CA1046531A - Process for producing ethanol from synthesis gas - Google Patents

Process for producing ethanol from synthesis gas

Info

Publication number
CA1046531A
CA1046531A CA218,996A CA218996A CA1046531A CA 1046531 A CA1046531 A CA 1046531A CA 218996 A CA218996 A CA 218996A CA 1046531 A CA1046531 A CA 1046531A
Authority
CA
Canada
Prior art keywords
range
reaction
rhodium
hydrogen
ethanol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
CA218,996A
Other languages
French (fr)
Inventor
Madan M. Bhasin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Union Carbide Corp
Original Assignee
Union Carbide Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Union Carbide Corp filed Critical Union Carbide Corp
Application granted granted Critical
Publication of CA1046531A publication Critical patent/CA1046531A/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/15Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively
    • C07C29/151Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases
    • C07C29/1512Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by reaction conditions
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/15Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively
    • C07C29/151Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases
    • C07C29/153Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used
    • C07C29/156Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used containing iron group metals, platinum group metals or compounds thereof
    • C07C29/157Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used containing iron group metals, platinum group metals or compounds thereof containing platinum group metals or compounds thereof
    • C07C29/158Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used containing iron group metals, platinum group metals or compounds thereof containing platinum group metals or compounds thereof containing rhodium or compounds thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

ABSTRACT

A process for the selective preparation of ethanol by continuously contacting a synthesis gas reaction mixture containing hydrogen and carbon mono-oxide with a rhodium-iron catalyst.

Description

BACKGROUND

This invention concerns the selective prep-aration of ethanol from synthesis gas. More particularly, the invention concerns reaction of carbon monoxide and hydrogen in the presence of a product-specific catalyst to produce ethanol.
The preparation of hydrocarbons and oxygenated hydrocarbons from synthesis gas (essentially a mixture of carbon monoxide with varying amounts of carbon dioxide, and hydrogen), has received extensive study and has achieved commercial adoption. Reac~ion conditions gen-erally involve temperatures on the order of 150-450C., pressures of from atmospheric to about 10,000 psig, and hydrogen-to-carbon monoxide ratios in the range of 4:1 ?0 to about 1:4 with an iron group, mixtures of metal oxides, or a noble metal group hydrogenation catalyst.
One serious disability of most synthesis gas processes has been the non-selectiv~ or non-specific nature of the product distribution. Catalysts which possess acceptable activity generally tend to give a wide spectrum of products--hydrocarbons and oxygenated hydrocarbons--having a broad distribution of carbon atom contents. This not only complicates the recovery -1- ~' :' , ;--, . . ' ~ . , . : . - .

~ o ~ 3 ~
of desired products, but results in the wastage of reactants to commercially uninteresting byproducts.
In Belgian Patent 824,822, there is described a process for the selective preparation oE two-carbon atom oxygenated hydrocarbons, namely acetic acid, ethanol, and acetaldehyde, using a rhodium catalyst. It has now been discovered that it is possible to double selectivity toward ethanol, significantly reduce the formation of acetaldehyde and acetic acid, and retain the selectivity ~ ;
toward two-carbon atom oxygenated compounds.

SUMMARY OF INVENTION

Briefly, in accordance with ~he invention, a process ~s provided for the reaction of a synthesis gas containing carbon monoxide and hydrogen to prepare ethanol, by continuously contacting the gas with a catalyst essentially comprising rhodium and iron under suitable reaction conditions to form a substantial proportion of ethanol.
The reaction is conducted at more or less con~
ventional reactive conditions of ~emperature, pressure, gas composition, and space velocity. At optimum reaction conditions there is little conversion to three carbon atom and higher hydrocarbons and oxygenated hydrocarbons;
acetaldehyde and acetic acid are relatively minor products; ` -and conversion to methane and methanol may readily be ;~
minimized. Thus, a reaction product stream is obtained from the reactor which contains a substan~ial proportion of ethanol.

- - -~

: ~ .

9~06-2 ~ 3~
DETAILED DESCRIPTION
In keeping with the invention, a synthesis gas containing carbon monoxide and hydrogen is con-tacted with a catalyst containing rhodium-iron under reactive conditions of temperature, pressure, gas composition, and, as an optional feature, space velocity to form a substantial proportion of ethanol in the reaction product stream. Overall, the reaction is conducted at reactive conditions of temperature, pressure, gas composition, and, as an optional feature, space velocity which are correlated so as to collectively produce acetic acid, ethanol, and/or acetaldehyde in an amount which is at least about 50 weight percent, preferably at least about 75~/0, of the two and more carbon atom compounds obtained by the reaction, and of those collective reaction products (that is, acetic acid, ethanol and acetaldehyde) the mole percent of ethanol produced is typically at leas~
25~/o of the total moles of such products, preferably at least 50 mole percent. The selectivity to the aforementioned two carbon products is invariably at least about 10%, and is usually upwards of about 25%; under the preferred conditions it exceeds 50~/
and, under optimum conditions, has reached 90% or more. Selectivity, or efficiency, is defined herein as the percentage of carbon atoms converted from carbon monoxide to a specified compound or compounds other than carbon dioxide.
As noted earlier, the reactive conditions of temperature, pressure, and gas composition are essentially conventional for synthesis gas conversions. ~ -Thus, existing technology and, in some instances, existing eauipment may be used to effect the reaction.

i . . . .
:
: . . : ~ .

~ 3~
The reaction is highly exothermic, with both the thermodynamic equilibria and the kinetic reaction rates being governed by the reaction tempera~ure.
Average cata]yst bed temperatures are usually within the range of about 150-450C., but for optimum com-mercial conversions are within the range of about 200-400C., for example 250-350C.
The reaction temperature is an important process variable, affecting not only total productivity but selectivity toward the desired ethanol product.
Over relatively narrow temperature ranges, as for example 10 or 20C., an increase in temperature may somewhat increase total synthesis gas conversion, tending to increase the efficiency of ethanol production but decreasing the production of acetic acid. At the same time, however, higher temperatures favor methane -;
production, and apparently methane production increases much more rapidly at higher temperatures than do conversions to the two carbon atom products. Thus, ;~
for a given catalyst and with all other variables held ;
constant, the optimum temperature will depend more on product and process economics than on thermodynamic ~
or kinetic considerations, with higher temperatures ~^-tending to increase the production of the two-carbon compounds, particularly ethanol, but increasing to an even greater extent the co-production of methane.
In the discussions above the indicated temperatures are expressed as average, or mean, reaction bed temperatures.
Because of the highly exothermic nature o~ the reaction, the temperature should be closely controlled so as not to pro- `
duce a runaway methanation, in which methane formation is increased with higher temperature, and the resulting exotherm increases the temperature further. To accomplish this, conventional temperature control techniques are .
,.

~ 31 g406-2 utilized, as for example the use of fluidized bed reaction zones, the use of multi-stage fixed bed adiabatic reactors with interstage cooling, inter-stage injection of cool gas, or relatively small (1/16th inch or less) catalyst particles placed in tube-and-shell type reactors with a coolant fluid surrounding the catalyst-filled tubes.
The reaction zone pressure is desirably within the range of about 15 psig to about 10,000 psig, economically within the range of about 300-5,000 psig. Higher reaction zone pressures increase the total weight of product obtained per unit time and likewise improve the selectivity toward two carbon atom compounds.
The ratio of hydrogen to carbon monoxide in the synthesis gas may vary widely. Normally the mole ratio of hydrogen to carbon monoxide used in . , this invention is within the range of 20:1 to 1:20, or preferably within the range of about 5:1 to about ~-1:5. In most of the experimental work reported herein ;~;
the mole ratio of hydrogen to carbon monoxide is ~ `~
somewhat less than 1:1. Increasing the ratio tends to increase the total rate of reaction, sometimes quite significantly, and has a small but favorable effect on production of two carbon atom products, but con~
currently increases selectivity to methane. Increas-ing the hydrogen to carbon monoxide ratio also favors the formation of more highly reduced products, that is, -~
ethanol rather than acetaldehyde or acetic acid.
Impurities in the synthesis gas may or may not have an effect on the reaction, depending on their nature and concentration. Carbon dioxide, normally present in an amount of up to about 10 mole percent, . .
- ~ :
- ~- : .
..... .

~ ~ 4~ ~ 3 ~ 94~6-2 has essentially no effect, If a recycle operation is conducted, in which all or part of the reacted gas is recycled to the catalyst zone, precautions are desirably taken to remove oxygenated hydrocarbons before recycling.
One of the features o~ the present invention is the recognition that a low conversion--preferably less than 20% of the CO- favors the formation or pro-duction of a substantial proportion of acetic acid, ethanol and/or acetaldehyde, generally in excess of 10% as compared with a maximum of 3.4% in the prior art. This conversion is con~eniently achiev~d by employing a high space velocity correlated with other reaction variables (e.g. temperature, pressure, gas composition, catalyst, etc.). Space velocities in excess of about 103 gas hourly space velocity (volumes of reactant gas, at 0C and 760mm mercury pressure, per volume of catalyst per hour) are generally employed, although it is preferable that the space velocity be within the range of about -~
104 to about 106 per hour. Excessively high space veloci~ies result in an uneconomically low conversion, while excessively low space velocities cause the production of a more diverse spectrum of reaction products, including higher boiling hydrocarbons and oxygenated hydrocarbons The catalyst of rhodium and iron is provided in the reaction zone by a number of techniques, or a combination of a number of these techniques. One technique is to coat the reaction zone (or reactor) walls with a combination of rhodium and iron. Another is to coat a porous screen or screens with a thin ;~
coating of a combination (or mixture) of both. Still ~ O~ ~ S 3 ~ 9~06-2 another way involves placing particles of a combina~ion of rhodium and iron in th~ reaction zone 9 generally supported by an inert porous packing material. Another way is to deposlt rhodium and iron onto a partlculate support material and place the supported rhodium into the reaction zone. Any combination of these techniques can be employed.
However, important advantages within the scope of the invention are achieved when the rhodium metal and the iron are in a highly dispersed form on a par-ticulate support. On the basis of experience to date the amount of each of the rhodium and iron on the support should range from about 0.01 weight percent to about 25 weight percent, based on the combined wëight of the metals and the support material. Prefer- ;~
ably, the amount of each is within the range of about -~
0.1 to about 10 weight percent.
A wide variety of support materials has been tested. A relatively high surface area particulate support, e.g. one having a surface area upwards of about 1.0 square meters per gram (BET low temperature nitrogen adsorption isotherm method), is preferred, desirably upwards of about 1.5 square meters per gram, although surface area alone is not the sole determinative variable. Based on research to date, silica gel is preferred as the catalyst base or support, with alpha alumina, magnesia, eta alumina, gamma aluminay and active carbon being progressively less desirable.
zeolitic molecular sieves, primarily the higher silica-to-alumina crystalline zeolites, also have promise.
The rhodium and the iron may be deposited onto -the base or support by any of the techniques commonly used for catalyst preparation, as for example impregnation ... : , 9~06-2 from an organic or inorganic solution, precipitation, coprecipitation, or cation e~change. Conveniently9 a solution of a decomposable or reducible inorganic or organic rhodium compound and an iron compound is appropriately con~acted with the support material, and the support then dried and heated~ the latter advantageously under reducing conditions, to form the finely dispersed rhodium-iron catalys~. The rhodium and the iron may be deposited concurrently or sequentially.
The invention in its various aspects is illustra-ted in the different "Series" of experimen~s presented below. In each instance it will be appreciated that the tests are exemplary only, and are not intended to -be wholly definitive or exclusive with respect to scope ~ -or conditions of the invention.
SERIES A
This Series illustrates the preparation and testing of supported rhodium iron catalysts. Reaction con~itions were 300C. and 1000 psi total pressure.
Preparation of Catalysts Catalysts tested in this study were all -~
prepared by essentially the same sequence of steps:
An aqueous solution of soluble salts of both metals in the desired amounts was impregnated on the support;
the impregnated support was carefully dried; the metal salt was reduced slowly in a flowing hydrogen atmosphere.
When metal components were impregnated as nitrate salts, a pyrolysis step preceeded the hydrogen reduction step.
In most cases9 rhodium was impregnated as a RhC13 solu-tion.
The description below illustrates this procedure for the catalyst used in Series A (rhodium and iron on Davison (TM) Grade 59 Silica &el).

~ 3 ~
Rhodium trichloride and ferric chloride were dissolved in distilled water at ambient temperature.
Davison Grade 59 Silica Gel (3-6 mesh) was placed in a vacuum ~lask. The top o~ the flask was sealed with a rubber septum, and the flask was evacuated through the side arm. A syring needle was then used to inject the rhodium and iron solution onto the evacuated support with occasional shaking of the flask. When addition was com-plete, the impregnated support was allowed to stand at one atmosphere for ca. 30 minutes. It was then carefully dried in a nitrogen atmosphere: 80C. (1 hr.); 110C.
(2 hrs.~; 150C. (2 hrs~). The dried, impregnated sup-port was placed in a quartz tube through which hydrogen was continuously passed. The temperature was raised to --450C. and held at that value for 2 hours. The reduced catalyst was cooled to ambient temperature in an atmos- ;~;
phere of flowing nitrogen.
~ ~ . . . . .
Descri~tion of Test Reactor The reactors used in these studies were bottom-agi~ated "Magnedrive" autoclaves as described in Figure 1 of the paper by Berty, Hambrick, Malone and Ullock, en-titled "Reactor for Vapor-Phase Catalytic Studies", pre-sented as Prepring 42E at the Symposium on Advances in ~;
High-Pressure Technology - Part II, Sixty Fourth National Meeting of the American Institute of Chemical Engineers (AlCHE), at New Orleans, Louisiana, on March 16-20, 1969 and obtainable from AIChE at 345 East 47 Street9 New York, N.Y. 10017. A variable speed, externally drîven fan con-tinuously recirculated the reaction mixture over the cata-lyst bed. The autoclaves used in Series A and B were in-ternally gold plated and the interior volume was about ~00 cubic centimeters. The experiments of Series C were carried out in an unplated one gallon stainless steel autoclave. The ollowing modlfications were found to acilitate operation and inhibit run-away methanation reactions.
_9_ ~ ~ 4~ ~ 3~
1. Hydrogen feed gas was introduced at the bottom of the au~oclave through the well for the shaft of the ~lagnedrive agitator.
2. Carbon monoxide feed gas was introduced through a separate port at the bot~om of the autoclave in order to avoid a hydrogen-rich zone in the autoclave.
When a carbon dioxide was fed, it was added with the carbon monoxide feed stream.
Experimental Rhodium iron catalysts supported on silica gel were tested for synthesis activity in a backmixed autoclave described above. Reaction conditions and salient features of the product distribution are described in Table I below. In all cases~ the feed gases included a quan~i~y of carbon dioxide; the nominal level of carbon dioxide in the feed was 5%
by volumeO There was no indication that carbon dioxide had nay effect on the activity or selectivity of any -of the catalysts studied.
The following procedure was used in the Tests recited in the Table below. Carbon monoxide containing a few percent carbon dioxide, and hydrogen were fed to the reactor in the desired mole ra~io from 4,500 psig headers. The carbon monoxide stream to the reactor was purified, using 1/8 inch activated carbon pellets which had been dried at 250C. in a nitrogen flow overnight. One hundred eighty milliliters (ml) of catalyst was placed in the reac~or in a perforated basket having a capacity of approximately 200 ml. The reactor was pressurized with hydrogen and the flows of carbon monoxide and hydrogen were adjusted to achieve the desired composition. During the pressurization of the reactor, the reactor temperature was adjusted to approximately 25C. below that desired for that particular run.
The pressure and the teMperature were then adjusted to ~he desired reaction condition. Approxi-mately one hour was allowed for the reactor to come to a steady state before beginning to measure actual tirne of reaction. After one hour of reaction, a sample of liquid product was collected by cooling the product-containing gas through a brine condenser at 1500 psig and then trapping the liquid product in a series of :
four traps having a capacity of approximately one liter per trap. The traps were r,laintained in a low tempera- `~
~ure bath containing a mixture of dry-ice and acetone.
The liquid products from all the traps and the condenser were then com4ined to obtain a single liquid sample, which was then analyzed and the results reported in the Table below. The non-condensable gases were r.letered through a wet-test meter to determine the volurne of gas, and a gas sample was collected to determine its composition.
Percent metal dispersion, as used herein, is defined as the percentage of metal atoms exposed on the catalyst surface as compared to the total number of metal atoms deposited. The percent metal dispersion was obtained by deterrl~ining the cheMisorption of carbon monoxide at room temperature on a clean metal catalyst ~
surface, and t'nen calculating the mlmber of exposed ~ ;
surface atoms by assuming that one carbon monoxide molecule is chemisorbed per surface metal atom. These analytical procedures can be found in S. J. Gregg and K. S. W. Sing, Adsorption Surface Area And Porosity, where C0 adsorption is described at pages 263-267 and the dynamic gas chromatographic technique is described at pages 339-343. The surface purity of the catalyst was measured by Auger Spectroscopic Analysis. The ~ .

~ 9406-2 analysis of product and unreacted gases was accomplished by the use of gas chromatographic analysis of the various liquids and gases.
Results are presented in Table I below. (In this Table, as in others herein, a single test is fre-quently the average of two or more test runs.) 4~31 ,, U~
1 . ~U~U~ 1 o ~ oC~l~ C`~ C`J
~ o~ :
a~ oo~
J- ~ r~ o ~1 o ~ .c al .C ~ ~t ~~ O O O
a) ~ ~ ' ~o ~ ~ ~o ~ oo ,1 ~ ~ 1~ 0 ~ ~

O ~~ ~OC`i ~ ~ C`~ ~ h ~1 O ~i P. ' :' ~
Q~al ~1 o ~ ~ u~ 1~ .
~ ~ O~oD ~o ~o 0 4l aJ ~ ' ,: .
,1 aJ ~ :
u~ ~ o O
,~1I ~ " "", ~1 1 0 ~ c~l ~o o ~ Io C~ O _i o ~ I ~
al .,1 c~l a~ ,~l o ~
E~ ~ rl ~1 ~1 al ~ ~ ~ II O ~
~o a~
H cr c~ o ~ ~
Z 1: ~ q Z cq ~ o~ a~ ~ç> O ~ o~ ~ O a a ~ 3 æ ~ ~ a~a~
E~ ~o~ ~ O J~
~c~ ~ 1 ~ a~o a~
I:4 W ~
~ ~ ~ O O I ~1 a ~4~ a ~ ~ .
:~ .~ ~
~ O
~ ~ O
a~ aJ c~ O

a~

1~
a~ a~
~ ~ p ~0~
v~ a~ a~
o a~
~1 a~ ^ n ~- r n ~ a~ ~

u~ ~ ~ h ~ 41 1 ~ .:
a~: ~ ~) 0 a~ :
O O o ~1 ~
o~ a~
0 J g p a~
I I ~ ~ a) a~
~ o ~ a~
_ ~ 41 t) h u~ O t~ i o ,~1 ~ o ~
~0 ~ ~
O P~ W
æ
~ 1 C~ o al.O O~ Q~
E~

~ 1 ~4~ ~3 SERIES B
This Series illustrates the employment of a somewhat hi~her temperature, 325C. Rasults are presented in Table II below ,~

~, ~ ' ... . .. ..
:, . . . . . ..

3l~4~3 ,, ~ o ..
~ ~o oo ~ ~ a) ~D O~ O
E~ ~ ~ O O
U~ ~D ~
o o r~ ~ o o o ,~ ~1 C~ ~ ,1 ~ o o o o ' :
D a~ :
~ ~ ~o o o C~i C`i C`i ~

~ U) ~i :
~ ~~ o o _~ U) U~ o o ~I C`l td o o o O :

~d ~ o ~q ~ ~ a~
~ ~ ~ o~ ~ O' '~

Z ~ ~ o H¦ i~ ~o o ~ ~
P~~ ~d co oo O' O ~
E~.,1 a) o H ~ Ul ~ C~ ~ O O
lY ~ ~ O 1 ~: Cll C)l 'I ~ 'I ~ .
~ t~ ,' ' ~ ' ~ : :
.~: ~ ~ c~ O C~
~ U~

Cq O ~ I~ ~ cr~ ~ I~ Cr~ 00 H
0~

,~ O O O O O O O O ~ ~
~ O- O O O O O O O g ~V
o o ~ h ~1 I ~ i o o llJ U~
~ .
Z

E~ 15.
, ~ ~4 ~-S 3 ~ 9406-2 SERIES C
This Series illustrates the use of higher pressures, namely 2500 psig, and similar temperature and space velocity.
Results are presented in Table III below.

, ' ' , , ' . ~ :

Id r~ J N
E~ C~

~31 o ~ ~ ~
t~ ~ ~O ~ ~ ~1 ~ ~ U~
.~ `;t ~ .

~0 ~' ' ' '~
' O
C~l ~ C~l ~1 ~ ~
I
I ~ ~ ~ ~
I ~ ~ : ' I
i a~ -~

ul ~ w ¦ r ~ I " ~
E~

~q O

~ ~1 ' ' ,, ,, o o , l $ a.
_ ~d cq ~ , ~1 o u~
u~ Ir) C~J C~J C~i N C`l C~
g C,~ ~ :
o o o o o o o o ~'~ a P o o o o o O o o a ~ o ~ ~ o u~ u~ ~ I~ O O ~ C~
r~ u~ co o~, cn cn c~ ,1 ~1 ~ a h O
c~ O
O
td ~ r~ I~ I~ r~ I'` I~ co ~ ~ C`l 'I ~ ~ ''': ' C~ ~ ~ ~ ,, .
4~ ~ ~ ~æ ~ :
o C~ C~ C~ C ~

~ o ~ o o o æ :~ ~ h h 1~ h ~J
E-l ':':': ':
.:: , ~ .
17~
~:
;,. . "

Claims (5)

WHAT IS CLAIMED IS:
1. A process for the preparation of ethanol which comprises contacting a synthesis gas containing carbon monoxide and hydrogen with a catalyst essentially comprising rhodium and iron at reaction conditions correlated to obtain the formation of ethanol and optionally acetic acid and acetaldehyde as well, in an amount which is at least 50 weight percent of the two or more carbon atom compounds obtained by the reaction, said reaction conditions comprising a temp-erature within the range of about 150-450°C, a pressure within the range of about 15-10,000 psig, and a mole ratio of hydrogen to carbon monoxide within the range of 20:1 to 1:20.
2. The process of claim 1 wherein said reaction conditions include a temperature within the range of about 250-350°C, a pressure within the range of about 300-5,000 psig, and a ratio of hydrogen to carbon monoxide within the range of about 5:1 to 1.5.
3. The process of claim 1 wherein rhodium and iron are present in amounts within the range of about 0.1 to about 10 weight percent of a support.
4. The process of claim 3 wherein said support is selected from the group consisting of alpha alumina, gamma alumina and silica gel.
5. The process of claim 1 wherein the space velocity of the synthesis gas is within the range of about 104 to 106 GHSV.
CA218,996A 1974-01-28 1975-01-27 Process for producing ethanol from synthesis gas Expired CA1046531A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US43714174A 1974-01-28 1974-01-28
US54166075A 1975-01-16 1975-01-16

Publications (1)

Publication Number Publication Date
CA1046531A true CA1046531A (en) 1979-01-16

Family

ID=27031195

Family Applications (1)

Application Number Title Priority Date Filing Date
CA218,996A Expired CA1046531A (en) 1974-01-28 1975-01-27 Process for producing ethanol from synthesis gas

Country Status (6)

Country Link
CA (1) CA1046531A (en)
DE (1) DE2503204C3 (en)
FR (1) FR2259078A1 (en)
IT (1) IT1031174B (en)
NL (1) NL7500918A (en)
SE (1) SE425238B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2546118R1 (en) * 2013-01-24 2015-11-02 Abengoa Bioenergía Nuevas Tecnologías, S.A RHODIUM CATALYST PROMOTED FOR THE SELECTIVE CONVERSION OF SYNTHESIS GAS IN ETHANOL

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2846148A1 (en) * 1978-10-24 1980-05-08 Hoechst Ag METHOD FOR PRODUCING ETHANOL FROM SYNTHESIS GAS
WO2006123158A2 (en) 2005-05-20 2006-11-23 Bp Chemicals Limited Process for the conversion of synthesis gas to oxygenates
WO2006123150A1 (en) 2005-05-20 2006-11-23 Bp Chemicals Limited Process for the conversion of synthesis gas to oxygenates
GB0510356D0 (en) * 2005-05-20 2005-06-29 Bp Chem Int Ltd Process for the conversion of synthesis gas to oxygenate

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE938062C (en) * 1943-04-01 1956-01-19 Rheinpreussen Ag Process for the production of oxygen-containing organic compounds

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2546118R1 (en) * 2013-01-24 2015-11-02 Abengoa Bioenergía Nuevas Tecnologías, S.A RHODIUM CATALYST PROMOTED FOR THE SELECTIVE CONVERSION OF SYNTHESIS GAS IN ETHANOL

Also Published As

Publication number Publication date
DE2503204B2 (en) 1976-12-23
DE2503204C3 (en) 1982-02-04
FR2259078B1 (en) 1978-07-13
AU7766275A (en) 1976-07-29
NL7500918A (en) 1975-07-30
FR2259078A1 (en) 1975-08-22
DE2503204A1 (en) 1975-07-31
SE7500856L (en) 1975-07-29
SE425238B (en) 1982-09-13
IT1031174B (en) 1979-04-30

Similar Documents

Publication Publication Date Title
US4096164A (en) Process for producing ethanol, acetic acid and/or acetaldehyde, from synthesis gas
CA1146593A (en) Process for producing two-carbon atom oxygenated compounds from synthesis gas with minimal production of methane
US4014913A (en) Process for producing oxygenated two carbon compounds
US4126645A (en) Selective hydrogenation of highly unsaturated hydrocarbons in the presence of less unsaturated hydrocarbons
CA1060467A (en) Process for producing acetic acid, ethanol, and acetaldehyde from synthesis gas
EP0031243B1 (en) Preparation of methanol from synthesis gas with promoted palladium catalysts
US4456694A (en) Catalysts for producing alcohols from olefins and synthesis gas
US4289710A (en) Process for producing methanol from synthesis gas with palladium-calcium catalysts
US4235801A (en) Process for producing ethanol from synthesis gas
US4244889A (en) Production of acetamides with rhodium-manganese catalysts
US4136104A (en) Production of acetic acid
US4327190A (en) Process for the production of C1 to C4 oxygenated hydrocarbons
US4162262A (en) Process for producing two-carbon atom compounds from synthesis gas with minimal production of methanol
CA1225664A (en) Process for the production of oxygenated hydrocarbons by the catalytic conversion of synthesis gas
CA1046531A (en) Process for producing ethanol from synthesis gas
US4246186A (en) Process for producing acetic acid, ethanol, and acetaldehyde from synthesis gas
EP2217552B1 (en) Methods for the removal of impurities from polymerization feed streams
US4471075A (en) Process for producing two-carbon atom oxygenated compounds from synthesis gas with minimal production of methane
US4446251A (en) Process for producing two-carbon atom oxygenated compounds from synthesis gas with minimal production of methane
US4250116A (en) Production of methyl and ethylamines with rhodium-iron catalysts
EP0021443B1 (en) Process for producing two-carbon atom oxygenated compounds from synthesis gas with minimal production of methane
JPS6113689B2 (en)
JPS6054931B2 (en) Method for producing 1,1,1,3,3,3-hexafluoro-2-propanol
JPS6136730B2 (en)
CA1340441C (en) Water addition for increased co/h2 hydrocarbon synthesis activity over catalysts comprising rhenium promoted cobalt on titania