BR102022005260A2 - Colheitadeira de algodão, e, método para determinar a produção de cultivo - Google Patents

Colheitadeira de algodão, e, método para determinar a produção de cultivo Download PDF

Info

Publication number
BR102022005260A2
BR102022005260A2 BR102022005260-3A BR102022005260A BR102022005260A2 BR 102022005260 A2 BR102022005260 A2 BR 102022005260A2 BR 102022005260 A BR102022005260 A BR 102022005260A BR 102022005260 A2 BR102022005260 A2 BR 102022005260A2
Authority
BR
Brazil
Prior art keywords
cotton
mass
crop
during
time period
Prior art date
Application number
BR102022005260-3A
Other languages
English (en)
Inventor
Brandon C. Carlson
Jeffrey S. Wigdahl
Nicholas W. Vanlaningham
Kurt D. Gustafson
Original Assignee
Deere & Company
Iowa State University Research Foundation, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Deere & Company, Iowa State University Research Foundation, Inc. filed Critical Deere & Company
Publication of BR102022005260A2 publication Critical patent/BR102022005260A2/pt

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D41/00Combines, i.e. harvesters or mowers combined with threshing devices
    • A01D41/12Details of combines
    • A01D41/127Control or measuring arrangements specially adapted for combines
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D41/00Combines, i.e. harvesters or mowers combined with threshing devices
    • A01D41/12Details of combines
    • A01D41/127Control or measuring arrangements specially adapted for combines
    • A01D41/1271Control or measuring arrangements specially adapted for combines for measuring crop flow
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D41/00Combines, i.e. harvesters or mowers combined with threshing devices
    • A01D41/12Details of combines
    • A01D41/127Control or measuring arrangements specially adapted for combines
    • A01D41/1271Control or measuring arrangements specially adapted for combines for measuring crop flow
    • A01D41/1272Control or measuring arrangements specially adapted for combines for measuring crop flow for measuring grain flow
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01FPROCESSING OF HARVESTED PRODUCE; HAY OR STRAW PRESSES; DEVICES FOR STORING AGRICULTURAL OR HORTICULTURAL PRODUCE
    • A01F15/00Baling presses for straw, hay or the like
    • A01F15/07Rotobalers, i.e. machines for forming cylindrical bales by winding and pressing
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D46/00Picking of fruits, vegetables, hops, or the like; Devices for shaking trees or shrubs
    • A01D46/08Picking of fruits, vegetables, hops, or the like; Devices for shaking trees or shrubs of cotton
    • A01D46/085Control or measuring arrangements specially adapted for cotton harvesters

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Combines (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)

Abstract

Uma colheitadeira de algodão estima a massa de algodão quando ele é colhido usando dispositivos sensores e compara a massa de cada módulo com a massa estimada do módulo conforme determinada pelos sensores de forma que um fator de calibragem possa ser determinado e ativamente atualizado para a determinação mais precisa da produção de cultivo. O fluxo em massa para um módulo específico é acumulado e processado durante a colheita usando um fator de calibragem de base e o módulo é pesado e comparado contra a massa esperada usando o fator de calibragem de base para desenvolver um candidato atualizado do fator de calibragem. O fator de calibragem de base é seletivamente substituído pelo candidato atualizado do fator de calibragem para o processamento de um módulo subsequente com base em informação de realimentação de máquina que se relaciona à operação da colheitadeira. Os dados de cultivo colhido determinados usando o fator de calibragem são usados para gerar mapas de produção altamente precisos.

Description

COLHEITADEIRA DE ALGODÃO, E, MÉTODO PARA DETERMINAR A PRODUÇÃO DE CULTIVO CAMPO DA INVENÇÃO
[001] A presente invenção se refere geralmente à colheita de cultivo e, mais particularmente, a aparelhos e métodos provendo informação de resultado de produção para estimar, monitorar, reportar, e gerenciar, a produção de cultivo.
FUNDAMENTOS
[002] Algumas colheitadeiras sensoreiam uma produção de um cultivo sendo colhido através de uma largura de uma cabeça de colheita. Os dados que são obtidos assistem na determinação da produção de cultivo, e podem também ser usados para assistir com o controle do sistema funcional selecionados da colheitadeira. Infelizmente, a coleta de dados é frequentemente imprecisa, particularmente quando é processada sem levar em conta o estado ou condição do cultivo conforme é processado por vários subsistemas da máquina de colheita. Imprecisão pode também resultar quando os dados são agregados através da largura da cabeça de colheita por sensores plurais que não são identicamente conjugados ou precisamente calibrados ou que têm características intrínsecas que podem se alterar ao longo do tempo ou durante o uso.
SUMÁRIO
[003] As implementações contidas aqui provêm um aparelho de determinação de produção de cultivo e métodos determinando a produção de cultivo.
[004] As implementações contidas aqui provêm adicionalmente métodos e aparelhos de determinação de produção de cultivo, que se calibram com base no cultivo quando ele é colhido
[005] As implementações contidas aqui provêm adicionalmente métodos e aparelhos de determinação de produção de cultivo que se calibram automaticamente com base no cultivo quando ele é colhido.
[006] As implementações contidas aqui provêm adicionalmente métodos e aparelhos de determinação de produção de cultivo, que se calibram de forma automática e contínua com base no cultivo quando ele é colhido.
[007] As implementações contidas aqui provêm adicionalmente métodos e aparelhos de determinação de produção de cultivo que se autocalibram de forma automática e contínua com base no cultivo quando ele é colhido.
[008] As implementações contidas aqui provêm adicionalmente uma colheitadeira de algodão que determina a produção de cultivo quando o cultivo é colhido.
[009] As implementações contidas aqui provêm adicionalmente um aparelho de determinação de produção de cultivo em uma colheitadeira de algodão que se calibra com base no cultivo quando ele é colhido.
[0010] As implementações contidas aqui provêm adicionalmente um aparelho de determinação de produção de cultivo em uma colheitadeira de algodão que se calibra automaticamente com base no cultivo quando ele é colhido.
[0011] As implementações contidas aqui provêm adicionalmente um aparelho de determinação de produção de cultivo em uma colheitadeira de algodão que se calibra de forma automática e contínua com base no cultivo quando ele é colhido.
[0012] As implementações contidas aqui provêm adicionalmente um aparelho de determinação de produção de cultivo em uma colheitadeira de algodão que se autocalibra de forma automática e contínua com base no cultivo quando ele é colhido.
[0013] Em um aspecto, uma colheitadeira de algodão é provida incluindo um chassi suportado para o movimento relativo ao solo embaixo da colheitadeira de algodão por elementos engatando ao solo, acoplados operativamente com o chassi, uma cabeça de colheita de algodão acoplada operativamente com o chassi, um receptáculo de cultivo (80) operativamente acoplado com o chassi, um sistema de dutos de ar compreendendo uma pluralidade de dutos de ar separados, e um aparelho para determinar uma produção do algodão colhido. A cabeça de colheita de algodão inclui uma pluralidade de unidades de fileira de colheita de algodão operáveis para colher algodão de plantas que entram na cabeça de colheita de algodão quando a colheitadeira de algodão é movida à frente com relação ao solo pelos elementos engatando ao solo. O receptáculo de cultivo inclui um formador de módulo configurado para conformar o algodão colhido em um módulo de algodão. Cada um dos dutos de ar separados do sistema de dutos de ar é associado com uma das unidades de fileira de colheita de algodão para comunicar o algodão colhido das unidades de fileira de colheita de algodão para o receptáculo de cultivo. O aparelho da colheitadeira de algodão para determinar a produção do algodão colhido inclui um sensor de colheita operativo para gerar um sinal de produção representativo de uma taxa de produção do algodão sendo colhido, um sensor de cultivo acumulado operativo para gerar um sinal de cultivo de massa, representativo de um parâmetro medido do algodão colhido durante um período de tempo selecionado, e um sistema de controle de sensoreamento de cultivo. O sistema de controle de sensoreamento de cultivo inclui um processador, um dispositivo de memória, operativamente acoplado com o processador, dados operacionais armazenados no dispositivo de memória e representativos de uma característica operacional da colheitadeira de algodão, os dados de fator de calibragem de base armazenados no dispositivo de memória e representativos de um fator de calibragem de base, e lógica de controle armazenada no dispositivo de memória e executável pelo processador para determinar a produção do algodão colhido. A lógica de controle é executável pelo processador para receber a produção e sinal de cultivo de massa, determinar, em resposta à aplicação do fato de calibragem de base ao sinal de produção uma massa estimada do algodão colhido durante um primeiro período de tempo, determinar, em resposta ao sinal de cultivo de massa, uma massa medida do algodão colhido durante o primeiro período de tempo, determinar um candidato de fator de calibragem atualizado em resposta a uma razão entre a massa estimada e a massa medida, e determinar uma produção do algodão colhido durante um segundo período de tempo depois do primeiro período de tempo por seletivamente aplicar, em resposta aos dados operacionais, um entre o fator de calibragem de base ou do candidato de fator de calibragem atualizado ao sinal de produção gerado pelo sensor de colheita durante o segundo período de tempo representativo da taxa de produção do algodão colhido durante o segundo período de tempo.
[0014] Um método é provido de acordo com outro aspecto para determinar a produção de cultivo durante a colheita do cultivo. Dados operacionais são armazenados em um dispositivo de memória de um sistema de controle de sensoreamento de cultivo compreendendo um processador e o dispositivo de memória operativamente acoplado com o processador, em que os dados operacionais compreendem dados de colheitadeira representativos de uma característica operacional de uma colheitadeira associada colhendo o cultivo. Dados de fator de calibragem de base representativos de um fator de calibragem de base e lógica de controle são armazenados no dispositivo de memória. Um sinal de produção representativo de uma taxa de produção do cultivo sendo colhido é gerado por um sensor de colheita operativamente acoplado com o sistema de controle de sensoreamento de cultivo. Um sinal de cultivo de massa representativo de um parâmetro medido do cultivo colhido durante um período de tempo selecionado é gerado por um sensor de cultivo acumulado, operativamente acoplado com o sistema de controle de sensoreamento de cultivo. A lógica de controle é executada pelo processador para determinar, em resposta à aplicação do fator de calibragem de base ao sinal de produção, uma massa estimada do cultivo colhido durante um primeiro período de tempo, e para determinar, em resposta ao sinal de cultivo de massa, uma massa medida do cultivo colhido durante o primeiro período de tempo, e para determinar um candidato de fator de calibragem atualizado em resposta a uma razão entre a massa estimada e a massa medida, e para determinar a produção de cultivo durante um segundo período de tempo depois do primeiro período de tempo por seletivamente aplicar, em resposta aos dados operacionais, um entre o fator de calibragem de base ou do candidato de fator de calibragem atualizado ao sinal de produção gerado pelo sensor de colheita (320) durante o segundo período de tempo representativo da taxa de produção do cultivo colhido durante o segundo período de tempo.
[0015] Em outro aspecto, um aparelho de sensoreamento de cultivo inclui um sistema de controle de sensoreamento de cultivo, um sensor de colheita operativamente acoplado com o sistema de controle de sensoreamento de cultivo, e um sensor de cultivo acumulado, operativamente acoplado com o sistema de controle de sensoreamento de cultivo. O sistema de controle de sensoreamento de cultivo inclui um processador, um dispositivo de memória operativamente acoplado com o processador, dados operacionais armazenados no dispositivo de memória, os dados de fator de calibragem de base armazenados no dispositivo de memória, e lógica de controle. Os dados operacionais incluem dados de colheitadeira representativos de uma característica operacional de uma colheitadeira associada colhendo o cultivo, e os dados de calibragem de base são representativos de um fator de calibragem de base. A lógica de controle é executável pelo processador para determinar a produção de cultivo. O sensor de colheita é operativo para gerar um sinal de produção representativo de uma taxa de produção do cultivo colhido durante um período de tempo selecionado, e o sensor de cultivo acumulado é operativo para gerar um sinal de cultivo de massa representativo de um parâmetro medido do cultivo colhido durante o período de tempo selecionado. A lógica de controle é executável pelo processador para determinar com base no sinal de produção uma massa estimada do cultivo colhido durante um primeiro período de tempo, e para determinar com base no sinal de cultivo de massa, uma massa medida do cultivo colhido durante o primeiro período de tempo. A lógica de controle é adicionalmente executável pelo processador para determinar um candidato de fator de calibragem atualizado com base em uma razão entre a massa estimada e a massa medida. A lógica de controle é adicionalmente executável pelo processador para determinar a produção de cultivo durante um segundo período de tempo depois do primeiro período por seletivamente aplicar com base nos dados operacionais um entre o fator de calibragem de base ou do candidato de fator de calibragem atualizado ao sinal de produção gerado pelo sensor de colheita sistema durante o segundo período de tempo representativo da taxa de produção do cultivo colhido durante o segundo período de tempo.
[0016] De acordo com outro aspecto, um meio de armazenamento legível por computador, não transitório, é provido, armazenando um conjunto de instruções de lógica de controle para determinar a produção de cultivo durante a colheita do cultivo. As instruções de lógica de controle, quando executadas por um ou mais processadores, causam com que um sistema de controle de sensoreamento de cultivo compreendendo um processador e um dispositivo de memória operativamente acoplado com o processador realize as etapas compreendendo armazenar dados operacionais no dispositivo de memória do sistema de controle de sensoreamento de cultivo, os dados operacionais compreendendo dados de colheitadeira representativos de uma característica operacional de uma colheitadeira associada colhendo o cultivo; armazenar dados de fator de calibragem de base no dispositivo de memória, os dados de calibragem de base sendo representativos de um fator de calibragem de base; armazenar lógica de controle no dispositivo de memória, em que a lógica de controle é executável pelo processador para determinar a produção de cultivo; gerar por um sensor de colheita operativamente acoplado com o sistema de controle de sensoreamento de cultivo um sinal de produção representativo de uma taxa de produção do cultivo sendo colhido; gerar por um sensor de cultivo acumulado, operativamente acoplado com o sistema de controle de sensoreamento de cultivo um sinal de cultivo de massa representativo de um parâmetro medido do cultivo colhido durante um período de tempo selecionado; determinar, em resposta à aplicação do fator de calibragem de base ao sinal de produção, uma massa estimada do cultivo colhido durante um primeiro período de tempo; determinar, em resposta ao sinal de cultivo de massa, uma massa medida do cultivo colhido durante o primeiro período de tempo; determinar um candidato de fator de calibragem atualizado em resposta a uma razão entre a massa estimada e a massa medida; e determinar a produção de cultivo durante um segundo período de tempo depois do primeiro período de tempo por seletivamente aplicar, em resposta aos dados operacionais, um dentre ou o fator de calibragem de base ou o candidato de fator de calibragem atualizado para o sinal de produção, gerado pelo sensor de colheita durante o segundo período de tempo representativo da taxa de produção do cultivo colhido durante o segundo período de tempo.
[0017] De acordo com outro aspecto, um meio de armazenamento legível por computador, não transiente, é provido, armazenando lógica de controle que é executável por um computador para realizar um método para determinar a produção de cultivo durante a colheita do cultivo. No exemplo, o método realizado pela lógica armazenada no meio de armazenamento legível por computador, não transiente, e executada pelo computador compreende armazenar dados operacionais em um dispositivo de memória de um sistema de controle de sensoreamento de cultivo compreendendo um processador e o dispositivo de memória operativamente acoplado com o processador, os dados operacionais compreendendo dados de colheitadeira representativos de uma característica operacional de uma colheitadeira associada colhendo o cultivo; armazenar dados de fator de calibragem de base no dispositivo de memória, os dados de calibragem de base sendo representativos de um fator de calibragem de base; armazenar lógica de controle no dispositivo de memória, em que a lógica de controle é executável pelo processador para determinar a produção de cultivo; gerar por um sensor de colheita operativamente acoplado com o sistema de controle de sensoreamento de cultivo um sinal de produção representativo de uma taxa de produção do cultivo sendo colhido; gerar por um sensor de cultivo acumulado, operativamente acoplado com o sistema de controle de sensoreamento de cultivo um sinal de cultivo de massa representativo de um parâmetro medido do cultivo colhido durante um período de tempo selecionado; e executar a lógica de controle pelo processador to: determinar, em resposta à aplicação do fato de calibragem de base ao sinal de produção uma massa estimada do cultivo colhido durante um primeiro período de tempo; determinar, em resposta ao sinal de cultivo de massa, uma massa medida do cultivo colhido durante o primeiro período de tempo; determinar um candidato de fator de calibragem atualizado em resposta a uma razão entre a massa estimada e a massa medida; e determinar a produção de cultivo durante um segundo período de tempo depois do primeiro período de tempo por seletivamente aplicar, em resposta aos dados operacionais, um entre o fator de calibragem de base ou do candidato de fator de calibragem atualizado ao sinal de produção gerado pelo sensor de colheita durante o segundo período de tempo representativo da taxa de produção do cultivo colhido durante o segundo período de tempo.
[0018] De acordo com outro aspecto, o método realizado pela lógica armazenada no meio de armazenamento legível por computador, não transiente, e executada pelo computador compreende adicionalmente gerar o sinal de produção representativo da taxa de produção do cultivo sendo colhido por gerar por um dispositivo de realimentação de massa de módulo um sinal de massa de módulo de cultivo de massa, representativo de uma massa medida do cultivo colhido durante o primeiro período de tempo e empacotado em um módulo de cultivo; executar a lógica de controle pelo processador para determinar, em resposta ao sinal de massa de módulo de cultivo de massa, uma massa de módulo de cultivo de massa do cultivo colhido durante o primeiro período de tempo; armazenar no dispositivo de memória os dados de massa requeridos de pacote, representativos de uma faixa de massa requerida do módulo de cultivo; e executar lógica de gerenciamento de calibragem, pelo processador para determinar a produção de cultivo durante o segundo período de tempo por: aplicar o candidato de fator de calibragem atualizado ao sinal de produção gerado pelo sensor de colheita durante o segundo período de tempo, em resposta à massa de módulo de cultivo de massa determinada do cultivo colhido durante o primeiro período de tempo estando dentro da faixa de massa requerida do módulo de cultivo, ou aplicar o fator de calibragem de base ao sinal de produção gerado pelo sensor de colheita durante o segundo período de tempo, em resposta à massa de módulo de cultivo de massa determinada do cultivo colhido durante o primeiro período de tempo não estando dentro da faixa de massa requerida do módulo de cultivo.
[0019] De acordo com outro aspecto, o método realizado pela lógica armazenada no meio de armazenamento legível por computador, não transiente, e executada pelo computador, compreende adicionalmente gerar por um dispositivo de realimentação de diâmetro de módulo um sinal de diâmetro de módulo de cultivo, representativo de um diâmetro medido de um módulo de cultivo a ser conformado pela colheitadeira associada usando o cultivo colhido durante o primeiro período de tempo e empacotado no módulo de cultivo; executar a lógica de controle pelo processador para determinar, em resposta ao sinal de diâmetro de módulo de cultivo um diâmetro do módulo de cultivo do módulo de cultivo; armazenar no dispositivo de memória os dados de diâmetro requerido de pacote de cultivo representativos de um diâmetro mínimo requerido do módulo de cultivo; e executar lógica de gerenciamento de calibragem, pelo processador para determinar a produção de cultivo durante o segundo período de tempo por: aplicar o candidato de fator de calibragem atualizado ao sinal de produção gerado pelo sensor de colheita durante o segundo período de tempo, em resposta ao determinado diâmetro de módulo sendo maior que o diâmetro mínimo requerido, ou aplicar o fator de calibragem de base ao sinal de produção gerado pelo sensor de colheita durante o segundo período de tempo, em resposta ao determinado diâmetro de módulo sendo menor que o diâmetro mínimo requerido.
[0020] De acordo com outro aspecto, o método realizado pela lógica armazenada no meio de armazenamento legível por computador, não transiente, e executado pelo computador compreende adicionalmente gerar por um dispositivo de realimentação de nível de acumulador um sinal de nível de acumulador representativo de um nível medido do cultivo colhido durante o primeiro período de tempo e recebido em um acumulador da colheitadeira associada; executar a lógica de controle pelo processador para determinar, em resposta ao sinal de nível de acumulador, um nível de enchimento de cultivo do cultivo colhido durante o primeiro período de tempo e recebido no acumulador da colheitadeira associada; armazenar no dispositivo de memória acumulador dados de nível de enchimento de cultivo requeridos, representativos de uma altura de pilha mínima requerida do cultivo colhido durante o primeiro período de tempo, e empilhados no acumulador da colheitadeira associada; e executar lógica de gerenciamento de calibragem, pelo processador para determinar a produção de cultivo durante o segundo período de tempo por: aplicar o candidato de fator de calibragem atualizado ao sinal de massa representativo da quantidade medida do cultivo colhido durante o segundo período de tempo, em resposta ao nível de enchimento de cultivo determinado do cultivo colhido durante o primeiro período de tempo e recebido no acumulador da colheitadeira associada sendo maior que a altura de pilha requerida mínima, ou aplicar o fator de calibragem de base ao sinal de massa representativo da quantidade medida do cultivo colhido durante o segundo período de tempo, em resposta ao nível de enchimento de cultivo determinado do cultivo colhido durante o primeiro período de tempo e recebido no acumulador da colheitadeira associada sendo menor que a altura de pilha requerida mínima.
[0021] De acordo com outro aspecto, o método realizado pela lógica armazenada no meio de armazenamento legível por computador, não transiente, e executado pelo computador compreende adicionalmente armazenar dados de faixa de razão representativos de uma faixa de razão requerida da razão entre a massa estimada do cultivo colhido durante o primeiro período de tempo e a massa medida do cultivo colhido durante o primeiro período de tempo; e executar lógica de gerenciamento de calibragem, pelo processador para determinar a produção de cultivo durante o segundo período de tempo por: aplicar o candidato de fator de calibragem atualizado ao sinal de massa representativo da quantidade medida do cultivo colhido durante o segundo período de tempo, em resposta à razão entre a massa estimada do cultivo colhido durante o primeiro período de tempo e a massa medida do cultivo colhido durante o primeiro período de tempo estando dentro da faixa de razão requerida, ou aplicar o fator de calibragem de base ao sinal de massa representativo da quantidade medida do cultivo colhido durante o segundo período de tempo, em resposta à razão entre a massa estimada do cultivo colhido durante o primeiro período de tempo e a massa medida do cultivo colhido durante o primeiro período de tempo não estando dentro da faixa de razão requerida.
[0022] De acordo com outro aspecto, o método realizado pela lógica armazenada no meio de armazenamento legível por computador, não transiente, e executado pelo computador compreende adicionalmente armazenar uma pluralidade de razões históricas entre a massa estimada e a massa medida determinada durante uma pluralidade de períodos de tempo anteriores ao primeiro período de tempo; armazenar lógica de controle estatística executável pelo processador para determinar um valor de desvio padrão de razão com base na pluralidade armazenada de razões históricas entre a massa estimada e a massa medida determinada durante a pluralidade de períodos de tempo anteriores ao primeiro período de tempo; e executar a lógica de controle estatística pelo processador para determinar a faixa de razão requerida com base no determinado valor de desvio padrão de razão.
[0023] De acordo com outro aspecto, o método realizado pela lógica armazenada no meio de armazenamento legível por computador, não transiente, e executado pelo computador compreende adicionalmente gerar o sinal de produção usando uma pluralidade de sensores de fluxo em massa operativamente acoplados com uma pluralidade de dutos de ar separados da colheitadeira associada, em que cada um dos sensores de fluxo em massa é operativo para gerar um sinal de taxa de fluxo em massa de algodão representativo de uma taxa de fluxo em massa de algodão colhido e escoando através de um respectivo dos dutos de ar separados da colheitadeira associada; e executar a lógica de controle pelo processador para normalizar os sinais de taxa de luxo em massa de algodão gerados pela pluralidade de sensores de fluxo em massa como sinais normalizados de taxa de fluxo em massa de algodão, e para somar os sinais de taxa de fluxo em massa de algodão normalizados como o sinal de produção representativo da taxa de produção do algodão sendo colhido.
[0024] Outras características e aspectos se tornarão aparentes por consideração da descrição detalhada e desenhos anexos.
BREVE DESCRIÇÃO DOS DESENHOS
[0025] Os aspectos acima mencionados da presente invenção e a maneira de obtê-los se tornarão mais aparentes e a invenção propriamente dita será mais bem entendida pela referência das implementações da invenção, tomadas em conjunção com os desenhos anexos, nos quais:
[0026] a figura 1 é uma vista em perspectiva de uma colheitadeira de algodão.
[0027] A figura 2 é uma vista lateral da colheitadeira da figura 1.
[0028] A figura 3 é um diagrama esquemático de um sistema de sensoreamento de cultivo de exemplo.
[0029] A figura 4 é um diagrama de blocos funcional mostrando um processo de estimativa de produção de fluxo e controle de colheitadeira usando calibragem de sensoreamento de fluxo de cultivo ativa de acordo com uma implementação de exemplo.
[0030] A figura 5 é um fluxograma funcional mostrando estimativa de fluxo em massa de produção de cultivo de acordo com uma implementação de exemplo.
[0031] A figura 6a é uma ilustração de sinais recebidos de sensores de acordo com uma implementação de exemplo.
[0032] A figura 6b é uma ilustração dos sinais da figura 6a e normalizados de acordo com uma implementação de exemplo.
[0033] A figura 7 é um fluxograma funcional mostrando etapas no gerenciamento de um fator de calibragem de acordo com uma implementação de exemplo.
[0034] A figura 8 é um fluxograma ilustrando um método para gerenciar o fator de calibragem da figura 7 de acordo com uma implementação de exemplo.
[0035] As figuras 9a e 9b são fluxogramas funcionais mostrando a aplicação do fator de calibragem gerenciado, aplicado aos dados de fluxo de cultivo de acordo com uma implementação de exemplo.
[0036] As figuras 10a e 10b são fluxogramas funcionais mostrando aplicação do fator de calibragem gerenciado, aplicado aos dados de fluxo de cultivo de acordo com uma implementação de exemplo.
[0037] As figuras 11a e 11b são fluxogramas funcionais mostrando a produção de mapas de produção por aplicação de dados selecionados aos dados de produção de cultivo desenvolvidos usando o fator de calibragem gerenciado de acordo com uma implementação de exemplo.
DESCRIÇÃO DETALHADA
[0038] As implementações da presente invenção descritas abaixo não são destinadas a ser exaustivas ou a limitarem a invenção às formas precisas na seguinte descrição detalhada. Pelo contrário, as implementações são escolhidas e descritas de forma que outros especializados na técnica possam reconhecer e compreender os princípios e práticas da presente invenção.
[0039] As figuras 1 e 2 ilustram uma colheitadeira 10 apropriada para colher cultivos, tais como algodão, por exemplo. A colheitadeira ilustrada 10 é uma colheitadeira de algodão 15. A colheitadeira 10 compreende uma máquina para colher cultivos. Em uma implementação, tal como, por exemplo, a implementação mostrada, a colheitadeira 10 é autopropulsionada. Em outra implementação, a colheitadeira 10 é rebocada. A colheitadeira 10 remove porções de plantas (o cultivo) do meio em crescimento ou campo. Em uma implementação, a colheitadeira 10 compreende um tanque de contenção no qual o cultivo é mantido. Em outra implementação, a colheitadeira 10 encaminha o cultivo removido para um tanque de contenção temporário da colheitadeira depois de conformar o cultivo para um formato desejado, tal como para um módulo de algodão ou similar para a manipulação subsequente, em que o cultivo apanhado ou de outra maneira conformado pode ser subsequentemente descarregado no solo para a coleta pós-colheita. Em ainda outra implementação, a colheitadeira 10 descarrega o cultivo removido dentro de um tanque de contenção de outro veículo no qual ele pode ser conformado, pesado, e então descarregado no solo para a subsequente coleta. Deve ser reconhecido que tipos de colheitadeiras 10, diferentes da colheitadeira de algodão 15 da implementação de exemplo, são também contemplados por esta invenção (por exemplo, colhedores de cápsulas de algodão, colheitadeiras combinadas, etc.).
[0040] A colheitadeira de algodão 15 da implementação de exemplo inclui um chassi 20. O chassi ilustrado 20 é suportado por elementos engatando ao solo 22, tais como rodas dianteiras 25 e rodas traseiras 30, embora outro suporte seja contemplado (por exemplo, lagartas). A colheitadeira de algodão 15 é adaptada para o movimento através de um campo 35 para colher cultivos (por exemplo, algodão, milho, palha, feno, alfafa, etc.). Uma estação de operador 40 é suportada pelo chassi 20. Uma interface de operador 45 é posicionada na estação de operador 40. Um módulo de energia 50 pode ser suportado embaixo do chassi 20. O módulo de energia 50 pode ser um motor 55. Tanques de água, lubrificante, e de combustível, indicados geralmente em 58 (figura 2), podem ser suportados no chassi 20.
[0041] Uma estrutura de colheita 60 é mutuamente acoplável com o chassi 20. A estrutura de colheita ilustrada 60 é configurada para remover os cultivos do campo 35. A estrutura de colheita 60 pode ser uma estrutura de colheita de algodão, tal como mostrada para o uso em uma colheitadeira de algodão 15, e pode incluir uma ou mais unidades de fileira de colheita de algodão 61-66, uma cabeça colhedora de cápsulas de algodão, ou qualquer outra estrutura de colheita (por exemplo, cabeça de milho). Alternativamente, a estrutura de colheita 60 pode ser configurada para remover milho, palha, feno, alfafa, ou qualquer outro cultivo.
[0042] A estrutura de colheita 60 é mutuamente acoplável a um sistema de dutos de ar 70 na extremidade dianteira da colheitadeira de algodão 15 na implementação ilustrada, em que o sistema de dutos de ar 70 é configurado para puxar cultivo processado pela estrutura de colheita 60 para dentro da colheitadeira de algodão 15. Além disso, um receptáculo de cultivo 80 é mutuamente acoplável ao sistema de dutos de ar 70 para receber cultivo emitido do sistema de dutos de ar 70. O sistema de dutos de ar 70 inclui uma pluralidade de dutos de ar separados 71-76 (somente um é mostrado na vista da figura 2), sendo que cada um dos dutos de ar separados 71-76 é associado com uma das unidades de fileira de colheita de algodão 61-66 para comunicar cultivo de algodão colhido das unidades de fileira de colheita de algodão 61- 66 para o receptáculo de cultivo 80. Com referência à figura 2, o receptáculo de cultivo ilustrado 80 é um formador de módulo 85 tendo uma garganta 90 e pelo menos uma correia de enfardador 95. O formador de módulo 85 conforma o cultivo de algodão colhido em fardos redondos ou “módulos.” Com referência à figura 1, um limpador 100 é provido, que limpa o algodão por remover lixo e detritos. O limpador 100 é tipicamente usado em uma colheitadeira colhedora de cápsulas de algodão para limpar o algodão colhido de uma cabeça colhedora de cápsulas de algodão por remover lixo e detritos. Uma pré-câmara, tal como, por exemplo, um acumulador 10, é provida entre o sistema de dutos de ar 70 e o receptáculo de cultivo 80. O acumulador 105 é configurado para receber algodão, ou outro cultivo, colhido pelas unidades de fileira de colheita de algodão 61-66, como uma etapa intermediária entre a manipulação pelo sistema de dutos de ar 70 e o formador de módulo 85 do receptáculo de cultivo 80.
[0043] A colheitadeira de algodão 15 da implementação de exemplo inclui um sensor de colheita 320 disposto em geral em, ou dentro da, estrutura de colheita 60 e/ou de um sistema de dutos de ar 70, e um sensor de cultivo acumulado 330 disposto em geral em, ou dentro do, acumulador 105 e/ou do receptáculo de cultivo 80. O sensor de colheita 320 é operativo para gerar um sinal de produção representativo de uma taxa de produção do cultivo sendo colhido. O sensor de cultivo acumulado 330 é operativo para gerar um sinal de cultivo de massa representativo de um parâmetro medido do cultivo colhido durante períodos de tempo selecionados. Em uma implementação de exemplo, um aparelho 300 (figura 3) é provido para o uso com, ou em combinação, com uma colheitadeira de algodão 15 para determinar informação de resultado de produção de cultivo durante a colheita do cultivo, em que a informação de resultado de cultivo é útil para estimar, monitorar, reportar, e gerenciar a produção de cultivo, e podem também ser usados para assistir com o controle do sistema funcional selecionados da colheitadeira. O aparelho 300 é calibrado, em resposta aos sinais gerados por os sensores de colheita e cultivo acumulado 320, 330, conforme será descrito em maior detalhe abaixo para prover resultados de produção de cultivo colhido altamente precisos, em que a calibragem pode ser automática, e ainda em que a calibragem pode ser automática e contínua.
[0044] Com referência à figura 2, um dispositivo de realimentação de umidade 110 é disposto no receptáculo de cultivo 80. Na implementação de exemplo, o dispositivo de realimentação de umidade 110 é operativo para gerar ou de outra maneira prover um sinal de nível de umidade, que é indicativo do teor de umidade do cultivo contido no receptáculo de cultivo 80. O dispositivo de realimentação de umidade 110 pode ser um dispositivo sensor de umidade configurado para gerar um sinal elétrico tendo uma magnitude indicativa do teor de umidade do cultivo. O dispositivo de realimentação de umidade 110 também pode ser um dispositivo sensor de umidade capaz de comunicação operativa com fios e/ou sem fios com uma rede da colheitadeira de algodão, tal como, por exemplo, uma rede de área de controlador (CAN), e configurada para gerar dados, que são reconhecidos por outros dispositivos na rede como sendo representativos do teor de umidade do cultivo. Deve ser reconhecido que, embora o dispositivo de realimentação de umidade 110 da implementação de exemplo seja mostrado como sendo um único dispositivo disposto no receptáculo de cultivo 80, o dispositivo de realimentação de umidade 110 pode ser posicionado em qualquer lugar na colheitadeira de algodão 15, onde pode ser desejável determinar a umidade do cultivo de algodão quando ele é colhido e processado, e ainda que vários dispositivos de realimentação de umidade podem ser providos em diferentes locais na colheitadeira de algodão 15, quando considerado necessário ou desejável para determinar a umidade do cultivo de algodão quando ele é colhido e processado nos diferentes locais na colheitadeira de algodão 15.
[0045] Além disso, um dispositivo de realimentação de massa de módulo 112 pode ser acoplado com uma porção manipuladora de módulo do receptáculo de cultivo 80. Na implementação de exemplo, o dispositivo de realimentação de massa de módulo 112 pode ser qualquer dispositivo que pode gerar um sinal representativo da massa de cada pacote de cultivo depois de ser colhido, tal como, por exemplo, um sensor de peso, um sensor torcional, um medidor de mola ou qualquer dispositivo similar e/ou equivalente. No exemplo, o dispositivo de realimentação de massa de módulo 112 é operativo para gerar ou prover de outra maneira um sinal de massa de módulo de cultivo de massa indicativo ou de outra maneira representativo da massa de cada módulo de algodão depois dele ser concluído ou de outra maneira formado pelo formador de módulo 85. O dispositivo de realimentação de massa de módulo 112 pode ser um dispositivo sensor de massa, por exemplo, que é configurado para gerar um sinal elétrico tendo uma magnitude indicativa da massa do cultivo de algodão colhido depois de ele ser empacotado em uma forma selecionada, tais como, por exemplo, uma forma de módulo de algodão. O módulo pode ser pesado quando ele é ejetado por intermédio de um braço manipulador de módulo 113 do formador de módulo 85 da colheitadeira de algodão 15. O dispositivo de realimentação de massa de módulo 112 também pode ser um dispositivo sensor de massa capaz de comunicação operativa com fios e/ou sem fios com uma rede da colheitadeira de algodão, tal como, por exemplo, uma CAN, e configurado para gerar dados que são reconhecidos por outros dispositivos na rede como sendo representativos da massa do cultivo empacotado, tal como a massa do módulo de algodão. O dispositivo de realimentação de massa de módulo 112 pode ser operativamente acoplado com um ou mais mecanismos dispostos entre o receptáculo de cultivo 80 e o chassi 20 da colheitadeira de algodão 15, por exemplo, ou em qualquer outro lugar que possa ser apropriado para medir a massa do cultivo empacotado
[0046] Além disso, um dispositivo de realimentação de diâmetro de módulo 114 pode também ser acoplado com a colheitadeira de algodão 15 na área do receptáculo de cultivo 80. Na implementação de exemplo, o dispositivo de realimentação de diâmetro de módulo 114 é acoplado com um virabrequim (não mostrado) que é móvel com o formador de módulo 85 e, dessa maneira, é operativo para gerar ou prover de outra maneira um sinal de diâmetro de módulo de cultivo, representativo de um diâmetro medido do cultivo colhido e processado no pacote desejado ou outro formato apropriado para facilitar a manipulação, tal como, por exemplo, uma forma de módulo de algodão. O dispositivo de realimentação de diâmetro de módulo 114 pode ser um dispositivo sensor capaz de gerar um sinal tendo uma magnitude indicativa do diâmetro do cultivo depois de ele ser empacotado em uma forma selecionada, tal como, por exemplo, na forma de módulo de algodão. O dispositivo de realimentação de diâmetro de módulo 114 também pode ser um dispositivo sensor capaz de comunicação operativa com fios e/ou sem fios com uma rede da colheitadeira de algodão, tal como, por exemplo, uma CAN, e configurado para gerar dados para a rede, que são reconhecidos por outros dispositivos na rede como sendo representativos do diâmetro do cultivo empacotado, tal como o diâmetro do módulo de algodão. O dispositivo de realimentação de diâmetro de módulo 114 pode ser operativamente acoplado com um ou mais mecanismos dispostos entre o receptáculo de cultivo 80 e o chassi 20 da colheitadeira de algodão 15, por exemplo, ou em qualquer outro lugar que possa ser apropriado para medir o diâmetro do cultivo empacotado.
[0047] Ainda, além disso, um dispositivo de realimentação de nível de acumulador 116 pode também ser acoplado com o receptáculo de cultivo 80. Na implementação de exemplo, o dispositivo de realimentação de nível de acumulador 116 é operativo para gerar ou prover de outra maneira um sinal de nível de acumulador representativo de um nível medido do enchimento de cultivo colhido do acumulador 105 da colheitadeira de algodão 15. O dispositivo de realimentação de nível de acumulador 116 pode ser um dispositivo sensor capaz de gerar um sinal tendo uma magnitude indicativa do nível de enchimento do acumulador 105. O dispositivo de realimentação de nível de acumulador 116 também pode ser um dispositivo sensor capaz de comunicação operativa com fios e/ou sem fios com uma rede da colheitadeira de algodão, tal como, por exemplo, uma CAN, e configurado para gerar dados para a rede, que são reconhecidos por outros dispositivos na rede como sendo representativos do nível de cultivos colhidos enchendo o acumulador 105. O dispositivo de realimentação de nível de acumulador 116 pode ser operativamente acoplado com um ou mais mecanismos dispostos entre o acumulador 105 e o chassi 20 da colheitadeira de algodão 15, por exemplo, ou em qualquer outro lugar que possa ser apropriado para medir o nível de cultivos colhidos enchendo o acumulador 105.
[0048] Além disso, uma pluralidade de dispositivos sensores de cultivo 171-176 pode ser acoplada com a pluralidade de dutos de ar 71-76 (somente um é mostrado na vista da figura 2), em que cada um dos dispositivos sensores de cultivo 171-176 é acoplado com um dos dutos de ar 71-76 para prover um sinal indicativo de um parâmetro do cultivo colhido quando escoa através de um dos dutos de ar 71-76. Os dispositivos sensores de cultivo 171-176 podem prover um sinal indicativo de uma quantidade do cultivo colhido quando escoa através de um dos dutos de ar 71-76, por exemplo. Conforme descrito acima, cada um dos dutos de ar separados 71-76 é associado com uma das unidades de fileira de colheita de algodão 61-66 para comunicar o cultivo colhido das unidades de fileira de colheita de algodão 61-66 para o receptáculo de cultivo 80. Dessa maneira, cada um da pluralidade de dispositivos sensores de cultivo 171-176 pode gerar um sinal de cultivo indicativo de um parâmetro do cultivo colhido quando escoa através de um respectivo duto dos dutos de ar 71-76, ao qual o sensor de cultivo dispositivo é acoplado. Em um exemplo, cada um da pluralidade de dispositivos sensores de cultivo 171-176 pode gerar um sinal indicativo de uma quantidade do cultivo colhido quando escoa através de um respectivo duto dos dutos de ar 71-76, ao qual o sensor de cultivo dispositivo é acoplado.
[0049] Com referência continuada à figura 2, um alimentador 115 é mutuamente acoplável ao chassi 20. O alimentador 115 é configurado para receber o algodão cultivo, ou outros cultivos em outras implementações, do acumulador 105. O alimentador 115 inclui uma pluralidade de rolos medidores 120 configurados para comprimir o algodão, ou outro cultivo, e transferir o algodão comprimido, ou outro cultivo, para o formador de módulo 85 a uma desejada taxa de alimentação controlada. Um primeiro motor 125 é posicionado para girar a pluralidade de rolos medidores 120. O primeiro motor 125 pode ser hidráulico ou elétrico.
[0050] Pelo menos um rolo batedor 130 é configurado para cooperar com a pluralidade de rolos medidores 120 para transferir o cultivo a uma desejada taxa de alimentação controlada. Um segundo motor 135 é posicionado para girar o rolo batedor 130. O segundo motor 135 pode ser hidráulico ou elétrico.
[0051] Um correia alimentadora 140 é configurada para receber cultivo da pluralidade de rolos medidores 120 e do pelo menos um rolo batedor 130, e para transferir o algodão, ou outro cultivo para a garganta 90 a uma desejada taxa de alimentação controlada. Um terceiro motor 145 é posicionado para girar o correia alimentadora 140. O terceiro motor 145 pode ser hidráulico ou elétrico.
[0052] A figura 3 ilustra esquematicamente um aparelho de sensoreamento de cultivo 300 de acordo com uma implementação de exemplo. O aparelho de sensoreamento de cultivo 300 coleta, processa, e fornece dados incluindo, por exemplo, os dados de cultivo que têm melhor resolução para aumentar a eficiência operacional da colheitadeira e para gerar mapas do campo que têm melhor resolução. Na implementação de exemplo, o aparelho de sensoreamento de cultivo 300 coleta e processa os dados de cultivo para o controle de um ou mais sistemas funcionais da colheitadeira incluindo, por exemplo, para a calibragem ativa de sensores que são usados para sensorear a produção colhida quando os cultivos são coletados. A calibragem pode ser automática e, ainda, a calibragem pode ser automática e contínua. Em uma implementação de exemplo, o termo “resolução” se refere ao nível de detalhe com no que diz respeito aos dados de cultivo e/ou aos mapas de campo. A resolução para os dados de cultivo ou os mapas de campo é determinada pela menor unidade, para a qual um atributo é sensoreado ou para a qual um atributo é derivado. Geralmente, quanto menor a unidade, tanto maior a resolução. O aparelho de sensoreamento de cultivo 300 fornece os dados de cultivo e mapeia um campo usando atributos sensoreados ou derivados e/ou condições identificadas para as unidades ou porções individuais do campo tendo uma largura menor que uma largura de colheita de cultivo utilizada de uma colheitadeira. Por exemplo, mesmo que a colheitadeira de algodão 15 possa ter uma faixa de colheita de seis (6) fileiras, dado que existem seis (6) unidades de fileira de colheita de algodão 61-66 no exemplo ilustrado, o aparelho de sensoreamento de cultivo 300 pode fornecer os dados de cultivo ou os mapas de campo provendo atributos de cultivo, tais como, produção, para menos que seis (6) fileiras, tais como em uma base de fileira por fileira ou até mesmo uma base de planta por planta. O aparelho de sensoreamento de cultivo 300 pode ser similarmente implementado com relação a cultivos sem fileiras e colheitadeiras sem fileiras. A maior resolução de dado de cultivo provida pelo aparelho de sensoreamento de cultivo 300 facilita o gerenciamento mais avançado e sofisticado do cultivo.
[0053] O aparelho de sensoreamento de cultivo 300 da implementação de exemplo inclui um sistema de controle de sensoreamento de cultivo 310 configurado para ser disposto em qualquer máquina agrícola apropriada, um exemplo do qual é a colheitadeira de algodão ilustrada 15. O sistema de controle de sensoreamento de cultivo 310 compreende um processador 312, um dispositivo de memória 314 operativamente acoplado com o processador 312, lógica de controle 316 armazenada no dispositivo de memória 314, um sensor de colheita 320 disposto em uma cabeça de colheita 340 da colheitadeira 15, e um sensor de cultivo acumulado 330 disposto em uma área da colheitadeira usada para processar o cultivo quando ele é colhido, tal como, por exemplo, em uma área da colheitadeira usada para empacotar, pesar e ejetar os pacotes de cultivo processados. Os pacotes de cultivo são tipicamente referidos como “módulos” de algodão, na aplicação de exemplo das implementações. Cada um do sensor de colheita 320 e do sensor de cultivo acumulado 330 pode incluir um ou mais dispositivos sensores.
[0054] De acordo com as implementações de exemplo dadas aqui, o um ou mais dispositivos sensores do sensor de colheita 320 incluem a pluralidade de dispositivos sensores de cultivo 171-176, e o um ou mais dispositivos sensores do sensor de cultivo acumulado 330 incluem o dispositivo de realimentação de umidade 110, o dispositivo de realimentação de massa de módulo 112, o dispositivo de realimentação de diâmetro de módulo 114, e o dispositivo de realimentação de nível de acumulador 116.
[0055] Conforme descrito acima, o dispositivo de realimentação de umidade 110 do sensor de cultivo acumulado 330 é operativamente acoplado com o receptáculo de cultivo 80 da colheitadeira de algodão 15 e é operativo para gerar ou prover de outra maneira um sinal de nível de umidade indicativo do teor de umidade do cultivo contido no receptáculo de cultivo 80. Similarmente, o dispositivo de realimentação de massa de módulo 112 do sensor de cultivo acumulado 330 é acoplado com o receptáculo de cultivo 80 da colheitadeira de algodão 15 e é configurado para gerar ou prover de outra maneira um sinal Wright de módulo de cultivo de massa, indicativo da massa de cada módulo depois dele ser concluído ou de outra maneira formado pelo formador de módulo 85. O dispositivo de realimentação de diâmetro de módulo 114 do sensor de cultivo acumulado 330 pode ser acoplado com o receptáculo de cultivo 80 e é configurado para gerar ou prover de outra maneira um sinal de diâmetro de módulo de cultivo, representativo de um diâmetro medido do módulo de algodão. O dispositivo de realimentação de nível de acumulador 116 do sensor de cultivo acumulado 330 é acoplado com o receptáculo de cultivo 80 e é configurado para gerar ou prover de outra maneira um sinal de nível de acumulador representativo de um nível medido do enchimento de cultivo colhido do acumulador 105. A pluralidade de dispositivos sensores de cultivo 171-176 do sensor de colheita 320 é disposta no sistema de dutos de ar 70 da colheitadeira de algodão 15.
[0056] Ainda de acordo com as implementações de exemplo dadas aqui, a lógica de controle 316 armazenada no dispositivo de memória 314 é executável pelo processador 312 para sensorear o cultivo quando ele é colhido pela colheitadeira de algodão 15, para realizar a estimativa de produção de cultivo durante e/ou depois da colheita, para controlar uma ou mais funções da colheitadeira, e para realizar a calibragem ativa do um ou mais dispositivos de sensoreamento de cultivo 322 do sensor de colheita 320 de acordo com as implementações de exemplo, conforme será descrito em maior detalhe abaixo. Como descrito, a calibragem ativa pode ser automática e, ainda, a calibragem pode ser automática e contínua.
[0057] O sistema de controle de sensoreamento de cultivo 310 em geral inclui um processador 312, e um dispositivo de memória 314 operativamente acoplado com o processador. Dados operacionais 313 são armazenados no dispositivo de memória, em que os dados operacionais compreendendo dados de colheitadeira são representativos de uma característica operacional da colheitadeira de algodão 15. Além disso, os dados de fator de calibragem de base 315 são armazenados no dispositivo de memória, em que os dados de calibragem de base são representativos de um fator de calibragem de base CFbase. Em um exemplo, os dados de fator de calibragem de base 315 podem incluir dados plurais de fator de calibragem de base 315, selecionáveis pelo operador com base na variedade de cultivo, um local da colheita sendo conduzida, um momento da estação/ano da colheita sendo conduzida, um ou mais parâmetros físicos da colheitadeira, tais como, por exemplo, uma largura da cabeça de colheitadeira, e/ou combinações desses parâmetros ou outros. Ainda, além disso, a lógica de controle 316 é armazenada no dispositivo de memória e é executável pelo processador para determinar a produção do algodão colhido, conforme descrita aqui.
[0058] Conforme descrito acima, a colheitadeira de algodão 15 compreende uma máquina móvel configurada para se deslocar através de um campo ou porção de terra enquanto está colhendo um cultivo. A colheitadeira de algodão 15 inclui uma cabeça de colheita 340 e os componentes de cabeça de colheita 342 dispostos na, e/ou dentro da, cabeça de colheita 340. A colheitadeira de algodão 15 da implementação de exemplo particular inclui uma cabeça de colheita 340 compreendendo a estrutura de colheita 60 descrita acima, e os componentes de cabeça de colheita 342 compreendem as unidades de fileira de colheita de algodão 61-66 e o sistema de dutos de ar 70 compreendendo a pluralidade de dutos de ar separados 71-76 descrita acima. Em outras implementações, a cabeça de colheita 340 e os componentes de cabeça de colheita 342 podem compreender outros tipos de máquinas agrícolas.
[0059] A cabeça de colheita 340 compreende um mecanismo configurado para reunir e colher um cultivo, tal como algodão ao longo de uma faixa. A faixa de cabeça 340 tem uma largura utilizada, Wu, quando está colhendo os cultivos. Em uma implementação de exemplo, a largura utilizada Wu constitui essa porção do comprimento ou largura de faixa que está sendo utilizada para colher cultivos em um tempo particular. Embora na maioria dos casos a largura utilizada Wu seja igual ao comprimento físico da faixa de cabeça 340, em algumas circunstâncias, a largura utilizada Wu pode constituir somente uma porção da faixa de cabeça 340, tal como ao longo de uma fileira de extremidade, via navegável, corredor de transporte anteriormente colhido, e/ou similar.
[0060] Os componentes de colheita 342 compreendem vários mecanismos para colher, tais como mecanismos para cortar ou separar o cultivo de um restante de uma planta. Na implementação de exemplo, os componentes de colheita 342 compreendem fusos descaroçadores, descarregadores, nervuras coletoras, elevadores de planta, sistemas de limpeza de fuso, e similar, comummente encontrados nas típicas estruturas de unidade de fileira de colheitadeiras de algodão. Tais mecanismos podem também incluir facas ou lâminas, placas extratoras, rolos, rolos de corte, “augurs”, correntes ou correias de coleta e/ou similares. Em uma implementação, a cabeça 340 compreende unidades de fileira de colheita de algodão 61-66 para separar algodão de uma planta de algodão. Em outra implementação, a cabeça 340 compreende componentes para separar um caule de planta com açúcar ou óleo a partir das folhas de planta. Em outra implementação, a cabeça de colheita 340 pode compreender uma cabeça para grãos para uma colheitadeira combinada, em que o grão, juntamente com o caule, é cortado e subsequentemente debulhado pela colheitadeira combinada. Em outra implementação, a cabeça 340 compreende uma cabeça de milho para uma colheitadeira combinada, em que a cabeça de milho separa as espigas de milho a partir do caule restante. Em outra implementação, a cabeça 340 compreende uma cabeça que tem placas extratoras ou outro mecanismos para separar outros tipos de espigas dos caules associados. Em uma implementação, o termo “espiga” se refere a uma parte portando semente de uma planta, tal como espigas de milho, flores carregadas de sementes, tais como girassóis, vagens e similares. Em outras implementações, a cabeça 340 e os componentes 342 podem ter outras configurações. Por exemplo, Contudo, a cabeça 340 é ilustrada como sendo posicionada em uma extremidade dianteira da colheitadeira de algodão 15 e como sendo intercambiável por outras cabeças (facilitando a troca de cabeças de algodão, milho e grão). Em outras implementações, a cabeça 340 pode ser suportada em outros locais pela colheitadeira de algodão 15 e/ou pode ser um componente permanente, não intercambiável, da colheitadeira de algodão 15.
[0061] O um ou mais dispositivos sensores do sensor de colheita 320 e sensor de cultivo acumulado 330 compreendem mecanismos para sensorear ou detectar uma ou mais características dos cultivos sendo colhidos. Cada um do um ou mais dispositivos sensores fornece sinais baseados nessas características sensoreadas. Exemplos do um ou mais dispositivos sensores do sensor de colheita 320 e do sensor de cultivo acumulado 330 incluem, mas não são limitados a, os sensores de tensão, os sensores de corrente, os sensores de torque, os sensores de pressão hidráulica, os sensores de fluxo hidráulico, os sensores magnéticos, os sensores de força, os sensores de carga de suporte, os sensores rotacionais, os sensores de massa, os sensores de fluxo em massa, os sensores de radar, os sensores ultrassônicos, os sensores de detecção e telemetria de rádio (RADAR), os sensores de detecção e telemetria por luz (LIDAR), os sensores de RADAR de onde contínua de frequência modulada (FMCW), os sensores de formação de imagem e/ou visão, os sensores de amplificação de luz por emissão estimulada de radiação (LASER), ou similares. Os parâmetros medidos podem variar com base nas características dos cultivos de planta atualmente sendo colhidos e também com base no local na colheitadeira onde a medição está sendo realizada. Por exemplo, para a colheitadeira de algodão 15 da implementação de exemplo, os dispositivos sensores de cultivo 171-176 podem compreender sensores de fluxo em massa 171’-176’, cada um sendo configurado para gerar um ou mais sinais, tais como, por exemplo, sinais elétricos representativos da taxa de fluxo em massa das colunas de algodão colhidas quando eles fluem através de respectivos dutos da pluralidade de dutos de ar separados 71-76 na direção para o acumulador 105. Os sensores de fluxo em massa 171’-176’ podem usar qualquer das tecnologias identificadas acima, tais como, por exemplo, RADAR ou outras para sensorear a massa do cultivo quando ele está sendo colhido, e ainda podem ser configurados para gerar um ou mais sinais elétricos representativos como sinais de dados brutos da massa, velocidade, direção, etc. das colunas de algodão colhido quando o algodão escoa através dos respectivos dutos da pluralidade de dutos de ar separados 71-76 na direção para o acumulador 105. O um ou mais sinais de dados brutos são convertidos em uma taxa de fluxo em massa de algodão usando uma transformação apropriada, a fim de ser útil para o processamento, conforme descrito aqui de acordo com a implementação. Deve ser reconhecido que, em lugar de, ou em adição a, os sinais de dados brutos da massa, velocidade, direção, etc., os sensores de fluxo em massa 171’-176’ podem também diretamente gerar e fornecer um sinal de fluxo em massa, representativo da taxa de fluxo em massa das colunas de algodão colhido quando o algodão escoa através de respectivos dutos da pluralidade de dutos de ar separados 71- 76 na direção para o acumulador 105. Para outro exemplo, para a colheitadeira de algodão 15 da implementação de exemplo, o dispositivo de realimentação de umidade 110 compreende um sensor de umidade 110’ configurado para gerar um sinal elétrico representativo de um nível de umidade do algodão colhido, o dispositivo de realimentação de massa de módulo 112 compreende um medidor de tensão 112’ configurado para gerar um sinal elétrico representativo da massa do módulo de algodão depois de ele ser conformado pelo formador de módulo 85, o dispositivo de realimentação de diâmetro de módulo 114 pode ser um sensor de posição 114’ acoplado com um elemento de braço capaz de engatar o lado externo do módulo de algodão e gerar um sinal tendo uma magnitude indicativa do diâmetro do módulo de algodão com base na posição do elemento de braço com relação ao receptáculo de cultivo 80, e o dispositivo de realimentação de nível de acumulador 116 pode ser um dispositivo de sensor óptico 116’ capaz de gerar um sinal tendo uma magnitude indicativa do nível de enchimento do acumulador 105.
[0062] Cada um dos sensores de cultivo 171-176 sensoreia um mais valores ou parâmetros de atributo de cultivo para os cultivos colhidos por uma correspondente porção distinta da largura utilizada Wu. No exemplo ilustrado, cada um dos sensores de cultivo 171-176 sensoreia uma característica que indica um atributo de cultivo para plantas ao longo de uma fileira individual, provendo atributos de cultivo “por fileira”. Como indicada pela separação 380, a largura utilizada Wu é separada ou dividida em seis (6) porções idênticas P1-P6, tais como unidades de fileira, nas quais os sensores de cultivo 171-176 sensoreiam, cada, as características dos cultivos ou plantas coletadas as porções P1-P6, respectivamente. No exemplo ilustrado, cada porção ou cada unidade de fileira inclui um sensor de fluxo em massa dedicado 171’-176’. Em outras implementações, os componentes podem ser compartilhados entre diferentes porções ou unidades de fileira. Da mesma maneira, os sensores podem ser compartilhados entre múltiplos componentes ou múltiplas unidades de fileira. Em algumas implementações, em vez de prover atributos de cultivo por fileira, os sensores de cultivo 171-176 compartilhados entre as fileiras alternativamente sensoreiam as características do cultivo ou planta quando elas são colhidas para determinar os atributos de cultivo para grupos de fileiras menores que a largura de colheita total Wu. os atributos de cultivo pode também compreender a produção de grão e/ou a produção de biomassa ou similar.
[0063] Embora a cabeça de colheita 340 seja ilustrada como incluindo seis (6) sensores, em outras implementações, a cabeça 340 pode incluir um maior ou menor número de tais sensores ao longo da largura ou faixa física da cabeça 340. Por exemplo, uma colheitadeira de fileira de cultivo pode ter mais que, ou menos que, seis (6) fileiras, em que a cabeça da colheitadeira pode similarmente se dividir em mais que, ou menos que, seis sensores de sensoreamento de fileira. Embora a cabeça 340 seja ilustrada como sendo dividida em porções idênticas, em implementações de exemplo, a cabeça 340 é dividida em porções não idênticas, em que os sensores sensoreiam as características do cultivo colhido para as porções não idênticas. Por exemplo, em outra implementação, um dos sensores de cultivo 171-176 sensoreia ou detecta as características do cultivo ou planta quando ele é colhido de uma fileira individual, enquanto outro dos sensores de cultivo 171-176 sensoreia ou detecta as características do cultivo ou planta quando ele é colhido de uma pluralidade de fileiras.
[0064] Em algumas implementações, os sensores de cultivo 171-176 sensoreiam as características do cultivo colhido com base em tempo, distância, um número de plantas, e/ou similar sobre o tempo, para detectar tendências nos dados. Isso pode também ajudar a reduzir a quantidade de dados que são processados ou armazenados. Em algumas implementações, cada um dos sensores de cultivo 171-176 pode adicionalmente ou alternativamente oferecer um grau de resolução de sensoreamento de cultivo por ser configurado para detectar as características de cada planta individual quando a colheitadeira de algodão 15 percorre um campo, provendo uma indicação da qual uma estimativa de produção de grão ou biomassa por planta é determinada. A agregação de dados e/ou tendências de planta individual nos dados coletados pode também melhorar a capacidade de uso dos dados por eliminação de ruído nos dados.
[0065] A interface de operador 45 é acoplada com o processador 312, conforme mostrado, e inclui na implementação de exemplo uma exibição 324 compreendendo um dispositivo por meio do qual informação pode ser visualmente apresentada para um operador da colheitadeira de algodão 15 ou para um monitor/gerenciador/operador, posicionado remotamente, da colheitadeira de algodão 15. A exibição 324 pode compreender um monitor ou tela que é de natureza estacionária ou que é de natureza móvel. Em uma implementação, a exibição 324 é transportada pela colheitadeira de algodão 15 juntamente com o operador humano. Em outra implementação, a exibição 324 compreende um monitor estacionário, remoto à colheitadeira de algodão 15. Em ainda outras implementações, a exibição 324 pode ser de natureza móvel, sendo provida como parte de um computador-táblete, telefone inteligente, assistente de dado pessoal (PDA) e/ou similar. Em ainda outras implementações, a exibição 324 pode ser provida como parte de uma rede de computadores para a transferência de dados usando a Internet e/ou conexões de nuvem para a exibição e uso da informação em aplicativos e/ou em sítios da Web ou similar, tais como em instalações de supervisão remotas ou semelhantes.
[0066] A interface de operador 45 da implementação de exemplo inclui adicionalmente uma entrada 326 compreendendo um ou mais dispositivos, pelos quais controles e entrada podem ser providos para o processador 312. Os exemplos de entrada 326 incluem, mas não são limitados a, um teclado, um painel sensível ao toque, uma tela sensível ao toque, uma tela sensível ao toque ou controle de direção, uma alavanca de comando, um microfone com software de reconhecimento de voz associado e/ou similar. A entrada 326 facilita a entrada de seleções, comandos ou controles. Em implementações nas quais a colheitadeira de algodão 15 é remotamente controlada ou remotamente dirigida, a entrada 326 pode facilitar tal direção e/ou controle remoto. A interface de operador 45 da implementação de exemplo pode ser usada pelo operador usando a entrada 326 para a seleção pelo operador de um fator de calibragem de base inicial do dispositivo de memória 314 de uma pluralidade de dados de fator de calibragem 315 com base em, por exemplo, variedade de cultivo, um local da colheita sendo conduzida, um momento da estação/ano da colheita sendo conduzida, um ou mais parâmetros físicos da colheitadeira, tais como, por exemplo, uma largura da cabeça de colheitadeira, e/ou combinações desses parâmetros ou outros. A lógica de controle 316 é armazenada no dispositivo de memória é executável pelo processador para determinar a produção do algodão colhido com base em fatores incluindo o fator de calibragem de base inicial, selecionado pelo operador e conforme descrito aqui.
[0067] O dispositivo de memória 314 compreende um meio legível por computador, não transiente, ou dispositivo de armazenamento persistente para armazenar dados para uso pelo processador 312 e/ou gerados pelo processador 312. Em uma implementação, o dispositivo de memória 314 pode adicionalmente armazenar instruções na forma de código ou software para execução pelo processador 312. As instruções podem ser carregadas em uma memória de acesso aleatório (RAM) para execução pelo processador 312 de uma memória exclusivamente de leitura (ROM), um dispositivo de armazenamento em massa, ou algum outro armazenamento persistente. Em outras implementações, circuitos de fios rígidos podem ser usados em lugar de, ou em combinação com, instruções de software para implementar as funções descritas. Por exemplo, pelo menos regiões do dispositivo de memória 314 e do processador 312 podem ser incorporadas como parte de um ou mais circuitos integrados específicos de aplicação (ASICs). Em uma implementação, o dispositivo de memória 314 é transportado pela colheitadeira de algodão 15. Em outras implementações, o dispositivo de memória 314 pode ser provido remoto à colheitadeira de algodão 15 e em comunicação com a colheitadeira de algodão 15 em uma forma sem fio.
[0068] No exemplo ilustrado, o dispositivo de memória 314 compreende uma porção de armazenamento de dados 350 e uma porção de armazenamento de lógica 352. A porção de armazenamento de dados 350 contém dados históricos, tais como tabelas de consulta, facilitando a análise dos dados e informação sensoreada pelos sensores 110, 112, 114, 116, e 171- 176. A porção de armazenamento de dados 350 é adicionalmente configurada para armazenar os valores característicos de cultivo diretamente sensoreados pelos sensores 110, 112, 114, 116, e 171-176 e os valores de atributo de cultivo para correlacionar vários tipos diferentes de cultivos que são colhidos com os valores característicos de cultivo determinados, durante a colheita. Tal informação armazenada pode ser em vários formatos, tais como tabelas, mapas de campo e/ou similares. A porção de armazenamento de dados 350 pode adicionalmente armazenar várias regulagens e preferências do operador. A porção de armazenamento de lógica 352 contém a lógica de controle 316, que é executável pelo processador 312 para sensorear o cultivo quando ele é colhido pela colheitadeira de algodão 15 e para realizar a estimativa de produção de cultivo, para controlar uma ou mais funções da colheitadeira, para realizar a calibragem ativa do um ou mais dispositivos de sensoreamento de cultivo 322 do sensor de colheita 320, de acordo com as implementações de exemplo conforme descritas aqui, e para realizar quaisquer outras funções conforme podem ser necessárias ou desejadas. A porção de armazenamento de dados 350 pode adicionalmente armazenar várias regulagens e preferências e/ou seleções do operador, tais como, por exemplo, variedade de cultivo, um local da colheita sendo conduzida, um momento da estação/ano da colheita sendo conduzida, um ou mais parâmetros físicos da colheitadeira, tais como, por exemplo, uma largura da cabeça de colheitadeira, e/ou combinações desses parâmetros ou outros em associação com a fileira sensoreada quando ele é colhido pela colheitadeira de algodão 15. Isso é útil, por exemplo, para realizar uma estimativa de produção de cultivo, altamente refinada, para controlar uma ou mais funções da colheitadeira, para realizar a calibragem ativa do um ou mais dispositivos de sensoreamento de cultivo 322 do sensor de colheita 320 de acordo com as implementações de exemplo, conforme descrito aqui, e para realizar quaisquer outras funções conforme podem ser necessárias ou desejadas.
[0069] A lógica de controle 316 instrui o processador 312 para gerar sinais de controle, fazendo com que a exibição 324 apresente várias informações e/ou avisos para um operador. Por exemplo, a lógica de controle 316 pode fazer com que o processador 312 avise um operador para selecionar se, ou não, e como dados característicos de cultivo individuais devem ser agregados, como os dados devem ser exibidos (gráfico, carta, mapa de campo), quais condições devem ser identificadas, como o operador é notificado ou alertado a tais condições, onde tais dados devem ser armazenados, a maneira na qual os dados devem ser armazenados, e/ou similares. Por exemplo, a lógica de controle 316 pode fazer com que o processador 312 armazene os dados relacionados à fileira sensoreada quando ela é colhida pela colheitadeira de algodão 15 em associação com várias regulagens e preferências e/ou seleções do operador, tais como, por exemplo, variedade de cultivo, um local da colheita sendo conduzida, um momento da estação/ano da colheita sendo conduzida, um ou mais parâmetros físicos da colheitadeira, tais como, por exemplo, uma largura da cabeça de colheitadeira, e/ou combinações desses parâmetros ou outros. Os dados de cultivo colhido, associados com o um ou mais outros parâmetros, regulagens, preferências, etc., podem ser armazenados em uma tabela no dispositivo de memória 314, tais como, por exemplo, em uma base de dados. A lógica de controle 316 pode ainda instruir o processador 312 na exibição dos dados pelas preferências do operador.
[0070] A lógica de controle 316 compreende código ou programação que direciona o processador 312 para gerar automaticamente sinais de controle que ajustam os parâmetros operacionais da colheitadeira de algodão 15 com base em valores característicos de cultivo ou/ou valores de atributo de cultivo derivados, diretamente sensoreados. Em uma implementação, as operações da lógica de controle 316 geram sinais de controle independentemente ajustando os parâmetros operacionais de distintas porções da cabeça de colheita 340 ao longo de sua largura utilizada Wu. Por exemplo, a lógica de controle 316 pode ajustar os parâmetros operacionais de uma ou mais das unidades de fileira da colheita de algodão 61-66, independentemente de, ou diferentemente com relação à outra unidade de fileira de captação de algodão da cabeça 340 com base em valores característicos de cultivo diretamente sensoreados ou derivados. Por exemplo, a lógica de controle 316 pode, automaticamente, em resposta aos valores característicos de cultivo sensoreados ou derivados de uma ou mais unidade(s) de fileira particular(es) 61-66, gerar sinais de controle para um atuador acoplado às placas extratoras da unidade de fileira para ajustar o espaçamento entre as placas extratoras. Esse ajuste das placas extratoras para a unidade de fileira particular pode ser independente de, e diferente de, o ajuste de espaçamento de outras placas extratoras para outras unidades de fileira. Como um resultado, a resolução melhorada de sensoreamento de cultivo provê o melhor controle mais refinado sobre a operação da colheitadeira de algodão 15 para colher de melhor forma os cultivos.
[0071] A figura 4 é um diagrama de blocos funcional mostrando um processo 400 de estimativa de produção de fluxo e controle de colheitadeira usando calibragem de sensoreamento de fluxo de cultivo ativa de acordo com uma implementação de exemplo. Com referência agora àquela figura, o processo 400 inclui sensorear no bloco funcional 410 o fluxo de cultivo colhido por cada uma das unidades de fileira de colheita de algodão 61-66 usando meios apropriados, tais como, por exemplo, a pluralidade de dispositivos sensores de cultivo 171-176. A resposta de sensor bruta de cada sensor de cultivo é combinada no bloco funcional 420 em uma vazão em massa úmida de algodão de semente de máquina estimada de uma maneira a ser descrita em maior detalhe abaixo.
[0072] Conforme descrito acima, o algodão é empacotado em módulos depois de ser colhido. A colheitadeira de algodão é operativa para continuar a colher algodão e para direcioná-lo para dentro do acumulador 105 ao mesmo tempo em que o algodão está sendo empacotado em módulos no formador de módulo 85 da porção da colheitadeira. De acordo com as implementações contidas aqui, a massa de cada módulo é comparada contra a massa estimada do módulo conforme determinada usando os dispositivos sensores de cultivo 171-176 de forma que um fator de calibragem possa ser determinado e ativamente atualizado para a determinação mais precisa da produção de cultivo. O processo 400 realiza uma calibragem ativa no bloco funcional 430 usando entrada obtida da colheitadeira 15, tal como, por exemplo, uma ou mais de informações de máquina 442, informações de massa de módulo 444, e informações de umidade de módulo 446, cujos detalhes serão descritos em maior pormenor abaixo. A informação de máquina 442 pode incluir informação que se relaciona a um estado de enrolamento de módulo, um nível baixo de acumulador, e/ou qualquer outra informação obtida da colheitadeira 15, que pode ser útil na calibragem do sistema para obter informação altamente precisa da produção de cultivo. Em geral, todavia, o fluxo em massa para um módulo específico é acumulado e processado usando um fator de calibragem de base e a massa de módulo é medida e comparada contra a massa esperada usando o fator de calibragem de base para desenvolver um fator de calibragem atualizado. O fator de calibragem atualizado é usado durante o processamento dos módulos subsequentes, até ser seletivamente atualizado, conforme descrito aqui.
[0073] O fluxo de massa seca em fiapos é determinada no bloco funcional 450 usando a entrada 460 obtida da colheitadeira 15, tal como, por exemplo, informação de umidade 462 e informação de mudança de via 464, cujos detalhes serão descritos em maior pormenor abaixo. Em geral, todavia, a determinação de massa seca de fiapo é beneficiada pelos ajustes ativos feitos ao fator de calibragem (CF) no bloco funcional 430, para a determinação de produção mais precisa.
[0074] A informação de módulo e produção é determinada no bloco funcional 470 usando, por exemplo, a informação de máquina 471 que pode incluir informação que se relaciona à velocidade à frente da colheitadeira 15, à largura da cabeça de captação de cultivo, à largura das fileiras de cultivo, e/ou qualquer outra informação obtida da colheitadeira 15, que pode ser útil pelo sistema na obtenção de informação altamente precisa do módulo de cultivo e da produção. A informação de módulo e produção pode ser armazenada no dispositivo de memória 314, por exemplo. A informação de módulo e produção compreende dados de cultivo que têm melhor resolução para aumentar a eficiência operacional da colheitadeira e para gerar mapas do campo que têm melhor resolução. Na implementação de exemplo, os dados de cultivo podem também ser usados para o controle de um ou mais sistemas funcionais da colheitadeira.
[0075] Conforme descrito acima, a estrutura de colheita 60 pode ser uma estrutura de colheita de algodão, tal como mostrada para o uso em uma colheitadeira de algodão 15, e pode incluir uma ou mais unidades de fileira de colheita de algodão 61-66, uma cabeça colhedora de cápsulas de algodão, ou qualquer outra estrutura de colheita (por exemplo, cabeça de milho). A esse respeito, deve ser reconhecido que, nas implementações de exemplo, o processo 400 de estimativa de produção de fluxo e controle de colheitadeira usando calibragem de sensoreamento de fluxo de cultivo ativa pode ser realizado na base de fileira de cultivo individual ou em uma agregação de duas ou mais fileiras de cultivo, tais como seis (6) no exemplo. Para isso, a seta 480 através do processamento nos blocos funcionais 420 - 470 e designada com a “/1” é representativa da estimativa de produção de fluxo e controle de colheitadeira usando calibragem de sensoreamento de fluxo de cultivo ativa da presente invenção, processada em uma base por fileira de cultivo, em que conjuntos plurais de informações individuais que se relacionam a unidades individuais das unidades de fileira plurais de colheita de algodão 61-66 são determinados, processados, e armazenados ou de outra maneira fornecidos. Isso provê mapas de produção altamente precisos e detalhados. A seta 482 através do processamento nos blocos funcionais 420 - 470 e designada com um “/n” é representativa da estimativa de produção de fluxo e controle da colheitadeira usando calibragem de sensoreamento de fluxo de cultivo ativa da presente invenção, processada em uma base de fileira de cultivo agregada, em que um único conjunto de informações que se relaciona às unidades de fileira plurais de colheita de algodão 61-66 é determinado, processado, e armazenado ou de outra maneira fornecido. Isso também provê um mapa de produção altamente preciso e detalhado.
[0076] A calibragem ativa descrita aqui cria mapas de produção altamente precisos no nível de fileira por fileira com mínima interface de operador manual. Isso é obtido na implementação de exemplo pelo processador 312 executando a lógica de controle 316 e usando dados estatísticos selecionados para gerenciar a saída de sensor individual 171-176. A calibragem é obtida, em geral, em partes ou porções lógicas, por exemplo, uma normalização das magnitudes de sinal de sensor de fluxo em massa variáveis, e cálculo dos fatores de calibragem de ajuste com base em massa de manipulador a bordo e umidade de módulo. De acordo com as implementações de exemplo, o sistema continuamente funciona no segundo plano enquanto realiza a colheita para prover dados precisos com pouca a nenhuma necessidade de entrada do operador.
[0077] As leituras brutas de sensor dos dispositivos sensores de cultivo 171-176 são normalizadas 511 na implementação de exemplo, como mostrado na figura 5, a fim de comparar sinais através de múltiplos sensores, onde a resposta de sensor varia devido ao circuito, sensitividade, e instalação. Através do processo de normalização, a resposta de sensor é assumida ser um sinal normalmente distribuído. A normalização da resposta de sensor resulta em 520 em um sinal médio de 0 com um desvio padrão de 1.
Figure img0001
[0078] O sinal normalizado 520 (figura 5) tendo um valor médio de 0 e desvio padrão de 1 é então redimensionado em 512 para ter uma média de 0,5 com um desvio padrão de 1.
Figure img0002
[0079] A capacidade de normalizar os sinais em tempo real depende da implementação de exemplo na teoria do sinal sendo normalmente distribuído e para assegurar que uma ampla faixa da resposta de sensor seja capturada. Assim, as implementações de exemplo dadas capturam aqui dados sobre uma longa duração para entender a resposta de sensor em condições de baixo e alto fluxo. Essa teoria é usada para estimar o sinal médio e desvio padrão, que podem ser aplicados ao processo de normalização.
[0080] O sinal médio é estimado em 513 por uma equação ótima em tempo real, que reduz a necessidade de armazenar arranjos significantemente grandes de dados passados.
Figure img0003
[0081] A variação de sinal é estimada em 514 por uma equação ótima em tempo real, que reduz a necessidade de armazenar arranjos significantemente grandes de dados passados. A raiz quadrada é então computada da variação para obter o desvio padrão.
Figure img0004
[0082] Para um sistema físico, as contagens de sinal ( ) podem ser exploradas de 500 a 1.000.000, por exemplo, tanto na estimativa da média quanto da variância. Desta maneira, um equilíbrio pode ser encontrado para sair para ter suficientes dados para normalizar o sensor para todas as condições, enquanto se permite alguma flexibilidade versus se ter demasiadamente poucos dados e a otimização para uma condição de campo específica, ao invés de se otimizar a resposta verdadeira do sensor.
[0083] Conforme notado acima, os dispositivos sensores de cultivo 171-176 podem ser configurados para gerar um ou mais sinais elétricos representativos como sinais de dados brutos da massa, velocidade, direção, etc. das colunas de algodão colhido quando o algodão escoa através de respectivos dutos da pluralidade de dutos de ar separados 71-76 na direção para o acumulador 105. De acordo com a implementação de exemplo, o um ou mais sinais de dados brutos são convertidos em uma taxa de fluxo em massa de algodão usando uma transformação apropriada 515, a fim de ser útil para o processamento, conforme descrito aqui de acordo com a implementação. Os sinais normalizados e redimensionados 530 são ainda processados pela transformação 515 para correlacionar a resposta de sensor a uma taxa de fluxo em massa 422. Isso provê uma estimativa de fluxo em massa relativa utilizando os sinais normalizados do sensor de fluxo em massa. Isso resulta em uma única estimativa de fluxo em massa relativa 422n para cada unidade de fileira individual.
[0084] A taxa de fluxo em massa relativa de máquina 424 é estimada 516 por soma da taxa de fluxo em massa de unidade de fileira relativo para todas as unidades de fileira. A taxa de fluxo em massa relativa de máquina 424 é utilizada no processo de calibragem de conversão de fluxo em massa de unidade de fileira relativo para um fluxo em massa absoluto.
Figure img0005
[0085] Os processos de normalização 511 e o redimensionamento 512 podem ser demonstrados por observação da figura 6a. Comparando os três sinais 602, 604, 606 mostrados a título de exemplo, como sendo gerados pelo dispositivos sensores 171, 172, e 173 que foram sujeitos a condições de cultivo similares, a resposta de sensor é similar entre duas unidades de fileira 61, 62, enquanto significantemente diferentes no terceiro sinal 173’. Com uma maior média em resposta, o sinal pode variar mais, o que faz com que o desvio padrão seja maior. A figura 6b demonstra o processo de normalização que alinha os três (3) sinais do exemplo matemático para equalizar a média e o desvio padrão.
[0086] Com referência à figura 7, o fluxo em massa de máquina relativo 710 é utilizado 700 em combinação com a lógica 702 da máquina (colheitadeira de algodão 15), tal como um estado de enrolamento de módulo do formador de módulo 85, e as massas de módulo 704 conforme medidas pelo dispositivo de realimentação de massa de módulo 112 no manipulador de módulo 80 a bordo da colheitadeira de algodão 15.
[0087] A massa acumulada é calculada em 710 da integração da taxa de fluxo em massa relativa 424 (figuras 5 e 7) em uma base de módulo único. O final de um módulo foi tipicamente definido como o início de um ciclo de enrolamento. Para isso, o início do próximo módulo também ocorre no início de um ciclo de enrolamento.
Figure img0006
[0088] As massas de módulo capturadas por intermédio do manipulador são consideradas a verdade fundamental para esse sistema e é confiável para calibrar 720 a taxa de fluxo em massa relativa ou não calibrada para uma taxa de fluxo em massa absoluta ou calibrada.
Figure img0007
[0089] O fator de calibragem CF é então aplicado à taxa de fluxo em massa relativa ou não calibrada para chegar a uma taxa de fluxo em massa absoluta ou calibrada.
Figure img0008
[0090] Com referência a seguir à figura 8, o gerenciamento de calibragem 730 usa critérios selecionados para manipular ou determinar de outra maneira quando atualizar o fator de calibragem CF juntamente com a determinação em cada ciclo final de módulo se existe confiança suficiente para utilizar esse módulo particular no procedimento de calibragem.
[0091] Um critério que pode ser verificado ou que poderia ser considerado no processo é o de verificar que o diâmetro de módulo é maior que 2,2 m, usando, por exemplo, o dispositivo de realimentação de diâmetro de módulo 114. Outro critério que pode ser verificado ou que poderia ser considerado no processo é o de verificar um estado vazio de acumulador, conforme determinado com base no sensor de baixo nível usando, por exemplo, o dispositivo de realimentação de nível de acumulador 116. Outro critério que pode ser verificado ou que poderia ser considerado no processo é o de verificar que a massa de módulo é maior que 0 kg., e que a massa de módulo não é um valor nulo, por exemplo, maior que 60.000 kg. usando, por exemplo, o dispositivo de realimentação de massa do módulo 112.
[0092] O diâmetro de módulo de algodão é estreitamente monitorado, pois a precisão da massa de módulo do manipulador é esperada que seja mais favorável em módulos de diâmetros maiores. Módulos de pequenos diâmetros são, todavia, incomuns de ocorrerem em tais casos, como durante transições de campo ou estudos de tentativas de produção.
[0093] Estados de sensor de acumulador são também estreitamente monitorados, pois durante o processo de formação de módulo é possível que material seja deixado no acumulador no início do ciclo de enrolamento. O material levado em conta no acumulador que não entrou no módulo resulta em erro conhecido no fator de calibragem.
[0094] No gerenciamento de calibragem 730 das implementações de exemplo, o fator de calibragem atual CFcurrent é recebido na etapa 810, tal como, por exemplo, por recuperação do CFcurrent do dispositivo de memória 314.
[0095] Na etapa 820, a massa de módulo de cultivo é determinada, enquanto o cultivo está sendo colhido, usando, por exemplo, os sensores 171- 176 e os processos 410 e 420 mostrados nas figuras 4 e 5, conforme descrito acima.
[0096] Na etapa 830, a massa do módulo acumulado durante a etapa 820 é determinada pós-colheita usando, por exemplo, o dispositivo de realimentação de massa de módulo 112.
[0097] Um novo fator de calibragem candidato CFcandidate é determinado na etapa 840 usando, por exemplo, a equação 8 descrita acima.
[0098] A usabilidade e/ou viabilidade do novo fator de calibragem candidato CFcandidate são determinadas na etapa 860. De acordo com as implementações de exemplo dadas aqui, a usabilidade e/ou viabilidade do novo fator de calibragem candidato CFcandidate são determinadas com base em critérios, tais como aqueles descritos acima, por exemplo. Isto é, o novo fator de calibragem candidato CFcandidate é determinado para ser usável e/ou ter viabilidade com base no diâmetro de módulo maior que 2,2 m. usando, por exemplo, o dispositivo de realimentação de diâmetro de módulo 114. O novo fator de calibragem candidato CFcandidate é determinado para ser não usável e/ou não ter viabilidade com base no acumulador 105 não estando vazio (parcialmente cheio) conforme determinado com base no sensor de baixo nível usando, por exemplo, o dispositivo de realimentação de nível de acumulador 116. O novo fator de calibragem candidato CFcandidate é determinado para ser usável e/ou ter viabilidade com base na massa de módulo ser maior que 0 kg., e não ser um valor nulo, por exemplo, maior que 60,000 kg. usando, por exemplo, o dispositivo de realimentação de massa de módulo 112.
[0099] Se o novo fator de calibragem candidato CFcandidate passar em todos os critérios conforme determinado na etapa 860, o novo fator de calibragem candidato CFcandidate é armazenado, por exemplo, no dispositivo de memória 314. Caso contrário, o novo fator de calibragem candidato CFcandidate é descartado e o processo é repetido.
[00100] O fator de calibragem atual CFcurrent é substituído pelo fator de calibragem CFcandidate na etapa 880 para o uso como um novo fator de calibragem atual (vivo) para determinações de produção de cultivo subsequentes e/ou sendo realizadas (ao vivo).
[00101] Com referência a seguir à figura 9, o mesmo fator de calibragem CF pode ser aplicado , quando necessário e/ou desejado, a uma unidade de fileira relativa individual ou taxa de fluxo em massa não calibrada com base nos princípios da propriedade distributiva.
Figure img0009
[00102] Por conseguinte, o fator de calibragem CF calculado na taxa de fluxo em massa de máquina pode ser aplicado 902 a taxas de fluxo em massa de unidade de fileira individual 910 como:
Figure img0010
[00103] Por conseguinte, o fator de calibragem CF calculado na taxa de fluxo em massa de máquina pode ser aplicado 904 ao coletivo de todas das taxas de fluxo em massa da unidade de fileira em 920 como:
Figure img0011
[00104] Com referência à figura 10a, a produção em massa úmida de máquina pode ser calculada como uma aplicação 1012 da taxa de fluxo em massa de máquina, da largura de cabeça, e da velocidade do veículo em 1010 como:
Figure img0012
[00105] A produção em massa úmida de máquina pode ser convertida para uma base seca ou estandardizada para reduzir o efeito de umidade sobre a produção atual como uma aplicação 1022 em 1020 como:
Figure img0013
Figure img0014
[00106] A produção de fiapos de máquina pode ser calculada como uma função da produção em massa de cultivo estandardizada e participada como uma aplicação 1032 em 1030 como:
Figure img0015
[00107] Com referência à figura 10b, a produção em massa úmida de unidade de fileira pode ser calculada como uma aplicação 1042 da taxa de fluxo em massa da unidade de fileira, largura da unidade de fileira, e velocidade do veículo em1040 como:
Figure img0016
Figure img0017
[00108] A produção de massa úmida em uma base por fileira pode ser convertida para uma base seca ou estandardizada para reduzir o efeito de umidade sobre a produção atual como uma aplicação 1052 em 1050 como:
Figure img0018
[00109] A produção de fiapos pode ser calculada em uma base por fileira como uma função da produção em massa de cultivo estandardizada e participação por aplicação 1062 em 1060 como:
Figure img0019
[00110] Com referência agora às figuras 11a e 11b, as implementações de exemplo descritas aqui são usadas para gerar mapas de produção altamente precisos. com referência primeiro à figura 11a, Dados de sistema de posicionamento global (GPS) e/ou informações de tempo e/ou os dados 1100 são recebidos, tais como, por exemplo, por recuperação do GPS e/ou informação de tempo 1100 do dispositivo de memória 314 e aplicados 1110 à informação de produção calibrada Mmachine_calibrad para produzir dados de mapa de produção 1120. Os dados de GPS e/ou as informações de tempo e/ou os dados 1100 podem também ser recebidos, tais como, por exemplo, por meio da recepção dos dados de uma rede da colheitadeira de algodão 15, tal como, por exemplo, uma CAN, e aplicados 1110 à informação de produção calibrada Mmachine_calibrad para produzir os dados do mapa de produção 1120. Os dados de mapa de produção 1120 são processados em tempo real e podem ser armazenados no dispositivo de memória 314 e/ou transmitidos para outros dispositivos da colheitadeira 15 usando a CAN e/ou transmitidos para um aparelho, veículo, sistema, remoto, ou similar por intermédio de uma rede de comunicação com fio e/ou sem fio da colheitadeira de algodão 15.
[00111] Com referência a seguir à figura 11b, os dados de GPS e/ou informações de tempo e/ou os dados 1100 recebidos, tais como, por exemplo, por recuperação do GPS e/ou informação de tempo 1100 do dispositivo de memória 314, podem ser aplicados 1130 à informação de produção calibrada Mrow_unit_calibrad para produzir dados de mapa de produção 1140 em uma base por unidade de fileira. Os dados de GPS e/ou informações de tempo e/ou os dados 1100 podem também ser recebidos, tais como, por exemplo, por meio da recepção dos dados de uma rede da colheitadeira de algodão 15, tal como, por exemplo, uma CAN, e aplicados 1130 à informação de produção por unidade de fileira calibrada Mrow_unit_calibrad para produzir os dados de mapa de produção com base em unidade de fileira 1140. Os dados de mapa de produção 1140 são processados em tempo real e podem ser armazenados no dispositivo de memória 314 e/ou transmitidos para outros dispositivos da colheitadeira 15 usando a CAN e/ou transmitidos para um aparelho, veículo, sistema, remoto, ou similar, por intermédio de uma rede de comunicação com fio e/ou sem fio da colheitadeira de algodão 15.
[00112] Quando usadas aqui, as formas singulares “uma”, “uma” e “o”, “a” são destinadas a incluir também as formas plurais, a menos que o contexto indique claramente o contrário. Ainda, “compreende”, “inclui”, e frases similares são destinados a especificar a presença das mencionadas características, etapas, as operações, elementos, e/ou componentes, mas não excluem a presença ou a adição de uma ou mais outras características, etapas, as operações, elementos, componentes, e/ou grupos dos mesmos.
[00113] Embora a presente invenção tenha sido ilustrada e descrita em detalhe nos desenhos e descrição precedente, tal ilustração e descrição são não é de caráter limitativo, sendo entendido que implementação(ões) ilustrativa(s) foi(foram) mostrada(s) e descrita(s) e que todas as alterações e modificações que caem dentro do espírito da presente invenção são desejadas serem protegidas. Implementações alternativas da presente invenção podem não incluir todas das características descritas, mas ainda se beneficiarem das pelo menos algumas das vantagens de tais características. Aqueles de conhecimento comum na técnica podem conceber suas próprias implementações que incorporam uma ou mais das características da presente invenção e caem dentro do espírito e escopo das reivindicações anexas.

Claims (14)

  1. Colheitadeira de algodão (15), caracterizada pelo fato de que compreende: um chassi (20) para suportar o movimento relativo ao solo embaixo da colheitadeira de algodão (15) por elementos engatando ao solo (22), acoplados operativamente com o chassi (20); uma cabeça de colheita de algodão (340) operativamente acoplada com o chassi (20) e compreendendo uma pluralidade de unidades de fileira de colheita de algodão (61-66) operáveis para colher algodão de plantas que entram na cabeça de colheita de algodão (340) quando a colheitadeira de algodão (15) é movida à frente com relação ao solo pelos elementos engatando ao solo (22); um receptáculo de cultivo (80) operativamente acoplado com o chassi (20), o receptáculo de cultivo (80) compreendendo um formador de módulo (85) configurado para conformar o algodão colhido em um módulo de algodão; um sistema de dutos de ar (70) compreendendo uma pluralidade de dutos de ar separados (71-76), sendo que cada um dos dutos de ar separados (71-76) é associado com uma das unidades de fileira de colheita de algodão (61-66) para comunicar o algodão colhido das unidades de fileira de colheita de algodão (61-66) para o receptáculo de cultivo (80); e um aparelho (300) para determinar uma produção do algodão colhido compreendendo: um sensor de colheita (320) operativo para gerar um sinal de produção representativo de uma taxa de produção do algodão sendo colhido; um sensor de cultivo acumulado (330) operativo para gerar um sinal de cultivo de massa representativo de um parâmetro medido do algodão colhido durante um período de tempo selecionado; e um sistema de controle de sensoreamento de cultivo (310) compreendendo: um processador (312); um dispositivo de memória (314) operativamente acoplado com o processador; dados operacionais (313) armazenados no dispositivo de memória, os dados operacionais compreendendo dados de colheitadeira representativos de uma característica operacional da colheitadeira de algodão (15); dados de fator de calibragem de base (315) armazenados no dispositivo de memória, os dados de calibragem de base sendo representativos de um fator de calibragem de base (CFbase); e lógica de controle (316) armazenada no dispositivo de memória e executável pelo processador para determinar a produção do algodão colhido, em que a lógica de controle (316) é executável pelo processador (312) para: receber o sinal de produção; receber o sinal de cultivo de massa; determinar, em resposta à aplicação do fato de calibragem de base (CFbase) ao sinal de produção, uma massa estimada (mestimad) do algodão colhido durante um primeiro período de tempo (t1); determinar, em resposta ao sinal de cultivo de massa, uma massa medida (mmedida) do algodão colhido durante o primeiro período de tempo (t1); determinar um candidato de fator de calibragem atualizado (CFnew) em resposta a uma razão entre a massa estimada (mestimad) e a massa de módulo medida (medida); e determinar uma produção do algodão colhido durante um segundo período de tempo (t2) depois do primeiro período de tempo (t1) por seletivamente aplicar, em resposta aos dados operacionais (313), um entre o fator de calibragem de base (CFbase) ou do candidato de fator de calibragem atualizado (CFnew) ao sinal de produção gerado pelo sensor de colheita (320) durante o segundo período de tempo (t2) representativo da taxa de produção do algodão colhido durante o segundo período de tempo (t2).
  2. Colheitadeira de algodão (15) de acordo com a reivindicação 1, caracterizada pelo fato de que: o sensor de cultivo acumulado (330) compreende um dispositivo de realimentação de massa de módulo (112) operativo para gerar um sinal de massa de módulo de algodão em massa, representativo de uma massa medida do algodão colhido durante o primeiro período de tempo (t1) e empacotada no módulo de algodão; a lógica de controle (316) é executável pelo processador (312) para determinar, em resposta ao sinal de massa de módulo de algodão em massa, uma massa de módulo de algodão em massa do algodão colhido durante o primeiro período de tempo (t1); os dados operacionais (313) compreendem dados de colheitadeira compreendendo dados de massa requeridos de pacote de algodão, representativos de uma faixa de massa requerida do módulo de algodão; e a lógica de controle (316) compreende lógica de gerenciamento de calibragem, executável pelo processador (312), para determinar a produção de algodão colhido durante o segundo período de tempo (t2) por: aplicar o candidato de fator de calibragem atualizado (CFnew) ao sinal de produção gerado pelo sensor de colheita (320) durante o segundo período de tempo (t2), em resposta à massa de módulo de algodão em massa determinada do algodão colhido durante o primeiro período de tempo (t1) estando dentro da faixa de massa requerida do módulo de algodão, ou aplicar o fator de calibragem de base (CFbase) ao sinal de produção gerado pelo sensor de colheita (320) durante o segundo período de tempo (t2), em resposta à massa de módulo de algodão em massa determinada do algodão colhido durante o primeiro período de tempo (t1) não estando dentro da faixa de massa requerida do módulo de algodão.
  3. Colheitadeira de algodão (15) de acordo com a reivindicação 1, caracterizada pelo fato de que: o sensor de cultivo acumulado (330) compreende um dispositivo de realimentação de diâmetro de módulo (114), operativo para gerar um sinal de diâmetro de módulo de algodão representativo de um diâmetro medido do módulo de algodão formado pelo formador de módulo 85 usando o algodão colhido durante o primeiro período de tempo (t1) e empacotado no módulo de algodão; a lógica de controle (316) é executável pelo processador (312) para determinar, em resposta ao sinal de diâmetro de módulo de algodão, um diâmetro de módulo de algodão do módulo de algodão; os dados operacionais (313) compreendem dados de colheitadeira compreendendo dados de diâmetro requerido de pacote de algodão, representativos de um diâmetro mínimo requerido do módulo de algodão; e a lógica de controle (316) compreende lógica de gerenciamento de calibragem, executável pelo processador (312) para determinar a produção de algodão colhido durante o segundo período de tempo (t2) por: aplicar o candidato de fator de calibragem atualizado (CFnew) ao sinal de produção gerado pelo sensor de colheita (320) durante o segundo período de tempo (t2), em resposta ao determinado diâmetro de módulo de algodão sendo maior que o diâmetro mínimo requerido, ou aplicar o fator de calibragem de base (CFbase) ao sinal de produção gerado pelo sensor de colheita (320) durante o segundo período de tempo (t2), em resposta ao determinado diâmetro de módulo de algodão sendo menor que o diâmetro mínimo requerido.
  4. Colheitadeira de algodão (15) de acordo com a reivindicação 1, caracterizada pelo fato de que: o receptáculo de cultivo (80) compreende um acumulador (105) acoplado operativamente com o chassi (20) e disposto entre o sistema de dutos de ar (70) e o formador de módulo (85), o acumulador (105) sendo operativo para receber o algodão colhido pela cabeça de colheita de algodão (340) e para seletivamente fornecer o algodão recebido para o formador de módulo (85); cada um dos dutos de ar separados (71-76) do sistema de dutos de ar (70) comunica o algodão colhido das unidades de fileira de colheita de algodão (61-66) para o acumulador (105) por intermédio do acumulador (105); o sensor de cultivo acumulado (330) compreende um dispositivo de realimentação de nível de acumulador (116), operativo para gerar um sinal de nível de acumulador representativo de um nível medido do algodão colhido durante o primeiro período de tempo (t1) e recebido no acumulador (105); a lógica de controle (316) é executável pelo processador (312) para determinar, em resposta ao sinal de nível de acumulador, um nível de enchimento de algodão do algodão colhido durante o primeiro período de tempo (t1) e recebido no acumulador (105); os dados operacionais (313) compreendem dados de colheitadeira compreendendo dados de nível de enchimento de algodão requerido por acumulador, representativos de uma altura de pilha mínima requerida do algodão colhido durante o primeiro período de tempo (t1) e empilhado no acumulador (105); a lógica de controle (316) compreende lógica de gerenciamento de calibragem, executável pelo processador (312) para determinar a produção do algodão colhido durante o segundo período de tempo (t2) por: aplicar o candidato de fator de calibragem atualizado (CFnew) ao sinal de produção gerado pelo sensor de colheita (320) durante o segundo período de tempo (t2), em resposta ao determinado nível de enchimento de algodão do algodão colhido durante o primeiro período de tempo (t1) e recebido no acumulador (105) sendo maior que a altura de pilha requerida mínima, ou aplicar o fator de calibragem de base (CFbase) ao sinal de produção gerado pelo sensor de colheita (320) durante o segundo período de tempo (t2), em resposta ao determinado nível de enchimento de algodão do algodão colhido durante o primeiro período de tempo (t1) e recebido no acumulador (105) sendo menor que a altura de pilha requerida mínima.
  5. Colheitadeira de algodão (15) de acordo com a reivindicação 1, caracterizada pelo fato de que: os dados operacionais (313) armazenados no dispositivo de memória compreendem dados de colheitadeira compreendendo dados de faixa de razão representativos de uma faixa de razão requerida da razão entre a massa estimada (mestimad) do algodão colhido durante o primeiro período de tempo (t1) e a massa medida (medida) do algodão colhido durante o primeiro período de tempo (t1); e a lógica de controle (316) compreende lógica de gerenciamento de calibragem, executável pelo processador (312) para determinar a produção do algodão durante o segundo período de tempo (t2) por: aplicar o candidato de fator de calibragem atualizado (CFnew) ao sinal de produção gerado pelo sensor de colheita (320) durante o segundo período de tempo (t2), em resposta à razão entre a massa estimada (mestimada) do algodão colhido durante o primeiro período de tempo (t1) e a massa medida (medida) do algodão colhido durante o primeiro período de tempo (t1) estando dentro da faixa de razão requerida, ou aplicar o fator de calibragem de base (CFbase) ao sinal de produção gerado pelo sensor de colheita (320) durante o segundo período de tempo (t2), em resposta à razão entre a massa estimada (mestimada) do algodão colhido durante o primeiro período de tempo (t1) e a massa medida (medida) do algodão colhido durante o primeiro período de tempo (t1) não estando dentro da faixa de razão requerida.
  6. Colheitadeira de algodão (15) de acordo com a reivindicação 1, caracterizada pelo fato de que: o dispositivo de memória (314) é operativo para armazenar uma pluralidade de razões históricas entre a massa estimada (mestimada) e a massa medida (medida) determinada durante uma pluralidade de períodos de tempo anteriores ao primeiro período de tempo (t1); a lógica de controle (316) compreende lógica de controle estatística executável pelo processador (312) para determinar um valor de desvio padrão de razão com base na pluralidade armazenada de razões históricas entre a massa estimada (mestimada) e a massa medida (medida) determinada durante a pluralidade de períodos de tempo anteriores ao primeiro período de tempo (t1); e a lógica de controle estatística é executável pelo processador (312) para determinar a faixa de razão requerida, em resposta ao determinado valor de desvio padrão de razão.
  7. Colheitadeira de algodão (15) de acordo com a reivindicação 1, caracterizada pelo fato de que: o sensor de colheita (320) compreende uma pluralidade de sensores de fluxo em massa (171’ – 176’) operativamente acoplados com a pluralidade de dutos de ar separados (71-76), em que cada um dos sensores de fluxo em massa (171’ – 176’) é operativo para gerar um sinal de taxa de fluxo em massa de algodão, representativo de uma taxa de fluxo em massa de algodão colhido e escoando através de um respectivo dos dutos de ar separados (71-76); e a lógica de controle (316) é executável pelo processador (312) para normalizar os sinais de taxa de fluxo em massa de algodão gerado pela pluralidade de sensores de fluxo em massa (171’ – 176’) como sinais normalizados de taxa de fluxo em massa de algodão, e para somar os sinais de taxa de fluxo em massa de algodão normalizados como o sinal de produção representativo da taxa de produção do algodão sendo colhido.
  8. Método para determinar a produção de cultivo durante a colheita do cultivo, caracterizado pelo fato de que o método compreende: armazenar dados operacionais (313) em um dispositivo de memória (314) de um sistema de controle de sensoreamento de cultivo (310) compreendendo um processador (312) e o dispositivo de memória (314) operativamente acoplado com o processador (312), os dados operacionais 313 compreendendo dados de colheitadeira representativos de uma característica operacional de uma colheitadeira associada (10) colhendo o cultivo; armazenar dados de fator de calibragem de base (315) no dispositivo de memória 314, os dados de calibragem de base sendo representativos de um fator de calibragem de base (CFbase); armazenar lógica de controle (316) no dispositivo de memória 314, em que a lógica de controle 316 é executável pelo processador 312 para determinar a produção de cultivo; gerar por um sensor de colheita (320) operativamente acoplado com o sistema de controle de sensoreamento de cultivo (310) um sinal de produção representativo de uma taxa de produção do cultivo sendo colhido; gerar por um sensor de cultivo acumulado (330) operativamente acoplado com o sistema de controle de sensoreamento de cultivo (310) um sinal de cultivo de massa representativo de um parâmetro medido do cultivo colhido durante um período de tempo selecionado; e executar a lógica de controle (316) pelo processador (312) para: determinar, em resposta à aplicação do fato de calibragem de base (CFbase) ao sinal de produção, uma massa estimada (mestimada) do cultivo colhido durante um primeiro período de tempo (t1); determinar, em resposta ao sinal de cultivo de massa, uma massa medida (medida) do cultivo colhido durante o primeiro período de tempo (t1); determinar um candidato de fator de calibragem atualizado (CFnew), em resposta a uma razão entre a massa estimada (mestimada) e a massa medida (medida); e determinar a produção de cultivo durante um segundo período de tempo (t2) depois do primeiro período de tempo (t1) por seletivamente aplicar, em resposta aos dados operacionais (313), um entre o fator de calibragem de base (CFbase) ou do candidato de fator de calibragem atualizado (CFnew) ao sinal de produção gerado pelo sensor de colheita (320) durante o segundo período de tempo (t2) representativo da taxa de produção do cultivo colhido durante o segundo período de tempo (t2).
  9. Método de acordo com a reivindicação 8, caracterizado pelo fato de que: gerar o sinal de produção representativo da taxa de produção do cultivo sendo colhido compreende gerar por um dispositivo de realimentação de massa de módulo (112) um sinal de massa de módulo de cultivo de massa, representativo de uma massa medida do cultivo colhido durante o primeiro período de tempo (t1) e empacotado em um módulo de cultivo; executar a lógica de controle (316) pelo processador (312) compreende executar a lógica de controle (316) pelo processador (312) para determinar, em resposta ao sinal de massa de módulo de cultivo de massa, uma massa de módulo de cultivo de massa do cultivo colhido durante o primeiro período de tempo (t1); armazenar os dados de colheitadeira no dispositivo de memória 314 compreende armazenar no dispositivo de memória 314 dados de massa requeridos de pacote, representativos de uma faixa de massa requerida do módulo de cultivo; e executar a lógica de controle (316) pelo processador (312) compreende executar a lógica de gerenciamento de calibragem, pelo processador (312) para determinar a produção de cultivo durante o segundo período de tempo (t2) por: aplicar o candidato de fator de calibragem atualizado (CFnew) ao sinal de produção gerado pelo sensor de colheita (320) durante o segundo período de tempo (t2), em resposta à massa de módulo de cultivo de massa determinada do cultivo colhido durante o primeiro período de tempo (t1) estando dentro da faixa de massa requerida do módulo de cultivo, ou aplicar o fator de calibragem de base (CFbase) ao sinal de produção gerado pelo sensor de colheita (320) durante o segundo período de tempo (t2), em resposta à massa de módulo de cultivo de massa determinada do cultivo colhido durante o primeiro período de tempo (t1) não estando dentro da faixa de massa requerida do módulo de cultivo.
  10. Método de acordo com a reivindicação 8, caracterizado pelo fato de que: gerar o sinal de cultivo de massa compreende gerar por um dispositivo de realimentação de diâmetro de módulo (114) um sinal de diâmetro de módulo de cultivo, representativo de um diâmetro medido de um módulo de cultivo a ser conformado pela colheitadeira associada (10) usando o cultivo colhido durante o primeiro período de tempo (t1) e empacotado no módulo de cultivo; executar a lógica de controle (316) pelo processador (312) compreende executar a lógica de controle (316) pelo processador (312) para determinar, em resposta ao sinal de diâmetro de módulo de cultivo um diâmetro do módulo de cultivo do módulo de cultivo; armazenar os dados de colheitadeira no dispositivo de memória 314 compreende armazenar no dispositivo de memória 314 os dados de diâmetro requerido do pacote de cultivo, representativos de um diâmetro mínimo requerido do módulo de cultivo; e executar a lógica de controle (316) pelo processador (312) compreende executar lógica de gerenciamento de calibragem, pelo processador (312) para determinar a produção de cultivo durante o segundo período de tempo (t2) por: aplicar o candidato de fator de calibragem atualizado (CFnew) ao sinal de produção gerado pelo sensor de colheita (320) durante o segundo período de tempo (t2), em resposta ao determinado diâmetro de módulo sendo maior que o diâmetro mínimo requerido, ou aplicar o fator de calibragem de base (CFbase) ao sinal de produção gerado pelo sensor de colheita (320) durante o segundo período de tempo (t2), em resposta ao determinado diâmetro de módulo sendo menor que o diâmetro mínimo requerido.
  11. Método de acordo com a reivindicação 8, caracterizado pelo fato de que: gerar o sinal de cultivo de massa compreende gerar por um dispositivo de realimentação de nível de acumulador (116) um sinal de nível de acumulador representativo de um nível medido do cultivo colhido durante o primeiro período de tempo (t1) e recebido em um acumulador (105) da colheitadeira associada (15); executar a lógica de controle (316) pelo processador (312) compreende executar a lógica de controle (316) pelo processador (312) para determinar, em resposta ao sinal de nível de acumulador, um nível de enchimento de cultivo do cultivo colhido durante o primeiro período de tempo (t1) e recebido no acumulador (105) da colheitadeira associada (15); armazenar os dados de colheitadeira no dispositivo de memória 314 compreende armazenar no dispositivo de memória 314 acumulador dados de nível de enchimento de cultivo requeridos, representativos de uma altura de pilha mínima requerida do cultivo colhido durante o primeiro período de tempo (t1) e empilhado no acumulador (105) da colheitadeira associada (15); e executar a lógica de controle (316) pelo processador (312) compreende executar lógica de gerenciamento de calibragem pelo processador (312) para determinar a produção de cultivo durante o segundo período de tempo (t2) por: aplicar o candidato de fator de calibragem atualizado (CFnew) ao sinal de produção gerado pelo sensor de colheita (320) durante o segundo período de tempo (t2), em resposta ao nível de enchimento de cultivo determinado do cultivo colhido durante o primeiro período de tempo (t1) e recebido no acumulador (105) da colheitadeira associada (15) sendo maior que a altura de pilha requerida mínima, ou aplicar o fator de calibragem de base (CFbase) ao sinal de produção gerado pelo sensor de colheita (320) durante o segundo período de tempo (t2), em resposta ao nível de enchimento de cultivo determinado do cultivo colhido durante o primeiro período de tempo (t1) e recebido no acumulador (105) da colheitadeira associada (15) sendo menor que a altura de pilha requerida mínima.
  12. Método de acordo com a reivindicação 8, caracterizado pelo fato de que: armazenar os dados operacionais (313) no dispositivo de memória compreende armazenar dados de faixa de razão representativos de uma faixa de razão requerida da razão entre a massa estimada (mestimada) do cultivo colhido durante o primeiro período de tempo (t1) e a massa medida (mmedid) do cultivo colhido durante o primeiro período de tempo (t1); e executar a lógica de controle (316) compreende executar lógica de gerenciamento de calibragem, pelo processador (312) para determinar a produção de cultivo durante o segundo período de tempo (t2) por: aplicar o candidato de fator de calibragem atualizado (CFnew) ao sinal de produção gerado pelo sensor de colheita (320) durante o segundo período de tempo (t2), em resposta à razão entre a massa estimada (mestimada) do cultivo colhido durante o primeiro período de tempo (t1) e a massa medida (mmedid) do cultivo colhido durante o primeiro período de tempo (t1) estando dentro da faixa de razão requerida, ou aplicar o fator de calibragem de base (CFbase) ao sinal de produção gerado pelo sensor de colheita (320) durante o segundo período de tempo (t2), em resposta à razão entre a massa estimada (mestimada) do cultivo colhido durante o primeiro período de tempo (t1) e a massa medida (mmedid) do cultivo colhido durante o primeiro período de tempo (t1) não estando dentro da faixa de razão requerida.
  13. Método de acordo com a reivindicação 8, caracterizado pelo fato de que: armazenar os dados operacionais (313) no dispositivo de memória (314) compreende armazenar uma pluralidade de razões históricas entre a massa estimada (mestimada) e a massa medida (mmedid) determinada durante uma pluralidade de períodos de tempo anteriores ao primeiro período de tempo (t1); armazenar a lógica de controle (316) no dispositivo de memória (314) compreende armazenar lógica de controle estatística executável pelo processador (312) para determinar um valor de desvio padrão de razão com base na pluralidade armazenada de razões históricas entre a massa estimada (mestimada) e a massa medida (mmedid) determinada durante a pluralidade de períodos de tempo anteriores ao primeiro período de tempo (t1); e executar a lógica de controle (316) pelo processador (312) compreende executar a lógica de controle estatística pelo processador (312) para determinar a faixa de razão requerida com base no determinado valor de desvio padrão de razão.
  14. Método de acordo com a reivindicação 8, caracterizado pelo fato de que: gerar o sinal de produção compreende gerar o sinal de produção usando uma pluralidade de sensores de fluxo em massa (171’ – 176’) operativamente acoplada com uma pluralidade de dutos de ar separados 71-76 da colheitadeira associada (10), em que cada um dos sensores de fluxo em massa (171’ – 176’) é operativo para gerar um sinal de taxa de fluxo em massa de algodão representativo de uma taxa de fluxo em massa de algodão colhido e escoando através de um respectivo dos dutos de ar separados (71- 76) da colheitadeira associada (10); e executar a lógica de controle (316) compreende executar a lógica de controle pelo processador (312) para normalizar os sinais de taxa de fluxo em massa de algodão gerados pela pluralidade de sensores de fluxo em massa (171’ – 176’) como sinais normalizados de taxa de fluxo em massa de algodão, e para somar os sinais de taxa de fluxo em massa de algodão normalizados como o sinal de produção representativo da taxa de produção do algodão sendo colhido.
BR102022005260-3A 2021-06-04 2022-03-21 Colheitadeira de algodão, e, método para determinar a produção de cultivo BR102022005260A2 (pt)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US17/338,957 US11744182B2 (en) 2021-06-04 2021-06-04 Crop yield determining apparatus
US17/338,957 2021-06-04

Publications (1)

Publication Number Publication Date
BR102022005260A2 true BR102022005260A2 (pt) 2022-12-20

Family

ID=84241018

Family Applications (1)

Application Number Title Priority Date Filing Date
BR102022005260-3A BR102022005260A2 (pt) 2021-06-04 2022-03-21 Colheitadeira de algodão, e, método para determinar a produção de cultivo

Country Status (4)

Country Link
US (1) US11744182B2 (pt)
CN (1) CN115428647A (pt)
AU (1) AU2022203010A1 (pt)
BR (1) BR102022005260A2 (pt)

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4068223A (en) * 1975-07-10 1978-01-10 Dickey-John Corporation Monitor system for agricultural harvesting apparatus
US4961304A (en) * 1989-10-20 1990-10-09 J. I. Case Company Cotton flow monitoring system for a cotton harvester
US5920018A (en) * 1996-12-11 1999-07-06 The University Of Tennessee Research Corporation Real time volumetric flow sensor
US6809821B2 (en) 2000-03-02 2004-10-26 Mississippi State University Optical-reflectance-based mass-flow sensor
US6820459B2 (en) 2002-09-18 2004-11-23 Deere & Company Automatic mass-flow sensor calibration for a yield monitor
US7257503B1 (en) * 2006-02-07 2007-08-14 Deere & Company Method for recalibrating a material attribute monitor for a mobile vehicle
US8032255B2 (en) * 2008-06-30 2011-10-04 Deere & Company Monitoring of bin level for an agricultural product
ES2675393T3 (es) * 2010-12-22 2018-07-11 Precision Planting Llc Métodos, sistemas y aparatos para monitorizar rendimiento y vehículo
US9127972B2 (en) * 2011-09-28 2015-09-08 The Board Of Trustees Of The University Of Illinois Self-calibrating mass flow sensor system
US9693503B2 (en) * 2013-02-20 2017-07-04 Deere & Company Crop sensing
US9686913B2 (en) * 2013-05-28 2017-06-27 Cnh Industrial America Llc System and method for automatically updating estimated yield values
US9645006B2 (en) * 2014-06-27 2017-05-09 Deere & Company Calibration of grain mass measurement
US9702753B2 (en) 2014-06-27 2017-07-11 Deere & Company Grain mass flow estimation
US9903979B2 (en) 2014-09-23 2018-02-27 Deere & Company Yield estimation
US10477775B2 (en) 2014-09-29 2019-11-19 Deere & Company Baler mass flow sensing assembly and method
US9854744B2 (en) * 2014-12-11 2018-01-02 Cnh Industrial America Llc Adjusting bale density setting based on bale weight and/or moisture
US9681605B2 (en) * 2015-10-26 2017-06-20 Deere & Company Harvester feed rate control
US9894836B2 (en) * 2016-01-14 2018-02-20 Deere & Company Machine operation enhancement
US10408645B2 (en) * 2016-11-01 2019-09-10 Deere & Company Correcting bias in parameter monitoring
US10462971B2 (en) 2017-08-29 2019-11-05 Deere & Company Hydraulic cotton unit drum drive
US11483974B2 (en) 2019-07-19 2022-11-01 Deere & Company Cotton harvesting machine with automatically variable drum and spindle speed
EP4037465A4 (en) * 2019-09-30 2023-11-01 Monsanto Technology LLC PLANT PICKERS AND ASSOCIATED METHODS RELATED TO YIELD DETECTION

Also Published As

Publication number Publication date
CN115428647A (zh) 2022-12-06
US11744182B2 (en) 2023-09-05
AU2022203010A1 (en) 2022-12-22
US20220386531A1 (en) 2022-12-08

Similar Documents

Publication Publication Date Title
US10295703B2 (en) Yield estimation
US11812683B2 (en) Method for operating a harvesting machine with the aid of a plant growth model
US11212962B2 (en) Field condition determination
US10126282B2 (en) Yield estimation
US10188037B2 (en) Yield estimation
US9320196B2 (en) Stripper plate adjustment
US10178828B2 (en) Per plant crop sensing resolution
US9668420B2 (en) Crop sensing display
US20190110394A1 (en) Crop yield and obstruction detection system for a harvesting header
BR102015011138B1 (pt) Aparelho e método de sensoreação de rendimento de cultivo
BR102019016380A2 (pt) sistema de monitoramento de plataforma de colheita.
BR102022005260A2 (pt) Colheitadeira de algodão, e, método para determinar a produção de cultivo

Legal Events

Date Code Title Description
B03A Publication of a patent application or of a certificate of addition of invention [chapter 3.1 patent gazette]