BRPI0507362B1 - HYDROCARBON ALCHILATION USING A NANOCRISTALINE ZEOLIT CATALYST - Google Patents

HYDROCARBON ALCHILATION USING A NANOCRISTALINE ZEOLIT CATALYST Download PDF

Info

Publication number
BRPI0507362B1
BRPI0507362B1 BRPI0507362-6A BRPI0507362A BRPI0507362B1 BR PI0507362 B1 BRPI0507362 B1 BR PI0507362B1 BR PI0507362 A BRPI0507362 A BR PI0507362A BR PI0507362 B1 BRPI0507362 B1 BR PI0507362B1
Authority
BR
Brazil
Prior art keywords
zeolite
process according
catalyst
alkylation
alkylated
Prior art date
Application number
BRPI0507362-6A
Other languages
Portuguese (pt)
Inventor
Xingtao Gao
Johannes Hendrik Koegler
Lawrence L Murrell
Philip J Angevine
Original Assignee
Abb Lummus Global Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Abb Lummus Global Inc filed Critical Abb Lummus Global Inc
Publication of BRPI0507362A publication Critical patent/BRPI0507362A/en
Publication of BRPI0507362B1 publication Critical patent/BRPI0507362B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/085Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
    • B01J29/088Y-type faujasite
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/54Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition of unsaturated hydrocarbons to saturated hydrocarbons or to hydrocarbons containing a six-membered aromatic ring with no unsaturation outside the aromatic ring
    • C07C2/56Addition to acyclic hydrocarbons
    • C07C2/58Catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/084Y-type faujasite
    • B01J35/40
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/04Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof using at least one organic template directing agent, e.g. an ionic quaternary ammonium compound or an aminated compound
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/20Faujasite type, e.g. type X or Y
    • C01B39/24Type Y
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/54Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition of unsaturated hydrocarbons to saturated hydrocarbons or to hydrocarbons containing a six-membered aromatic ring with no unsaturation outside the aromatic ring
    • C07C2/64Addition to a carbon atom of a six-membered aromatic ring
    • C07C2/66Catalytic processes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C6/00Preparation of hydrocarbons from hydrocarbons containing a different number of carbon atoms by redistribution reactions
    • C07C6/08Preparation of hydrocarbons from hydrocarbons containing a different number of carbon atoms by redistribution reactions by conversion at a saturated carbon-to-carbon bond
    • C07C6/12Preparation of hydrocarbons from hydrocarbons containing a different number of carbon atoms by redistribution reactions by conversion at a saturated carbon-to-carbon bond of exclusively hydrocarbons containing a six-membered aromatic ring
    • C07C6/126Preparation of hydrocarbons from hydrocarbons containing a different number of carbon atoms by redistribution reactions by conversion at a saturated carbon-to-carbon bond of exclusively hydrocarbons containing a six-membered aromatic ring of more than one hydrocarbon
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C9/00Aliphatic saturated hydrocarbons
    • C07C9/14Aliphatic saturated hydrocarbons with five to fifteen carbon atoms
    • C07C9/16Branched-chain hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G29/00Refining of hydrocarbon oils, in the absence of hydrogen, with other chemicals
    • C10G29/20Organic compounds not containing metal atoms
    • C10G29/205Organic compounds not containing metal atoms by reaction with hydrocarbons added to the hydrocarbon oil
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/40Special temperature treatment, i.e. other than just for template removal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/42Addition of matrix or binder particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/60Synthesis on support
    • B01J2229/64Synthesis on support in or on refractory materials
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/02Boron or aluminium; Oxides or hydroxides thereof
    • C07C2521/04Alumina
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • C07C2521/08Silica
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/12Silica and alumina
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • C07C2529/10Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing iron group metals, noble metals or copper
    • C07C2529/12Noble metals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • C07C2529/10Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing iron group metals, noble metals or copper
    • C07C2529/14Iron group metals or copper
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • C07C2529/16Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1081Alkanes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1088Olefins
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1096Aromatics or polyaromatics
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/30Physical properties of feedstocks or products
    • C10G2300/305Octane number, e.g. motor octane number [MON], research octane number [RON]
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4018Spatial velocity, e.g. LHSV, WHSV
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/02Gasoline
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/30Aromatics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

"ALQUILAÇÃO DE HIDROCARBONETO USANDO UM CATALISADOR DE ZEÓLITO NANOCRISTALINO" REFERÊNCIA CRUZADA A PEDIDOS RELACIONADOS O presente pedido de patente refere-se a uma con- tinuação-em-parte do pedido US 10/067,719 depositado em 5 de fevereiro de 2002, que é aqui incorporado a título de refe- rência, e para o qual prioridade é reivindicada."HYDROCARBON ALCHILATION USING A NANOCRISTALINE ZEOLIT CATALYST" CROSS-REFERENCE TO RELATED APPLICATIONS This patent application relates in part to US 10 / 067,719 filed February 5, 2002, which is here incorporated by reference, and for which priority is claimed.

ANTECEDENTES 1. Campo da Invenção A presente invenção diz respeito a um método para conversão de compostos de hidrocarbonetos, e, particularmen- te, ao uso de um catalisador de zeólito para alquilação de olefina/parafina ou alquilação de aromático. 2, Fundamentos da Técnica Alquilação pertence à adição química de um grupo alquila a uma outra molécula para formar uma molécula maior.BACKGROUND 1. Field of the Invention The present invention relates to a method for converting hydrocarbon compounds, and particularly to the use of a zeolite catalyst for olefin / paraffin alkylation or aromatic alkylation. 2, Background of the Art Alkylation pertains to the chemical addition of an alkyl group to another molecule to form a larger molecule.

Processos de alquilação comerciais podem ser tipicamente al- quilação de aromático ou alquilação de olefina/parafina. Al- quilação de aromático envolve tipicamente a produção de com- postos alquilaromáticos (por exemplo, etilbenzeno, cumeno, etc.) por alquilação de um composto aromático (por exemplo, benzeno) com uma olefina (por exemplo, etileno, propileno, etc.). Alquilação de olefina/parafina pertence à reação en- tre um hidrocarboneto saturado com uma olefina para produzir um hidrocarboneto, saturado, altamente ramificado, por exem- plo, alquilação de isobutano com 2-buteno para produzir um produto de gasolina tendo um alto número de octana.Commercial alkylation processes may typically be aromatic alkylation or olefin / paraffin alkylation. Aromatic alkylation typically involves the production of alkylaromatic compounds (eg ethylbenzene, cumene, etc.) by alkylation of an aromatic compound (eg benzene) with an olefin (eg ethylene, propylene, etc.). ). Olefin / paraffin alkylation belongs to the reaction between an olefin-saturated hydrocarbon to produce a highly branched, saturated hydrocarbon, for example, alkylation of isobutane with 2-butene to produce a gasoline product having a high number of octane.

Diferentemente da produção de gasolina por craque- amento de frações de petróleo de alto peso molecular tal co- mo gasóleo ou resíduo de petróleo, alquilação rende um pro- duto de gasolina mais limpo sem impurezas de enxofre ou de nitrogênio. Além disso, gasolina alquilada tem pouco ou ne- nhum teor de aromático, que é um benefício ambiental adicio- nal . Vários processos de alquilação são conhecidos e usados por toda a indústria de petróleo. Por exemplo, alqui- lação é rotineira e comercialmente efetuada pelo uso de ca- talisadores de ácidos líquidos tal como ácido sulfúrico ou ácido fluorídrico. Alternativamente, catalisadores de zeóli- tos sólidos têm sido usados. Uso de zeólitos evita as des- vantagens do uso de ácidos tóxicos líquidos e altamente cor- rosivos. Contudo, zeólitos podem sofrer desativação causada por coqueificaçao. Vários processos para alquilação de hi- drocarbonetos usando catalisadores contendo zeólito são des- critos na Patente US 3.549.557 e na Patente US 3.815.004. Um processo de alquilação usando um catalisador sólido de ácido que emprega um material zeolítico ou não zeolítico é mostra- do na patente US 5.986.158, que é aqui incorporada a título de referência.Unlike gasoline production by cracking high molecular weight oil fractions such as diesel fuel or petroleum residue, alkylation yields a cleaner gasoline product without sulfur or nitrogen impurities. In addition, alkylated gasoline has little or no aromatic content, which is an additional environmental benefit. Various alkylation processes are known and used throughout the petroleum industry. For example, alkylation is routine and commercially effected by the use of liquid acid catalysts such as sulfuric acid or hydrofluoric acid. Alternatively, solid zeolite catalysts have been used. Use of zeolites avoids the disadvantages of using highly corrosive liquid toxic acids. However, zeolites may undergo deactivation caused by coking. Various processes for alkylating hydrocarbons using zeolite-containing catalysts are described in US Patent 3,549,557 and US Patent 3,815,004. An alkylation process using a solid acid catalyst employing a zeolitic or non-zeolitic material is shown in US Patent 5,986,158, which is incorporated herein by reference.

Zeólitos são materiais cristalinos porosos carac- terizados por canais submicroscópicos de um tamanho e/ ou configuração particular. Zeólitos são tipicamente compostos de aluminossilicato, mas materiais de zeólito têm sido fei- tos em uma extensa variedade de outras composições. Os últi- mos são comumente referidos como materiais microporoosos. Os canais, ou poros, são ordenados e, como tais, proporcionam propriedades únicas, que tornam os zeólitos úteis como cata- lisadores ou absorventes em processos industriais. Por exem- plo, zeólitos podem ser usados para filtrar moléculas meno- res, que ficam presas nos poros do zeólito. Também, zeólitos podem funcionar como catalisadores seletivos de forma que favorecem certas conversões químicas dentro dos poros, de acordo com a forma ou tamanho dos reagentes moleculares ou produtos. Zeólitos têm utilidade também em troca iônica, tais como para abrandamento da água e recuperação seletiva de metais pesados.Zeolites are porous crystalline materials characterized by submicroscopic channels of a particular size and / or configuration. Zeolites are typically composed of aluminosilicate, but zeolite materials have been made in a wide variety of other compositions. The latter are commonly referred to as microporous materials. The channels, or pores, are ordered and as such provide unique properties that make zeolites useful as catalysts or absorbers in industrial processes. For example, zeolites can be used to filter smaller molecules that get trapped in the pores of the zeolite. Also, zeolites can function as selective catalysts in ways that favor certain chemical conversions within the pores according to the shape or size of molecular reagents or products. Zeolites are also useful in ion exchange, such as for water softening and selective recovery of heavy metals.

Zeólitos sintéticos são, tradicionalmente feitos de fontes de sílica e alumínio ("nutrientes" de sílica e a- lumínio) que reagem uma com a outra, em presença de materi- ais que assegurem condições altamente alcalinas, tais como água e OH'. Outros zeólitos podem ser borossilicatos, fer- rossilicatos, e similares. Muitas das etapas de cristaliza- ção são conduzidas em presença de um agente direcionador i- norgânico, ou um padrão orgânico, que induz uma estrutura de zeólito específica que não pode ser facilmente formada em ausência do agente direcionador ou padrão. Muitos dos pa- drões orgânicos são sais de amônio quaternário, mas podem ser também aminas lineares, álcoois, e uma variedade de ou- tros compostos. Como um hidróxido, alguns agentes direciona- dores introduzem íons hidroxila no sistema de reação; contu- do, a alcalinidade é usualmente ditada pela quantidade de hidróxido de sódio (NaOH), hidróxido de potássio (KOH), etc. A reação envolve tipicamente uma fase gel líquida em que o- correm rearranjos e transições, de modo que um redistribui- ção ocorre entre os nutrientes de alumina e sílica, e estru- turas moleculares são formadas que correspondem a zeólitos específicos. Outros óxidos de metal podem ser também incluí- dos, tais como titânia-sílica, bória-sílica, etc. Alguns ze- ólitos podem ser feitos somente com padrões orgânicos. Ou- tros zeólitos podem ser feitos somente por meio de um agente direcionador inorgânico. Ainda outros zeólitos podem ser feitos ou por meio de um agente direcionador hidrofílico (por exemplo, inorgânico) ou por um padrão hidrofóbico (ba- seado em orgânico).Synthetic zeolites are traditionally made from silica and aluminum sources (silica and alumina "nutrients") that react with each other in the presence of materials that ensure highly alkaline conditions such as water and OH '. Other zeolites may be borosilicates, ferrosilicates, and the like. Many of the crystallization steps are conducted in the presence of an organic directing agent, or an organic pattern, which induces a specific zeolite structure that cannot easily be formed in the absence of the directing agent or pattern. Many of the organic standards are quaternary ammonium salts, but may also be linear amines, alcohols, and a variety of other compounds. Like a hydroxide, some directing agents introduce hydroxyl ions into the reaction system; However, alkalinity is usually dictated by the amount of sodium hydroxide (NaOH), potassium hydroxide (KOH), etc. The reaction typically involves a liquid gel phase in which rearrangements and transitions occur, such that a redistribution occurs between the alumina and silica nutrients, and molecular structures are formed that correspond to specific zeolites. Other metal oxides may also be included such as titania silica, boria silica, etc. Some zeolites can only be made with organic standards. Other zeolites can be made only by an inorganic targeting agent. Still other zeolites may be made either by a hydrophilic (e.g. inorganic) targeting agent or by a hydrophobic (organic-based) pattern.

Muita de tecnologia de processamento de hidrocar- boneto de hoje é baseada em catalisadores de zeólitos. Vá- rios catalisadores de zeólito são conhecidos da técnica e possuem sistemas de poro bem dispostos com tamanhos de poro uniformes. O termo "poro médio" como aplicado a zeólitos re- fere-se usualmente a estruturas de zeólito tendo um tamanho de poro de 4 a 6 angstrons (Á) . Zeólitos de "poro grande" incluem estruturas tendo um tamanho de poro de acima de 6 a cerca de-12 Á. Já que muitas reações de processamento de hidro- carboneto em taxas de conversão (isto é, altas) industrial- mente relevantes são limitadas por transferência de massa (especificamente, difusão intra-partícula), uma partícula de catalisador com uma estrutura de poro ideal facilitará o transporte dos reagentes para sítios ativos do catalisador dentro da partícula e transporte dos produtos fora da partí- cula do catalisador, mas ainda obtêm a catãlise seletiva de forma desejada. Morfologia do zeólito, isto é, tamanho de cristal, é um outro parâmetro em reações limitadas por difu- são .Much of today's hydrocarbon processing technology is based on zeolite catalysts. Various zeolite catalysts are known in the art and have well-arranged pore systems with uniform pore sizes. The term "middle pore" as applied to zeolites usually refers to zeolite structures having a pore size of 4 to 6 angstrons (Å). "Large pore" zeolites include structures having a pore size of from about 6 to about -12 Å. Since many industrially relevant (ie, high) conversion rates of hydrocarbon processing reactions are limited by mass transfer (specifically, intra-particle diffusion), a catalyst particle with an ideal pore structure will facilitate transporting reagents to active catalyst sites within the particle and transporting products outside the catalyst particle, but still achieving selective catalysis in a desired manner. Zeolite morphology, ie crystal size, is another parameter in diffusion-limited reactions.

Catalisadores têm uma vida limitada, por exemplo, devido à coqueificação. Desativação de catalisador requer usualmente requer uma interrupção do reator e regeneração do catalisador. Embora o uso de dois reatores operados em um "modo de vaivém" (isto é, uso alternado de reatores em que um é operado para alquilação enquanto o outro está parado para regeneração) permita produção contínua, é, no entanto, preferível realizar reações de alquilação com catalisadores de zeólito que têm uma vida longa de forma a minimizar per- das econômicas incorridas pela interrupção de reator e rege- neração de catalisador.Catalysts have a limited life, for example due to coking. Catalyst deactivation usually requires reactor shutdown and catalyst regeneration. Although the use of two reactors operated in a "reciprocating mode" (ie alternate use of reactors where one is operated for alkylation while the other is stopped for regeneration) allows continuous production, it is nevertheless preferable to perform reactive reactions. alkylation with zeolite catalysts that have a long life to minimize economic losses incurred by reactor shutdown and catalyst regeneration.

SUMARIO É proporcionado aqui um processo para alquilação de um composto de hidrocarboneto. 0 processo compreende pro- porcionar um catalisador que inclui um zeólito Y tendo um tamanho de cristal de não mais que 100 nm; e reagir o hidro- carboneto capaz de ser alquilado com um agente alquilante em presença do dito cataLisador, sob condições de reação de al- quilação, para fornecer um produto alquilado. 0 processo descrito aqui proporciona vantajosamen- te um produto alquilado com um alto Número de Octana Resear- ch ("RON") bem como uma reação de alquilação tendo um tempo de operação mais longo. DESCRIÇÃO DETALHADA DE MODALIDADE(S) PREFERIDA(S) O método de alquilação descrito aqui emprega um zeólito com tamanho de cristal ultra-pequeno, ou nanocrista- lino, isto é, um tamanho de cristal de não mais que cerca de 100 nanometros ("nm"). O zeólito nanocristalino possui vã- rias vantagens com relação a certos processos de conversão de hidrocarboneto. Por exemplo, a difusibilidade eficaz de muitos reagentes e produtos é aumentada.SUMMARY A process for alkylating a hydrocarbon compound is provided herein. The process comprises providing a catalyst including a zeolite Y having a crystal size of no more than 100 nm; and reacting the hydrocarbon capable of being alkylated with an alkylating agent in the presence of said catalyst under alkylation reaction conditions to provide an alkylated product. The process described herein advantageously provides a high octane Research ("RON") alkylated product as well as an alkylation reaction having a longer operating time. DETAILED DESCRIPTION OF PREFERRED EMBODIMENT (S) The alkylation method described herein employs an ultra-small, or nanocristine crystal size zeolite, that is, a crystal size of no more than about 100 nanometers (" nm "). Nanocrystalline zeolite has several advantages over certain hydrocarbon conversion processes. For example, the effective diffusibility of many reagents and products is increased.

Em segundo lugar, a seletividade de produto é au- mentada por certos processos, especialmente reações seqüen- ciais, onde um produto intermediário é desejado. Por exem- plo, tamanho de cristal ultra-pequeno pode reduzir a quanti- dade de (1) super-craqueamento (por exemplo, a produção de produtos de gãs leve C3/C4 do craqueamento de gasóleo de vá- cuo em que o destilado e produtos de nafta são os produtos desejados) e (2) polialquilação indesejada em processo de alquilação de aromático. Também, coqueificação, e a desati- vação de catalisador associada, é reduzida para zeólitos na- nocristalinos por permitirem que os precursores de coque deixem o catalisador antes de sofrerem reações de condensa- ção retrocesivas.Second, product selectivity is increased by certain processes, especially sequential reactions, where an intermediate product is desired. For example, ultra-small crystal size may reduce the amount of (1) super cracking (for example, the production of C3 / C4 light gas cracking gas products in which the distillate and naphtha products are the desired products) and (2) unwanted polyalkylation in aromatic alkylation process. Also, coking, and associated catalyst deactivation, is reduced to nocrystalline zeolites by allowing coke precursors to leave the catalyst before undergoing backward condensation reactions.

Em terceiro lugar, a atividade do catalisador de zeólito nanocristalino é mais alta para catalisadores de cristal de zeólito maior, conforme limitação de difusão li- mita a acessibilidade de sítios ativos internos no último caso, resultando em um maior número efetivo de sítios ativos por peso de catalisador para o catalisador de zeólito nano- cristalino. 0 método da invenção é descrito abaixo em conexão, principalmente, com o uso de zeólito Y como produzido pelo método descrito no pedido de patente co-pendente US 10/067.719, de propriedade em comum, para catãlise de alqui- lação. Zeólito Y nanocristalino produzido de acordo com o método do pedido 10/067.719 tem uma estrutura de faujasita cúbica com um diâmetro de poro efetivo de cerca de 7 a 8 Â e um tamanho de célula unitária de menos que 25 Â. O zeólito Y como sintetizado tem também, preferivelmente, uma razão mo- lar de sílica para alumina de menos que cerca de 10, fre- quentemente menos que cerca de 7. O tamanho de cristal de zeólito Y nanocristalino é não mais que cerca de 100 nm, preferivelmente não mais que cerca de 50 nm, e, mais prefe- rivelmente, não mais que cerca de 25 nm.Third, nanocrystalline zeolite catalyst activity is higher for larger zeolite crystal catalysts, as diffusion limitation limits the accessibility of internal active sites in the latter case, resulting in a greater effective number of active sites by weight. from catalyst to nanocrystalline zeolite catalyst. The method of the invention is described below in connection primarily with the use of zeolite Y as produced by the method described in commonly owned co-pending patent application US 10 / 067,719 for alkylation catalysis. Nanocrystalline Y Zeolite produced according to the application method 10 / 067,719 has a cubic faujasite structure with an effective pore diameter of about 7 to 8 Å and a unit cell size of less than 25 Å. Zeolite Y as synthesized also preferably has a molar silica to alumina ratio of less than about 10, often less than about 7. The crystal size of nanocrystalline Y zeolite is no more than about 100. nm, preferably no more than about 50 nm, and more preferably no more than about 25 nm.

Embora a síntese de zeólito Y nanocristalino possa ser efetuada em presença de um padrão orgânico, o modo pre- ferido, em termos de custos de produção de catalisador, é o uso de agentes direcionadores inorgânicos.Although nanocrystalline Y zeolite synthesis can be performed in the presence of an organic standard, the preferred mode in terms of catalyst production costs is the use of inorganic directing agents.

Zeólito Y nanocristalino é útil para vários pro- cessos de conversão de hidrocarboneto, tais como: alquilação e transalquilação de aromático na produção de etilbenzeno ou cumeno, alquilação de parafinas com olefinas para a produção de gasolina com alta octanagem, hidrocraqueamento de gasóleo de vácuo para produzir combustíveis para transporte, hidro- processamento para fazer estoques de base de óleo lubrifi- cante, preparação de alquilbenzenos ou alquilnaftalenos li- neares, hidrogenação seletiva, nitração de aromático, etc. O método para preparar zeólito Y nanocristalino inclui impregnar uma partícula ou estrutura de sílica- alumina, porosa, sólida com uma solução aquosa concentrada de um agente direcionador de formação de microporo inorgâni- co através de impregnação úmida incipiente. 0 material de sílica-alumina porosa pode ser amorfo ou cristalino. A quan- tidade de líquido é menor que a quantidade de líquido que causaria formação de gel superficial visível a olho nu. 0 líquido fornecido à partícula ou estrutura de sílica-alumina porosa, sólida é absorvido e umedece os vazios interiores da última, mas não forma um material similar a pasta com a mes- ma. 0 líquido inclui água, agente direcionador de formação de microporo inorgânico e, também, se necessário, um padrão orgânico. 0 padrão orgânico é selecionado de acordo com pro- duto desejado. Padrões orgânicos típicos úteis em síntese de zeólito incluem sais de amônio quaternário, aminas e diami- nas lineares, e álcoois. Mais especificamente, padrões orgâ- nicos particulares incluem hidróxido de tetrametil amônio ou seus sais, hidróxido de tetraetil amônio ou seus sais, hi- dróxido de tetrapropil amônio ou seus sais, pirrolidina, he- xano-1,6-diamina, hexano-1,6-diol, piperazina, e éteres 18- coroa-6. 0 agente direcionador de formação de microporo i- norgânico proporciona íons hidróxido e pode ser uma base de metal alcalino ou uma base de metal alcalinoterroso. Contu- do, com respeito â preparação de zeólito Y da presente in- venção, agentes direcionadores de formação de microporo pre- feridos são os hidróxidos de metal alcalino inorgânicos, e preferivelmente hidróxido de sódio (NaOH). Padrões orgânicos não são usados. Já que pH alto favorece formação de zeólito Y sobre outras fases cristalinas, bem como nucleação e cris- talização rápidas, altas concentrações do agente direciona- dor cáustico são requeridas. Por exemplo, quando se usa con- centração de 20% (em peso) ou menos de NaOH, outras fases de cristal tais como cancrinita ou zeólito P podem ser forma- das, nenhuma conversão pode ocorrer, cristais muito grandes de zeólito Y podem ser formados, ou a conversão pode levar um período de tempo inaceitavelmente longo.Nanocrystalline Y Zeolite is useful for various hydrocarbon conversion processes, such as: alkylation and transalkylation of aromatics in ethylbenzene or cumene production, paraffin alkylation with olefins for high octane gasoline production, vacuum gas oil hydrocracking produce transport fuels, hydro-processing to make lubricant oil base stocks, preparation of alkylbenzenes or straight alkylnaphthalenes, selective hydrogenation, aromatic nitration, etc. The method for preparing nanocrystalline Y zeolite includes impregnating a porous, solid, silica-alumina particle or structure with a concentrated aqueous solution of an inorganic micropore forming targeting agent by incipient wet impregnation. The porous silica-alumina material may be amorphous or crystalline. The amount of liquid is less than the amount of liquid that would cause surface gel formation visible to the naked eye. The liquid supplied to the solid porous silica-alumina particle or structure is absorbed and moistens the inner voids of the latter, but does not form a paste-like material therewith. The liquid includes water, inorganic micropore forming targeting agent and also, if necessary, an organic standard. The organic standard is selected according to desired product. Typical organic standards useful in zeolite synthesis include quaternary ammonium salts, linear amines and diamines, and alcohols. More specifically, particular organic standards include tetramethyl ammonium hydroxide or salts thereof, tetraethyl ammonium hydroxide or salts thereof, tetrapropyl ammonium hydroxide or salts thereof, pyrrolidine, hexane-1,6-diamine, hexane-1 , 6-diol, piperazine, and 18-crown-6 ethers. The normanic microporous forming targeting agent provides hydroxide ions and may be an alkali metal base or an alkaline earth metal base. However, with respect to the preparation of zeolite Y of the present invention, preferred microporous forming targeting agents are inorganic alkali metal hydroxides, and preferably sodium hydroxide (NaOH). Organic patterns are not used. Since high pH favors the formation of zeolite Y over other crystalline phases, as well as rapid nucleation and crystallization, high concentrations of caustic directing agent are required. For example, when using a concentration of 20% (by weight) or less of NaOH, other crystal phases such as cancrinite or zeolite P can be formed, no conversion can occur, very large Y zeolite crystals can be formed. formed, or conversion may take an unacceptably long period of time.

Foi surpreendentemente constatado que concentra- ções mais altas de agente direcionador inorgânico reduzem significativamente o tempo necessário de reação. Uma faixa preferida de concentração de NaOH em solução aquosa é de 21% a cerca de 60% em peso, de maior preferência é uma concen- tração de NaOH de 25% a cerca de 60% em peso. A mais prefe- rida é uma concentração de NaOH de 45% a 50% em peso. Já que concentrações mais altas de NaOH resultam em viscosidade ex- cessivamente alta e umedecimento interno incompleto, a faixa de concentração intermediária representa um nível ótimo.It has been surprisingly found that higher concentrations of inorganic targeting agent significantly reduce the required reaction time. A preferred concentration range of NaOH in aqueous solution is from 21% to about 60% by weight, more preferably it is from 25% to about 60% by weight NaOH. Most preferred is a 45 to 50% by weight NaOH concentration. Since higher NaOH concentrations result in excessively high viscosity and incomplete internal wetting, the intermediate concentration range represents an optimal level.

Para manter um material "seco", a quantidade de solução de agente direcionador inorgânico não deve exceder 100% do volume de poro do material de óxido inorgânico poro- so, e, preferivelmente, varia de cerca de 8% a cerca de 100% do volume de poro. O grau de uniformidade da impregnação é importante para o sucesso da cristalização de zeólito Y. Não- uniformidade localizada pode resultar em formação de subpro- duto de não-zeólito Y. Para proporcionar mistura em uma pe- quena escala (por exemplo, na faixa de várias gramas a 100 gramas) um gral pode ser usado para misturar a sílica- alumina com a solução do agente direcionador de formação de microporo. Em uma escala maior, um misturador em combinação com um pulverizador pode ser usado. A mistura de síntese de sílica-alumina poro- sa/amorfa e agente direcionador (NaOH) combinados é então colocada em um meio de aquecimento e aquecida a uma tempera- tura elevada de cerca de 50°C a cerca de 150°C, mais prefe- rivelmente de cerca de 70°C a cerca de 110°C. Aquecimento uniforme da mistura de síntese é desejado para impedir a formação de cristais de zeólito grandes. A mistura de síntese é mantida na temperatura de sínteses por um período de tempo suficiente para converter uma quantidade suficiente da sílica-alumina em zeólito Y. A estrutura de armação final após cristalização contém um teor cristalino substancial (em peso), tipicamente pelo menos 15%, preferivelmente pelo menos 50% e, mais preferivelmente, de cerca de 75% a cerca de 100% de zeólito. O período tempo de síntese pode depender da temperatura de síntese, tempera- turas de síntese mais baixas requerem tempos de síntese mais longos. Tempo de síntese pode variar de 5 minutos a 150 ho- ras, embora mais tipicamente de 10 minutos a 48 horas, e preferivelmente de cerca de 15 minutos a cerca de 30 horas.To maintain a "dry" material, the amount of inorganic targeting agent solution should not exceed 100% of the pore volume of the pore inorganic oxide material, and preferably ranges from about 8% to about 100% of the pore content. pore volume. The degree of uniformity of the impregnation is important for the success of crystallization of zeolite Y. Localized non-uniformity may result in formation of non-zeolite Y byproduct. To provide mixing on a small scale (eg in the range (from several grams to 100 grams) a grain can be used to mix the silica alumina with the microporous forming targeting agent solution. On a larger scale, a mixer in combination with a sprayer may be used. The combined porous silica / amorphous silica / targeting agent (NaOH) synthesis mixture is then placed in a heating medium and heated to a high temperature of about 50 ° C to about 150 ° C, plus preferably from about 70 ° C to about 110 ° C. Uniform heating of the synthesis mixture is desired to prevent the formation of large zeolite crystals. The synthesis mixture is maintained at synthesis temperature for a period of time sufficient to convert a sufficient amount of the silica alumina to zeolite Y. The final frame structure after crystallization contains a substantial crystalline content (by weight), typically at least 15%. %, preferably at least 50% and more preferably from about 75% to about 100% zeolite. The synthesis time period may depend on the synthesis temperature, lower synthesis temperatures require longer synthesis times. Synthesis time may range from 5 minutes to 150 hours, although more typically from 10 minutes to 48 hours, and preferably from about 15 minutes to about 30 hours.

Depois do tempo de síntese requerido, a mistura de síntese é, preferivelmente, bruscamente resfriada por res- friamento ativo. Subsequentemente, o agente direcionador de formação de microporo deve ser removido do produto para evi- tar posterior reação em etapas de tratamento subseqüentes ou durante armazenagem. Então, o sódio deve ser removido da ar- mação de zeólito, por exemplo, por troca com amônio, usando- se técnicas de troca iônica bem conhecidas daqueles versados na técnica.After the required synthesis time, the synthesis mixture is preferably quenched by active cooling. Subsequently, the microporous forming targeting agent should be removed from the product to prevent further reaction at subsequent treatment steps or during storage. Then sodium should be removed from the zeolite frame, for example by ammonium exchange, using ion exchange techniques well known to those skilled in the art.

Opcionalmente, o zeólito pode ser misturado com um material de matriz, ligante, ou de suporte de catalisador.Optionally, the zeolite may be mixed with a matrix material, binder, or catalyst support material.

Tais materiais incluem sílica, alumina, aluminossílica, ti- tânia, zircônia e similares. Preferivelmente, o catalisador da invenção inclui zeólito Y nanocristalino e cerca de 5% a 40% em peso de ligante de oxido refratãrio tais como alumi- na, sílica, sílica-alumina, titânia, zircônia, etc. 0 zeólito que sofreu troca iônica tem um teor de sódio de não mais que cerca de 0,2%, mais preferivelmente não mais que cerca de 0,1 % em peso, e ainda mais preferi- velmente não mais que cerca de 0,05% em peso.Such materials include silica, alumina, aluminosilic, thymania, zirconia and the like. Preferably, the catalyst of the invention includes nanocrystalline Y zeolite and about 5% to 40% by weight of refractory oxide binder such as alumina, silica, silica alumina, titania, zirconia, etc. The ion-exchanged zeolite has a sodium content of no more than about 0.2%, more preferably no more than about 0.1% by weight, and even more preferably no more than about 0.05%. % by weight.

Zeólito Y nanocristalino produzido de acordo com o método da invenção tem uma razão em volume de mesoporo para microporo de cerca de 0,2 a cerca de 6,0, uma área de super- fície BET de pelo menos cerca de 275 m2/g e um tamanho de célula unitária de cerca de 24,6 Ã a cerca de 24,9 Ã.Nanocrystalline Y Zeolite produced according to the method of the invention has a mesopore to micropore volume ratio of about 0.2 to about 6.0, a BET surface area of at least about 275 m2 / g and a unit cell size from about 24.6 Ã… to about 24.9 Ã….

Opcionalmente, um metal cataliticamente ativo pode ser incorporado no zeólito por, por exemplo, troca-iônica ou impregnação do zeólito, ou por incorporação do metal ativo nos materiais de síntese a partir dos quais o zeólito é pre- parado. 0 metal pode estar em uma forma metálica ou combina- da com oxigênio (por exemplo, óxido de metal). Metais cata- liticamente ativos adequados dependem do processo particular no qual o catalisador é pretendido ser usado e, geralmente, incluem, mas sem limitação, metais do Grupo VIII (por exem- pio, Pt, Pd, Ir, Ru, Rh, Os, Fe, Co, Ni), metais "lantaní- deos" de terras raras {por exemplo, La, Ce, Pr, etc.), me- tais do Grupo IVB (por exemplo, Ti, Zr, Hf), metais do Grupo VB (por exemplo, V, Nb, Ta) , metais do Grupo VIB {por exem- plo, Cr, Mo, W), ou metais do Grupo IB {por exemplo, Cu, Ag, Au) . Em uma modalidade preferida, o metal catalítico é um metal de terras raras, preferivelmente lantânio, ou uma mis- tura de metais de terras raras tendo um alto teor de lantâ- nio, com razão de massa de metal de terras raras para zeóli- to de pelo menos cerca de 0,04, preferivelmente, pelo menos cerca de 0,08. Um outro metal catalítico é um metal nobre, preferivelmente platina, com uma razão de massa de metal pa- ra zeólito de pelo menos cerca de 0,0001, preferivelmente pelo menos cerca de 0,001.Optionally, a catalytically active metal may be incorporated into the zeolite by, for example, ion exchange or zeolite impregnation, or by incorporation of the active metal into the synthesis materials from which the zeolite is prepared. The metal may be in a metal form or in combination with oxygen (eg metal oxide). Suitable catalytically active metals depend on the particular process in which the catalyst is intended to be used and generally include, but are not limited to, Group VIII metals (e.g., Pt, Pd, Ir, Ru, Rh, Os, Fe, Co, Ni), rare earth "lanthanide" metals (eg La, Ce, Pr, etc.), Group IVB metals (eg Ti, Zr, Hf), Group metals VB (eg V, Nb, Ta), Group VIB metals (eg Cr, Mo, W), or Group IB metals (eg Cu, Ag, Au). In a preferred embodiment, the catalytic metal is a rare earth metal, preferably lanthanum, or a rare earth metal mixture having a high lanthanum content, with a rare earth metal to zeolite mass ratio. of at least about 0.04, preferably at least about 0.08. Another catalytic metal is a noble metal, preferably platinum, with a zeolite metal mass ratio of at least about 0.0001, preferably at least about 0.001.

Em uma modalidade, o método da presente invenção emprega um zeólito Y nanocristalino como um catalisador para alquilação de olefina/parafina. Foi surpreendentemente cons- tatado que o uso de zeólito Y nanocristalino tendo um tama- nho de cristal de não mais que 100 nm, preferivelmente não mais que 50 nm, e mais preferivelmente não mais que 25 nm, resulta em vida de catalisador mais longa que o zeólito YIn one embodiment, the method of the present invention employs a nanocrystalline Y zeolite as a catalyst for olefin / paraffin alkylation. It has been surprisingly found that the use of nanocrystalline Y zeolite having a crystal size of no more than 100 nm, preferably no more than 50 nm, and more preferably no more than 25 nm, results in longer catalyst life than Zeolite Y

convencional, e o produto de gasolina resultante tem um RON maior, tipicamente pelo menos cerca de 99,5. O catalisador da invenção é particularmente ade- quado para ser usado em alquilação de isoalcanos tendo de 4 a 10 átomos de carbono, tal como isobutano, isopentano ou isoexano ou misturas destes, com olefinas tendo de 2 a 10 átomos de carbono, preferivelmente, 2 a 6 átomos de carbono, mais preferivelmente 3 a 5 átomos de carbono. A alquilação de isobutano com buteno ou uma mistura de butenos constitui uma modalidade atraente do processo de acordo com a invenção.conventional, and the resulting gasoline product has a higher RON, typically at least about 99.5. The catalyst of the invention is particularly suitable for alkylation of isoalkanes having from 4 to 10 carbon atoms, such as isobutane, isopentane or isoexane or mixtures thereof, with olefins having from 2 to 10 carbon atoms, preferably 2 to 6 carbon atoms, more preferably 3 to 5 carbon atoms. Alkylation of isobutane with butene or a mixture of butenes is an attractive embodiment of the process according to the invention.

Em uma outra modalidade, o catalisador da invenção pode ser usado para a alquilação de um composto aromático, tal como benzeno, com uma olefina (por exemplo, etileno, propileno, 1-buteno, 2-buteno, isobuteno, etc.) para produ- zir um composto alquilaromático correspondente (por exemplo, etilbenzeno, cumeno, di-isopropilbenzeno, etc.). Também, o catalisador pode ser usado para a transalquilação de aromá- ticos polialquilados com aromáticos de anéis vazios (por e- xemplo, benzeno) para proporcionar aromáticos monoalquilados.In another embodiment, the catalyst of the invention may be used for alkylation of an aromatic compound, such as benzene, with an olefin (e.g., ethylene, propylene, 1-butene, 2-butene, isobutene, etc.) to produce zir a corresponding alkylaromatic compound (eg ethylbenzene, cumene, diisopropylbenzene, etc.). Also, the catalyst may be used for the transalkylation of polyalkylated aromatics with empty ring aromatics (e.g. benzene) to provide monoalkylated aromatics.

Como ficará evidente para aquele versado na técni- ca, o processo de acordo com a invenção pode ser aplicado em qualquer forma adequada, incluindo processos em leito flui- dizado, processos em lama e processos em leito fixo. 0 pro- cesso pode ser efetuado em vários leitos, cada um com adição separada de olefina. Em tal caso, o processo da invenção po- de ser efetuado, cada um, em leito separado. O processo de alquilação de olefina-parafina é praticado sob condições tais que pelo menos uma porção do agente de alquilação e o composto capaz de ser alquilado es- tarão na fase líquida ou na fase supercrítica. Em geral, o processo de acordo com a invenção é conduzido a uma tempera- tura na faixa de cerca de -4 0°C a cerca de 250°C, preferi- velmente na faixa de cerca de 50°C a cerca de 150°C, mais preferivelmente na faixa de cerca de 75°C a cerca de 95°C, e uma pressão de cerca de 100 kPa a 10.000 kPa (1 a 100 bar), preferivelmente de cerca de 1000 kPa a 4.000 kPa (10 a 40 bar), mais preferivelmente de 1.500 kPa a 3.000 kPa (15 a 30 bar) . A razão molar de composto capaz de ser alquilado para agente alquilante na alimentação total no reator é, preferi- velmente, maior que 5:1, mais preferivelmente maior que 50:1. A taxa de alimentação (WHSV) do agente alquilante es- tá, geralmente, na faixa de 0,01 a 5, preferivelmente na faixa de 0,05 a 0,5, mais preferivelmente na faixa de 0,1 a 0,4 parte de agente alquilante por parte de catalisador por hora. A WHSV do hidrocarboneto saturado capaz de ser alqui- lado está, preferivelmente, na faixa de 0,1 a 500 h-1.As will be apparent to one skilled in the art, the process according to the invention may be applied in any suitable form, including fluid bed processes, mud processes and fixed bed processes. The process may be carried out in several beds, each with a separate addition of olefin. In such a case, the process of the invention may each be carried out in a separate bed. The olefin paraffin alkylation process is carried out under conditions such that at least a portion of the alkylating agent and the alkylatable compound will be in the liquid or supercritical phase. In general, the process according to the invention is conducted at a temperature in the range of about -40 ° C to about 250 ° C, preferably in the range of about 50 ° C to about 150 ° C. C, more preferably in the range from about 75 ° C to about 95 ° C, and a pressure of about 100 kPa to 10,000 kPa (1 to 100 bar), preferably from about 1000 kPa to 4,000 kPa (10 to 40 bar), more preferably from 1,500 kPa to 3,000 kPa (15 to 30 bar). The molar ratio of compound capable of being alkylated to alkylating agent in the total feedstock in the reactor is preferably greater than 5: 1, more preferably greater than 50: 1. The feed rate (WHSV) of the alkylating agent is generally in the range 0.01 to 5, preferably in the range 0.05 to 0.5, more preferably in the range 0.1 to 0.4 part. of alkylating agent per catalyst part per hour. The WHSV of the saturated hydrocarbon capable of being alkylated is preferably in the range 0.1 to 500 h -1.

Um outro processo preferido ê alquilação aromática tal como a alquilação de benzeno com etileno para produzir etilbenzeno ou a alquilação de benzeno com propileno para produzir cumeno, que pode ser efetuada em uma batelada, no modo semi-contínuo ou contínuo.Another preferred process is aromatic alkylation such as alkylation of benzene with ethylene to produce ethylbenzene or alkylation of benzene with propylene to produce cumene, which may be carried out in a batch, in semi-continuous or continuous mode.

Os exemplos abaixo ilustram várias características do processo da presente invenção. Os exemplos comparativos não exemplificam a invenção, mas são proporcionados com a finalidade de mostrar, por comparação, os surpreendentes a- perfeiçoamentos obtidos pela presente invenção em relação ao uso de catalisador de zeólito Y convencional para alquilação de olefina/parafina, particularmente, para a alquilação de isobutano com cis-2-buteno para produzir produtos de gasoli- na. Em todos os exemplos, a olefina e parafina foram alimen- tadas em um reator de leito fixo imerso em um banho de óleo para manter uma temperatura desejada. 0 efluente do reator foi dividido em duas porções. Uma porção do produto foi re- ciclada de volta para o reator como uma corrente de recicla- gem na qual a alimentação de olefina/parafina foi injetada.The examples below illustrate various features of the process of the present invention. Comparative examples do not exemplify the invention, but are provided for the purpose of showing, by comparison, the surprising improvements obtained by the present invention with respect to the use of conventional Y-zeolite catalyst for olefin / paraffin alkylation, particularly for alkylation of isobutane with cis-2-butene to produce gasoline products. In all examples, olefin and paraffin were fed into a fixed bed reactor immersed in an oil bath to maintain a desired temperature. The reactor effluent was divided into two portions. A portion of the product was cycled back to the reactor as a recycling stream into which the olefin / paraffin feed was injected.

Uma outra porção, uma corrente de recuperação de produto, foi enviada para um condensador para separação do produto alquilado. Amostras do efluente do reator foram retiradas para teste antes da separação da corrente de produto em uma corrente de reciclagem e corrente de recuperação de produto.Another portion, a product recovery stream, was sent to a condenser for separation of the alkylated product. Reactor effluent samples were taken for testing prior to separation of the product stream into a recycling stream and product recovery stream.

Um teste foi realizado para a determinação da vida de operação de catalisador por observação do tempo de opera- ção que decorre antes da "ruptura da olefina", isto é, o ponto no qual 0,2% a olefina deixa o reator sem ser conver- tido. O efluente do reator foi monitorado por análise croma- tográfica para determinar quando os picos de olefina apare- ceram. A vida do catalisador é uma característica importante já que quanto melhor for a longevidade do catalisador, menor será a necessidade de se retirar o catalisador de linha para regeneração.A test was performed to determine the catalyst operating life by observing the operating time that elapses before the "olefin break", that is, the point at which 0.2% olefin leaves the reactor unconverted. - had. Reactor effluent was monitored by chromatographic analysis to determine when olefin peaks appeared. Catalyst life is an important feature since the better the catalyst longevity, the less need to remove the catalyst from line for regeneration.

Também, o RON total do produto foi monitorado. Ca- da componente da corrente de produto é caracterizada por um RON respectivo. Os produtos de alquilação preferidos são trimetilpentanos {"TMP"), que têm altos números de octana research (RON de cerca de 100 a 110). 0 RON total do produto alquilado, que representa a qualidade antidetonante da gaso- lina, foi determinado calculando-se a média ponderada dos valores de RON dos componentes individuais do produto. EXEMPLO COMPARATIVO 1 0 catalisador de zeólito avaliado neste Exemplo Comparativo foi um zeólito HY comercialmente disponível e contendo 70% em peso de zeólito HY em um ligante de alumina. 0 tamanho do cristal do zeólito nesta amostra era de 0,4-0,7 mícron (isto ê, 400-700 nm) . O catalisador de zeólito era derivado de extrudados de 0,794 mm (1/32 polegadas) e -18 a +25 mesh com uma área de superfície BET de 562 m2/g. 0 rea- tor de teste foi um reator de leito fixo diferencial recir- culante em um sistema conforme descrito acima com alimenta- ção contendo isobutano e cis-2-buteno, em uma razão de iso- butano/olefina (1/0) de 15,9 com uma taxa de alimentação de 16,2 partes/h. 4,6 Partes em peso de catalisador de zeólito foram carregadas no reator. 0 catalisador foi pré-tratado em fluxo de nitrogênio a 3 00°C, por 2 horas, para remoção de umidade antes do teste de alquilação ter começado.Also, the total RON of the product was monitored. Each component of the product stream is characterized by a respective RON. Preferred alkylation products are trimethylpentanes ("TMP"), which have high octane research numbers (RON from about 100 to 110). The total RON of the alkylated product, which represents the anti-knock quality of gasoline, was determined by calculating the weighted average of the RON values of the individual product components. COMPARATIVE EXAMPLE 1 The zeolite catalyst evaluated in this Comparative Example was a commercially available HY zeolite containing 70% by weight of HY zeolite in an alumina binder. The crystal size of the zeolite in this sample was 0.4-0.7 microns (i.e. 400-700 nm). The zeolite catalyst was derived from 0.774 mm (1/32 inch) and -18 to +25 mesh extrudates with a BET surface area of 562 m2 / g. The test reactor was a recirculating differential fixed bed reactor in a system as described above with feed containing isobutane and cis-2-butene at an isobutane / olefin (1/0) ratio of 15.9 with a feed rate of 16.2 parts / h. 4.6 Parts by weight of zeolite catalyst were loaded into the reactor. The catalyst was pretreated under nitrogen flow at 300 ° C for 2 hours to remove moisture before the alkylation test began.

Alquilação foi conduzida a 2,758 MPa (400 psig) e 80°C com uma taxa de reciclagem de 174 partes do efluente de reação por partes de catalisador por hora. 0 teste foi efe- tuado com amostras tiradas a cada 45 minutos para análise de cromatografia gasosa até rompimento da olefina. A vida do catalisador, conforme determinada por ruptura da olefina, para este catalisador de zeólito Y comercial era de 2,7 ho- ras. 0 RON conforme medido antes da ruptura da olefina foi calculado como sendo 99,1. Esses resultados estão sumariza- dos na Tabela 1. EXEMPLO COMPARATIVO 2 O catalisador de zeólito usando neste Exemplo Com- parativo era de 3,6 partes de zeólito HY comercialmente dis- ponível e derivado de extrudados de 1,588 mm (1/16 polega- das) contendo 80% em peso de zeólito HY em um ligante de a- lumina. 0 tamanho do cristal do zeólito desta amostra era de 0,4-0,7 mícron. O catalisador seco foi peneirado para -18 a +25 mesh com uma área de superfície BET de 556 m2/g. O pré- tratamento e reação de alquilação e condições foram conduzi- dos do mesmo modo que no Exemplo Comparativo 1. Os resulta- dos estão estabelecidos na Tabela 1. EXEMPLO COMPARATIVO 3 O catalisador de zeólito usado neste Exemplo Com- parativo era de 3,6 partes em peso de um zeólito HY comerci- almente disponível derivado de extrudado de 1,588 mm (1/16 polegadas) contendo 80% em peso de zeólito HY em um ligante de alumina. 0 tamanho do cristal do zeólito desta amostra era de 0,4-0,7 mícron. 0 catalisador seco foi peneirado para -18 a +25 mesh com uma área de superfície BET de 564 m2/g. 0 pré-tratamento e a reação de alquilação e condições foram conduzidas de mesmo modo que no Exemplo Comparativo 1.Alkylation was conducted at 2.758 MPa (400 psig) and 80 ° C with a recycle rate of 174 parts of reaction effluent per parts of catalyst per hour. The test was performed with samples taken every 45 minutes for gas chromatography analysis until olefin disruption. The catalyst life, as determined by olefin disruption, for this commercial zeolite Y catalyst was 2.7 hours. The RON as measured before olefin rupture was calculated to be 99.1. These results are summarized in Table 1. COMPARATIVE EXAMPLE 2 The zeolite catalyst using in this Comparative Example was 3.6 parts of commercially available HY zeolite derived from 1.588 mm (1/16 inch) extrudates. ) containing 80% by weight of zeolite HY in an alumina binder. The zeolite crystal size of this sample was 0.4-0.7 microns. The dried catalyst was sieved to -18 to +25 mesh with a BET surface area of 556 m2 / g. The pretreatment and alkylation reaction and conditions were conducted in the same manner as in Comparative Example 1. The results are set forth in Table 1. COMPARATIVE EXAMPLE 3 The zeolite catalyst used in this Comparative Example was 3, 6 parts by weight of a commercially available HY zeolite derived from 1.588 mm (1/16 inch) extrudate containing 80% by weight of HY zeolite in an alumina binder. The zeolite crystal size of this sample was 0.4-0.7 microns. The dried catalyst was sieved to -18 to +25 mesh with a BET surface area of 564 m2 / g. Pretreatment and alkylation reaction and conditions were conducted in the same manner as in Comparative Example 1.

Exemplo 1 Este exemplo ilustra a invenção. Uma parte de sí- lica-alumína porosa com uma razão de sílica/alumina ("SAR") de 5,1 foi impregnada com 1,05 parte de uma solução contendo 45 partes em peso de NaOH e 55 partes de água destilada. O material impregnado depois de envelhecimento foi colocado em uma autoclave e aquecido a 85°C, por 24 horas. 0 material foi então lavado com água destilada e secado a 120°C para obter um produto contendo >95% de cristais de zeólito Y ten- do tamanho de cerca de 25 a 100 nm. O zeólito Y nanocristalino, conforme sintetizado, foi submetido â troca iônica com uma mistura de LaCl3 e so- lução de NH4N03, quatro vezes, para remover sódio para menos que 0,2 % em peso. Depois de filtração e lavagem, a amostra de LaNH4Y foi secada a 12 0°C. 0 pó seco foi então misturado com quantidade apropriada de sol de alumina Nyacol de modo que o produto calcinado final continha uma concentração de zeólito de cerca de 80% em peso. A pasta foi secada a 90°C, por 1 h, e então calcinada de acordo com o seguinte progra- ma: 2°C/min a 120°C, mantida por 1 h, 2°C/min até 500°C, man- tida por 2 h, resfriamento de 5°C/min até a temperatura am- biente .Example 1 This example illustrates the invention. A part of porous silica-alumina with a silica / alumina ratio ("SAR") of 5.1 was impregnated with 1.05 part of a solution containing 45 parts by weight of NaOH and 55 parts of distilled water. The impregnated material after aging was placed in an autoclave and heated at 85 ° C for 24 hours. The material was then washed with distilled water and dried at 120 ° C to obtain a product containing> 95% Y zeolite crystals about 25 to 100 nm in size. Nanocrystalline Y zeolite, as synthesized, was ion exchanged with a mixture of LaCl 3 and NH 4 NO 3 solution four times to remove sodium to less than 0.2% by weight. After filtration and washing, the LaNH4Y sample was dried at 120 ° C. The dried powder was then mixed with an appropriate amount of Nyacol alumina sol so that the final calcined product contained a zeolite concentration of about 80 wt%. The paste was dried at 90 ° C for 1 h and then calcined according to the following schedule: 2 ° C / min at 120 ° C maintained for 1 h, 2 ° C / min to 500 ° C, maintained for 2 h, cooling from 5 ° C / min to room temperature.

As pastas calcinadas foram trituradas e peneiradas para tamanhos de +20/-12 mesh, destas 4,0 partes na base se- ca foram carregadas no reator de alquilação para avaliação de desempenho. A área de superfície BET do catalisador final era de 416 m2/g. O pré-tratamento e condições de reação de alquilação foram as mesmas que acima. Essa amostra tinha uma ruptura de olefina de 6,2 h e o alquilado tinha um RON de 100,2 antes da ruptura da olefina, como mostrado na Tabela 1. EXEMPLO 2 O zeólito Y nanocristalino, conforme sintetizado acima no Exemplo 1, foi submetido â troca iônica para obten- ção de LaNH4Y como acima. A ligação, pré-tratamento e condi- ções de teste foram os mesmos que no Exemplo 1. A área de superfície dessa amostra era de 409 m2/g. Quatro partes do catalisador seco com um tamanho de partícula de -18 a +25 mesh foram carregadas ao reator. A amostra apresentou uma ruptura de olefina de 6,0 h e o produto alquilado tinha um RON de 100,3 antes da ruptura da olefina, conforme mostrado na Tabela 1, EXEMPLO 3 O zeólito Y nanocristalino conforme sintetizado acima no Exemplo 1 foi submetido à troca iônica para obter LaNH4Y como acima. A ligação e pré-tratamento foram os mes- mos que no Exemplo 1. A área de superfície desta amostra era de 389 m2/g. As condições de reação de alquilação foram às mesmas que no Exemplo 1, exceto pelo fato de que a taxa de alimentação era de 21,3 partes/h. Quatro partes do catalisa- dor seco com tamanho de -18 a +25 mesh forma carregadas no reator. A amostra tinha uma ruptura de olefina de 3,6 h e o produto alquilado tinha um RON de 100,4 antes da ruptura da olefina, como mostrado na Tabela 1. EXEMPLO 4 O zeólito Y nanocristalino como sintetizado acima no Exemplo 1 foi submetido à troca iônica para obter LaNH4Y como acima. A ligação, pré-tratamento e condições de teste foram os mesmos que no Exemplo 1. A área de superfície dessa amostra era de 413 m2/g. Quatro partes do catalisador seco com tamanho de partícula de -18 a +25 mesh foram carregadas no reator. A amostra tinha uma ruptura de olefina de 8,0 h, e o produto alquilado tinha um RON de 99,5 antes da ruptura da olefina, conforme mostrado na Tabela 1. EXEMPLO 5 O zeólito Y nanocristalino conforme sintetizado acima no Exemplo 1 foi submetido à troca iônica com uma so- lução contendo cloretos de terras raras ("RECI3") e nitrato de amônio (NH4N03), várias vezes, para reduzir o teor de só- dio para menos de 0,2% em peso para obter REY. A ligação, pré-tratamento e condições de teste foram os mesmos que no Exemplo 1. A área de superfície dessa amostra era de 396 m2/g. 3,6 "partes do catalisador com tamanho de partícula de -18 a +25 mesh foram carregadas no reator. A amostra tinha uma ruptura de olefina de 3,4 h e o produto alquilado tinha um RON de 105,5 antes da ruptura da olefina, conforme mos- trado na Tabela 1. TABELA 1 _______________________________________ * Depois de 1 hora de reação ** Depois da ruptura da olefina Os resultados de teste mostram a superioridade i- nesperada do catalisador nanocristalino da presente inven- ção. Por exemplo, a vida média do catalisador dos Exemplos Comparativos 1 a 3 (zeóito Y convencional) a uma WHSV média de cerca de 0,25 parte de olefina por parte do catalisador por hora era de 3,9 h com um RON médio antes da ruptura da olefina de cerca de 98,8. A vida média do catalisador dos Exemplos 1 a 5 (zeólito Y nanocristalino) a uma WHSV média de cerca de 0,26 parte de olefina por parte de catalisador por hora era de 5,36 h com um RON médio correspondente antes da ruptura de olefina de cerca de 100,2.The calcined pastes were ground and sieved to sizes of + 20 / -12 mesh, of these 4.0 parts in the dry base were loaded into the alkylation reactor for performance evaluation. The BET surface area of the final catalyst was 416 m2 / g. The pretreatment and alkylation reaction conditions were the same as above. This sample had a 6.2 he olylated olefin disruption and had an RON of 100.2 prior to the olefin disruption, as shown in Table 1. EXAMPLE 2 Nanocrystalline Y zeolite, as synthesized above in Example 1, was exchanged. for obtaining LaNH4Y as above. The binding, pretreatment and test conditions were the same as in Example 1. The surface area of this sample was 409 m2 / g. Four parts of the dry catalyst with a particle size of -18 to +25 mesh were charged to the reactor. The sample had a 6.0 olefin rupture and the alkylated product had an RON of 100.3 prior to the olefin rupture as shown in Table 1. EXAMPLE 3 Nanocrystalline Y zeolite as synthesized above in Example 1 was subjected to ion exchange to get LaNH4Y as above. Binding and pretreatment were the same as in Example 1. The surface area of this sample was 389 m2 / g. The alkylation reaction conditions were the same as in Example 1, except that the feed rate was 21.3 parts / h. Four parts of the -18 to +25 mesh dry catalyst were loaded into the reactor. The sample had an olefin rupture of 3.6 h and the alkylated product had an RON of 100.4 prior to olefin rupture as shown in Table 1. EXAMPLE 4 Nanocrystalline Y zeolite as synthesized above in Example 1 was subjected to ion exchange to get LaNH4Y as above. The binding, pretreatment and test conditions were the same as in Example 1. The surface area of this sample was 413 m2 / g. Four parts of the dry catalyst with particle size from -18 to +25 mesh were loaded into the reactor. The sample had an 8.0 hr olefin disruption, and the alkylated product had an RON of 99.5 prior to the olefin disruption as shown in Table 1. EXAMPLE 5 Nanocrystalline Y zeolite as synthesized above in Example 1 was subjected to ion exchange with a solution containing rare earth chloride ("RECI3") and ammonium nitrate (NH4N03) several times to reduce the sodium content to less than 0.2% by weight to obtain REY. The binding, pretreatment and test conditions were the same as in Example 1. The surface area of this sample was 396 m2 / g. 3.6 "parts of the catalyst with particle size from -18 to +25 mesh were loaded into the reactor. The sample had an olefin rupture of 3.4 h and the alkylated product had an RON of 105.5 prior to olefin rupture, TABLE 1 _______________________________________ * After 1 hour of reaction ** After olefin rupture Test results show the unexpected superiority of the nanocrystalline catalyst of the present invention, for example, the average life of the catalyst of Comparative Examples 1 to 3 (conventional Y-zeolite) at an average WHSV of about 0.25 part of olefin per part of the catalyst per hour was 3.9 h with an average RON before olefin breakage of about 98.8 The average catalyst life of Examples 1 to 5 (nanocrystalline Y zeolite) at an average WHSV of about 0.26 part olefin per part catalyst per hour was 5.36 h with a corresponding average RON before. of the olefin rupture of about 100.2.

Embora a descrição acima contenha muitos detalhes específicos, estes detalhes não devem ser interpretados como limitações do escopo da invenção, mas simplesmente como e- xemplificações das modalidades preferidas dela. Aqueles ver- sados na técnica considerarão muitas outras possibilidades dentro do escopo e espírito da invenção como definido pelas reivindicações apensas aqui.While the above description contains many specific details, these details should not be construed as limitations on the scope of the invention, but simply as exemplifications of preferred embodiments thereof. Those skilled in the art will consider many other possibilities within the scope and spirit of the invention as defined by the claims appended hereto.

Claims (22)

1. Processo para alquilação de um composto de hi- drocarboneto, CARACTERIZADO pelo fato de que compreende: a) proporcionar um catalisador que inclui um zeó- lito Y tendo um tamanho de cristal de não mais que 100 nm; b) reagir um hidrocarboneto capaz de ser alquilado com um agente alquilante, em presença do referido catalisa- dor, sob condições de reação de alquilação para proporcionar um produto alquilado.A process for alkylating a hydrocarbon compound, characterized in that it comprises: a) providing a catalyst including a zeolite Y having a crystal size of no more than 100 nm; b) reacting a hydrocarbon capable of being alkylated with an alkylating agent in the presence of said catalyst under alkylation reaction conditions to provide an alkylated product. 2. Processo, de acordo com a reivindicação 1, CARACTERIZADO pelo fato de que o processo de alquilação é alquilação de olefina/parafina.Process according to Claim 1, characterized in that the alkylation process is olefin / paraffin alkylation. 3. Processo, de acordo com a reivindicação 2, CARACTERIZADO pelo fato de que o hidrocarboneto capaz de ser alquilado é isobutano, e ó agente alquilante é um buteno.Process according to Claim 2, characterized in that the hydrocarbon capable of being alkylated is isobutane, and the alkylating agent is a butene. 4. Processo, de acordo com a reivindicação 3, CARACTERIZADO pelo fato de que o produto alquilado compreen- de uma gasolina tendo um número de octana research de pelo menos 99,5.Process according to claim 3, characterized in that the alkylated product comprises a gasoline having an octane research number of at least 99.5. 5. Processo, de acordo com a reivindicação 1, CARACTERIZADO pelo fato de que o processo de alquilação é alquilação aromática.A process according to claim 1, characterized in that the alkylation process is aromatic alkylation. 6. Processo, de acordo com a reivindicação 5, CARACTERIZADO pelo fato de que o hidrocarboneto capaz de ser alquilado é benzeno e o agente alquilante é selecionado do grupo que consiste em etileno, propileno, 1-buteno, 2- buteno, e isobuteno.Process according to claim 5, characterized in that the hydrocarbon capable of being alkylated is benzene and the alkylating agent is selected from the group consisting of ethylene, propylene, 1-butene, 2-butene, and isobutene. 7. Processo, de acordo com a reivindicação 1, CARACTERIZADO pelo fato de que o processo de alquilação com- preende transalquilação, o hidrocarboneto capaz de ser al- quilado é um composto aromático de anel vazio e o agente al- quilante é um composto aromático polialquilado.A process according to claim 1, characterized in that the alkylation process comprises transalkylation, the hydrocarbon capable of being alkylated is an aromatic empty ring compound and the alkylating agent is an aromatic compound. polyalkylated. 8. Processo, de acordo com a reivindicação 7, CARACTERIZADO pelo fato de que o composto aromático de anel vazio é benzeno e o composto aromático polialquilado é sele- cionado do grupo que consiste em dietilbenzeno e di- isopropil benzeno.Process according to Claim 7, characterized in that the empty ring aromatic compound is benzene and the polyalkylated aromatic compound is selected from the group consisting of diethylbenzene and diisopropyl benzene. 9. Processo, de acordo com a reivindicação 1, CARACTERIZADO pelo fato de que a etapa de proporcionar um catalisador compreende: a) proporcionar um óxido inorgânico poroso, b) impregnar o óxido inorgânico poroso com uma so- lução líquida contendo um agente direcionador de formação de microporo inorgânico que fornece íons de hidróxido, em que a quantidade de solução líquida não é mais que cerca de 100% do volume de poro do óxido inorgânico, e a concentração do agente direcionador de formação de microporo na solução lí- quida varia de cerca de 25% a cerca de 60% em peso, e c) aquecer o óxido inorgânico poroso impregnado a uma temperatura elevada de síntese, por um período de tempo suficiente para formar um produto contendo zeólito.A process according to claim 1, characterized in that the step of providing a catalyst comprises: a) providing a porous inorganic oxide, b) impregnating the porous inorganic oxide with a liquid solution containing a catalyst. Inorganic microporous formation providing hydroxide ions, wherein the amount of liquid solution is no more than about 100% of the pore volume of the inorganic oxide, and the concentration of the microporous directing agent in the liquid solution varies from about 100%. about 25% to about 60% by weight; and c) heating the impregnated porous inorganic oxide to an elevated synthesis temperature for a period of time sufficient to form a zeolite-containing product. 10. Processo, de acordo com a reivindicação 9, CARACTERIZADO pelo fato de que a solução líquida de agente direcionador de microporo inorgânico é uma solução aquosa de hidróxido de sódio.Process according to Claim 9, characterized in that the liquid solution of inorganic microporous targeting agent is an aqueous solution of sodium hydroxide. 11. Processo, de acordo com a reivindicação 1, CARACTERIZADO pelo fato de que o zeólito Y tem um tamanho de cristal de não mais que cerca de 50 nm.Process according to Claim 1, characterized in that the zeolite Y has a crystal size of no more than about 50 nm. 12. Processo, de acordo com a reivindicação 1, CARACTERIZADO pelo fato de que o zeólito Y tem um tamanho de cristal de não mais que cerca de 25 nm.Process according to claim 1, characterized in that zeolite Y has a crystal size of no more than about 25 nm. 13. Processo, de acordo com a reivindicação 1, CARACTERIZADO pelo fato de que o zeólito Y tem um teor de sódio de não mais que cerca de 0,2% em peso.Process according to claim 1, characterized in that zeolite Y has a sodium content of no more than about 0.2% by weight. 14. Processo, de acordo com a reivindicação 1, CARACTERIZADO pelo fato de que o zeólito Y tem um teor de sódio de não mais que cerca de 0,1% em peso.Process according to claim 1, characterized in that zeolite Y has a sodium content of not more than about 0.1% by weight. 15. Processo, de acordo com a reivindicação 1, CARACTERIZADO pelo fato de que o zeólito Y tem um teor de sódio de não mais que cerca de 0,05 % em peso.Process according to claim 1, characterized in that zeolite Y has a sodium content of no more than about 0.05% by weight. 16. Processo, de acordo com a reivindicação 1, CARACTERIZADO pelo fato de que o catalisador inclui um li- gante de óxido refratãrio.Process according to Claim 1, characterized in that the catalyst includes a refractory oxide binder. 17. Processo, de acordo com a reivindicação 16, CARACTERIZADO pelo fato de que o ligante de óxido refratãrio compreende um ou mais óxidos selecionados do grupo que consis- te em sílica, alumina, sílica-alumina, titânia e zircÔnia.Process according to Claim 16, characterized in that the refractory oxide binder comprises one or more oxides selected from the group consisting of silica, alumina, silica alumina, titania and zirconia. 18. Processo, de acordo com a reivindicação 1, CARACTERIZADO pelo fato de que o zeólito Y inclui um ou mais metais selecionados do grupo que consiste em Pt, Pd, Ir, Ru, Rh, Os, Fe, Co, Ni, La, Ce, Pr, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Cu, Ag e Au.Process according to claim 1, characterized in that zeolite Y includes one or more metals selected from the group consisting of Pt, Pd, Ir, Ru, Rh, Os, Fe, Co, Ni, La, Ce, Pr, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Cu, Ag and Au. 19. Processo, de acordo com a reivindicação 1, CARACTERIZADO pelo fato de que o zeólito Y inclui lantânio e, em que a razão de massa de lantânio para zeólito é de pe- lo menos cerca de 0,04.Process according to claim 1, characterized in that zeolite Y includes lanthanum and wherein the lanthanum to zeolite mass ratio is at least about 0.04. 20. Processo, de acordo com a reivindicação 1, CARACTERIZADO pelo fato de que o zeólito Y tem uma razão de volume de mesoporo para microporo de cerca de 0,2 a cerca de 0,6.Process according to claim 1, characterized in that zeolite Y has a mesopore to micropore volume ratio of from about 0.2 to about 0.6. 21. Processo, de acordo com a reivindicação 1, CARACTERIZADO pelo fato de que o catalisador tem uma área de superfície BET de pelo menos cerca de 275 m2/g, e, em que o zeólito Y tem um componente de metal de terras raras com uma razão de massa de metal de terras raras para zeólito de pelo menos cerca de 0,04, em que o zeólito tem uma razão de volu- me de mesoporo para microporo de cerca de 0,2 a cerca de 6,0, e um tamanho de célula unitária de cerca de 24,6 Á a cerca de 24,9 Ã.Process according to claim 1, characterized in that the catalyst has a BET surface area of at least about 275 m2 / g, and wherein zeolite Y has a rare earth metal component with a rare earth metal to zeolite mass ratio of at least about 0.04, wherein the zeolite has a mesopore to micropore volume ratio of about 0.2 to about 6.0, and a unit cell size from about 24.6 Ã… to about 24.9 Ã…. 22. Processo, de acordo com a reivindicação 1, CARACTERIZADO pelo fato de que as condições de reação de al- quilação incluem uma temperatura de cerca de -40°C a cerca de 2 50°C, uma pressão de cerca de 100 kPa a cerca de 10 Mpa (1 bar a 100 bar), e uma WHSV de cerca de 0,1 a cerca de 500 hr’1.Process according to Claim 1, characterized in that the reaction conditions of the alkylation include a temperature of from about -40 ° C to about 250 ° C, a pressure of about 100 kPa to about 10 Mpa (1 bar to 100 bar), and a WHSV of from about 0.1 to about 500 hr'1.
BRPI0507362-6A 2004-02-09 2005-02-07 HYDROCARBON ALCHILATION USING A NANOCRISTALINE ZEOLIT CATALYST BRPI0507362B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10/774,774 US7361797B2 (en) 2002-02-05 2004-02-09 Hydrocarbon conversion using nanocrystalline zeolite Y
US10/774,774 2004-02-09
PCT/US2005/003469 WO2005077866A1 (en) 2004-02-09 2005-02-07 Hydrocarbon alklyation using a nanocrystalline zeolite y catalyst

Publications (2)

Publication Number Publication Date
BRPI0507362A BRPI0507362A (en) 2007-07-03
BRPI0507362B1 true BRPI0507362B1 (en) 2014-05-20

Family

ID=34860821

Family Applications (1)

Application Number Title Priority Date Filing Date
BRPI0507362-6A BRPI0507362B1 (en) 2004-02-09 2005-02-07 HYDROCARBON ALCHILATION USING A NANOCRISTALINE ZEOLIT CATALYST

Country Status (13)

Country Link
US (2) US7361797B2 (en)
EP (1) EP1713748B1 (en)
JP (1) JP4869948B2 (en)
KR (2) KR101186912B1 (en)
CN (1) CN1918088A (en)
AR (1) AR047596A1 (en)
BR (1) BRPI0507362B1 (en)
CA (1) CA2553682C (en)
DE (1) DE602005009499D1 (en)
MY (1) MY140013A (en)
RU (1) RU2327520C1 (en)
TW (1) TWI373452B (en)
WO (1) WO2005077866A1 (en)

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7405336B2 (en) * 2004-10-18 2008-07-29 Fina Technology, Inc. Promoters for controlling acidity and pore size of zeolite catalysts for use in alkylation
RU2419486C2 (en) * 2006-10-17 2011-05-27 Ламмус Текнолоджи Инк. Alkylation bimetallic catalysts
US7655824B2 (en) * 2006-10-30 2010-02-02 Uop Llc Processes for producing alkylbenzenes over solid acid catalyst at low benzene to olefin ratios and low heavies make
US7381676B1 (en) 2007-01-16 2008-06-03 Exxonmobil Chemical Patents Inc. Catalyst composition and its use thereof in aromatics alkylation
FR2920423B1 (en) * 2007-09-04 2009-11-13 Inst Francais Du Petrole PREPARATION OF A POROUS COMPOSITE MATERIAL BASED ON ZEOLITHE EU-1 AND ITS IMPLEMENTATION IN ISOMERIZATION OF AROMATIC C8.
US20090275791A1 (en) * 2008-05-05 2009-11-05 Saudi Arabian Oil Company Ceramic foam catalyst support for gasoline alkylation
JP5564769B2 (en) * 2008-08-12 2014-08-06 株式会社明電舎 Lower hydrocarbon aromatization catalyst and method for producing aromatic compound
US8395006B2 (en) * 2009-03-13 2013-03-12 Exxonmobil Research And Engineering Company Process for making high octane gasoline with reduced benzene content by benzene alkylation at high benzene conversion
US20110143920A1 (en) * 2009-12-16 2011-06-16 Uop Llc Rare Earth Exchanged Catalyst for Use in Detergent Alkylation
TW201139336A (en) * 2010-02-05 2011-11-16 Fina Technology Styrene production processes and catalysts for use therein
EP2581133A4 (en) * 2010-06-10 2014-04-30 Ube Industries Catalyst for alkylation and process for producing alkylaromatic hydrocarbon compound using the catalyst
RU2445165C1 (en) * 2010-09-09 2012-03-20 Учреждение Российской Академии Наук Ордена Трудового Красного Знамени Институт Нефтехимического Синтеза Им. А.В. Топчиева Ран (Инхс Ран) Catalyst, method of its production (versions) and method of liquid-phase alkylation of isobutane by olefins c2-c4 in its presence
US8791040B2 (en) * 2010-11-03 2014-07-29 Fina Technology, Inc. Catalysts containing nano-materials and methods of making and using same
DE102011101877A1 (en) * 2011-05-18 2012-11-22 Süd-Chemie AG Low-temperature oxidation catalyst with particularly pronounced hydrophobic properties for the oxidation of organic pollutants
US20130005564A1 (en) * 2011-06-30 2013-01-03 Uop Llc Synthesis of crystalline long-ranged ordered materials from preformed amorphous solids
RU2478429C1 (en) * 2011-07-28 2013-04-10 Федеральное государственное бюджетное учреждение науки Ордена Трудового Красного Знамени Институт нефтехимического синтеза им. А.В. Топчиева Российской академии наук (ИНХС РАН) Catalyst, method for production thereof and method for transalkylation of benzene with diethylbenzenes using said catalyst
US20130064757A1 (en) * 2011-09-09 2013-03-14 Uop Llc Methods for forming zeolites from homogeneous amorphous silica alumina
RU2505357C2 (en) * 2011-10-27 2014-01-27 Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России) Elaboration of technology of production of alkylation catalysts
US20130172649A1 (en) * 2011-12-30 2013-07-04 Sivadinarayana Chinta Supported nano sized zeolite catalyst for alkylation reactions
RU2482917C1 (en) * 2012-04-05 2013-05-27 Федеральное государственное бюджетное учреждение науки Ордена Трудового Красного Знамени Институт нефтехимического синтеза им. А.В. Топчиева Российской академии наук (ИНХС РАН) Method of producing heterogeneous catalyst for producing valuable and energy-saturated gasoline components
CN103540340B (en) * 2012-07-12 2015-10-21 中国石油化工股份有限公司 Gasoline refining process
CN104692412A (en) * 2013-12-06 2015-06-10 中国石油大学(北京) A method of synthesizing a NaY molecular sieve and the synthesized NaY molecular sieve
SG11201700069SA (en) * 2014-07-07 2017-02-27 Albemarle Europe Sprl Alkylation process using a catalyst comprising cerium rich rare earth containing zeolites and a hydrogenation metal
RU2579512C1 (en) * 2014-12-30 2016-04-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный технологический институт (технический университет)". Method for preparing catalyst and catalyst for alkylation of isobutane with isobutene
CA2989428A1 (en) * 2015-06-22 2016-12-29 Exelus, Inc. Catalyzed alkylation, alkylation catalysts, and methods of making alkylation catalysts
CN107866267B (en) * 2016-09-26 2020-07-07 中国石油化工股份有限公司 Catalyst for synthesizing cyclohexylbenzene
CN110573594B (en) * 2017-03-01 2022-10-25 雅宝欧洲有限责任公司 Alkylation process with improved octane number
RU2700792C2 (en) * 2017-12-25 2019-09-23 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный технологический институт (технический университет)" (СПбГТИ(ТУ)) Method of producing catalyst for carrying out process of alkylating paraffin with olefins
CN108722406B (en) * 2018-06-04 2020-10-23 山东麟丰化工科技有限公司 Tungsten-based catalyst, preparation method and application thereof in isobutane-butylene alkylation reaction
CN110562995B (en) * 2018-06-06 2021-05-28 中国石油化工股份有限公司 Synthesis method of nano Y zeolite, synthesized nano Y zeolite and application
CN112387301B (en) * 2019-08-15 2023-05-26 中国石油天然气股份有限公司 Carbon tetraalkylation catalyst containing Y molecular sieve and preparation method thereof
US11078431B2 (en) 2019-12-16 2021-08-03 Saudi Arabian Oil Company Modified ultra-stable Y (USY) zeolite catalyst for deolefinization of hydrocarbon streams
US11098256B2 (en) 2020-01-08 2021-08-24 Saudi Arabian Oil Company Modified ultra-stable Y (USY) zeolite catalyst for improving cold flow properties of distillates
RU2751336C1 (en) * 2020-10-02 2021-07-13 Общество с ограниченной ответственностью "Газпром нефтехим Салават" (ООО "Газпром нефтехим Салават") Catalyst, method for its preparation, and method for transalkylation of benzene with diethylbenzenes using it
US11484869B2 (en) 2020-12-09 2022-11-01 Saudi Arabian Oil Company Modified ultra-stable Y (USY) zeolite catalyst for dealkylation of aromatics

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3549557A (en) 1968-06-26 1970-12-22 Union Carbide Corp Isoparaffin alkylation process and catalyst for use therein
US3815004A (en) 1973-06-06 1974-06-04 Hyper Loop Rotary motor
US3851004A (en) 1973-09-27 1974-11-26 Union Carbide Corp Hydrocarbon alkylation process using catalyst regeneration
US4899008A (en) * 1986-06-27 1990-02-06 Mobil Oil Corporation Direct catalytic alkylation of mononuclear aromatics with lower alkanes
FR2662438B1 (en) * 1990-05-22 1993-10-29 Institut Francais Petrole PROCESS FOR THE PRODUCTION OF ALKYLBENZENES USING CATALYSTS BASED ON DESALUMINATED ZEOLITE.
US5177284A (en) * 1991-05-28 1993-01-05 Mobil Oil Corporation Catalysts/process to synthesize alkylated naphthalene synthetic fluids with increased alpha/beta isomers for improving product qualities
US5601798A (en) * 1993-09-07 1997-02-11 Pq Corporation Process for preparing zeolite Y with increased mesopore volume
CA2273333C (en) 1996-11-27 2007-05-01 Akzo Nobel Nv Process for alkylating hydrocarbons
US6004527A (en) 1997-09-29 1999-12-21 Abb Lummus Global Inc. Method for making molecular sieves and novel molecular sieve compositions
US6057485A (en) * 1998-11-17 2000-05-02 Fina Technology, Inc. Gas phase alkylation with split load of catalyst
JP5074654B2 (en) * 2000-05-30 2012-11-14 アルベマーレ ネザーランズ ビー.ブイ. Alkylation method with alkylation catalyst
US6793911B2 (en) * 2002-02-05 2004-09-21 Abb Lummus Global Inc. Nanocrystalline inorganic based zeolite and method for making same
JP4541688B2 (en) * 2003-11-28 2010-09-08 薫 藤元 Isoparaffin-olefin alkylation process

Also Published As

Publication number Publication date
EP1713748B1 (en) 2008-09-03
US7361797B2 (en) 2008-04-22
KR20120001806A (en) 2012-01-04
RU2327520C1 (en) 2008-06-27
WO2005077866A1 (en) 2005-08-25
JP2007523075A (en) 2007-08-16
CN1918088A (en) 2007-02-21
US7495143B2 (en) 2009-02-24
US20080154083A1 (en) 2008-06-26
JP4869948B2 (en) 2012-02-08
CA2553682C (en) 2012-09-18
KR20060116220A (en) 2006-11-14
TW200528397A (en) 2005-09-01
US20040162454A1 (en) 2004-08-19
EP1713748A1 (en) 2006-10-25
MY140013A (en) 2009-11-30
TWI373452B (en) 2012-10-01
AR047596A1 (en) 2006-01-25
BRPI0507362A (en) 2007-07-03
KR101121424B1 (en) 2012-03-15
DE602005009499D1 (en) 2008-10-16
KR101186912B1 (en) 2012-10-02
CA2553682A1 (en) 2005-08-25
RU2006132349A (en) 2008-03-20

Similar Documents

Publication Publication Date Title
BRPI0507362B1 (en) HYDROCARBON ALCHILATION USING A NANOCRISTALINE ZEOLIT CATALYST
US8163969B2 (en) Alkylation process using a catalyst comprising rare earth containing zeolites and a hydrogenation metal
AU2015286798B2 (en) Alkylation process using a catalyst comprising cerium rich rare earth containing zeolites and a hydrogenation metal
WO2001091901A1 (en) Novel alkylation catalyst and its use in alkylation
CA3054985C (en) Alkylation process with improved octane number
WO2010092056A1 (en) Alkylation catalyst and related process
MXPA06008227A (en) Hydrocarbon alklyation using a nanocrystalline zeolite y catalyst

Legal Events

Date Code Title Description
B09A Decision: intention to grant [chapter 9.1 patent gazette]
B16A Patent or certificate of addition of invention granted [chapter 16.1 patent gazette]

Free format text: PRAZO DE VALIDADE: 20 (VINTE) ANOS CONTADOS A PARTIR DE 07/02/2005, OBSERVADAS AS CONDICOES LEGAIS.

B21F Lapse acc. art. 78, item iv - on non-payment of the annual fees in time

Free format text: REFERENTE A 12A ANUIDADE.

B24J Lapse because of non-payment of annual fees (definitively: art 78 iv lpi, resolution 113/2013 art. 12)