lug 92. This force will ro.tate nut 74 clockwise (as viewed .from above the 20 female member 64) relative to the rest of the assembly. As shoulder 76 climbs surface 80, the connection will tighten.
Nut 74 is thus placed in tension while male 62 and female 64 .
members are placed in compression, thereby preloading connector 36. The vertical orientation of surfaces 206, 342 prevents a horizontal component of force from being introduced to the connection through the lugs at the location of the make-up tool.. ..
After the connector 36 has been preloaded to the desired load set by the location of locks 220, threaded sections 224 are rotated by head 222 through holes 218 of nut 74. Lugs .

l 226 of screws 220, spaced 180 apart, thereby engage the sides 138 of lugs ~8 and prevent any counter clockwise movement of the nut 74 relative to the male member 62. Safety latches 228 are then released to prevent the locks 220 from completely backing out. After the nut 74 is lockéd in place, the make-up tools 318 may be removea.
~ he connector 36 is disconnected by first disengagi~g latch 228 and lock bolt 220. The make-up tool 318 is installed as previously described but oriented in the opposite direction for locking. The make-up tool 318 is then operated as previously described until nut 74 can be rotated by hand to the position where lugs 92 align with slots 148 and can be withdrawn. The choke 38 and kill 40 lines should also be disconnected before the components of the connection are disengaged.
Although the system described in detail supra has been found to be most satisfactory and preferred, many variations in structure and method are possible. For example, hydraulic actuation of nut 74 to cause engagement of lugs 88 with lugs 92 may be used. A gear mechanism with a rachet ~0 mounting could be used to preload the connection 36. Male member 62 and female member 64 could be inverted. Any materials having sufficient yield factors could be used based on the criteria previously discussed. The lock may be two tabs with a bolt therebetween. Also, a hydraulic driven tool may be used for actuation of nut 74 to cause engagement of lugs 88 with lugs 92. The hydraulic tool would have two hydraulic actuators mounted on a U-shaped frame that could be placed around the nut 74. The U-shaped frame would have a pin in each leg to fit in two holes 254 of platform 250 circum-ferentially spaced apart by 180. The hydraulic actuators would grasp the nut 74 at opposite facing lugs 92. One 1 actuator would pull while the second would push on the lugs 92 to rotate the nut 74 cld~ckwise relative to the rest of the assembly.
The above are merely exemplary of the possible changes or variations.
Because many varying and different embodiments mày be made within the scope of the inventive concept herein taught and because many modifications may be made in the embodiment herein detailed in accordance with the descriptive requirements of the law, it should be understood that the details herein are. to be interpreted as illustrative and not in a limiting sense.
What is claimed as invention is:

- 3~-

Claims (13)

1. A connector joint for use with underwater risers, including choke and kill line pipe sections and a first and a second drill string pipe section, to connect a wellhead on the ocean bottom to a floating drilling rig, comprising:
a male member having means for connection to such first pipe section, said male member having a shoulder;
a female member having means for connection to such second pipe section, said female member having a shoulder and an opening for telescopically receiving said male member until said male shoulder contacts said female shoulder; and compressive means for urging said shoulders together under compressive load for holding said male and female members in compression, said compressive means held in tension while said shoulders are held in compression, and said compressive means including a rotatable nut, and means for supporting such choke and kill line sections while permitting rotation of said nut.
2. The connector of claim 1 wherein there is further included seal means for fluid tight flow connection of said male and female members, said seal means being actuated independently of said compression means.

31.
3. The connector of claim 1 wherein said male member and said female member are free of inter-engageable surfaces between said shoulders that could prevent tensioning of said compressive means over the full axial extent of said compressive means.
4. The connector of claim 1 wherein said nut has a plurality of lugs and said male member has a plurality of lugs and said lugs include means for coacting with each other for holding said male and female members in compression.
5. The connector of claim 4 wherein said lugs form two sets of partial threads.
6. The connector of claim 1 wherein said nut has a plurality of lugs and said female member has a plurality of lugs and said lugs include means for coacting with each other for holding said male and female members in compression.
7. The connector of claim 1 wherein said compressive means includes means for preloading said shoulders to prevent separation of said shoulders upon the application of a force to such drill string pipe sections equal to the yield strength of such drill string pipe sections.
8. The connector of claim 1 wherein said nut includes means for rotationally moving said nut and there is further included a tool having means for actuating said means for rotating the nut.

32.
9. The connector of claim 8 wherein said actuating means permits continuous varying of said compressive load.
10. The connector of claim 8 wherein said nut further includes:
a lock, said lock being located on said nut; and means for actuating said lock and preventing movement of said nut.
11. The connector of claim 10 wherein said lock is independent of said compressive means and said tool.
12. The connector of claim 1 wherein said compressive means urges said shoulders together without rotational movement of such choke and kill line pipe sections.
13. The connector of claim 1 wherein the locus of points of contact between said female member and said male member in a plane perpendicular to the axis of said female member and male member forms a ring whose thickness is substantially equal to the thickness of said shoulder of said male member.

33.
CA275,875A 1977-04-01 1977-04-07 Marine riser connector Expired CA1074225A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US78377877A 1977-04-01 1977-04-01

Publications (1)

Publication Number Publication Date
CA1074225A true CA1074225A (en) 1980-03-25

Family

ID=25130366

Family Applications (1)

Application Number Title Priority Date Filing Date
CA275,875A Expired CA1074225A (en) 1977-04-01 1977-04-07 Marine riser connector

Country Status (1)

Country Link
CA (1) CA1074225A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107143291A (en) * 2017-07-13 2017-09-08 安世亚太科技股份有限公司 Counter-bending booster
GB2560931A (en) * 2017-03-28 2018-10-03 Statoil Petroleum As Connector

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2560931A (en) * 2017-03-28 2018-10-03 Statoil Petroleum As Connector
US11346175B2 (en) 2017-03-28 2022-05-31 Equinor Energy As Connector
GB2560931B (en) * 2017-03-28 2023-01-11 Equinor Energy As Connector
CN107143291A (en) * 2017-07-13 2017-09-08 安世亚太科技股份有限公司 Counter-bending booster

Similar Documents

Publication Publication Date Title
US4097069A (en) Marine riser connector
US4330140A (en) Marine riser connector
US4693498A (en) Anti-rotation tubular connection for flowlines or the like
US4185856A (en) Pipe joint with remotely operable latch
US3948545A (en) Mechanically operated breech block
CA1086223A (en) Split-ring riser latch
US11639761B2 (en) Connector assembly and method
US4496173A (en) Threaded coupling
US4550936A (en) Marine riser coupling assembly
US8567513B2 (en) Hydraulic surface connector
US5149143A (en) Connector assembly with detachable sleeve
US9957767B2 (en) Multi-component C-ring coupling
GB2515418B (en) Seal sub system
US20070114039A1 (en) Rotatable flange adapter
US7789132B2 (en) Stripper rubber retracting connection system
US5423575A (en) Concentric riser joint with self-aligning coupling
US4863314A (en) Hydraulic stab connector, frictionless
US5236230A (en) Coupling assembly
US4534585A (en) Pipe joint locking device
NL1041835B1 (en) Running tool lock mechanism.
US3445126A (en) Marine conductor coupling
US11952853B2 (en) Subsea equipment alignment device
US4479669A (en) Pipe connector with threaded latch screws
US4522430A (en) Quick connect coupler
US5314024A (en) Angular and radial self-aligning coupling

Legal Events

Date Code Title Description
MKEX Expiry