BR112013026282B1 - Método implementado em uma unidade computacional e dispositivo para análise de uma parte predefinida de um objeto que tem um recurso de interesse - Google Patents

Método implementado em uma unidade computacional e dispositivo para análise de uma parte predefinida de um objeto que tem um recurso de interesse Download PDF

Info

Publication number
BR112013026282B1
BR112013026282B1 BR112013026282-6A BR112013026282A BR112013026282B1 BR 112013026282 B1 BR112013026282 B1 BR 112013026282B1 BR 112013026282 A BR112013026282 A BR 112013026282A BR 112013026282 B1 BR112013026282 B1 BR 112013026282B1
Authority
BR
Brazil
Prior art keywords
light sources
light
images
instructions
generated
Prior art date
Application number
BR112013026282-6A
Other languages
English (en)
Other versions
BR112013026282A2 (pt
Inventor
Horst Arnold Mueller
Ryan Eric Martin
Robert K. Rowe
Original Assignee
Hid Global Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hid Global Corporation filed Critical Hid Global Corporation
Publication of BR112013026282A2 publication Critical patent/BR112013026282A2/pt
Publication of BR112013026282B1 publication Critical patent/BR112013026282B1/pt

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/50Depth or shape recovery
    • G06T7/55Depth or shape recovery from multiple images
    • G06T7/586Depth or shape recovery from multiple images from multiple light sources, e.g. photometric stereo
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/10Image acquisition
    • G06V10/12Details of acquisition arrangements; Constructional details thereof
    • G06V10/14Optical characteristics of the device performing the acquisition or on the illumination arrangements
    • G06V10/145Illumination specially adapted for pattern recognition, e.g. using gratings
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • G06V10/60Extraction of image or video features relating to illumination properties, e.g. using a reflectance or lighting model
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1312Sensors therefor direct reading, e.g. contactless acquisition
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/1382Detecting the live character of the finger, i.e. distinguishing from a fake or cadaver finger
    • G06V40/1394Detecting the live character of the finger, i.e. distinguishing from a fake or cadaver finger using acquisition arrangements
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/40Spoof detection, e.g. liveness detection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10141Special mode during image acquisition
    • G06T2207/10152Varying illumination

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Multimedia (AREA)
  • Human Computer Interaction (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Artificial Intelligence (AREA)
  • Software Systems (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Image Input (AREA)

Abstract

CRIAÇÃO DE IMAGEM TOPOGRÁFICA. Métodos e dispositivos para modificação de uma parte pré-definida de um objeto possuindo uma característica de interesse são descritos. A característica de interesse define uma classe de objetos que inclui objeto, Fontes de luz iluminam diretamente o objeto a partir de direções de iluminação diferentes. As fontes de luz são mantidas em uma configuração estável com relação ao objeto. Para cada direção de iluminação, uma imagem é gerada a partir da luz espalhada a partir do objeto com uma câmera mantida em uma configuração estável com relação às fontes de luz. Uma metodologia derivada do aprendizado com máquina para a classe de objetos é aplicada para filtrar as imagens geradas filtradas para uma característica consistente com a característica de interesse. Os gradientes de superfície são determinados a partir de imagens filtradas e integradas para gerar uma topografia de uma superfície do objeto.

Description

Referência Cruzada a Pedidos Relacionados
[0001] Esse pedido é um pedido não provisório de e reivindica os benefícios da data de depósito do pedido de patente provisório U.S. No. 61/473.860, intitulado "OPTICAL TOPOGRAPHIC IMAGING," depositado em 11 de abril de 2011, a descrição total do qual é incorporada aqui por referência em sua totalidade.
Antecedentes da Invenção
[0002] Esse pedido refere-se geralmente à criação de imagem ótica. Mais especificamente, esse pedido se refere à criação de imagem topográfica ótica.
[0003] Existe uma variedade de aplicações nas quais é desejável se estudar um objeto a fim de analisar suas características topográficas. Um exemplo em particular é a criação de imagem de impressão digital, a qual o padrão topográfico de saliências é comumente utilizado nas aplicações de identificação, para fornecer um mecanismo para identificação de uma pessoa a partir das impressões digitais ou para verificar uma suposta identidade de uma pessoa com base nas impressões digitais dessa pessoa.
[0004] A maior parte dos métodos de coleta de impressão digital que são atualmente utilizados se baseia nas características de medição da pele em ou muito perto da superfície de um dedo. Em particular, as leitoras óticas de impressão digital se baseiam tipicamente na presença ou ausência de uma diferença no índice de refração entre uma placa de sensor e o tecido da pele localizado na mesma. Quando um vale preenchido com ar da impressão digital está acima de um local particular da placa, a refletância interna total ("TIR") ocorre na placa devido à diferença de índice de placa de ar. Alternativamente, se a pele de índice adequado de refração estiver em contato ótico com a placa, a TIR nesse local é frustrada, permitindo que a luz atravesse a interface de pele e placa. Um mapa das diferenças na TIR através da região onde o dedo é tocado pela placa forma a base para uma leitura de impressão digital ótica convencional. Existe um número de disposições óticas utilizadas para detectar essa variação da interface ótica em ambas as disposições de campo claro e campo escuro. Comumente, um único feixe quase monocromático de luz é utilizado para realizar essa medição à base de TIR.
[0005] Existe também outros sensores de impressão digital ótica que não se baseiam nessa medição com base em TIR. Na maior parte dos casos, tais sensores se baseiam em alguma disposição da luz quase monocromática para iluminar a frente, os lados ou a parte posterior de uma ponta de dedo, fazendo com que a luz difunda através da pele. A imagem da impressão digital é formada a partir das diferenças na transmissão de luz através do limite entre pele e placa para as saliências e vales. As diferenças na transmissão ótica são decorrentes das mudanças nas características de reflexo Fresnel que resultam da presença ou ausência de qualquer espaço de ar intermediário nos vales.
[0006] Outro exemplo no qual a criação de imagem é utilizada para analisar as características topográficas é no desenvolvimento de símbolos legíveis por máquina que são incorporados diretamente em partes sendo marcadas como partes de sistemas de monitoramento de corrente de suprimento. Os símbolos são utilizados para aperfeiçoar o gerenciamento de corrente de suprimento pela marcação de partes com símbolos singulares possuindo características topográficas formadas por tais técnicas como gravação a laser, gravação química, gravação por pontos, fundição, usinagem, e outras operações. A capacidade de criar imagem, e, dessa forma, ler os símbolos singulares é fundamental para a operação de monitoramento da transferência de partes e materiais através de correntes de suprimento. Tais símbolos são referidos aqui como "códigos de barra usinados", mas tal terminologia não deve limitar a forma na qual os símbolos são formados.
Sumário
[0007] As modalidades da invenção fornecem métodos de estudo de uma parte predefinida de um objeto possuindo uma característica de interesse que define uma classe de objetos que inclui o objeto. Cada uma dentre uma pluralidade de fontes de luz ilumina diretamente o objeto a partir de uma direção de iluminação diferente. A pluralidade de fontes de luz é mantida em uma configuração estável com relação ao objeto. Para cada direção de iluminação, uma imagem é gerada a partir da luz espalhada a partir do objeto com uma câmera mantida em uma configuração estável com relação à pluralidade de fontes de luz. Uma metodologia derivada da máquina aprendendo a classe de objetos é aplicada para filtrar as imagens geradas para uma característica consistente com a característica de interesse. Os gradientes de superfície para o objeto são determinados a partir de imagens filtradas. Os gradientes de superfície são integrados para gerar uma topografia de uma superfície da parte predefinida do objeto.
[0008] Em algumas modalidades, um albedo do objeto também pode ser determinado a partir das imagens geradas.
[0009] Quando a parte predefinida do objeto é quase plana, a filtragem das imagens geradas pode compreender a aplicação de um filtro de passagem de banda para as imagens geradas. Quando a característica de interesse compreende uma orientação, a filtragem das imagens geradas pode compreender a aplicação de um filtro de orientação para as imagens geradas. Quando a característica de interesse compreende uma característica cromática, a filtragem das imagens geradas pode compreender a aplicação de um filtro cromático para as imagens geradas.
[0010] O processo de determinação dos gradientes de superfície pode compreender a passagem de banda aplicando uma convolução inversa às imagens geradas para compensar o espalhamento anisotrópico da luz por um componente de volume do objeto. Em alguns casos, um processamento diferente é aplicado a cada uma das imagens geradas. Os gradientes de superfície podem, em particular, ser executados através da aplicação de fatores periódicos gerados como uma função de uma geometria definida pelas posições da pluralidade de fontes de luz com relação ao objeto. Esses fatores periódicos podem, em alguns casos, ser determinados com um processo de aprendizado de máquina.
[0011] A topografia da superfície do objeto pode ser definida por uma imagem topográfica, para a qual uma transformação pode ser aplicada para determinados efeitos. Por exemplo, a transformação pode mudar um contraste da imagem topográfica, pode reduzir artefatos devido à luz especular dentro da imagem topográfica, ou pode binarizar a imagem topográfica. Essas transformações podem, ademais, também ser determinadas com um processo de aprendizado de máquina.
[0012] As fontes de luz podem ser fontes substancialmente monocromáticas, tal como quando cada uma das fontes de luz gera luz em um comprimento de onda substancialmente igual. As fontes de luz podem ser distribuídas em torno do objeto substancialmente na mesma elevação e ser distribuídas substancialmente de maneira uniforme em azimute com relação ao objeto. Em alguns casos, as partes do objeto estão em contato ótico com uma placa que é substancialmente transparente para luz gerada pelas fontes de luz.
[0013] Em outras modalidades, as fontes de luz fornecem luz em uma pluralidade de comprimentos de onda de modo que a determinação dos gradientes de superfície compreenda a determinação dos gradientes de superfície em cada um dentre a pluralidade de comprimentos de onda. Isso pode ocorrer nas modalidades onde pelo menos parte das fontes de luz compreende fontes de luz policromáticas. Tais modalidades também são uteis quando um albedo da superfície do objeto é determinado a partir de imagens geradas em cada um dentre a pluralidade de comprimentos de onda de modo que o albedo determinado na pluralidade de comprimentos de onda possa ser comparado para determinar uma autenticidade do objeto como uma amostra biométrica.
[0014] As fontes de luz podem ser sequencialmente ativadas para iluminar diretamente o objeto. Em outras modalidades, o objeto é iluminado pela ativação simultânea de pelo menos algumas das fontes de luz em um padrão para determinar uma resposta a fontes de luz individuais com uma transformação. Os efeitos de sombra podem ser manuseados pela modificação regional de pelo menos uma das imagens geradas para excluir uma parte sombreada do estudo do objeto.
[0015] O objeto pode compreender qualquer um dentre uma variedade de objetos, exemplos dos quais incluem amostras biométricas e códigos de barra usinados.
[0016] Esses métodos da invenção também são consubstanciados em um dispositivo para o estudo de um objeto. O dispositivo compreende uma pluralidade de fontes de luz, uma câmera e uma unidade de computação em comunicação com a pluralidade de fontes de luz e com a câmera. As fontes de luz são dispostas para fornecer iluminação do objeto a partir de direções de iluminação diferentes e a câmera é disposta para receber a luz espalhada a partir do objeto. A unidade de computação possui instruções para implementar os métodos como descrito acima.
Breve Descrição dos Desenhos
[0017] Uma compreensão adicional da natureza e vantagens da presente invenção pode ser realizada por referência às partes restantes da especificação e dos desenhos, onde referências numéricas similares são utilizadas através dos vários desenhos para se referir a componentes similares.
[0018] A figura 1A ilustra uma configuração geral de um dispositivo de criação de imagem topográfica ótica de acordo com as modalidades da invenção;
[0019] A figura 1B é uma representação esquemática de um sistema de computador que pode ser utilizado para gerenciar a funcionalidade do dispositivo de criação de imagem topográfica ótica da figura 1A;
[0020] A figura 2 fornece uma série de imagens que ilustram o efeito das características topográficas tal como formato de superfície e refletância nas imagens de um objeto para ângulos de iluminação diferentes;
[0021] As figuras 3A e 3B fornecem exemplos de códigos de barra usinados;
[0022] A figura 4 é um fluxograma que resume os métodos da invenção; e
[0023] A figura 5 fornece uma ilustração de uma estrutura de um neural tal como pode ser utilizado nas modalidades da invenção.
Descrição Detalhada das Modalidades Ilustrativas
[0024] As modalidades da invenção são direcionadas geralmente aos métodos e dispositivos que utilizam a criação de imagem topográfica ótica para criação de imagem de um objeto. Esses métodos e dispositivos possuem uma variedade de aplicações que incluem criação de imagem de impressão digital e código de barra usinado entre outras. Enquanto a descrição que segue algumas vezes faz referência específica à criação de imagem de impressão digital e/ou código de barra usinado para fins de ilustração, isso não deve ser limitador. Mais geralmente, os métodos e dispositivos da invenção podem ser utilizados com qualquer objeto que tenha características topográficas que são de interesse. Por exemplo, outras partes da mão (tal como a palma) ou outras partes do corpo podem ser representadas em imagem pelos métodos e dispositivos descritos aqui. As medições de uma variedade de bens fabricados, tal como acabamentos de superfície de fundição ou partes usinadas podem ser realizadas. Ranhuras e outros detalhes forenses de projéteis e outros objetos similares também podem ser coletados utilizando-se os métodos e dispositivos descritos aqui.
[0025] É especificamente notado que a frase "criação de imagem topográfica ótica" também não deve ser limitadora. Na verdade, as técnicas e metodologias descritas aqui permitem a extração não apenas de características topográficas, mas também de outras características da parte representada do objeto que incluem características de refletância tal como albedo e cromaticidade, entre outras. Em alguns casos, apenas a informação topográfica é utilizada, mas em outros casos, uma combinação da informação topográfica e outras é utilizada. Algumas dessas aplicações são discutidas especificamente abaixo.
[0026] Uma ilustração da estrutura de um dispositivo que pode ser utilizada para implementar a criação de imagem topográfica ótica é fornecida com a figura 1A. Esse desenho é altamente esquemático e deve ilustrar a coleta direta de múltiplas imagens tiradas em diferentes ângulos de iluminação. Na implementação real, diferentes componentes ilustrados nos desenhos podem ser empacotados em uma única unidade; o desenho ilustra componentes internos de tal pacote.
[0027] O dispositivo 100 compreende uma pluralidade de fontes de luz 104, cada um dos quais pode ser implementado como uma fonte de luz substancialmente monocromática utilizando, por exemplo, dispositivos de emissão de luz ("LEDs") ou diodos a laser ("LDs"). Luz substancialmente monocromática pode, alternativamente, ser gerada utilizando fontes de banda estreita ou banda larga com elementos de filtro ótico adequados. A luz das fontes 104 é direcionada para uma placa 112 que é transparente em pelo menos o comprimento de onda das fontes de modo que o objeto 120 possa ser iluminado. O objeto iluminado é representado com uma câmera 108, que pode compreender uma câmera digital. Uma unidade de computação 124 é fornecida em comunicação com a câmera 108 e com as fontes de luz 104, e é configurada para operar o dispositivo 100 e para analisar os dados coletados. A coleta "direta" das imagens significa que cada uma das imagens coletadas pela câmera 108 não está limitada às áreas nas quais o objeto 120 está em contato ótico com a placa 112, mas inclui adicionalmente outras áreas do objeto 120. Na verdade, em algumas modalidades, a placa 112 pode ser omitida, sua presença sendo basicamente para orientar o posicionamento do objeto 120 para criação de imagem.
[0028] As fontes de luz 104 são geralmente dispostas para fornecer diferentes ângulos de iluminação e podem, em algumas modalidades, ser dispostas circunferencialmente em torno de um circulo em um plano substancialmente paralelo à placa 112. Em alguns casos, as fontes 104 são dispostas uniformemente em torno do circulo, isso é, em uma distribuição azimute uniforme, mas em outras modalidades a disposição pode ser não uniforme. Quando as fontes 104 são dispostas em torno da totalidade do circulo, as mesmas podem fornecer uma interrogação de 360 do objeto 120, mas em outras modalidades, apenas uma parte de um circulo pode ser fornecida com cobertura, tal como quando as posições das fontes de luz 120 definem um semicírculo.
[0029] É geralmente esperado que o dispositivo 100 seja desenvolvido sob circunstancias nas quais a câmera 108 e o objeto 120 sejam substancialmente estacionários um com relação ao outro, e onde as fontes de luz são iluminadas em uma sequência fixa durante a criação de imagem. Os mesmos princípios de criação de imagem podem ser aplicados em outras circunstancias onde o movimento relativo entre o objeto 120 e a câmera 108 pode ser matematicamente compensado. Visto que a disposição possui uma geometria fixa que define os iluminadores e sequência iluminação, o criador de imagem, e o plano de amostra, dispositivos em particular 100 podem ser calibrados utilizando uma variedade de técnicas que incluem a análise de dados de criação de imagem topográfica ótica previamente adquirida. Tais calibragens podem então ser vantajosamente aplicadas às medições futuras com o dispositivo em particular. Isso é descrito adicionalmente abaixo e é relacionado com a capacidade de as técnicas de criação de imagem em fazer uso de algoritmos de aprendizado de máquina. Em particular, visto que o dispositivo 100 é utilizado geralmente para criar a imagem de uma classe conhecida e limitada de amostras que possuem características óticas similares (tal como impressões digitais), os conjuntos de dados coletados anteriormente podem ser utilizados para derivar regras, coeficientes, características, relações, e outros aspectos da criação de imagem. Essas várias quantificações podem ser analisadas e refinadas utilizando-se o algoritmo de aprendizado de máquina para melhorar a análise de diferentes objetos em estudo. Outras técnicas de criação de imagem que consideram o caso geral de um objeto arbitrário, tal como sendo configurado para determinar a geometria e albedo de objetos que não necessariamente compartilham características óticas similares, são muito mais limitadas em potencial para o aprendizado de máquina.
[0030] A disposição relativa das fontes de luz 104 com a placa 112 fornece a iluminação de campo próximo do objeto 120. Isso pode fazer com que a intensidade de iluminação e o ângulo de iluminação variem através do plano de objeto como definido pela placa 112. A variação de intensidade de iluminação pode ser corrigida através de campo plano se desejado, e acredita-se que a variação do ângulo de iluminação possa ser parcialmente compensada por um desenho de sistema simétrico.
[0031] Em alguns casos, o objeto 120 pode ser representado quando está em contato nominal com a placa 112. Esse é o caso em particular em modalidades biométricas onde o objeto 120 compreende um dedo, uma palma, ou similar. Nas modalidades onde existe tal contato, o objeto pode ser vantajosamente considerado como sendo aproximadamente plano, permitindo a aplicação de filtragem no espaço de imagem básica ao invés de no espaço integrado. Adicionalmente, o ângulo de iluminação atingindo o objeto 120 mudará geralmente nos pontos de contato ótico devido às diferenças de refração nos limites entre objeto e placa em comparação com os limites entre objeto e ar.
[0032] Uma ilustração esquemática da unidade de computação 124 é fornecida com a figura 1B, que ilustra de forma ampla como elementos individuais podem ser implementados de uma forma separada ou mais integrada. A unidade de computação 124 pode formar parte do dispositivo 100 propriamente dito, empacotada com outros elementos ou pode ser fornecida separadamente. É ilustrada compreendida de elementos de hardware que são eletricamente acoplados através do barramento 175. Os elementos de hardware incluem um processador 152, um dispositivo de entrada 154, um dispositivo de saída 156, um dispositivo de armazenamento 158, uma leitora de mídia de armazenamento legível por computador 160a, um sistema de comunicações 164, uma unidade de aceleração de processamento 166 tal como um DSP ou processador de finalidade especial, e uma memória 168. A leitora de mídia de armazenamento legível por computador 160a é adicionalmente conectada a um meio de armazenamento legível por computador 160b, a combinação representando de forma profunda dispositivos de armazenamento remotos, locais, fixos e/ou removíveis mais a mídia de armazenamento para conter temporariamente e/ou permanentemente informação legível por computador. O sistema de comunicações 164 pode compreender uma conexão com fio, sem fio, modem, e/ou outro tipo de conexão de interface e permite que os dados sejam permutados com os dispositivos externos.
[0033] A unidade de computação 124 também compreende elementos de software, ilustrados como estando atualmente localizados dentro da memória de trabalho 170, incluindo um sistema operacional 174 e outro código 172, tal como um programa projetado para implementar os métodos da invenção. Será aparente para os versados na técnica que as variações substanciais podem ser utilizadas de acordo com as exigências específicas. Por exemplo, hardware personalizado também pode ser utilizado e/ou elementos em particular podem ser implementados em hardware, software (incluindo software portátil, tal como aplicativos), ou ambos. Adicionalmente, a conexão para outros dispositivos de computação tal como dispositivos de entrada e saída de rede podem ser empregados.
[0034] Para ilustrar o efeito de iluminação do objeto 120 em diferentes ângulos de iluminação, a figura 2 ilustra oito imagens de um objeto de teste. O objeto corresponde a uma impressão digital biométrica possuindo um formato tridimensional ao qual as diferenças de refletância foram adicionadas para seguir a superfície como ilustrado pelo padrão quadriculado. Os diferentes painéis no desenho correspondem a imagens produzidas com direções de iluminação de azimute diferentes para um ângulo de elevação de 45 e um ângulo de azimute de 45 . O formato de superfície e refletância causam efeitos diferentes na imagem à medida que o ângulo de iluminação muda, permitindo a extração de diferentes tipos de informação. Enquanto o mesmo efeito geral é observado quando da criação de imagem de vários tipos de objetos, objetos individuais podem ter diferentes níveis de complexidade ótica. Efeitos óticos salientes para objetos biométricos incluem reflexos de superfície difusos, espalhamento de subsuperfície ou volume, reflexos especulares, e albedo policromático.
[0035] Enquanto o objeto biométrico típico é oticamente complexo, outros objetos de teste podem ser oticamente relativamente simples. Um exemplo é código de barra usinado, exemplos dos quais são fornecidos nas figuras 3A e 3B para fins de ilustração. A figura 3A ilustra um exemplo de um código de barras usinado criado utilizando um processo de gravação por pontos de modo que o código de barra seja manifestado através de pequenas depressões em um substrato metálico. A figura 3B ilustra outro exemplo no qual o código de barras usinado foi criado utilizando-se solda quente. Esse exemplo em particular é de interesse visto que os elementos gerados a partir das soldas quentes são algumas vezes formados de maneira ruim, mas os métodos e sistemas da invenção ainda podem criar a imagem e interpretar o código de barras usinado com precisão.
[0036] Uma visão geral dos métodos da invenção é fornecida com o fluxograma da figura 4. Enquanto o diagrama apresenta etapas específicas em uma ordem específica, isso não deve ser limitador, mas, ao invés disso, ilustrar uma modalidade ilustrativa. Em outras modalidades, algumas das etapas especificamente identificadas podem ser omitidas, etapas adicionais não apresentadas explicitamente também podem ser realizadas, e/ou etapas podem ser realizada em uma ordem diferente da ilustrada. A ordenação das etapas na modalidade ilustrativa em determinados momentos explora de forma vantajosa aspectos fisicamente geométricos da estrutura de dispositivo 100 notada acima para simplificar o processamento.
[0037] O método começa no bloco 404 tendo o objeto 120 iluminado utilizando-se múltiplas fontes de luz 104 em diferentes direções de iluminação. A iluminação pelas fontes diferentes é geralmente sequencial, particularmente nas modalidades onde cada uma das fontes de luz 104 é substancialmente monocromática no mesmo comprimento de onda. Imagens básicas são coletadas em cada direção de iluminação no bloco 408, formando o conjunto de dados de imagem básica de onde a informação sobre o objeto 120 deve ser extraída.
[0038] No bloco 412, uma transformação logarítmica pode ser aplicada aos dados de imagem básicos, convertendo, assim, os dados de intensidade básica em pseudoabsorção. Modalidades diferentes podem utilizar qualquer base logarítmica para a transformação, incluindo ambos os logaritmos comuns e naturais. Tal transformação logarítmica em pseudoabsorção converte vantajosamente determinados efeitos óticos multiplicativos em efeitos óticos aditivos. Por exemplo, o albedo, definido como a razão sem dimensão de intensidade refletida em intensidade de incidência, combina de forma multiplicativa no espaço de dados básico, mas combina de forma aditiva no espaço de dados logarítmico.
[0039] No bloco 416, um filtro seletivo de característica é aplicado, um exemplo do qual inclui um filtro de passagem de banda. O uso de um filtro de passagem de banda é vantajoso quando o objeto 120 é quase plano, como notado acima no caso quando o objeto 120 está em contato nominal com a placa 112 e pode servir para detalhar a imagem pela retenção de informação de alta frequência enquanto se reduz a informação de baixa frequência. Exemplos de filtros de passagem de banda que podem ser aplicados incluem filtros Laplacianos, filtros Laplacianos para Gaussianos, filtros de Diferença de Gaussiano, e outros. Em outros casos, as características de interesse podem compreender frequências espaciais de faixa intermediária ou frequências espaciais baixas. Por exemplo, as características de interesse podem ser conhecidas como possuindo uma determinada orientação, faixa de orientações, ou conjunto de orientações. Em tais casos, os filtros seletivos de orientação, tal como filtros Gabor, filtros de wavelet complexos de árvore dupla, e outros do tipo podem ser aplicados. Em outros exemplos, as características de interesse podem ser conhecidas por terem determinadas características cromáticas, caso no qual os filtros espectralmente seletivos podem ser aplicados às imagens. Outros tipos de filtragem seletiva de característica linear ou não linear podem ser aplicados ao invés de ou em conjunto com qualquer um dos mencionados acima. A aplicação de filtro seletivo de característica pode algumas vezes ser retardada para depois no processo ilustrado na figura 4. Por exemplo, as funções de gradiente ou vetores normais podem ter a filtragem aplicada para garantir a planeza.
[0040] No bloco 420, outros filtros também podem ser aplicados. Em algumas modalidades, diferentes processamentos são beneficamente aplicados de acordo com cada uma das diferentes condições de iluminação, um exemplo das quais é a correção de espalhamento. Em casos de aplicações biométricas, por exemplo, a correção de espalhamento pode ser implementada pelo reconhecimento de que uma parte da luz refletida a partir da pele vem do espalhamento de subsuperfície volumosa. Em comprimentos de onda na região de silício, tal espalhamento é anisotrópico, com o espalhamento favorecendo uma direção de avanço ao longo da linha de iluminação incidente. Essa anisotropia de espalhamento faz com que as imagens básicas incluam uma mancha de característica que varia de acordo com o ângulo de iluminação. O efeito pode ser mitigado pela aplicação de um filtro adequado tal como uma convolução invertida com um núcleo adequado nas imagens básicas. Cada imagem básica pode, dessa forma, ser processada com um núcleo adequado à condição de iluminação.
[0041] As imagens de componente são extraídas das imagens filtradas no bloco 424. O método de extração depende dos componentes em particular a serem extraídos. Por exemplo, o albedo pode ser extraído como um meio de intensidades logarítmicas utilizando um fator de extração constante.
[0042] Os gradientes de superfície que definem a informação topográfica podem ser extraídos para um objeto aproximadamente plano 120 pela utilização de fatores periódicos definidos de acordo com a geometria do sistema. Por exemplo, em uma modalidade na qual as fontes de luz 104 são distribuídas com elevação constante e uniformemente em azimute através de uma faixa angular de 360 completa, o fato de extração para o gradiente de superfície de direção X Sx pode ser sinusoidal e o fator de extração para o gradiente de superfície de direção y Sy pode ser igual em quadratura. O sentido (isso é, horário ou anti-horário) e a fase dos fatores de extração combinam com a configuração do dispositivo 100. A definição de outros fatores de extração de acordo com a geometria de sistema será evidente aos versados na técnica, e podem incluir fatores não sinusoidais em algumas modalidades.
[0043] Em algumas modalidades, os fatores de extração utilizados para gerar os gradientes de superfície Sx e Sy são selecionados para reduzir a sensibilidade à luz DC. Isso não apenas reduz o efeito da iluminação ambiente DC em torno do dispositivo 100 nos fatores de extração, mas também reduz a influencia de albedo nos fatores de extração de gradiente de superfície. Em outras modalidades adicionalmente, os fatores também possuem sensibilidade reduzida a outras mudanças de iluminação não sincronizadas, que melhora a discriminação contra a luz ambiente que flutua durante a amostragem. Isso pode ser um problema, por exemplo, quando o dispositivo 100 é desenvolvido em um ambiente iluminado por iluminação fluorescente.
[0044] Existem muitas formas nas quais os fatores de extração podem ser selecionados para corresponder a esses critérios diferentes. Em algumas modalidades, os fatores de extração são definidos por um ser humano acomodando as condições de iluminação mais comumente esperadas em ambientes onde os dispositivos 100 devem ser desenvolvidos. Em outras modalidades, os dispositivos 100 são mais especificamente personalizados possuindo diferentes dispositivos que são configurados para serem adequados para categorias definidas de forma ampla de condições de iluminação: por exemplo, uma configuração do dispositivo pode ser comercializada como sendo adequada para uso diurno externo, com fatores de extração otimizados para acomodar a luz solar e a presença de determinados níveis de cobertura de nuvem; outra configuração pode ser comercializada como sendo adequada para ambientes de escritório, com fatores de extração otimizados para condições de iluminação fluorescente; e outra configuração pode ser comercializada como adequada para uso a meia luz, com fatores de extração que são substancialmente sinusoidais. Em outros casos, os fatores de extração podem ser definidos muito especificamente para um ambiente em particular possuindo um humano examinando o ambiente de desenvolvimento, talvez realizando testes óticos do ambiente, e derivando os fatores de extração adequados.
[0045] Em outras modalidades ainda, as técnicas de aprendizado de máquina como descritas abaixo podem ser utilizadas para fazer com que o dispositivo desenvolva os fatores de extração que são personalizados para o ambiente de desenvolvimento de acordo com dados específicos coletados enquanto desenvolvido nesse ambiente.
[0046] No bloco 428 da figura 4, os componentes topográficos extraídos são integrados para gerar imagem topográfica pela integração dos gradientes de superfície Sx e Sy. A integração é geralmente realizada numericamente utilizando qualquer um dentre a variedade de métodos conhecidos tal como método Frankot-Chellappa, métodos utilizando shapelets, e similares.
[0047] Uma vez que a imagem topográfica é gerada, outras transformações podem ser aplicadas ao bloco 432, particularmente para modificar adicionalmente a imagem topográfica resultante e tornar a mesma mais adequada para processamento subsequente. Em modalidades particulares, a imagem é modificada para mudar o contraste, para reduzir os artefatos resultantes de iluminação especular, para binarizar a imagem, e similares. De forma similar ao refinamento de máquina dos fatores de extração de topografia, tais transformações podem ser desenvolvidas com técnicas de aprendizado de maquina aplicadas aos dados coletados enquanto o dispositivo 100 é desenvolvido de modo que possam ser aplicados a dados atuais e futuros.
[0048] Existem muitos tipos de aprendizado de máquina que podem ser implementados em diferentes modalidades. Por exemplo, a figura 5 fornece uma ilustração conceitual de uma rede neural que pode ser consubstanciada na codificação da unidade computacional 124. Uma rede neural típica inclui uma pluralidade de nós, cada um dos quais possui um valor de peso associado ao mesmo. O exemplo da figura 5 é simplificado para fins de ilustração. A rede inclui uma camada de entrada possuindo uma pluralidade de nós de entrada Ij e uma camada de saída possuindo uma pluralidade de nós de saída Ok, com pelo menos uma camada entre as mesmas. No exemplo simplificado da figura 5, existe quatro nós de entrada I1-I4 e três nós de saída O1-O3. A atividade dos nós de entrada Ij representa a informação básica que é alimentada para dentro da rede e o comportamento dos nós de saída Ok representa a interpretação feita pela rede. A camada intermediária age como uma camada de peso para designar pesos relativos a diferentes entradas dos nós de entrada Ij.
[0049] Por exemplo, na determinação de um fator de extração adequado para gradientes de superfície, os nós da camada de entrada podem corresponder aos parâmetros que definem o formato do fator de extração e os nós da camada de saída podem corresponder aos parâmetros que definem a robustez dos gradientes de superfície calculados ou da reconstrução topográfica propriamente dita. À medida que o sistema recebe um retorno, a rede neural pode reconhecer a si mesma, modificando, assim, o formato dos fatores de extração de modo que as reconstruções topográficas aperfeiçoadas sejam derivadas.
[0050] A mesma técnica pode ser aplicada como parte das aplicações de transformação adicionais no bloco 432. Na aplicação da transformação para mudar o contraste da imagem topográfica, os nós da camada de entrada podem corresponder a parâmetros definindo as características da transformação de contraste, com os nós da camada de saída definindo a adequação do contraste resultante. Na redução de artefatos devido á luz especular, os nós da camada de entrada podem corresponder de forma similar aos parâmetros que definem as características da transformação de redução de artefato, com os nós da camada de saída definindo uma medida da presença de artefatos nas imagens resultantes. Redes neurais clássicas incluem redes Kohonen, redes de alimentação de avanço, e redes de propagação retroativa, cada uma das quais utiliza diferentes métodos de ajuste dos pesos e organização da respectiva rede neural durante um processo de sequenciamento. Essa estrutura básica de uma rede neural pode ser aplicada a qualquer uma das transformações adicionais que podem ser utilizadas em diferentes modalidades.
[0051] A rede neural da figura 5 é um exemplo de uma classe mais ampla de técnicas de sequenciamento, qualquer uma das quais pode ser alternativamente utilizada em modalidades específicas. Por exemplo, sistemas especialistas podem, alternativamente, ser utilizados como uma forma de aprendizado de máquina, assim como técnicas que incluem otimização estocástica na qual o formato das curvas (tal como pode definir os fatores de extração) são alteradas de acordo com as imagens de saída pela utilização de métodos tal como descida mais íngreme ou recozimento simulado. Em algumas modalidades, os métodos evolucionários podem ser utilizados pela modificação de um formato de acordo com os algoritmos genéticos.
[0052] Em outra modalidade a análise de componente principal é utilizada como parte da implementação das técnicas de aprendizado de máquina. Tal análise de componente principal pode ser aplicada diretamente aos dados coletados ou pode ser preferivelmente aplicada aos dados depois da transformação logarítmica. Fatores chave são extraídos a partir dos dados transformados logaritmicamente utilizando-se técnicas conhecidas dos versados na técnica da análise de componente principal. Em uma modalidade, o número de fatores chave é exatamente de dois fatores que possuem uma média de erro e que são geralmente insensíveis aos efeitos da luz DC. Exemplos de tais fatores incluem senoides, mas outros fatores também podem ser utilizados em outras modalidades.
[0053] Os inventores observaram que as imagens aperfeiçoadas podem ser realizadas em casos onde a iluminação possui uma simetria espelhada duas vezes em torno do eixo geométrico de criação de imagem, isso é, onde para cada fonte de luz 104 (elevação, azimute) em coordenadas, existe outra fonte de luz 104 nas coordenadas espelhadas (elevação, azimute + 180 ). Possíveis causas para esse aperfeiçoamento com base em simetria são aspectos não ideais do objeto 120 e criação de imagem, incluindo tais aspectos como mudanças especulares, mudanças de índices de refração, espalhamento de volume, e similares.
[0054] Uma preocupação adicional no caso de sensor biométrico é que muitos sensores biométricos, particularmente sensores biométricos de impressões digitais apresentam uma tendência a serem vencidos por várias formas de amostras falsas (spoof). No caso de leitoras de impressão digital, por exemplo, uma variedade de métodos é utilizada na qual um padrão de impressão digital de um usuário autorizado é embutido em algum tipo de material inanimado tal como papel, gelatina, epóxi, látex ou similares. Dessa forma, mesmo se uma leitora de impressão digital determinar de forma confiável a presença ou ausência de um padrão de impressão digital combinando, a segurança como um todo do sistema ainda pode ser comprometida com um mecanismo para garantir que o padrão de combinação esteja sendo adquirido a partir de um dedo vido genuíno.
[0055] A detecção de falsificação pode ser realizada nas modalidades da invenção pela determinação da dimensionalidade e/ou textura para garantir a consistência com amostras genuínas tal como dedos. Por exemplo, em uma modalidade, um sistema de criação de imagem topográfica ótica incorpora uma pluralidade de subsistemas de criação de imagem topográfica ótica monocromática que operam em diferentes comprimentos de onda de iluminação, fornecendo, assim informação cromática. A câmera 108 pode então compreender um criador de imagem colorida e iluminação pode ser fornecida como luz policromática, com a unidade de computação 124 sendo configurada para analisar a pluralidade de comprimentos de onda como subsistemas de criação de imagem topográfica ótica monocromática diferente. Em uma implementação específica, as fontes de luz 104 fornecem luz branca com a unidade de computação 124 sendo configurada para analisar as imagens recebidas como três subsistemas de criação de imagem topográfica ótica monocromática diferentes em vermelho, verde a azul.
[0056] Com essa configuração, uma amostra genuína é caracterizada possuindo uma topografia de objeto que é constante através dos comprimentos de onda, talvez após a correção de mudanças dependentes de comprimento de onda em espalhamento de volume, mas o albedo será geralmente diferente. A diferença no albedo através de diferentes comprimentos de onda de iluminação podem indicar de acordo a consistência com amostras genuínas. É notado que isso também é uma função que pode ser melhorada com o aprendizado de máquina pela apresentação do dispositivo 100 com amostras genuínas e falsas de características diferentes de modo que as exigências de consistência para discriminação entre amostras genuínas e falsas possam ser refinadas de acordo com os princípios de aprendizado de máquina discutidos acima.
[0057] Um número de variações da criação de imagem topográfica ótica descritas acima podem ser implementadas em várias modalidades alternativas. Um exemplo inclui o uso de iluminação multiplexada. Como descrito acima, as fontes de luz 104 podem ser ativadas independentemente e em sequência durante uma sessão de medição em algumas modalidades. Em modalidades alternativas, múltiplas fontes 104, ou até mesmo todas as fontes 104 constituídas pelo dispositivo 100 podem ser iluminadas substancialmente de forma simultânea em algum padrão, com respostas às fontes individuais sendo subsequentemente derivadas. Tais modalidades permitem a implementação de várias transformações tal como transformação Hadamard, transformação Haar, e outras. As modalidades que utilizam ativação de múltiplas fontes simultânea podem incluir maior tolerância a altos níveis de luz ambiente e robustez aumentada ao movimento de objeto durante uma sessão de medição.
[0058] Outras modalidades podem incluir correção de sombra quando uma parte do objeto 120 está na sombra com relação a uma ou mais condições de iluminação. Tal sombreamento pode causar uma resposta não linear que pode produzir artefatos em estimativas das imagens de componente. Pela identificação dessas regiões que estão na sombra com relação a uma fonte de luz determinada, os fatores utilizados para estimar as imagens de componente podem ser modificadas regionalmente para excluir as fontes sombreadas. Isso pode ser ilustrado com um exemplo. Considere-se uma modalidade na qual o dispositivo 100 possui seis fontes 104. Pode haver de acordo sete conjuntos de fatores utilizados para gerar os gradientes de superfície Sx e Sy. Cada imagem pode ser analisada para determinar qual fonte, se alguma, é mais provável de estar na sombra através de todos os pixels do objeto de modo que os fatores específicos sejam então utilizados com cada uma das regiões identificadas.
[0059] Alternativamente, o fenômeno "não ideal" tal como sombras e espalhamento de subsuperfície podem ser incorporados no processo de aprendizado de máquina. Em particular, as situações nas quais uma única classe de objetos está sendo medida que manifesta o fenômeno ótico similar (apesar de uma topografia diferente e/ou outras características) são bem adequadas para métodos de aprendizado de máquina como descrito aqui. O aprendizado de máquina pode ser adicionalmente facilitado em alguns casos disponibilizando-se a medição de referência para agir como um "padrão de ouro" que pode ser utilizado como objetivo do algoritmo de aprendizado de máquina. Como um exemplo, as características topográficas reais de um conjunto de impressões digitais utilizado para sequenciamento podem ser estabelecidas por outros métodos de medição tal com LIDAR, digitalização confocal, ultrassom, e uma variedade de outros métodos de medição do tipo. Em alguns casos, as fundições precisas dos dedos no conjunto de sequenciamento podem ser feitas e a topografia pode então ser medida a partir das fundições ao invés de diretamente a partir dos dedos. Alternativamente, outros métodos de geração de uma imagem de impressão digital que são conhecidos como sendo substancialmente devidos à geometria do dedo e relativamente não afetados pelas outras características óticas podem ser utilizados para fornecer uma imagem de referência.
[0060] Nos casos nos quais as medições de referência de dados de sequenciamento são feitas por alguma outra técnica, uma etapa de alinhamento intermediário pode ser útil para alinhar os dados de referência aos dados OTI. Por exemplo, no caso de impressões digitais, cada uma das sessões de medição OTI manifestará uma posição em particular (transversal ou rotativa) além de deformações plásticas que serão geralmente diferentes de uma medição de referência feita no mesmo dedo. Em tais casos, pode ser benéfico se alinhar a medição de referência com a medição OTI. Tal alinhamento pode ser realizado manualmente, de forma semiautomática, ou totalmente automática por uma variedade de métodos conhecidos da técnica.
[0061] Em alguns casos, as características salientes dos objetos e o sistema OTI podem ser simulados. As vantagens de se fazer isso são devido ao fato de os valores de referência reais para os objetos simulados (além de sistemas de iluminação e criação de imagem) serem necessariamente conhecidos e não exigirem segunda medição ou alinhamento dos valores de referência e medição. Tal simulação deve ser fisicamente precisa a fim de ser diretamente aplicável ao sistema de medição física. Em alguns casos, os pacotes de software de criação 3D comercialmente disponíveis foram considerados pelos inventores como fornecendo um bom meio de realização de simulações com o grau necessário de fidelidade com os sistemas reais.
[0062] Os inventores descobriram que a combinação de vários aspectos da invenção como descrita aqui combina de forma sinérgica para permitir uma criação de imagem mais versátil e eficiente para objetos que manifestam algum número de fenômeno ótico específico. Esses aspectos incluem a estabilidade da geometria de sistema de criação de imagem com relação à localização do objeto, a capacidade de identificar uma característica de múltiplos objetos que podem ser utilizados na definição de uma classe de objetos, e a aplicação de aprendizado de máquina sob essas condições. Em particular, os objetos sendo reproduzidos em imagem manifestam algum número dos seguintes fenômenos óticos: refletância difusa (Lambertiano); refletância especular; diferenças de refletância como uma função da posição espacial; espalhamento de subsuperfície onde a luz penetra a superfície do objeto e interage com o material abaixo da superfície antes de passar do objeto para dentro do sistema de criação de imagem; inter-reflexos nos quais a luz de iluminação sofre duas ou mais interações distintas antes de ser adquirida pelo sistema de criação de imagem (por exemplo, a luz reflete a partir de uma parte do objeto para uma segunda parte do objeto e então entra no sistema de criação de imagem); e o sombreamento no qual as características topográficas do objeto bloqueiam a luz de iluminação impedindo que alcance outras partes do objeto.
[0063] Adicionalmente, uma complexidade analítica adicional ocorre quando objetos são representados pelos sistemas possuindo uma ou mais das características a seguir: o objeto é iluminado com fontes de luz de campo próximo, que resulta em ângulos de iluminação e/ou intensidades de iluminação que variam através do campo de visão; e/ou o objeto de interesse está sendo representado através de um meio transparente ou parcialmente transparente (a "placa") tal como vidro ou plástico, e o objeto está ou não em contato com a placa, dependendo da topografia do objeto. Quando apenas partes do objeto estão em contato com a placa, a refração da superfície do objeto variará geralmente entre os pontos do objeto em contato com a placa e esses pontos não em contato com a placa.
[0064] As modalidades da invenção fornecem vantajosamente os métodos e dispositivos capazes de solucionar as situações nas quais um número significativo de fenômenos óticos e condições de criação de imagem estão presentes e interagem de formas complexas. Isso ocorre em contraste com outras técnicas que podem extrair informação de refletância e/ou topografia quando apenas um número muito limitado desses fenômenos está presente. Por exemplo, os métodos tais como criação de imagem estéreo e estéreo fotométrica podem ser eficientes para a criação de imagem refletindo de forma difusa objetos e podem algumas vezes acomodar um grau de reflexo especular. O formato de sombreamento é um método que pode inferir geometria de objeto a partir das sombras, e formato a partir de especular é um método que pode extrair estimativas da geometria de objeto a partir de reflexos especulares. Os métodos e dispositivos da invenção são particularmente aplicáveis às classes de medições nas quais o seguinte é verdadeiro: características topográficas de interesse no objeto são pequenas em comparação com a macro geometria (por exemplo, o objeto tem "dimensão 2,5" ou substancialmente planas com pequenas características relativas à dimensão geral); as medições topográficas devem ser realizadas em uma única classe de objetos que manifesta características óticas substancialmente similares, apesar de os objetos propriamente ditos poderem ser distintos (por exemplo, impressões digitais); e/ou a geometria do sistema ótico e sua relação com os objetos de interesse são conhecidos e substancialmente fixados através das médicos sendo realizadas.
[0065] Com essa combinação de aspectos, a informação obtida a partir da criação de imagem é mais confiável, tem maior capacidade de repetição, e contém um conteúdo de informação maior.
[0066] Tendo descrito as várias modalidades, será reconhecido pelos versados na técnica que as várias modificações, construções alternativas, e equivalências podem ser utilizadas sem se distanciar do espírito da invenção. De acordo, a descrição acima não deve ser considerada limitadora do escopo da invenção, que é definida nas reivindicações a seguir.

Claims (16)

1. Método implementado em uma unidade computacional para análise de uma parte predefinida de um objeto que tem um recurso de interesse e que é de uma classe de objetos que cada um tem uma propriedade óptica substancialmente similar, o método compreendendo: ativar cada uma dentre uma pluralidade de fontes de luz para iluminar diretamente o objeto, em que cada uma dentre a pluralidade de fontes de luz provê iluminação a partir de uma direção de iluminação diferente, e em que a pluralidade de fontes de luz é mantida numa configuração estável em relação ao objeto; para cada direção de iluminação, gerar uma imagem a partir da luz dispersa do objeto com uma câmera mantida em uma configuração estável em relação à pluralidade de fontes de luz, e o método sendo caracterizado pelo fato de que: aplicar uma metodologia derivada do aprendizado de máquina para a classe de objetos para: filtrar as imagens geradas para uma característica consistente com o recurso de interesse; determinar gradientes de superfície para o objeto a partir das imagens filtradas; e calcular a integral dos gradientes de superfície para gerar uma topografia de uma superfície da parte preefinida do objeto, em que determinar os gradientes de superfície compreende aplicar uma deconvolução às imagens geradas para produzir dispersão anisotrópica de luz por um componente de massa do objeto.
2. Método, de acordo com a reivindicação 1, caracterizado pelo fato de que: a parte predefinida do objeto é aproximadamente plana; e filtrar as imagens geradas compreende aplicar um filtro passa-banda às imagens geradas.
3. Método, de acordo com a reivindicação 1, caracterizado pelo fato de que determinar os gradientes de superfície compreende a extrair os gradientes de superfície por meio de aplicação de fatores periódicos gerados como uma função de uma geometria definida por posições da pluralidade de fontes de luz em relação ao objeto.
4. Método, de acordo com a reivindicação 1, caracterizado pelo fato de que as partes do arco de objeto estão em contato óptico com um cilindro que é substancialmente transparente à luz gerada pelas fontes de luz.
5. Método, de acordo com a reivindicação 1, caracterizado pelo fato de que: as fontes de luz fornecem luz em uma pluralidade de comprimentos de onda; e determinar os gradientes de superfície para o objeto compreende determinar gradientes de superfície para o objeto em cada um dentre a pluralidade de comprimentos de onda.
6. Método, de acordo com a reivindicação 5, caracterizado pelo fato de que compreende adicionalmente: determinar um albedo da superfície do objeto a partir das imagens geradas em cada um dentre a pluralidade de comprimentos de onda; e comparar o albedo determinado na pluralidade de comprimentos de onda para determinar uma autenticidade do objeto como uma amostra biométrica.
7. Método, de acordo com a reivindicação 1, caracterizado pelo fato de que o objeto compreende uma amostra biométrica.
8. Método, de acordo com a reivindicação 1, caracterizado pelo fato de que o objeto compreende um código de barras fabricado.
9. Dispositivo para análise de uma parte predefinida de um objeto que tem um recurso de interesse e que é de uma classe de objetos, que cada um tem uma propriedade óptica semelhante, o dispositivo compreendendo: uma pluralidade de fontes de luz dispostas para prover iluminação do objeto a partir de diferentes direções de iluminação, em que a pluralidade de fontes de luz é mantida em uma configuração estável em relação ao objeto; uma câmera disposta para receber luz dispersa a partir do objeto, em que a câmera é mantida em uma configuração estável em relação à pluralidade de fontes de luz, e o dispositivo sendo caracterizado pelo fato de que compreende: uma unidade computacional em comunicação com a pluralidade de fontes de luz e com a câmera, a unidade computacional possuindo: instruções para ativar as fontes de luz para iluminar diretamente o objeto; instruções para operar a câmera em conjunto com a ativação das fontes de luz para gerar uma imagem do objeto para cada uma das direções de iluminação; e instruções para aplicar uma metodologia derivada de aprendizado de máquina para a classe de objetos para: filtrar as imagens geradas para uma característica consistente com o recurso de interesse; determinar gradientes de superfície para o objeto a partir das imagens filtradas; e calcular a integral dos gradientes de superfície para gerar uma topografia de uma superfície da parte predefinida do objeto, em que as instruções para determinar os gradientes de superfície compreendem instruções para aplicar uma deconvolução às imagens geradas para produzir dispersão anisotrópica de luz por um componente de massa do objeto.
10. Dispositivo, de acordo com a reivindicação 9, caracterizado pelo fato de que: a parte predefinida do objeto é aproximadamente plana; e as instruções para filtrar as imagens geradas compreendem instruções para aplicar um filtro passa-banda às imagens geradas.
11. Dispositivo, de acordo com a reivindicação 9, caracterizado pelo fato de que as instruções para determinar os gradientes de superfície compreendem instruções para extrair os gradientes de superfície por meio de aplicação de fatores periódicos gerados como uma função de uma geometria definida por posições da pluralidade de fontes de luz em relação ao objeto.
12. Dispositivo, de acordo com a reivindicação 9, caracterizado pelo fato de que compreende adicionalmente um cilindro que é substancialmente transparente à luz gerada pelas fontes de luz e disposto para estar em contato óptico com partes do objeto.
13. Dispositivo, de acordo com a reivindicação 9, caracterizado pelo fato de que: as fontes de luz fornecem luz em uma pluralidade de comprimentos de onda; e as instruções para determinar os gradientes de superfície para o objeto compreendem instruções para determinar os gradientes de superfície para o objeto em cada um dentre a pluralidade de comprimentos de onda.
14. Dispositivo, de acordo com a reivindicação 13, caracterizado pelo fato de que a unidade computacional possui adicionalmente: instruções para determinar um albedo da superfície do objeto a partir das imagens geradas em cada um dentre a pluralidade de comprimentos de onda; e instruções para comparar o albedo determinado na pluralidade de comprimentos de onda para determinar a autenticidade do objeto como uma amostra biométrica.
15. Dispositivo, de acordo com a reivindicação 9, caracterizado pelo fato de que o objeto compreende uma amostra biométrica.
16. Dispositivo, de acordo com a reivindicação 9, caracterizado pelo fato de que o objeto compreende um código de barras fabricado.
BR112013026282-6A 2011-04-11 2012-04-11 Método implementado em uma unidade computacional e dispositivo para análise de uma parte predefinida de um objeto que tem um recurso de interesse BR112013026282B1 (pt)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201161473860P 2011-04-11 2011-04-11
US61/473,860 2011-04-11
US13/443,534 US9082188B2 (en) 2011-04-11 2012-04-10 Optical topographic imaging
US13/443,534 2012-04-10
PCT/US2012/033118 WO2012142157A1 (en) 2011-04-11 2012-04-11 Optical topographic imaging

Publications (2)

Publication Number Publication Date
BR112013026282A2 BR112013026282A2 (pt) 2016-08-09
BR112013026282B1 true BR112013026282B1 (pt) 2022-07-26

Family

ID=46965804

Family Applications (1)

Application Number Title Priority Date Filing Date
BR112013026282-6A BR112013026282B1 (pt) 2011-04-11 2012-04-11 Método implementado em uma unidade computacional e dispositivo para análise de uma parte predefinida de um objeto que tem um recurso de interesse

Country Status (5)

Country Link
US (1) US9082188B2 (pt)
EP (1) EP2697970B1 (pt)
CN (1) CN103597820B (pt)
BR (1) BR112013026282B1 (pt)
WO (1) WO2012142157A1 (pt)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012014304A1 (ja) * 2010-07-29 2012-02-02 富士通株式会社 生体認証装置および生体認証プログラム
US10542961B2 (en) 2015-06-15 2020-01-28 The Research Foundation For The State University Of New York System and method for infrasonic cardiac monitoring
CN105022979B (zh) * 2015-07-27 2018-01-16 深圳市民德电子科技股份有限公司 成像系统与补光系统光轴呈夹角设置的图像识读设备
IL245932A (en) * 2016-05-30 2017-10-31 Elbit Systems Land & C4I Ltd System and methods for determining the authenticity of an object that includes a reference image acquisition and a user unit
CN106840026A (zh) * 2017-01-11 2017-06-13 江苏科技大学 一种基于红外投线仪的三维测量系统及方法
US11204896B2 (en) 2017-08-18 2021-12-21 International Business Machines Corporation Scalable space-time density data fusion
US10317515B2 (en) * 2017-09-01 2019-06-11 Wisconsin Alumni Research Foundation Apparatus for identifying objects outside of a line-of-sight
CN110782502B (zh) * 2018-07-31 2023-11-03 通用电气公司 基于深度学习的pet散射估计系统和使用感知神经网络模型的方法
US10839264B2 (en) 2018-11-09 2020-11-17 International Business Machines Corporation Scalable feature classification for laser scanning data and digital elevation models
US11360970B2 (en) 2018-11-13 2022-06-14 International Business Machines Corporation Efficient querying using overview layers of geospatial-temporal data in a data analytics platform
WO2020185388A1 (en) 2019-03-08 2020-09-17 Master Lock Company Llc Locking device biometric access
JP2023513079A (ja) 2020-02-03 2023-03-30 ナノトロニクス イメージング インコーポレイテッド 深層フォトメトリック学習(dpl)システム、装置、及び方法
CN115471550B (zh) * 2022-08-31 2023-05-26 北京四维远见信息技术有限公司 2.5维图像空间几何方位角校正方法、装置、设备及介质
CN115761137B (zh) * 2022-11-24 2023-12-22 之江实验室 一种基于法向量和点云数据相互融合的高精度曲面重建方法和装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6259108B1 (en) 1998-10-09 2001-07-10 Kinetic Sciences Inc. Fingerprint image optical input apparatus
US7352892B2 (en) * 2003-03-20 2008-04-01 Micron Technology, Inc. System and method for shape reconstruction from optical images
US7751594B2 (en) * 2003-04-04 2010-07-06 Lumidigm, Inc. White-light spectral biometric sensors
US7627151B2 (en) * 2003-04-04 2009-12-01 Lumidigm, Inc. Systems and methods for improved biometric feature definition
ATE492001T1 (de) * 2003-04-04 2011-01-15 Lumidigm Inc Multispektralbiometriesensor
US7460696B2 (en) 2004-06-01 2008-12-02 Lumidigm, Inc. Multispectral imaging biometrics
US8229185B2 (en) * 2004-06-01 2012-07-24 Lumidigm, Inc. Hygienic biometric sensors
US7689016B2 (en) * 2005-05-27 2010-03-30 Stoecker & Associates, A Subsidiary Of The Dermatology Center, Llc Automatic detection of critical dermoscopy features for malignant melanoma diagnosis
JP4781732B2 (ja) * 2005-06-24 2011-09-28 株式会社リコー 電源システム装置及びその制御方法
WO2007065221A1 (en) * 2005-12-07 2007-06-14 Commonwealth Scientific And Industrial Research Organisation Linear feature detection method and apparatus
US7995808B2 (en) * 2006-07-19 2011-08-09 Lumidigm, Inc. Contactless multispectral biometric capture
US8355545B2 (en) * 2007-04-10 2013-01-15 Lumidigm, Inc. Biometric detection using spatial, temporal, and/or spectral techniques
JP4435867B2 (ja) 2008-06-02 2010-03-24 パナソニック株式会社 法線情報を生成する画像処理装置、方法、コンピュータプログラム、および、視点変換画像生成装置
EP4321975A3 (en) * 2008-06-19 2024-06-05 Massachusetts Institute of Technology Tactile sensor using elastomeric imaging
US20100246902A1 (en) * 2009-02-26 2010-09-30 Lumidigm, Inc. Method and apparatus to combine biometric sensing and other functionality
WO2010127241A2 (en) 2009-04-30 2010-11-04 The Regents Of The University Of California System and methods for fast implementation of equally-sloped tomography

Also Published As

Publication number Publication date
US9082188B2 (en) 2015-07-14
EP2697970B1 (en) 2017-12-27
EP2697970A4 (en) 2016-08-17
WO2012142157A1 (en) 2012-10-18
CN103597820B (zh) 2018-04-24
BR112013026282A2 (pt) 2016-08-09
EP2697970A1 (en) 2014-02-19
US20120257046A1 (en) 2012-10-11
CN103597820A (zh) 2014-02-19

Similar Documents

Publication Publication Date Title
BR112013026282B1 (pt) Método implementado em uma unidade computacional e dispositivo para análise de uma parte predefinida de um objeto que tem um recurso de interesse
US10867207B2 (en) Detection method, device, apparatus and computer storage medium
Nielsen et al. On optimal, minimal BRDF sampling for reflectance acquisition
Chen et al. Deep photometric stereo for non-lambertian surfaces
US10599933B2 (en) Biometric image capturing apparatus and biometric image capturing method
Toderici et al. Bidirectional relighting for 3D-aided 2D face recognition
US9396382B2 (en) System and method for a biometric image sensor with spoofing detection
Ghosh et al. Estimating specular roughness and anisotropy from second order spherical gradient illumination
Li et al. Neural reflectance for shape recovery with shadow handling
JP2008530628A (ja) 画像における主光源の方向を求めるための方法
CN104915631B (zh) 图像处理设备、生物认证设备和图像处理方法
Chen et al. Reflectance scanning: Estimating shading frame and BRDF with generalized linear light sources
JP2018521377A (ja) 人工3d再構成を用いてセキュリティパターンを識別する方法
Mirzaalian Dastjerdi et al. Measuring surface area of skin lesions with 2D and 3D algorithms
US10380408B2 (en) Method of detecting fraud
US11080511B2 (en) Contactless rolled fingerprints
Peng et al. Improved 3D lighting environment estimation for image forgery detection
EP2410486B1 (en) Biometric data aquisition device
Logothetis et al. Near-field photometric stereo in ambient light
Jin Variational methods for shape reconstruction in computer vision
Atkinson Surface shape and reflectance analysis using polarisation
Shimokawa et al. Computational model for human 3D shape perception from a single specular image
Kang et al. Learning Efficient Photometric Feature Transform for Multi-view Stereo
JP7209132B2 (ja) イメージングにおける照明補償
Rahman et al. Estimating reflectance parameters, light direction, and shape from a single multispectral image

Legal Events

Date Code Title Description
B25A Requested transfer of rights approved

Owner name: HID GLOBAL CORPORATION (US)

B06F Objections, documents and/or translations needed after an examination request according [chapter 6.6 patent gazette]
B06U Preliminary requirement: requests with searches performed by other patent offices: procedure suspended [chapter 6.21 patent gazette]
B09A Decision: intention to grant [chapter 9.1 patent gazette]
B16A Patent or certificate of addition of invention granted [chapter 16.1 patent gazette]

Free format text: PRAZO DE VALIDADE: 20 (VINTE) ANOS CONTADOS A PARTIR DE 11/04/2012, OBSERVADAS AS CONDICOES LEGAIS. PATENTE CONCEDIDA CONFORME ADI 5.529/DF, QUE DETERMINA A ALTERACAO DO PRAZO DE CONCESSAO.