BR102018068380A2 - MICRO-ORGANISM WITH SYNTHETIC METABOLIC TRACKS OPTIMIZED FOR THE PRODUCTION OF L-METHIONIN FROM MULTIPLE SOURCES OF CARBON AND SULFUR - Google Patents

MICRO-ORGANISM WITH SYNTHETIC METABOLIC TRACKS OPTIMIZED FOR THE PRODUCTION OF L-METHIONIN FROM MULTIPLE SOURCES OF CARBON AND SULFUR Download PDF

Info

Publication number
BR102018068380A2
BR102018068380A2 BR102018068380-2A BR102018068380A BR102018068380A2 BR 102018068380 A2 BR102018068380 A2 BR 102018068380A2 BR 102018068380 A BR102018068380 A BR 102018068380A BR 102018068380 A2 BR102018068380 A2 BR 102018068380A2
Authority
BR
Brazil
Prior art keywords
production
metabolic
carbon
expression
gene
Prior art date
Application number
BR102018068380-2A
Other languages
Portuguese (pt)
Inventor
Bernardo De Leão Rosenmann
Adriano Marcelo Morgon
Original Assignee
Natbio Ltda Me
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Natbio Ltda Me filed Critical Natbio Ltda Me
Priority to BR102018068380-2A priority Critical patent/BR102018068380A2/en
Publication of BR102018068380A2 publication Critical patent/BR102018068380A2/en

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

microrganismo com vias metabólicas sintéticas otimizado para a produção de l-metionina a partir de múltiplas fontes de carbono e enxofre a presente invenção descreve um processo fermentativo para a produção de aminoácidos, em específico l-metionina, utilizando cepas bacterianas recombinantes a partir de substrato alternativo, água glicerinada, e fontes reduzidas de enxofre, dimetilsulfoniopropionato. para tal processo foram realizadas modificações genéticas, como inserção e deleção de genes, em microrganismos, preferencialmente, mas não exclusivamente escherichia coli, desenvolvendo diferentes vias metabólicas. com isso, foram obtidas cepas bacterianas super produtoras e excretoras de l-metionina, atingindo uma concentração maior do que com cepas com apenas a deleção do gene metj. por meio dessa tecnologia é possível obter uma produção de l-metionina mais sustentável e viável, de baixo impacto ambiental.microorganism with synthetic metabolic pathways optimized for the production of l-methionine from multiple sources of carbon and sulfur the present invention describes a fermentative process for the production of amino acids, specifically l-methionine, using recombinant bacterial strains from alternative substrate , glycerin water, and reduced sources of sulfur, dimethylsulfoniopropionate. for this process, genetic modifications were carried out, such as insertion and deletion of genes, in microorganisms, preferably, but not exclusively escherichia coli, developing different metabolic pathways. with this, overproductive and excretory bacterial strains of l-methionine were obtained, reaching a higher concentration than with strains with only the deletion of the metj gene. through this technology it is possible to obtain a more sustainable and viable production of l-methionine, with low environmental impact.

Description

MICRORGANISMO COM VIAS METABÓLICAS SINTÉTICAS OTIMIZADO PARA A PRODUÇÃO DE L-METIONINA A PARTIR DE MÚLTIPLAS FONTES DE CARBONO E ENXOFREMICRO-ORGANISM WITH SYNTHETIC METABOLIC TRACKS OPTIMIZED FOR THE PRODUCTION OF L-METHIONIN FROM MULTIPLE SOURCES OF CARBON AND SULFUR

CAMPO DA INVENÇÃO [1] A invenção aqui descrita estabelece um processo biotecnológico para a produção de aminoácidos, em específico a L-metionina, utilizando cepas modificadas preferencialmente, mas não exclusivamente de Escherichia coli, sendo a mesma estratégia aplicada a Corynebacterium glutamicum, Saccharomyces cerevisiae, entre outros. Com a aplicação de técnicas da biologia molecular e engenharia genética foi possível a produção de L-metionina a partir de resíduos de biocombustíveis como fonte de carbono, em conjunto com fontes reduzidas de enxofre. Através desse processo foram obtidas cepas bacterianas super produtoras e excretoras de L-metionina, tornando a produção do aminoácido sustentável e de baixo impacto ambiental.FIELD OF THE INVENTION [1] The invention described here establishes a biotechnological process for the production of amino acids, specifically L-methionine, using strains modified preferentially, but not exclusively from Escherichia coli, the same strategy being applied to Corynebacterium glutamicum, Saccharomyces cerevisiae , among others. With the application of molecular biology and genetic engineering techniques, it was possible to produce L-methionine from biofuel residues as a carbon source, together with reduced sulfur sources. Through this process, super-producing and excretory L-methionine bacterial strains were obtained, making the production of the amino acid sustainable and of low environmental impact.

FUNDAMENTOS DA INVENÇÃO E ESTADO DA TÉCNICA [2] Os processos fermentativos se baseiam na utilização de microrganismos para a produção de diferentes biomoléculas de interesse comercial. Atualmente, esses processos estão sendo realizados em escala industrial para a produção de aminoácidos, vitaminas, nucleotídeos, óleos essenciais, ácidos orgânicos, enzimas, além de alguns biopolímeros.BACKGROUND OF THE INVENTION AND STATUS OF THE TECHNIQUE [2] Fermentative processes are based on the use of microorganisms for the production of different biomolecules of commercial interest. Currently, these processes are being carried out on an industrial scale for the production of amino acids, vitamins, nucleotides, essential oils, organic acids, enzymes, in addition to some biopolymers.

[3] As novas técnicas desenvolvidas para análise do genoma são responsáveis por garantir uma maior compreensão dos microrganismos. Possibilitando o uso da engenharia metabólica para a realização de mutações em genes específicos que atuam na produção do metabólito de interesse (D'Este et al., 2017). A aplicação de ferramentas da engenharia genética evita a realização de mutações clássicas, aleatórias, que podem levar a uma alteração indesejada no genoma microbiano (Kumar e Gomes, 2005).[3] The new techniques developed for genome analysis are responsible for ensuring a greater understanding of microorganisms. Enabling the use of metabolic engineering to carry out mutations in specific genes that act in the production of the metabolite of interest (D'Este et al., 2017). The application of genetic engineering tools avoids the realization of classic, random mutations, which can lead to an unwanted alteration in the microbial genome (Kumar and Gomes, 2005).

[4] Utilizando as informações genômicas dos microrganismos e as ferramentas da engenharia genética é possível aumentar a expressão de um determinado gene. Para isso diferentes técnicas podem ser usadas: o aumento de cópias do gene no cromossomo; um maior número de cópias do vetor; modificação na região promotora; aplicação de um promotor que possa ser induzido proporcionando um[4] Using the genomic information of microorganisms and the tools of genetic engineering it is possible to increase the expression of a given gene. For that different techniques can be used: the increase of copies of the gene in the chromosome; a greater number of copies of the vector; modification in the promoter region; application of a promoter that can be induced by providing a

Petição 870180128975, de 11/09/2018, pág. 13/52Petition 870180128975, of 9/11/2018, p. 13/52

I 35 aumento no nível de expressão do gene, seja atenuando ou reprimindo a transcrição de repressores (Makrides, 1996).I 35 increase in the level of gene expression, either by attenuating or repressing the transcription of repressors (Makrides, 1996).

[5] A metionina é um aminoácido essencial, sendo necessária na alimentação humana e animal. Esse aminoácido pode ser encontrado em duas formas, L- e Dmetionina, sendo predominante na natureza na forma L- (Kumar e Gomes, 2005; Willke, 2014; Shim et al., 2016). A metionina tem diversas aplicações industriais, como na indústria de aditivos alimentares, farmacêutica e cosmética (Shim et al., 2016). Em 2013, foram produzidas mais de 600 000 toneladas de metionina só para alimentação animal (Willke, 2014).[5] Methionine is an essential amino acid and is necessary in human and animal nutrition. This amino acid can be found in two forms, L- and Dmethionine, being predominantly in nature in the L- form (Kumar and Gomes, 2005; Willke, 2014; Shim et al., 2016). Methionine has several industrial applications, such as in the food additive, pharmaceutical and cosmetic industry (Shim et al., 2016). In 2013, more than 600,000 tons of methionine were produced for animal feed alone (Willke, 2014).

[6] A metionina pode ser obtida por diferentes processos entre eles o processo químico, gerando uma mistura racêmica dos seus isômero; e o processo fermentativo, produzindo a L-metionina (Kumar e Gomes, 2005; Willke, 2014; Shim et al., 2016; D'Este et al., 2017). A produção desse aminoácido por via química é cada vez mais indesejável, uma vez que compostos químicos perigosos, como acroleína, amônia e cianeto, estão envolvidos no processo. Portanto, alternativas mais sustentáveis e menos agressivas ao meio ambiente estão sendo desenvolvidas, entre elas a produção de metionina por meio de processos biotecnológicos (Kumar e Gomes, 2005; Willke, 2014).[6] Methionine can be obtained by different processes, including the chemical process, generating a racemic mixture of its isomers; and the fermentative process, producing L-methionine (Kumar and Gomes, 2005; Willke, 2014; Shim et al., 2016; D'Este et al., 2017). The production of this amino acid chemically is increasingly undesirable, since dangerous chemical compounds, such as acrolein, ammonia and cyanide, are involved in the process. Therefore, more sustainable and less aggressive alternatives to the environment are being developed, including the production of methionine through biotechnological processes (Kumar and Gomes, 2005; Willke, 2014).

[7] Os microrganismos mais utilizados atualmente para a produção industrial de aminoácido por processos fermentativos são as bactérias Escherichia coli e Corynebacterium glutamicum. Devido ao estudo da engenharia metabólica e a aplicação de suas ferramentas esses microrganismos são capazes de produzir diversos aminoácidos com bons rendimentos (Shim et al., 2016; D'Este et al., 2017). Por apresentarem vias metabólicas bem descritas, essas bactérias são engenheiradas para a produção de metionina (WO2007012078 A1; WO2007011939 A2; US20080311632; WO2009043372; WO2017118871 A1; EP 3296404 A1; Ferla e Patrick, 2014; Shim et al., 2016).[7] The microorganisms most used today for the industrial production of amino acids by fermentative processes are the bacteria Escherichia coli and Corynebacterium glutamicum. Due to the study of metabolic engineering and the application of its tools, these microorganisms are capable of producing several amino acids with good yields (Shim et al., 2016; D'Este et al., 2017). Because they have well-described metabolic pathways, these bacteria are engineered to produce methionine (WO2007012078 A1; WO2007011939 A2; US20080311632; WO2009043372; WO2017118871 A1; EP 3296404 A1; Ferla and Patrick, 2014; Shim et al., 2016).

[8] A biossíntese da metionina a partir da homoserina é realizada em três etapas (acilação, sulfurilação e metilação), sendo elas alvo de estudo para garantir uma boa produção da metionina. Contudo, devido a uma maior informação genética dos microrganismos, novas estratégias para a produção de metionina estão sendo desenvolvidas baseadas em enzimas e intermediários alternativos a via descrita. Algumas bactérias marinhas são capazes de utilizar metanotiol para sintetizar[8] Methionine biosynthesis from homoserine is carried out in three stages (acylation, sulfurylation and methylation), which are the target of study to ensure a good production of methionine. However, due to greater genetic information of microorganisms, new strategies for the production of methionine are being developed based on enzymes and intermediates alternative to the described route. Some marine bacteria are able to use methanethiol to synthesize

Petição 870180128975, de 11/09/2018, pág. 14/52Petition 870180128975, of 9/11/2018, p. 14/52

I 35 metionina por um processo de só uma etapa partindo da O-acetilhomoserina (Kumar e Gomes 2005; Ferla e Patrick, 2014; Willke, 2014).I 35 methionine by a one-step process starting from O-acetylcheroserine (Kumar and Gomes 2005; Ferla and Patrick, 2014; Willke, 2014).

[9] O principal problema relacionado com a produção de metionina é a inibição por feedback, além da fonte de enxofre a ser utilizada. O processo de redução da fonte de enxofre demanda uma grande quantidade de energia do microrganismos, portanto, fontes mais reduzidas de enxofre estão sendo estudadas. Dentre elas estão o tiossulfato, metanotiol e dimetil dissulfeto (DMDS) (Kumar e Gomes, 2005; Bolten et al., 2010; Ferla e Patrick, 2014; Willke, 2014; WO2007011939 A2).[9] The main problem related to methionine production is feedback inhibition, in addition to the sulfur source to be used. The process of reducing the sulfur source demands a large amount of energy from the microorganisms, therefore, more reduced sources of sulfur are being studied. Among them are thiosulfate, methanethiol and dimethyl disulfide (DMDS) (Kumar and Gomes, 2005; Bolten et al., 2010; Ferla and Patrick, 2014; Willke, 2014; WO2007011939 A2).

[10] Ao ser empregado, o metanotiol apresenta um bom rendimento de metionina, porém, é um gás tóxico e explosivo, fazendo com que novas estratégias sejam geradas para sua substituição no processo de produção de metionina. O composto dimetil dissulfeto apresenta um aroma desagradável, semelhante a repolho podre, sendo tóxico por natureza devido a presença de enxofre. Esse composto é responsável por doar enxofre e o radical metil incorporados durante a produção de L-metionina. Estudos realizados com o dimetil dissulfeto como fonte de enxofre utilizando microrganismos geneticamente modificados, como E.coli e Corynebacterium glutamicum, apresentaram maiores rendimentos na produção de metionina, confirmando a vantagem na produção da utilização de fontes de enxofre mais reduzidas (Kim et al., 2006; Bolten et al., 2010; WO2007011939 A2; Liang et al., 2015; Curson etal., 2017).[10] When used, methanethiol presents a good yield of methionine, however, it is a toxic and explosive gas, causing new strategies to be generated for its replacement in the methionine production process. The dimethyl disulfide compound has an unpleasant aroma, similar to rotten cabbage, being toxic in nature due to the presence of sulfur. This compound is responsible for donating sulfur and the methyl radical incorporated during the production of L-methionine. Studies carried out with dimethyl disulfide as a sulfur source using genetically modified microorganisms, such as E.coli and Corynebacterium glutamicum, showed higher yields in the production of methionine, confirming the advantage in the production of the use of reduced sulfur sources (Kim et al., 2006; Bolten et al., 2010; WO2007011939 A2; Liang et al., 2015; Curson etal., 2017).

[11] A presente patente aborda o uso flexível de fontes de enxofre reduzida, dentre elas o DMDS e o dimetilsulfoniopropionato (DMSP). A assimilação do DMSP foi possível empregando uma via biossintética de L-metionina em E. coli e/ou C. glutamicum baseada em genes de microrganismos marinhos capazes de degradar o DMSP em metanotiol, sendo esse composto usado para a produção direta de metionina. O DMSP é um composto sulfônico terciário produzido por algumas espécies de plantas e algas marinhas, sendo responsável por promover o controle osmótico (Kiene et al., 1999; Yoch, 2002).[11] This patent addresses the flexible use of reduced sulfur sources, including DMDS and dimethylsulfoniopropionate (DMSP). The assimilation of DMSP was possible using a biosynthetic pathway of L-methionine in E. coli and / or C. glutamicum based on genes from marine microorganisms capable of degrading DMSP in methanethiol, this compound being used for the direct production of methionine. DMSP is a tertiary sulfonic compound produced by some species of plants and marine algae, being responsible for promoting osmotic control (Kiene et al., 1999; Yoch, 2002).

[12] Algumas espécies de bactérias marinhas, como Ruegeria pomeroyi, foram descritas capazes de degradar o DMSP por meio de duas rotas metabólicas diferentes. A primeira via é chamada de clivagem, em que são obtidos como subprodutos os compostos: acrilato e DMS, e na segunda via, denominada de via de demetilação, subprodutos como acetato e metanotiol são gerados. Sendo o metanotiol capaz de ser utilizado pela mesma bactéria para a produção de L[12] Some species of marine bacteria, such as Ruegeria pomeroyi, have been described as capable of degrading DMSP through two different metabolic pathways. The first route is called cleavage, in which the compounds: acrylate and DMS are obtained as by-products, and in the second route, called the demethylation route, by-products such as acetate and methanethiol are generated. Since methanethiol is capable of being used by the same bacteria for the production of L

Petição 870180128975, de 11/09/2018, pág. 15/52Petition 870180128975, of 9/11/2018, p. 15/52

I 35 metionina (Reisch et al., 2011). Portanto, a presente invenção utiliza o DMSP como uma fonte de enxofre reduzida que não é tóxica a saúde humana, além de estar disponível naturalmente no meio ambiente, não sendo nocivo para o mesmo.I 35 methionine (Reisch et al., 2011). Therefore, the present invention uses DMSP as a source of reduced sulfur that is non-toxic to human health, in addition to being naturally available in the environment and not harmful to it.

[13] A via de demetilação se inicia com a conversão do DMSP em 5-metiltetrahidrofolato (THF) e metilmercaptopropionato (MMPA) por meio da enzima DMSP demetilase (DmdA). A enzima MMPA-CoA ligase (DmdB) atua na substância MMPA gerando como produto a MMPA-coenzima A (MMPA-CoA). O MMPA-CoA é convertido em metiltioacriloil-coenzima A (MTA-CoA) pela ação da enzima MMPACoA desidrogenase (DmdC). Por fim, ocorre a formação do metanotiol e acetaldeído a partir da conversão do MTA-CoA pela enzima metiltioacriloil-CoA hidratase (DmdD) (Reisch et al., 2011). Por mais que essa via produza o metanotiol, gás tóxico, o mesmo é utilizado em seguida pelos microrganismos para a produção de moléculas não perigosas.[13] The demethylation pathway begins with the conversion of DMSP to 5-methyltetrahydrofolate (THF) and methylmercaptopropionate (MMPA) using the enzyme DMSP demethylase (DmdA). The enzyme MMPA-CoA ligase (DmdB) acts on the substance MMPA, generating as product MMPA-coenzyme A (MMPA-CoA). MMPA-CoA is converted to methylthioacryloyl-coenzyme A (MTA-CoA) by the action of the enzyme MMPACoA dehydrogenase (DmdC). Finally, the formation of methanethiol and acetaldehyde occurs from the conversion of MTA-CoA by the enzyme methylthioacryloyl-CoA hydratase (DmdD) (Reisch et al., 2011). As much as this pathway produces methanethiol, a toxic gas, it is then used by microorganisms for the production of non-hazardous molecules.

[14] A presente invenção tem uma vertente sustentável que é a utilização de água glicerinada, um resíduo industrial obtido a partir da produção de biodiesel, como um substrato alternativo. O componente mais importante desse resíduo é o glicerol que vai ser utilizado como fonte de carbono no processo fermentativo. Como relatado, a produção de aminoácidos, em especial a L-metionina, requer uma grande quantidade de energia e uso do glicerol como substrato consegue balancear esse custo, uma vez que o glicerol tem um alto valor energético, garantindo assim um processo produtivo mais rentável (Kaleta et al., 2013).[14] The present invention has a sustainable aspect which is the use of glycerinated water, an industrial residue obtained from the production of biodiesel, as an alternative substrate. The most important component of this residue is the glycerol that will be used as a carbon source in the fermentation process. As reported, the production of amino acids, especially L-methionine, requires a large amount of energy and the use of glycerol as a substrate can balance this cost, since glycerol has a high energy value, thus ensuring a more profitable production process. (Kaleta et al., 2013).

[15] O glicerol, também conhecido por glicerina, corresponde ao subproduto de maior quantidade obtido no processo de produção de biodiesel, mais especificamente na transesterificação dos triglicerídeos. Sendo que 10% de todo o biodiesel gerado é correspondente a quantidade produzida de glicerol bruto. Por ser um subproduto industrial, o glicerol bruto tem a sua composição variada dependendo do método e do substrato utilizado para a produção do biodiesel (Yang etal., 2012; Ondul e Dizge, 2014; Binhayeeding etal., 2017).[15] Glycerol, also known as glycerin, corresponds to the largest by-product obtained in the biodiesel production process, more specifically in the transesterification of triglycerides. 10% of all biodiesel generated corresponds to the amount of crude glycerol produced. As an industrial by-product, crude glycerol has its composition varied depending on the method and substrate used for the production of biodiesel (Yang etal., 2012; Ondul and Dizge, 2014; Binhayeeding etal., 2017).

[16] Devido ao alto preço de purificação do glicerol bruto para aplicação na indústria farmacêutica e alimentícia, os produtores de biodiesel estão buscando alternativas para o descarte eIou o reaproveitamento desse subproduto. Com isso, o uso do glicerol bruto pode viabilizar a produção de biodiesel, agregando mais valor ao subproduto e diminuindo os custos de produção (Yang et al., 2012; Binhayeeding etal., 2017).[16] Due to the high price of purification of crude glycerol for application in the pharmaceutical and food industry, biodiesel producers are looking for alternatives for disposal and reuse of this by-product. As a result, the use of crude glycerol can make biodiesel production feasible, adding more value to the by-product and decreasing production costs (Yang et al., 2012; Binhayeeding etal., 2017).

Petição 870180128975, de 11/09/2018, pág. 16/52Petition 870180128975, of 9/11/2018, p. 16/52

I 35 [17] Uma estratégia a ser utilizada para agregar valor ao glicerol bruto é a biotransformação desse subproduto industrial em diversas biomoléculas que apresentam valor agregado. Por ser produzido em grande quantidade, o glicerol é um substrato barato sendo competitivo com açúcares para a realização de processos fermentativos (Silva et al., 2009; Yang et al., 2012). Na literatura estão descritos diversos microrganismos capazes de utilizar o glicerol como fonte de carbono para a produção de diferentes biomoléculas como etanol, ácidos orgânicos, hidrogênio, propionato, dentre outros (Silva et al., 2009; Yang et al., 2012; Ondul e Dizge, 2014).I 35 [17] A strategy to be used to add value to crude glycerol is the biotransformation of this industrial by-product into several biomolecules that have added value. Because it is produced in large quantities, glycerol is an inexpensive substrate and is competitive with sugars for fermentation processes (Silva et al., 2009; Yang et al., 2012). Several microorganisms capable of using glycerol as a carbon source for the production of different biomolecules such as ethanol, organic acids, hydrogen, propionate, among others are described in the literature (Silva et al., 2009; Yang et al., 2012; Ondul and Dizge, 2014).

[18] Ainda, do ponto de vista industrial, é importante que estirpes utilizadas para a produção de biomoléculas sejam capazes de metabolizar diferentes fontes de carbono. Sendo assim, estirpes de E. coli são mais vantajosas em relação a estirpes de C. glutamicum ou S. cerevisiae, por exemplo, por naturalmente serem capazes de metabolizar arabinose, xilose, e outras moléculas como fontes de carbono, além de glucose e glicerol.[18] Still, from an industrial point of view, it is important that strains used for the production of biomolecules are able to metabolize different sources of carbon. Thus, strains of E. coli are more advantageous than strains of C. glutamicum or S. cerevisiae, for example, because they are naturally capable of metabolizing arabinose, xylose, and other molecules as carbon sources, in addition to glucose and glycerol .

[19] Além disso, a presente invenção descreve o uso de um microrganismo capaz de metabolizar outras fontes de carbono além de glucose e glicerol. Estas fontes de carbono alternativas, como xilose e arabinose, por exemplo, são provenientes de resíduos da indústria de produção de etanol a partir de milho ou cana-de-açúcar. Principalmente estirpes de E. coli são capazes de metabolizar estes açúcares e utilizá-los como fontes de carbono, no entanto, a presente invenção descreve um processo o qual a estirpe utilizada é capaz de metabolizar diversas fontes de carbono, incluindo os açúcares previamente mencionados, de maneira simultânea, de modo que as fontes de carbono disponíveis no meio de cultivo podem se encontrar na forma pura, ou em uma mistura de substratos.[19] In addition, the present invention describes the use of a microorganism capable of metabolizing other carbon sources besides glucose and glycerol. These alternative carbon sources, such as xylose and arabinose, for example, come from residues from the ethanol production industry from corn or sugarcane. Mainly E. coli strains are able to metabolize these sugars and use them as carbon sources, however, the present invention describes a process in which the strain used is able to metabolize several sources of carbon, including the sugars previously mentioned, simultaneously, so that the carbon sources available in the culture medium can be found in pure form, or in a mixture of substrates.

[20] A possibilidade de um microrganismo utilizar diferentes fontes de carbono é uma vantagem principalmente quando são utilizados resíduos industriais, os quais compreendem uma mistura de componentes, e não apenas a fonte de carbono em sua forma pura. No entanto, independente do microrganismo utilizado, modificações genéticas são necessárias para que este seja capaz de metabolizar diferentes fontes de carbono simultaneamente (Aidelberg et al., 2014, Desai e Rao, 2009).[20] The possibility of a microorganism using different carbon sources is an advantage mainly when industrial waste is used, which comprises a mixture of components, and not just the carbon source in its pure form. However, regardless of the microorganism used, genetic modifications are necessary for it to be able to metabolize different carbon sources simultaneously (Aidelberg et al., 2014, Desai and Rao, 2009).

[21] Como descrito na literatura, a bactéria E. coli apresenta um sistema ABC de absorção do aminoácido metionina que é expresso por determinados genes: metN, metI e metQ (Kadner, 1977; Merlin et al., 2002; Zhang et al., 2003). Porém, o[21] As described in the literature, the E. coli bacterium has an ABC system for the absorption of the amino acid methionine which is expressed by certain genes: metN, metI and metQ (Kadner, 1977; Merlin et al., 2002; Zhang et al. , 2003). However, the

Petição 870180128975, de 11/09/2018, pág. 17/52Petition 870180128975, of 9/11/2018, p. 17/52

I 35 sistema citado não é capaz de operar no sentido de efluxo da metionina, sendo ela apenas absorvida pelo sistema ABC. Ao modificar geneticamente um microrganismo para a produção de uma biomolécula, como aminoácidos, é necessário considerar o sistema de efluxo a ser utilizado para a excreção da molécula garantindo uma maior eficiência.The mentioned system is not capable of operating in the direction of efflux of methionine, it is only absorbed by the ABC system. When genetically modifying a microorganism to produce a biomolecule, such as amino acids, it is necessary to consider the efflux system to be used for the excretion of the molecule, ensuring greater efficiency.

[22] Portanto na presente invenção, considerando o caso do sistema ABC, novos transportadores de efluxo da metionina foram estudados e aplicados, buscando um maior rendimento de excreção da L-metionina em microrganismos como E. coli. Além do sistema de efluxo a ser considerado, o consumo interno de metionina pelo próprio microrganismo pode resultar na diminuição da quantidade de metionina a ser secretada para o meio de cultura. Uma das estratégias aplicadas visando solucionar este problema foi a atenuação do gene metK por meio do desenvolvimento de uma válvula metabólica que promove a redução da expressão desse gene a partir de um determinado momento no processo fermentativo, para que a metionina produzida não seja consumida pelo próprio microrganismo, podendo ser transportada para fora da célula com maior eficiência.[22] Therefore, in the present invention, considering the case of the ABC system, new methionine efflux transporters have been studied and applied, seeking a higher excretion yield of L-methionine in microorganisms such as E. coli. In addition to the efflux system to be considered, the internal consumption of methionine by the microorganism itself can result in a decrease in the amount of methionine to be secreted into the culture medium. One of the strategies applied in order to solve this problem was the attenuation of the metK gene through the development of a metabolic valve that promotes the reduction of the expression of this gene from a certain moment in the fermentation process, so that the methionine produced is not consumed by itself microorganism and can be transported out of the cell with greater efficiency.

[23] A bactéria Corynebacterium glutamicum, apresenta um transportador de efluxo para diferentes aminoácidos como metionina, L-valina, L- leucina, entre outros. Esse transportador é denominado BrnFE, sendo expresso pelo operon brnFE (Trotschel et al., 2005; Lange et al., 2012). Segundo Qin e colaboradores (2015), ao superexpressar o transportador BrnFE foi observada uma maior excreção de L-metionina produzida por C. glutamicum, sendo obtida em 64 horas de fermentação uma concentração de 6,3 g/L.[23] The bacterium Corynebacterium glutamicum, presents an efflux transporter for different amino acids such as methionine, L-valine, L-leucine, among others. This transporter is called BrnFE, being expressed by the brnFE operon (Trotschel et al., 2005; Lange et al., 2012). According to Qin et al. (2015), when overexpressing the BrnFE transporter, a greater excretion of L-methionine produced by C. glutamicum was observed, with a concentration of 6.3 g / L obtained in 64 hours of fermentation.

[24] Segundo relato na literatura a E. coli apresenta um sistema de efluxo homólogo ao transportador BrnFE, sendo expresso pelos genes ygaZH, portanto, denominado de transportador YgaZH (Park et al., 2007). Park e colaboradores (2007) descreveram o transportador YgaZH como específico para a excreção da Lvalina, porém, novas pesquisas, em E. coli, indicam o uso do mesmo transportador para melhorar a excreção de L-metionina. O pedido de patente europeia EP No. 3189150 relata o uso de cepas recombinantes que apresentam os genes homólogos de ygaZ e ygaH de E. coli, sendo esses genes superexpressos para garantir uma maior excreção da metionina.[24] According to a report in the literature, E. coli presents an efflux system homologous to the BrnFE transporter, being expressed by the ygaZH genes, therefore, called the YgaZH transporter (Park et al., 2007). Park et al. (2007) described the YgaZH transporter as specific for the excretion of Lvalina, however, new research in E. coli indicates the use of the same transporter to improve the excretion of L-methionine. European patent application EP No. 3189150 reports the use of recombinant strains that have the E. coli ygaZ and ygaH homologous genes, these genes being overexpressed to ensure greater methionine excretion.

[25] Estudos recentes caracterizaram um novo sistema de transporte de aminoácidos para fora da célula na bactéria E. coli, sendo denominado yjeH.[25] Recent studies have characterized a new system of transporting amino acids out of the cell in the bacterium E. coli, being called yjeH.

Petição 870180128975, de 11/09/2018, pág. 18/52Petition 870180128975, of 9/11/2018, p. 18/52

I 35I 35

Experimentos de superexpressão do transportador realizados na cepa mutante deCarrier overexpression experiments carried out on the mutant strain of

E.coli, que apresenta a deleção do gene metJ, mostraram um aumento na excreção de metionina quando realizados em frascos agitados (Liu et al., 2015). A utilização do gene yjeH já está reivindicada no pedido de patente dos Estados Unidos US No. 20090298135 para algumas aplicações. Segundo os autores do mesmo uma produção de até 4,8 g/L de L-metionina foi obtida quando realizada em fermentadores de 2 L, com alta aeração e densidade celular, sendo empregada a glicose como fonte de carbono.E.coli, who has the deletion of the metJ gene, showed an increase in methionine excretion when performed in shaken flasks (Liu et al., 2015). The use of the yjeH gene is already claimed in United States patent application US No. 20090298135 for some applications. According to the authors, a production of up to 4.8 g / L of L-methionine was obtained when carried out in 2 L fermenters, with high aeration and cell density, using glucose as a carbon source.

[26] O pedido de patente canadense CN No. 105886449 relata uma produção de L-metionina utilizando E. coli recombinante em frascos agitados de até 4,083 g/L e em fermentador, com 3 L de volume de trabalho, uma produção de até 9,752 g/L. Para isso, os genes metJ, metI, lysA e/ou thrB foram deletados. E os genes metA* e yjeH foram inseridos na cepa bacteriana.[26] Canadian patent application CN No. 105886449 reports a production of L-methionine using recombinant E. coli in shaken flasks of up to 4,083 g / L and in fermenter, with 3 L of working volume, a production of up to 9,752 g / L. For this, the genes metJ, metI, lysA and / or thrB were deleted. And the metA * and yjeH genes were inserted into the bacterial strain.

[27] Os pedidos WO No. 20070777041, 2007012078, 2009043803 e as patentes concedidas US No. 7790424B2 e US9034611B2 relatam o uso de modificações genéticas em microrganismos para um melhor rendimento na produção de Lmetionina, porém, não descrevem a aplicação de transportadores específicos para isso, como relatado na presente invenção. Além disso, os pedidos e patentes mencionados acima, de empresas como Metabolic Explorer e BASF, relatam o uso de fontes de carbono puras e de origem vegetal para a realização do processo fermentativo, como exemplo a glicose, dextrose, entre outros.[27] WO applications 20070777041, 2007012078, 2009043803 and US patents No. 7790424B2 and US9034611B2 report the use of genetic modifications in microorganisms for better yield in the production of Lmethionine, however, they do not describe the application of specific carriers for this, as reported in the present invention. In addition, the applications and patents mentioned above, from companies such as Metabolic Explorer and BASF, report the use of pure and plant-based carbon sources for the fermentation process, such as glucose, dextrose, among others.

[28] Por utilizar o resíduo industrial proveniente da produção de biodiesel, a água glicerinada, em diferentes concentrações, além de uma possível adição de uma fonte de carbono vegetal para acelerar a produção no início do processo, a invenção aqui descrita se diferencia das demais citadas. Além disso, com as modificações genéticas descritas na presente invenção, os microrganismos se tornaram capazes de consumir diferentes fontes de carbono ao mesmo tempo, sem que uma via seja inibida por outro substrato, sendo assim, os microrganismos modificados são multi feedstock, capazes de metabolizar simultaneamente principalmente glucose, glicerol, arabinose, xilose, além de outras moléculas, como fontes de carbono.[28] By using industrial waste from the production of biodiesel, glycerinated water, in different concentrations, in addition to a possible addition of a vegetable carbon source to accelerate production at the beginning of the process, the invention described here differs from the others cited. In addition, with the genetic modifications described in the present invention, microorganisms became able to consume different sources of carbon at the same time, without a pathway being inhibited by another substrate, thus, the modified microorganisms are multi feedstock, capable of metabolizing simultaneously mainly glucose, glycerol, arabinose, xylose, in addition to other molecules, as carbon sources.

[29] A empresa Metabolic Explorer é detentora de diversos pedidos e patentes concedidas a respeito da produção de metionina por meio de processos fermentativos utilizando microrganismos com modificações genéticas, sendo em sua maioria utilizado como fonte de carbono a glicose ou sacarose (WO2009043803,[29] The company Metabolic Explorer holds several applications and patents granted regarding the production of methionine through fermentative processes using microorganisms with genetic modifications, most of which are used as a carbon source, glucose or sucrose (WO2009043803,

Petição 870180128975, de 11/09/2018, pág. 19/52Petition 870180128975, of 9/11/2018, p. 19/52

I 35I 35

US9034611B2, WO2007077041). Os microrganismos utilizados são preferencialmente E.coli e C. glutamicum, sendo as modificações realizadas as seguintes: aumento da expressão de genes como cysA cysU, cysT, cysM, cysL, cysC, cysE, cysl, cysJ, cysM, cysK, metE, metH, glyA, gvcTHP e metR; a deleção dos genes metA e metJ e a inserção do gene metA com modificação na resposta de feedback; alteração dos genes pykA, pykF, lpd, serA, serB, serC, glyA, pntA, pntB, udhA, metF, thrA, thrA com alteração de feedback, purU e yncA; utilização de promotores indutivos. Essas alterações podem ser vistas nos pedidos de patente WO No. 2007077041 e 2009043803 e na patente US No. 9034611B2.US9034611B2, WO2007077041). The microorganisms used are preferably E.coli and C. glutamicum, with the following changes being made: increased expression of genes such as cysA cysU, cysT, cysM, cysL, cysC, cysE, cysl, cysJ, cysM, cysK, metE, metH , glyA, gvcTHP and metR; the deletion of the metA and metJ genes and the insertion of the metA gene with modification in the feedback response; alteration of pykA, pykF, lpd, serA, serB, serC, glyA, pntA, pntB, udhA, metF, thrA, thrA genes with alteration of feedback, purU and yncA; use of inductive promoters. These changes can be seen in patent applications WO No. 2007077041 and 2009043803 and in US patent No. 9034611B2.

[30] O pedido de patente WO No. 2007012078 realizado pela empresa BASF cita a modificação dos genes metQ, metK e pepcK e a reinserção dos mesmos no microrganismo. Além da alteração nos genes metX, metY, metB, metH, metF, metE, zwf, asK, horn, frpA, pyc, asd, cysE, cysK, cysM, cysZ, cysC, cysG, cysN, cysD e cysH. Com isso uma produção de até 25 g/L de L-metionina foi obtida em 72 horas de fermentação. Já a empresa Evonik, detêm um pedido de patente WO No. 2002010209 em que a produção de L-metionina foi otimizada a partir das modificações nos genes metH, lysC, pgk, pyc, metA, metB, glyA, aecD, metY, thrB, thrC, ddh, visando o uso da glicose como fonte de carbono.[30] Patent application WO No. 2007012078 filed by BASF cites the modification of the metQ, metK and pepcK genes and the reinsertion of them in the microorganism. In addition to the change in the genes metX, metY, metB, metH, metF, metE, zwf, asK, horn, frpA, pyc, asd, cysE, cysK, cysM, cysZ, cysC, cysG, cysN, cysD and cysH. Thus, a production of up to 25 g / L of L-methionine was obtained in 72 hours of fermentation. The company Evonik, have a patent application WO No. 2002010209 in which the production of L-methionine has been optimized from the modifications in the genes metH, lysC, pgk, pyc, metA, metB, glyA, aecD, metY, thrB, thrC, ddh, aiming at the use of glucose as a carbon source.

[31] Na literatura é possível encontrar processos que utilizam glicerol como substrato para a produção de aminoácidos, entre eles a L-metionina. O pedido de patente WO No. 2008002053 descreve a utilização de E. coli com os genes galR e/ou glpR inativados para uma melhor produção de treonina e metionina partindo do glicerol como substrato. A presente invenção se diferencia do processo citado acima devido a diferentes alterações genéticas realizadas na E.coli, além disso o processo fermentativo proposto nessa invenção opta pela estratégia de batelada alimentada, sendo o meio de cultivo utilizado similar para o crescimento e produção da Lmetionina, e por método de purificação do aminoácido diferenciado.[31] In the literature, it is possible to find processes that use glycerol as a substrate for the production of amino acids, including L-methionine. Patent application WO No. 2008002053 describes the use of E. coli with the inactivated galR and / or glpR genes for better production of threonine and methionine starting from glycerol as a substrate. The present invention differs from the process mentioned above due to different genetic changes carried out in E.coli. In addition, the fermentation process proposed in that invention opts for the fed batch strategy, the culture medium used being similar for the growth and production of Lmetionine, and by differentiated amino acid purification method.

[32] O pedido de patente WO No. 2017118871 relata a produção de L-metionina a partir de processo fermentativo e a recuperação do aminoácido por meio de clarificação, adição de solventes para a precipitação e posterior separação do precipitado. A invenção aqui descrita se diferencia do processo citado acima por utilizar um outro método de purificação da L-metionina, envolvendo o uso de uma resina de troca iônica.[32] Patent application WO No. 2017118871 reports the production of L-methionine from the fermentation process and the recovery of the amino acid through clarification, addition of solvents for precipitation and subsequent separation of the precipitate. The invention described here differs from the process mentioned above by using another method of purifying L-methionine, involving the use of an ion exchange resin.

Petição 870180128975, de 11/09/2018, pág. 20/52Petition 870180128975, of 9/11/2018, p. 20/52

I 35 [33] Bactérias dos gêneros Escherichia e Pantoea foram utilizadas para a produção de aminoácidos tendo o glicerol presente no meio de cultivo na patente US No. 7811798B2. Para conseguir tal fato os microrganismos sofreram alterações nas enzimas glicerol kinase e glicerol 3-fosfato desidrogenase, com isso, foram produzidos L-fenilalanina, L-tirosina e L-triptofano, sendo a L-metionina citada. A presente invenção é diferente da patente citada por produzir o aminoácido Lmetionina utilizando uma bactéria com diferentes modificações genéticas conforme descrito detalhadamente no tópico Descrição da Invenção.I 35 [33] Bacteria of the genera Escherichia and Pantoea were used for the production of amino acids with glycerol present in the culture medium in US patent No. 7811798B2. In order to achieve this, the microorganisms underwent changes in the enzymes glycerol kinase and glycerol 3-phosphate dehydrogenase, with which L-phenylalanine, L-tyrosine and L-tryptophan were produced, with L-methionine being mentioned. The present invention is different from the patent cited for producing the amino acid Lmethionine using a bacterium with different genetic modifications as described in detail in the topic Description of the Invention.

[34] O pedido de patente WO No. 2007011939 e a patente norte americana US No. 9024063B2 descrevem o uso de fontes alternativas de enxofre como dimetil dissulfeto (DMDS), metanetiol e dimetilsulfureto (DMS) para a produção de metionina. No caso do pedido WO No. 2007011939, o DMDS foi utilizado como doador do radical metil e do enxofre para a molécula de metionina quando produzida em C. glutamicum. O DMDS juntamente com as alterações nos microrganismos nos genes metF, metE e metH, possibilitaram uma maior produção de metionina. A patente US No. 9024063B2 relata o uso de metanetiol e/ou DMS associado a precursores de L-metionina como O-acetilhomoserina e Osuccinilhomoserina para a produção desse aminoácido por meio de processo enzimático. Portanto, não está relatado na literatura o uso de DMSP ou seus derivados como fonte de enxofre e radical metil em um processo fermentativo utilizando cepas geneticamente modificadas, como descrito na presente invenção, de bactérias como E. coli e C. glutamicum.[34] Patent application WO No. 2007011939 and US patent No. 9024063B2 describe the use of alternative sources of sulfur such as dimethyl disulfide (DMDS), metanetiol and dimethyl sulfide (DMS) for the production of methionine. In the case of WO No. 2007011939, DMDS was used as a donor of the methyl radical and sulfur for the methionine molecule when produced in C. glutamicum. DMDS, together with changes in microorganisms in the metF, metE and metH genes, enabled greater production of methionine. US patent No. 9024063B2 reports the use of methananiol and / or DMS associated with L-methionine precursors such as O-acetylchomoserin and Oscincinomerserine for the production of this amino acid by means of an enzymatic process. Therefore, the use of DMSP or its derivatives as a source of sulfur and methyl radical in a fermentation process using genetically modified strains, as described in the present invention, of bacteria such as E. coli and C. glutamicum is not reported in the literature.

[35] A presente invenção destaca que os microrganismos só serão viáveis para a produção de L-metionina utilizando DMSP como fonte de enxofre se utilizarem em seu metabolismo uma via biossintética obtida através de enzimas heterólogas de bactérias marinhas, como R. pomeroyi. As enzimas metX e metY da bactéria C. glutamicum devem ser introduzidas no metabolismo de E. coli para que elas apresentem o sistema descrito como funcional, sendo capazes de converter homoserina em O-acetilhomoserina, e finalmente em L-metionina.[35] The present invention highlights that microorganisms will only be viable for the production of L-methionine using DMSP as a sulfur source if they use in their metabolism a biosynthetic pathway obtained through heterologous enzymes from marine bacteria, such as R. pomeroyi. The enzymes metX and metY of the bacterium C. glutamicum must be introduced in the metabolism of E. coli so that they present the system described as functional, being capable of converting homoserine into O-acetylcheroserine, and finally into L-methionine.

[36] Os processos descritos nos pedidos de patente BR No. 10 2017 014956 0 e 10 2017 0174450 que antecedem esta invenção, são semelhantes e serviram como base para a mesma. Sendo assim, novas alterações genéticas foram realizadas e descritas, como o desenvolvimento de válvulas metabólicas para via da treonina, lisina e a atenuação do gene metK, além de cepas multi feedstock capazes de[36] The processes described in patent applications BR No. 10 2017 014956 0 and 10 2017 0174450 that precede this invention, are similar and served as the basis for it. Thus, new genetic changes were made and described, such as the development of metabolic valves for the threonine, lysine and attenuation of the metK gene, in addition to multi feedstock strains capable of

Petição 870180128975, de 11/09/2018, pág. 21/52Petition 870180128975, of 9/11/2018, p. 21/52

I 35 metabolizar diferentes fontes de carbono simultaneamente, e o uso de diferentes fontes de enxofre, gerando diferenças entre os processos anteriores e o aqui descrito.I 35 metabolize different sources of carbon simultaneously, and the use of different sources of sulfur, generating differences between the previous processes and the one described here.

[37] A patente americana US No. 8389250 descreve um processo fermentativo para a produção de metionina utilizando microrganismos modificados capazes de melhorar a produção de cisteína. A presente invenção opta por fazer modificações genéticas relacionadas com a via de produção da serina de modo a otimizar a mesma e garantir maiores rendimentos da L-metionina.[37] US patent No. 8389250 describes a fermentative process for the production of methionine using modified microorganisms capable of improving cysteine production. The present invention chooses to make genetic modifications related to the serine production pathway in order to optimize it and guarantee higher yields of L-methionine.

[38] O pedido de patente europeia EP No. 3296404 relata a produção de Lmetionina utilizando microrganismos recombinantes em que a produção de pelo menos um subproduto, como isoleucina, fenilalanina e treonina, foi atenuada, preferencialmente abolida. No caso da invenção aqui descrita são desenvolvidas válvulas metabólicas para controlar a produção de lisina e treonina de modo a não comprometer o crescimento celular no início da fermentação e posteriormente promover uma maior produção de L-metionina atenuando a produção de lisina e treonina.[38] European patent application EP No. 3296404 reports the production of Lmethionine using recombinant microorganisms in which the production of at least one by-product, such as isoleucine, phenylalanine and threonine, has been attenuated, preferably abolished. In the case of the invention described here, metabolic valves are developed to control the production of lysine and threonine so as not to compromise cell growth at the beginning of fermentation and subsequently promote a greater production of L-methionine, attenuating the production of lysine and threonine.

DESCRIÇÃO DA INVENÇÃO [39] Várias estirpes da bactéria E. coli podem ser empregadas para a produção de aminoácidos. Uma vez que a estirpe E. coli K-12 MG1655 teve seu genoma totalmente sequenciado e anotado (Blattner et al., 1997), além de vários modelos metabólicos já estarem disponíveis (Orth et al., 2011), essa invenção fará uso desta como estirpe preferencial, que será referida desse ponto ao longo do documento como estirpe chassi. No entanto, todas as estratégias aqui mencionadas se estendem à estirpes de C. glutamicum, por possuírem a via de produção de metionina e metabolismo de fontes de carbono semelhantes às da E. coli, respeitando-se os devidos genes de cada microrganismo.DESCRIPTION OF THE INVENTION [39] Various strains of the E. coli bacterium can be used for the production of amino acids. Since the E. coli K-12 MG1655 strain had its genome fully sequenced and annotated (Blattner et al., 1997), in addition to several metabolic models already being available (Orth et al., 2011), this invention will make use of this as the preferred strain, which will be referred to from that point throughout the document as the chassis strain. However, all of the strategies mentioned here extend to C. glutamicum strains, as they have a methionine production pathway and metabolism of carbon sources similar to those of E. coli, respecting the due genes of each microorganism.

[40] Define-se por estirpe chassi a bactéria E. coli K-12 MG1655 conforme genoma sequenciado por Blattner et al. (1997) e quaisquer mutações espontâneas que tenham sido geradas até o início das etapas de modificação genéticas descritas abaixo.[40] E. coli K-12 MG1655 bacteria is defined by the chassis strain according to the genome sequenced by Blattner et al. (1997) and any spontaneous mutations that have been generated until the beginning of the genetic modification steps described below.

[41] Com o intuito de aumentar o fluxo metabólico para a produção da Lmetionina, uma série de alterações gênicas foram realizadas na estirpe MG1655. As alterações foram realizadas com o sistema de edição genômica baseado na[41] In order to increase the metabolic flow for the production of Lmethionine, a series of gene changes were made in the MG1655 strain. The changes were made with the genomic editing system based on

Petição 870180128975, de 11/09/2018, pág. 22/52Petition 870180128975, of 9/11/2018, p. 22/52

I 35 recombinase lambda e enzima Cas9 de acordo com Jiang et al., 2015. O sistema se baseia na utilização de RNAs guia específicos para genes alvo que serão reconhecidos pela enzima Cas9, gerando um corte no DNA na região desejada. Na presença de DNA contendo o conjunto gênico desejado a ser inserido no genoma, flanqueado por regiões de homologia de aproximadamente 400 pares de base para as regiões upstream e downstream do alvo, o conjunto gênico desejado é incorporado por recombinação na região onde ocorreu o corte pela enzima Cas9, gerando uma deleção e ao mesmo tempo uma inserção de um cassete gênico. Normalmente os genes alvo escolhidos para a incorporação de um conjunto gênico são caracterizados por genes não importantes para o metabolismo da célula durante o processo fermentativo descrito nesta patente.I 35 lambda recombinase and enzyme Cas9 according to Jiang et al., 2015. The system is based on the use of specific guide RNAs for target genes that will be recognized by the enzyme Cas9, generating a cut in the DNA in the desired region. In the presence of DNA containing the desired gene set to be inserted into the genome, flanked by regions of homology of approximately 400 base pairs for the upstream and downstream regions of the target, the desired gene set is incorporated by recombination in the region where the cut by enzyme Cas9, generating a deletion and at the same time an insertion of a gene cassette. Usually, the target genes chosen for the incorporation of a gene set are characterized by genes not important for the cell metabolism during the fermentation process described in this patent.

[42] Visando a diminuição da regulação de genes da via de produção da metionina, como metA, metB, metC, metH, entre outros, a expressão do gene metJ é atenuada por meio de RNA complementar. Esta estratégia se caracteriza pela incorporação de uma sequência de DNA que codifica para uma molécula de RNA complementar aos 30 primeiros nucleotídeos do mRNA de metJ. A região subsequente ao gene metJ foi selecionada como alvo para a inserção deste gene de RNA complementar, nomeado r_metJ. A estirpe resultante foi nomeada NBmet001.[42] In order to decrease the regulation of genes in the methionine production pathway, such as metA, metB, metC, metH, among others, the expression of the metJ gene is attenuated by means of complementary RNA. This strategy is characterized by the incorporation of a DNA sequence that codes for an RNA molecule complementary to the first 30 nucleotides of the metJ mRNA. The region subsequent to the metJ gene was selected as a target for the insertion of this complementary RNA gene, named r_metJ. The resulting strain was named NBmet001.

[43] Visando a expressão de uma variante do gene metA (metA*, contendo uma tripla mutação que permite que a proteína resultante de sua expressão não sofra regulação alostérica pela L-metionina e S-adenosil-metionina), o próprio gene metA foi selecionado como alvo para a incorporação de metA* na estirpe NBmet001. Neste caso a expressão do gene metA nativo foi interrompida, e substituída pelo gene metA*. A expressão deste gene é realizada sob controle do promotor sintético J23118. A estirpe resultante foi nomeada NBmet002.[43] In order to express a variant of the metA gene (metA *, containing a triple mutation that allows the protein resulting from its expression not to undergo allosteric regulation by L-methionine and S-adenosyl-methionine), the metA gene itself was selected as the target for the incorporation of metA * in strain NBmet001. In this case the expression of the native metA gene was interrupted, and replaced by the metA * gene. The expression of this gene is carried out under the control of the synthetic promoter J23118. The resulting strain was named NBmet002.

[44] Visando a diminuição da importação de L-metionina pelas células, a expressão do gene metI é atenuada por meio de RNA complementar na estirpe NBmet002. Esta estratégia se caracteriza pela incorporação de uma sequência de DNA que codifica para uma molécula de RNA complementar aos 30 primeiros nucleotídeos do mRNA de metI. A região subsequente ao gene metI foi selecionada como alvo para a inserção deste gene de RNA complementar, nomeado r_metI. A estirpe resultante foi nomeada NBmet003.[44] In order to reduce the import of L-methionine by cells, the expression of the metI gene is attenuated by means of complementary RNA in the NBmet002 strain. This strategy is characterized by the incorporation of a DNA sequence that codes for an RNA molecule complementary to the first 30 nucleotides of the metI mRNA. The region subsequent to the metI gene was selected as a target for the insertion of this complementary RNA gene, named r_metI. The resulting strain was named NBmet003.

Petição 870180128975, de 11/09/2018, pág. 23/52Petition 870180128975, of 9/11/2018, p. 23/52

I 35 [45] Visando a diminuição da competição metabólica gerada pela produção de Llisina, a expressão do gene lysA é atenuada por meio de RNA complementar na estirpe NBmet003. Esta estratégia se caracteriza pela incorporação de uma sequência de DNA que codifica para uma molécula de RNA complementar aos 30 primeiros nucleotídeos do mRNA de lysA. A região subsequente ao gene lysA foi selecionada como alvo para a inserção deste gene de RNA complementar, nomeado r_lysA. A estirpe resultante foi nomeada NBmet004.I 35 [45] In order to decrease the metabolic competition generated by the production of Llisina, the expression of the lysA gene is attenuated by means of complementary RNA in the NBmet003 strain. This strategy is characterized by the incorporation of a DNA sequence that codes for an RNA molecule complementary to the first 30 nucleotides of the lysA mRNA. The region subsequent to the lysA gene was selected as a target for the insertion of this complementary RNA gene, named r_lysA. The resulting strain was named NBmet004.

[46] Visando a diminuição produção de acetato na estirpe, a expressão do gene pta é atenuada por meio de RNA complementar na estirpe NBmet004. Esta estratégia se caracteriza pela incorporação de uma sequência de DNA que codifica para uma molécula de RNA complementar aos 30 primeiros nucleotídeos do mRNA de pta. A região subsequente ao gene pta foi selecionada como alvo para a inserção deste gene de RNA complementar, nomeado r_pta. A estirpe resultante foi nomeada NBmet005. O mesmo se aplica ao gene ackA, também envolvido na produção de acetato. A estirpe resultante foi nomeada NBmet006, e o RNA complementar nomeado r_ackA.[46] In order to decrease acetate production in the strain, the expression of the pta gene is attenuated by means of complementary RNA in the NBmet004 strain. This strategy is characterized by the incorporation of a DNA sequence that codes for an RNA molecule complementary to the first 30 nucleotides of the pta mRNA. The region subsequent to the pta gene was selected as a target for the insertion of this complementary RNA gene, named r_pta. The resulting strain was named NBmet005. The same applies to the ackA gene, also involved in the production of acetate. The resulting strain was named NBmet006, and the complementary RNA named r_ackA.

[47] Visando tornar a estirpe produtora de metionina capaz de suportar condições de oxigenação mais limitadas, o gene arcA que codifica para o regulador negativo do ciclo do ácido cítrico arcA foi deletado do genoma da referida estirpe. Este gene foi utilizado como alvo para a integração de outros genes que estão associados a produção de metionina, como cysE e aspC. No caso do gene cysE, uma variante do gene com mutações nas posições T167A, G245S e M256I, foi utilizada com o objetivo de atenuar a inibição pelo produto cisteína. Estas modificações foram realizadas na estirpe NBmet006, gerando a estirpe NBmet007. O conjunto gênico mencionado anteriormente é integrado no cromossomo sob controle do promotor J23118. Ainda, uma válvula metabólica utilizando o promotor responsivo a oxigênio nar é utilizada para controle da expressão de um RNA complementar aos genes cysE e aspC, denominado r_EC. A expressão deste RNA é induzida em condições de anaeróbicas, de modo que a expressão dos referidos genes é atenuada, a fim de gerar mecanismo de segurança para evitar danos as células por fluxo metabólico exacerbado caso estas condições sejam alcançadas durante o processo. O promotor nar e respectivo RNA complementar são alocados a jusante do conjunto gênico descrito anteriormente.[47] In order to make the methionine-producing strain capable of withstanding more limited oxygenation conditions, the arcA gene encoding the arcA citric acid negative regulator was deleted from the genome of that strain. This gene was used as a target for the integration of other genes that are associated with the production of methionine, such as cysE and aspC. In the case of the cysE gene, a variant of the gene with mutations at positions T167A, G245S and M256I, was used in order to mitigate inhibition by the cysteine product. These modifications were performed on strain NBmet006, generating strain NBmet007. The gene set mentioned above is integrated into the chromosome under the control of the J23118 promoter. In addition, a metabolic valve using the promoter responsive to oxygen is used to control the expression of a complementary RNA to the genes cysE and aspC, called r_EC. The expression of this RNA is induced in anaerobic conditions, so that the expression of said genes is attenuated, in order to generate a safety mechanism to prevent damage to cells by exacerbated metabolic flow if these conditions are reached during the process. The nar promoter and its complementary RNA are allocated downstream of the gene pool described above.

Petição 870180128975, de 11/09/2018, pág. 24/52Petition 870180128975, of 9/11/2018, p. 24/52

I 35 [48] Visando a diminuição da competição metabólica gerada pela produção de Ltreonina, a expressão do gene thrB é atenuada por meio de RNA complementar na estirpe NBmet007. Esta estratégia se caracteriza pela incorporação de uma sequência de DNA que codifica para uma molécula de RNA complementar aos 30 primeiros nucleotídeos do mRNA de thrB. A região subsequente ao gene thrB foi selecionada como alvo para a inserção deste gene de RNA complementar, nomeado r_thrB. A estirpe resultante foi nomeada NBmet008.I 35 [48] In order to reduce the metabolic competition generated by the production of Ltreonin, the expression of the thrB gene is attenuated by means of complementary RNA in the NBmet007 strain. This strategy is characterized by the incorporation of a DNA sequence that codes for an RNA molecule complementary to the first 30 nucleotides of thrB mRNA. The region subsequent to the thrB gene was selected as a target for the insertion of this complementary RNA gene, named r_thrB. The resulting strain was named NBmet008.

[49] Visando tornar a estirpe capaz de metabolizar diferentes fontes de carbono simultaneamente, o gene ptsG é deletado da estirpe NBmet009. Este codifica para o componente IIBC da enzima PTS glucose específica, enzima essa envolvida no processo de assimilação da glucose como fonte de carbono. Este domínio, quando fosforilado, se liga à enzima glicerol kinase, inibindo a atividade da mesma, permitindo que a estirpe não regule as vias de metabolismo de outras fontes de carbono diferentes de glucose. A deleção do gene ptsG se dá pela inserção dos genes metF e metL, associado ao passo final de produção de L-metionina, em conjunto com metH, e a formação de aspartato, respectivamente.. A estirpe resultante é nomeada NBmet009. O conjunto gênico mencionado anteriormente é integrado no cromossomo sob controle do promotor J23118. Ainda, uma válvula metabólica baseada no promotor nar é utilizada para controle da expressão de um RNA complementar aos genes metF e metL, denominado r_FL. Assim como descrito anteriormente, a expressão dos referidos genes é atenuada em possíveis condições de anaerobiose. O promotor nar e respectivo RNA complementar são alocados a jusante do conjunto gênico descrito anteriormente.[49] In order to make the strain capable of metabolizing different carbon sources simultaneously, the ptsG gene is deleted from the NBmet009 strain. This codes for the IIBC component of the specific glucose PTS enzyme, an enzyme involved in the process of assimilation of glucose as a carbon source. This domain, when phosphorylated, binds to the enzyme glycerol kinase, inhibiting its activity, allowing the strain not to regulate the metabolism pathways of carbon sources other than glucose. The deletion of the ptsG gene occurs through the insertion of the metF and metL genes, associated with the final production step of L-methionine, together with metH, and the formation of aspartate, respectively. The resulting strain is named NBmet009. The gene set mentioned above is integrated into the chromosome under the control of the J23118 promoter. In addition, a metabolic valve based on the nar promoter is used to control the expression of a complementary RNA to the metF and metL genes, called r_FL. As previously described, the expression of said genes is attenuated in possible conditions of anaerobiosis. The nar promoter and its complementary RNA are allocated downstream of the gene pool described above.

[50] Visando o aumento da expressão dos genes responsáveis pelo aumento do fluxo metabólico para o metabolismo de glicerol, uma segunda cópia dos genes glpF (transportador) e glpK (fosforilação de glicerol em glicerol3-fosfato) é integrada ao cromossomo da estirpe NBmet009. Além disso, completando o conjunto gênico em forma de operon, os genes metC e cysM foram também inseridos no genoma, visando o aumento do fluxo metabólico para a formação de metionina e cisteína, respectivamente. Para tanto, o gene rbsA, que codifica para um transportador de ribopiranose, foi selecionado como alvo para a integração do conjunto glpF, glpK, metC e cysM, gerando a estirpe NBmet010. O conjunto gênico mencionado anteriormente é integrado no cromossomo sob controle do promotor J23118. Ainda, uma válvula metabólica baseada no promotor nar é utilizada para controle da[50] In order to increase the expression of the genes responsible for increasing the metabolic flow for glycerol metabolism, a second copy of the genes glpF (transporter) and glpK (glycerol phosphorylation in glycerol3-phosphate) is integrated into the chromosome of the NBmet009 strain. In addition, completing the gene set in the form of an operon, the metC and cysM genes were also inserted into the genome, aiming to increase the metabolic flow for the formation of methionine and cysteine, respectively. Therefore, the rbsA gene, which codes for a ribopyranose transporter, was selected as a target for the integration of the set glpF, glpK, metC and cysM, generating the strain NBmet010. The gene set mentioned above is integrated into the chromosome under the control of the J23118 promoter. In addition, a metabolic valve based on the nar promoter is used to control

Petição 870180128975, de 11/09/2018, pág. 25/52Petition 870180128975, of 9/11/2018, p. 25/52

I 35 expressão de um RNA complementar aos genes glpF, glpK, metC e cysM, denominado r_FKCM. Assim como descrito anteriormente, a expressão dos referidos genes é atenuada em possíveis condições de anaerobiose. O promotor nar e respectivo RNA complementar são alocados a jusante do conjunto gênico descrito anteriormente.I 35 expression of an RNA complementary to the genes glpF, glpK, metC and cysM, called r_FKCM. As previously described, the expression of said genes is attenuated in possible conditions of anaerobiosis. The nar promoter and its complementary RNA are allocated downstream of the gene pool described above.

[51] Visando o aumento do fluxo metabólico para produção de glicina e por fim metionina, o conjunto gênico contendo uma segunda cópia dos genes glyA e metB é integrado ao cromossomo da estirpe NBmet010. Para tanto, o gene arsB, que codifica para um transportador de arsenito, foi selecionado como alvo para a integração do conjunto glyA, metB, gerando a estirpe NBmet011. O conjunto gênico mencionado anteriormente é integrado no cromossomo sob controle do promotor J23118. Ainda, uma válvula metabólica baseada no promotor nar é utilizada para controle da expressão de um RNA complementar aos genes glyA e metB, denominado r_AB. Assim como descrito anteriormente, a expressão dos referidos genes é atenuada em possíveis condições de anaerobiose. O promotor nar e respectivo RNA complementar são alocados a jusante do conjunto gênico descrito anteriormente.[51] In order to increase the metabolic flow for the production of glycine and finally methionine, the gene set containing a second copy of the glyA and metB genes is integrated into the chromosome of the NBmet010 strain. For this, the arsB gene, which codes for an arsenite transporter, was selected as a target for the integration of the glyA, metB set, generating the NBmet011 strain. The gene set mentioned above is integrated into the chromosome under the control of the J23118 promoter. In addition, a metabolic valve based on the nar promoter is used to control the expression of a complementary RNA to the glyA and metB genes, called r_AB. As previously described, the expression of said genes is attenuated in possible conditions of anaerobiosis. The nar promoter and its complementary RNA are allocated downstream of the gene pool described above.

[52] Visando a maior produção de L-metionina no passo final de formação do aminoácido, uma segunda cópia dos genes metH e malY são incorporados ao cromossomo da estirpe NBmet011. Para tanto, o gene ldhA, associado à produção de ácido lático, foi escolhido como alvo para a incorporação do conjunto gênico metH e malY, gerando a estirpe NBmet012. O conjunto gênico mencionado anteriormente é integrado no cromossomo sob controle do promotor J23118. Ainda, uma válvula metabólica baseada no promotor nar é utilizada para controle da expressão de um RNA complementar aos genes metH e malY, denominado r_HY. Assim como descrito anteriormente, a expressão dos referidos genes é atenuada em possíveis condições de anaerobiose. O promotor nar e respectivo RNA complementar são alocados a jusante do conjunto gênico descrito anteriormente.[52] In order to increase L-methionine production in the final step of amino acid formation, a second copy of the metH and malY genes are incorporated into the chromosome of the NBmet011 strain. For that, the ldhA gene, associated with the production of lactic acid, was chosen as a target for the incorporation of the gene set metH and malY, generating the strain NBmet012. The gene set mentioned above is integrated into the chromosome under the control of the J23118 promoter. In addition, a metabolic valve based on the nar promoter is used to control the expression of a complementary RNA to the metH and malY genes, called r_HY. As previously described, the expression of said genes is attenuated in possible conditions of anaerobiosis. The nar promoter and its complementary RNA are allocated downstream of the gene pool described above.

[53] Visando o aumento de fluxo metabólico para a produção de L-metionina, é necessária primeiramente a produção de L-serina. Para tanto, uma segunda cópia dos genes serA, serB e serC é incorporada ao cromossomo da estirpe NBmet012. Para tanto, o gene lacZ, associado ao metabolismo de lactose, foi escolhido como alvo para a incorporação do conjunto gênico serA, serB e serC, gerando a estirpe[53] In order to increase the metabolic flow for the production of L-methionine, the production of L-serine is necessary first. For this, a second copy of the serA, serB and serC genes is incorporated into the chromosome of the NBmet012 strain. For this, the lacZ gene, associated with lactose metabolism, was chosen as a target for the incorporation of the serA, serB and serC gene set, generating the strain

Petição 870180128975, de 11/09/2018, pág. 26/52Petition 870180128975, of 9/11/2018, p. 26/52

I 35I 35

NBmet013. O conjunto gênico mencionado anteriormente é integrado no cromossomo sob controle do promotor J23118.NBmet013. The gene set mentioned above is integrated into the chromosome under the control of the J23118 promoter.

[54] Visando a maior disponibilidade de NADPH para a produção de metionina, os genes pntA, pntB e sthA, envolvidos na síntese de NADH e NADPH, são incorporados ao cromossomo da estirpe NBmet013. Para tanto, o gene rbsR é escolhido como alvo para a incorporação do conjunto gênico pntA, pntB e sthA, gerando a estirpe NBmet014. O conjunto gênico mencionado anteriormente é integrado no cromossomo sob controle do promotor J23118. Ainda, uma válvula metabólica baseada no promotor nar é utilizada para controle da expressão de um RNA complementar aos genes pntA, pntB e sthA, denominado r_ABA. Assim como descrito anteriormente, a expressão dos referidos genes é atenuada em possíveis condições de anaerobiose. O promotor nar e respectivo RNA complementar são alocados a jusante do conjunto gênico descrito anteriormente.[54] In order to increase the availability of NADPH for the production of methionine, the genes pntA, pntB and sthA, involved in the synthesis of NADH and NADPH, are incorporated into the chromosome of the strain NBmet013. Therefore, the rbsR gene is chosen as a target for the incorporation of the pntA, pntB and sthA gene set, generating the NBmet014 strain. The gene set mentioned above is integrated into the chromosome under the control of the J23118 promoter. In addition, a metabolic valve based on the nar promoter is used to control the expression of a complementary RNA to the pntA, pntB and sthA genes, called r_ABA. As previously described, the expression of said genes is attenuated in possible conditions of anaerobiosis. The nar promoter and its complementary RNA are allocated downstream of the gene pool described above.

[55] Visando a promoção da divisão celular mesmo em condições da alta concentração de células na cultura, uma segunda cópia dos genes ftsA e ftsZ é incorporada ao cromossomo da estirpe NBmet014. Para tanto, a região adjacente ao término do gene ftsZ é escolhida como alvo para a inserção do conjunto gênico ftsA e ftsZ, gerando a estirpe NBmet015. O conjunto gênico mencionado anteriormente é integrado no cromossomo sob controle do promotor J23118. Ainda, uma válvula metabólica baseada no promotor nar é utilizada para controle da expressão de um RNA complementar aos genes ftsA e ftsZ, denominado r_AZ. Assim como descrito anteriormente, a expressão dos referidos genes é atenuada em possíveis condições de anaerobiose. O promotor nar e respectivo RNA complementar são alocados a jusante do conjunto gênico descrito anteriormente.[55] In order to promote cell division even under conditions of high concentration of cells in the culture, a second copy of the ftsA and ftsZ genes is incorporated into the chromosome of the NBmet014 strain. For that, the region adjacent to the end of the ftsZ gene is chosen as a target for the insertion of the ftsA and ftsZ gene set, generating the NBmet015 strain. The gene set mentioned above is integrated into the chromosome under the control of the J23118 promoter. In addition, a metabolic valve based on the nar promoter is used to control the expression of an RNA complementary to the ftsA and ftsZ genes, called r_AZ. As previously described, the expression of said genes is attenuated in possible conditions of anaerobiosis. The nar promoter and its complementary RNA are allocated downstream of the gene pool described above.

[56] Visando o controle do consumo intrínseco de L-metionina pela própria estirpe, o gene metK, que codifica para a enzima metionina adenosiltransferase, responsável por consumir L-metionina e formar o produto S-adenosil-metionina, é regulado modificado na estirpe NBmet015. Para tanto, um sistema de válvula metabólica contendo um RNA complementar aos primeiros 30 nucleotídeos do RNA referente ao gene metK é incorporado ao cromossomo da estirpe. Este sistema é regulado pelo promotor sensível a arabinose pBAD. No evento de adição de arabinose ao sistema, a expressão do RNA complementar para metK é ativada, de modo que a expressão do gene metK é atenuada. Por ser um sistema regulado, é possível determinar o momento específico em que a quantidade de biomassa[56] In order to control the intrinsic consumption of L-methionine by the strain itself, the metK gene, which codes for the enzyme methionine adenosyltransferase, responsible for consuming L-methionine and forming the product S-adenosyl-methionine, is regulated modified in the strain NBmet015. Therefore, a metabolic valve system containing an RNA complementary to the first 30 nucleotides of the RNA referring to the metK gene is incorporated into the chromosome of the strain. This system is regulated by the pBAD arabinose sensitive promoter. In the event of adding arabinose to the system, the expression of the complementary RNA for metK is activated, so that the expression of the metK gene is attenuated. As it is a regulated system, it is possible to determine the specific moment when the amount of biomass

Petição 870180128975, de 11/09/2018, pág. 27/52Petition 870180128975, of 9/11/2018, p. 27/52

I 35 acumulada seja suficiente para que a divisão celular seja comprometida e a produção de metionina aumentada devido a atividade atenuada do gene metK. A válvula gênica aqui mencionada é determinada como r_metK, e esta é incorporada à região adjacente ao término do gene metK. A estirpe resultante é denominada NBmet016.The accumulated I 35 is sufficient for cell division to be compromised and methionine production increased due to the attenuated activity of the metK gene. The gene valve mentioned here is determined as r_metK, and this is incorporated into the region adjacent to the termination of the metK gene. The resulting strain is called NBmet016.

[57] Visando a formação de oxaloacetato diretamente a partir de oxaloacetato, o gene pyc de Rhizobium etli é incorporado a estirpe NBmet016. Ainda, o transportador de metionina yJeH é incorporado ao cromossomo da mesma estirpe em operon juntamente com o gene pyc. Para tanto, o gene arcB foi selecionado como alvo para a integração do conjunto gênico pyc e yJeH, gerando assim a estirpe NBmet017. O conjunto gênico mencionado anteriormente é integrado no cromossomo sob controle do promotor J23118. Ainda, uma válvula metabólica baseada no promotor nar é utilizada para controle da expressão de um RNA complementar aos genes pyc e yJeH, denominado r_py. Assim como descrito anteriormente, a expressão dos referidos genes é atenuada em possíveis condições de anaerobiose. O promotor nar e respectivo RNA complementar são alocados a jusante do conjunto gênico descrito anteriormente.[57] Aiming at the formation of oxaloacetate directly from oxaloacetate, the pyc gene of Rhizobium etli is incorporated into the NBmet016 strain. In addition, the methionine transporter yJeH is incorporated into the chromosome of the same strain in operon together with the pyc gene. For this, the arcB gene was selected as a target for the integration of the pyc and yJeH gene set, thus generating the NBmet017 strain. The gene set mentioned above is integrated into the chromosome under the control of the J23118 promoter. In addition, a metabolic valve based on the nar promoter is used to control the expression of a complementary RNA to the pyc and yJeH genes, called r_py. As previously described, the expression of said genes is attenuated in possible conditions of anaerobiosis. The nar promoter and its complementary RNA are allocated downstream of the gene pool described above.

[58] Visando a geração de uma via sintética alternativa para a incorporação de radical metil e enxofre de forma única para a produção de L-metionina, os genes metX e metY de Corynebacterium glutamicum são incorporados ao genoma da estirpe NBmet017. Para tanto, a região adjacente ao término do gene metH foi escolhida como alvo para a integração do conjunto gênico metX e metY. Este conjunto gênico permite que a estirpe em questão seja capaz de incorporar de forma única grupamentos metil sulfurados (CH3-SH) à metionina, constituindo uma via alternativa de produção de metionina. Ainda, o conjunto gênico é regulado por um sistema de válvula metabólica, onde os genes estão sob controle do promotor pBAD, regulado pela presença ou ausência de arabinose no sistema. A estirpe gerada após esta modificação é denominada NBmet018.[58] In order to generate an alternative synthetic route for the incorporation of methyl radical and sulfur in a unique way for the production of L-methionine, the metX and metY genes of Corynebacterium glutamicum are incorporated into the genome of strain NBmet017. For that, the region adjacent to the end of the metH gene was chosen as a target for the integration of the metX and metY gene set. This gene pool allows the strain in question to be able to incorporate methyl sulfur groups (CH3-SH) in a unique way to methionine, constituting an alternative route of methionine production. In addition, the gene pool is regulated by a metabolic valve system, where the genes are under the control of the pBAD promoter, regulated by the presence or absence of arabinose in the system. The strain generated after this modification is called NBmet018.

[59] Visando a geração de uma via sintética alternativa para a incorporação eficiente de sulfato à L-metionina, os genes dmdA, dmdB, dmdC e dmdD de Ruegeria pomeroy são incorporados ao genoma da estirpe NBmet018 sob controle de válvula metabólica. Esta válvula se baseia no controle da expressão de cada um desses genes também por arabinose, de modo que o conjunto gênico se apresenta sob controle do promotor regulado pBAD. Esta modificação permite que a estirpe[59] In order to generate an alternative synthetic pathway for the efficient incorporation of sulfate into L-methionine, the dmdA, dmdB, dmdC and dmdD genes of Ruegeria pomeroy are incorporated into the genome of strain NBmet018 under the control of a metabolic valve. This valve is based on the control of the expression of each of these genes also by arabinose, so that the gene set is under the control of the regulated promoter pBAD. This modification allows the strain

Petição 870180128975, de 11/09/2018, pág. 28/52Petition 870180128975, of 9/11/2018, p. 28/52

I 35 em questão seja capaz de metabolizar o substrato dimetilfulfoniopropionato (DMSP) como fonte de enxofre e radical metil, além de ser capaz de metabolizar dimetildisulfureto (DMDS) de maneira semelhante. A estirpe gerada após esta modificação é denominada NBmet019.I 35 in question is able to metabolize the substrate dimethylfulphoniopropionate (DMSP) as a source of sulfur and methyl radical, in addition to being able to metabolize dimethyldisulfide (DMDS) in a similar way. The strain generated after this modification is called NBmet019.

[60] Na Tabela 1 encontram-se as estirpes construídas com suas modificações.[60] Table 1 shows the strains constructed with their modifications.

Tabela 1 - Estirpes modificadas geneticamente para produção de L-metionina.Table 1 - Genetically modified strains for the production of L-methionine.

NBmet001 NBmet001 r metJ r metJ NBmet002 NBmet002 r metJ, metA:metA* r metJ, metA: metA * NBmet003 NBmet003 r metJ, metA:metA*, r metI r metJ, metA: metA *, r metI NBmet004 NBmet004 r metJ, metA:metA*, r metI, r lysA r metJ, metA: metA *, r metI, r lysA NBmet005 NBmet005 r metJ, metA:metA*, r metI, r lysA, r pta r metJ, metA: metA *, r metI, r lysA, r pta NBmet006 NBmet006 r metJ, metA:metA*, r metI, r lysA, r pta, r ackA r metJ, metA: metA *, r metI, r lysA, r pta, r ackA NBmet007 NBmet007 r metJ, metA:metA*, r metI, r lysA, r pta, r ackA, arcA:cysE-aspC-r EC r metJ, metA: metA *, r metI, r lysA, r pta, r ackA, arcA: cysE-aspC-r EC NBmet008 NBmet008 r metJ, metA:metA*, r metI, r lysA, r pta, r ackA, arcA:cysE-aspC-r EC, r thrB r metJ, metA: metA *, r metI, r lysA, r pta, r ackA, arcA: cysE-aspC-r EC, r thrB NBmet009 NBmet009 r_metJ, metA:metA*, r_metI, r_lysA, r_pta, r_ackA, arcA:cysE-aspC, r_thrB, ptsG:metF-metL-r FL r_metJ, metA: metA *, r_metI, r_lysA, r_pta, r_ackA, arcA: cysE-aspC, r_thrB, ptsG: metF-metL-r FL NBmet010 NBmet010 r_metJ, metA:metA*, r_metI, r_lysA, r_pta, r_ackA, arcA:cysE-aspC, r_thrB, ptsG:metF-metL-r FL, rbsA:glpF-glpK-metC-cysM-r FKCM r_metJ, metA: metA *, r_metI, r_lysA, r_pta, r_ackA, arcA: cysE-aspC, r_thrB, ptsG: metF-metL-r FL, rbsA: glpF-glpK-metC-cysM-r FKCM NBmet011 NBmet011 r_metJ, metA:metA*, r_metI, r_lysA, r_pta, r_ackA, arcA:cysE-aspC, r_thrB, ptsG:metF-metL-r FL, rbsA:glpF-glpK-metC-cysM-r FKCM, arsB:glyA-metB-r AB r_metJ, metA: metA *, r_metI, r_lysA, r_pta, r_ackA, arcA: cysE-aspC, r_thrB, ptsG: metF-metL-r FL, rbsA: glpF-glpK-metC-cysM-r FKCM, arsB: glyA-metB -r AB NBmet012 NBmet012 r_metJ, metA:metA*, r_metI, r_lysA, r_pta, r_ackA, arcA:cysE-aspC, r_thrB, ptsG:metF-metL-r_FL, rbsA:glpF-glpK-metC-cysM-r_FKCM, arsB:glyA-metB-r_AB, ldhA:metH-malY-r HY r_metJ, metA: metA *, r_metI, r_lysA, r_pta, r_ackA, arcA: cysE-aspC, r_thrB, ptsG: metF-metL-r_FL, rbsA: glpF-glpK-metC-cysM-r_FKCM, arsB: glyAB-metB-rB_ , ldhA: metH-malY-r HY NBmet013 NBmet013 r_metJ, metA:metA*, r_metI, r_lysA, r_pta, r_ackA, arcA:cysE-aspC, r_thrB, ptsG:metF-metL-r_FL, rbsA:glpF-glpK-metC-cysM-r_FKCM, arsB:glyA-metB-r_AB, ldhA:metH-malY-r HY, lacZ:serA-serB-serC r_metJ, metA: metA *, r_metI, r_lysA, r_pta, r_ackA, arcA: cysE-aspC, r_thrB, ptsG: metF-metL-r_FL, rbsA: glpF-glpK-metC-cysM-r_FKCM, arsB: glyAB-metB-rB_ , ldhA: metH-malY-r HY, lacZ: serA-serB-serC NBmet014 NBmet014 r_metJ, metA:metA*, r_metI, r_lysA, r_pta, r_ackA, arcA:cysE-aspC, r_thrB, ptsG:metF-metL-r_FL, rbsA:glpF-glpK-metC-cysM-r_FKCM, arsB:glyA-metB-r_AB, ldhA:metH-malY-r HY, lacZ:serA-serB-serC, rbsR:pntA-pntB-sthA-r ABA r_metJ, metA: metA *, r_metI, r_lysA, r_pta, r_ackA, arcA: cysE-aspC, r_thrB, ptsG: metF-metL-r_FL, rbsA: glpF-glpK-metC-cysM-r_FKCM, arsB: glyAB-metB-rB_ , ldhA: metH-malY-r HY, lacZ: serA-serB-serC, rbsR: pntA-pntB-sthA-r ABA NBmet015 NBmet015 r_metJ, metA:metA*, r_metI, r_lysA, r_pta, r_ackA, arcA:cysE-aspC, r_thrB, ptsG:metF-metL-r_FL, rbsA:glpF-glpK-metC-cysM-r_FKCM, arsB:glyA-metB-r_AB, ldhA:metH-malY-r_HY, lacZ:serA-serB-serC, rbsR:pntA-pntB-sthA-r_ABA, ftsA-ftsZr AZ r_metJ, metA: metA *, r_metI, r_lysA, r_pta, r_ackA, arcA: cysE-aspC, r_thrB, ptsG: metF-metL-r_FL, rbsA: glpF-glpK-metC-cysM-r_FKCM, arsB: glyAB-metB-rB_ , ldhA: metH-malY-r_HY, lacZ: serA-serB-serC, rbsR: pntA-pntB-sthA-r_ABA, ftsA-ftsZr AZ NBmet016 NBmet016 r_metJ, metA:metA*, r_metI, r_lysA, r_pta, r_ackA, arcA:cysE-aspC, r_thrB, ptsG:metF-metL-r_FL, rbsA:glpF-glpK-metC-cysM-r_FKCM, arsB:glyA-metB-r_AB, ldhA:metH-malY-r_HY, lacZ:serA-serB-serC, rbsR:pntA-pntB-sthA-r_ABA, ftsA-ftsZr AZ, r metK r_metJ, metA: metA *, r_metI, r_lysA, r_pta, r_ackA, arcA: cysE-aspC, r_thrB, ptsG: metF-metL-r_FL, rbsA: glpF-glpK-metC-cysM-r_FKCM, arsB: glyAB-metB-rB_ , ldhA: metH-malY-r_HY, lacZ: serA-serB-serC, rbsR: pntA-pntB-sthA-r_ABA, ftsA-ftsZr AZ, r metK NBmet017 NBmet017 r_metJ, metA:metA*, r_metI, r_lysA, r_pta, r_ackA, arcA:cysE-aspC, r_thrB, ptsG:metF-metL-r_FL, rbsA:glpF-glpK-metC-cysM-r_FKCM, arsB:glyA-metB-r_AB, ldhA:metH-malY-r_HY, lacZ:serA-serB-serC, rbsR:pntA-pntB-sthA-r_ABA, ftsA-ftsZr AZ, r metK, arcB:pyc-yJeH-r py r_metJ, metA: metA *, r_metI, r_lysA, r_pta, r_ackA, arcA: cysE-aspC, r_thrB, ptsG: metF-metL-r_FL, rbsA: glpF-glpK-metC-cysM-r_FKCM, arsB: glyAB-metB-rB_ , ldhA: metH-malY-r_HY, lacZ: serA-serB-serC, rbsR: pntA-pntB-sthA-r_ABA, ftsA-ftsZr AZ, r metK, arcB: pyc-yJeH-r py

Petição 870180128975, de 11/09/2018, pág. 29/52Petition 870180128975, of 9/11/2018, p. 29/52

I 35I 35

NBmet018 NBmet018 r_metJ, metA:metA*, r_metI, r_lysA, r_pta, r_ackA, arcA:cysE-aspC, r_thrB, ptsG:metF-metL-r_FL, rbsA:glpF-glpK-metC-cysM-r_FKCM, arsB:glyA-metB-r_AB, ldhA:metH-malY-r_HY, lacZ:serA-serB-serC, rbsR:pntA-pntB-sthA-r_ABA, ftsA-ftsZr AZ, r metK, arcB:pyc-yJeH-r py, pBAD metX-metY r_metJ, metA: metA *, r_metI, r_lysA, r_pta, r_ackA, arcA: cysE-aspC, r_thrB, ptsG: metF-metL-r_FL, rbsA: glpF-glpK-metC-cysM-r_FKCM, arsB: glyAB-metB-rB_ , ldhA: metH-malY-r_HY, lacZ: serA-serB-serC, rbsR: pntA-pntB-sthA-r_ABA, ftsA-ftsZr AZ, r metK, arcB: pyc-yJeH-r py, pBAD metX-metY NBmet019 NBmet019 r_metJ, metA:metA*, r_metI, r_lysA, r_pta, r_ackA, arcA:cysE-aspC, r_thrB, ptsG:metF-metL-r_FL, rbsA:glpF-glpK-metC-cysM-r_FKCM, arsB:glyA-metB-r_AB, ldhA:metH-malY-r_HY, lacZ:serA-serB-serC, rbsR:pntA-pntB-sthA-r_ABA, ftsA-ftsZr_AZ, r_metK, arcB:pyc-yJeH-r_py, pBAD_metX-metY, pBAD_dmdA-dmdB-dmdCdmdD r_metJ, metA: metA *, r_metI, r_lysA, r_pta, r_ackA, arcA: cysE-aspC, r_thrB, ptsG: metF-metL-r_FL, rbsA: glpF-glpK-metC-cysM-r_FKCM, arsB: glyAB-metB-rB_ , ldhA: metH-malY-r_HY, lacZ: serA-serB-serC, rbsR: pntA-pntB-sthA-r_ABA, ftsA-ftsZr_AZ, r_metK, arcB: pyc-yJeH-r_py, pBAD_metX-metY, dBDdm

[61] Os termos aumento da expressão do gene, ou superexpressão do gene têm similar significado e estão associados à maior quantidade de proteínas no meio intracelular.[61] The terms increased gene expression, or overexpression of the gene, have similar meaning and are associated with a greater amount of proteins in the intracellular environment.

[62] Nesta patente, o aumento da expressão dos referidos genes é relacionado a: 1) incorporação de uma segunda cópia do gene no cromossomo das referidas estirpes, 2) controle de expressão por um promotor sintético constitutivo e 3) válvula metabólica induzível para regular a expressão de determinados conjuntos gênicos.[62] In this patent, the increase in expression of said genes is related to: 1) incorporation of a second copy of the gene into the chromosome of said strains, 2) control of expression by a constitutive synthetic promoter and 3) inducible metabolic valve to regulate the expression of certain gene sets.

[63] As sequências nucleotidicas dos genes descritos foram sintetizados quimicamente por especialistas na arte. A fim de obter as construções dos conjuntos gênicos para a posterior incorporação no cromossomo, os grupamentos de genes e os diferentes promotores foram montados através do método Biobrick® e protocolos previamente descritos (Sambrook,1989).[63] The nucleotide sequences of the described genes have been chemically synthesized by experts in the art. In order to obtain the constructs of the gene sets for later incorporation into the chromosome, the gene groups and the different promoters were assembled using the Biobrick® method and previously described protocols (Sambrook, 1989).

PROCESSO DE PRODUÇÃO DE L-METIONINA [64] O aminoácido L-metionina é produzido conforme a descrito na invenção pela bactéria Escherichia coli utilizando resíduos da indústria de biocombustíveis como fonte de carbono, de modo que as estratégias aqui mencionadas não se limitam apenas a este organismo, e podem ser aplicadas também para C. glutamicum ou S. cerevisiae, com as devidas modificações necessárias. Substratos adicionais a fonte de carbono tais como carboidratos simples, complexos, amido, glicerol, ácidos graxos, entre outros podem ser adicionados e combinados com os resíduos. Outros nutrientes são adicionados ao meio de cultivo, como fonte de nitrogênio, podendo ser utilizado extrato de levedura, ureia, água de maceração de milho, sais inorgânicos como NH4NO3, KNO3, NaNO3 e NH4Cl. Os sais adicionados ao meio como fonte de enxofre, podem ser Na2SO4, MgSO4, H2S, (NH4)2SO4 ou ainda Na2S2O3, não se limitando a estes, de modo que outras fontes de enxofre, comoL-METHIONINE PRODUCTION PROCESS [64] The amino acid L-methionine is produced as described in the invention by the bacterium Escherichia coli using residues from the biofuel industry as a carbon source, so the strategies mentioned here are not limited to this organism, and can also be applied to C. glutamicum or S. cerevisiae, with the necessary modifications. Additional substrates to carbon source such as simple, complex carbohydrates, starch, glycerol, fatty acids, among others can be added and combined with the residues. Other nutrients are added to the culture medium, as a source of nitrogen, and yeast extract, urea, corn steeping water, inorganic salts such as NH4NO3, KNO3, NaNO3 and NH4Cl can be used. The salts added to the medium as a sulfur source, can be Na2SO4, MgSO4, H2S, (NH4) 2SO4 or even Na2S2O3, not limited to these, so that other sources of sulfur, such as

Petição 870180128975, de 11/09/2018, pág. 30/52Petition 870180128975, of 9/11/2018, p. 30/52

I 35 dimetilsulfoniopropionato (DMSP), dimetil disulfeto (DMDS) e metanotiol podem ser utilizados no processo. Nutrientes adicionais são requeridos tais como fósforo, magnésio, cálcio, molibdênio, ácido bórico, cobalto, cobre, manganês, zinco, ferro e vitaminas do complexo B.I 35 dimethylsulfoniopropionate (DMSP), dimethyl disulfide (DMDS) and methanethiol can be used in the process. Additional nutrients are required such as phosphorus, magnesium, calcium, molybdenum, boric acid, cobalt, copper, manganese, zinc, iron and B vitamins.

[65] O crescimento inicial da estirpe produtora de metionina é realizado em meio de cultura igual ou similar ao meio utilizado durante o processo fermentativo em larga escala. Desta forma, a estirpe não precisa de um período de adaptação à cada transferência de reator, resultando em ganho da produtividade devido a redução da fase lag de crescimento bacteriano.[65] The initial growth of the methionine-producing strain is carried out in a culture medium equal to or similar to the medium used during the large-scale fermentation process. Thus, the strain does not need an adaptation period for each reactor transfer, resulting in productivity gains due to the reduction of the lag phase of bacterial growth.

[66] O processo fermentativo ocorre em ambiente com temperatura entre 30°C a 38°C, sendo preferencialmente 37°C. O pH do meio é mantido entre 6,8 a 7,2, com agitação constante. Preferencialmente o crescimento inicial do organismo é realizado em reatores de menor capacidade com agitação mecânica e aeração com ar esterilizado. Idealmente o sistema é monitorado constantemente, de modo que variáveis como temperatura, pH, oxigênio dissolvido e agitação são controlados durante cada etapa do processo. O crescimento bacteriano é monitorado por densidade óptica, células viáveis e biomassa seca.[66] The fermentation process takes place in an environment with a temperature between 30 ° C and 38 ° C, preferably 37 ° C. The pH of the medium is maintained between 6.8 to 7.2, with constant agitation. Preferably, the initial growth of the organism is carried out in reactors of smaller capacity with mechanical agitation and aeration with sterile air. Ideally, the system is constantly monitored, so that variables such as temperature, pH, dissolved oxygen and agitation are controlled during each stage of the process. Bacterial growth is monitored by optical density, viable cells and dry biomass.

[67] As fases de pré-inóculo e inóculo duram cerca de 24 horas, uma vez que é necessário o acúmulo de biomassa para posteriormente o processo ser realizado em larga escala. Estas etapas podem operar em batelada ou batelada alimentada.[67] The pre-inoculum and inoculum phases last around 24 hours, since the accumulation of biomass is necessary for the process to be carried out on a large scale later. These steps can operate in batch or powered batch.

[68] Em seguida aos inóculos, o processo fermentativo é realizado em biorreator aerado (2 vvm - volume de ar por volume de meio de cultura por minuto) e agitação mecânica. As condições de temperatura e pH seguem os mesmos padrões das condições mencionadas para o inóculo, sendo que para a manutenção do pH, a adição de soluções de hidróxido de sódio ou bases semelhantes, ou solução de ácido clorídrico ou semelhantes, é realizada para manter o pH estável.[68] Following the inoculations, the fermentation process is carried out in an aerated bioreactor (2 vvm - volume of air per volume of culture medium per minute) and mechanical agitation. The temperature and pH conditions follow the same standards as the conditions mentioned for the inoculum, and for maintaining the pH, the addition of sodium hydroxide solutions or similar bases, or hydrochloric acid or similar solution, is performed to maintain the stable pH.

[69] Durante a produção de L-metionina, processo de 48 a 72 horas, o reator opera em sistema de batelada alimentada, onde a fonte de carbono e outros nutrientes são adicionados ao longo da fermentação de modo que a cultura microbiana possua disponibilidade constante de nutrientes utilizados para suportar seu crescimento, sobrevivência e produção de L-metionina.[69] During the production of L-methionine, a 48- to 72-hour process, the reactor operates in a fed batch system, where the carbon source and other nutrients are added throughout the fermentation so that the microbial culture has constant availability of nutrients used to support their growth, survival and L-methionine production.

[70] Para que seja assegurada a completa esterilidade do ambiente onde é realizado o processo fermentativo, o meio de cultura é esterilizado com vapor dentro do próprio biorreator. Em relação a matéria-prima, essa é previamente esterilizada[70] In order to ensure the complete sterility of the environment where the fermentation process takes place, the culture medium is sterilized with steam inside the bioreactor itself. Regarding the raw material, it is previously sterilized

Petição 870180128975, de 11/09/2018, pág. 31/52Petition 870180128975, of 9/11/2018, p. 31/52

I 35 por calor rápido e posteriormente adicionada ao longo do processo. A concentração de fonte de carbono durante a fermentação não deve atingir valores superiores a 100g/L a fim de evitar a repressão do crescimento do microrganismo por excesso de substrato. No entanto, nas etapas de pré-inóculo e inóculo, a fonte de carbono é adicionada em batelada.I 35 by rapid heat and later added throughout the process. The concentration of carbon source during fermentation must not reach values higher than 100g / L in order to avoid repression of the growth of the microorganism by excess of substrate. However, in the pre-inoculum and inoculum stages, the carbon source is added in batches.

PROCESSO DE PURIFICAÇÃO DE L-METIONINA [71] Após a produção da L-metionina, esse aminoácido deve ser recuperado do meio de cultura fermentado e purificado, a fim de constituir um produto com alto grau de pureza.L-METHIONINE PURIFICATION PROCESS [71] After the production of L-methionine, this amino acid must be recovered from the fermented and purified culture medium in order to constitute a product with a high degree of purity.

[72] Inicialmente, o meio de cultura fermentado é enviado para um tanque pulmão onde é realizada a inativação das células. Em seguida, a biomassa e outros possíveis sólidos residuais são submetidos a um processo de separação, sendo esse por centrifugação, filtração, microfiltração ou ultrafiltração. A fração solúvel contendo L-metionina é destinada ao processo de purificação enquanto a biomassa se torna um resíduo do processo.[72] Initially, the fermented culture medium is sent to a lung tank where the cells are inactivated. Then, the biomass and other possible residual solids are subjected to a separation process, which is by centrifugation, filtration, microfiltration or ultrafiltration. The soluble fraction containing L-methionine is destined for the purification process while the biomass becomes a residue of the process.

[73] A purificação da L-metionina é realizada por meio de troca iônica onde é utilizada uma resina do tipo catiônica. Nesse caso, o pH da solução deve ser diminuído de modo que o valor de pKa da metionina seja baixo o suficiente para que essa se encontre na forma ácida, permitindo sua adsorção à resina e posterior eluição em solução com pH alcalino. O processo é realizado em no máximo 120 minutos para que a adsorção seja completa. Para a eluição, é utilizada uma solução alcalina de hidróxido de amônio.[73] The purification of L-methionine is carried out by means of ion exchange where a cationic type resin is used. In this case, the pH of the solution must be lowered so that the pKa value of methionine is low enough that it is in acidic form, allowing its adsorption to the resin and subsequent elution in solution with alkaline pH. The process is carried out in a maximum of 120 minutes so that the adsorption is complete. For elution, an alkaline ammonium hydroxide solution is used.

[74] A fim de tornar o produto final mais concentrado, a solução resultante da eluição pós coluna de troca iônica é evaporada, gerando ao fim um produto puro e concentrado disponível na forma líquida.[74] In order to make the final product more concentrated, the solution resulting from post-ion exchange column elution is evaporated, ultimately generating a pure and concentrated product available in liquid form.

[75] A obtenção da metionina na forma sólida é realizada por meio de secagem por atomização. Para que esse processo seja realizado, o meio pós fermentação deve conter uma quantidade mínima de sólidos de 10 a 12%. Para que esta quantidade seja atingida, o meio pode ser evaporado ou eluído da resina de troca iônica com soluções concentradas de base.[75] Methionine is obtained in solid form by spray drying. For this process to be carried out, the post-fermentation medium must contain a minimum amount of solids of 10 to 12%. For this amount to be reached, the medium can be evaporated or eluted from the ion exchange resin with concentrated base solutions.

[76] O processo de purificação da L-metionina já é descrito no pedido de patente WO No.2013083934A1. A metodologia descrita inclui: a) clarificação do caldo fermentado e remoção de sólidos insolúveis e solúveis por floculação,[76] The process of purifying L-methionine is already described in patent application WO No.2013083934A1. The methodology described includes: a) clarification of the fermented broth and removal of insoluble and soluble solids by flocculation,

Petição 870180128975, de 11/09/2018, pág. 32/52Petition 870180128975, of 9/11/2018, p. 32/52

I 35 sedimentação, microfiltração, ultrafiltração, nanofiltração, osmose reversa e centrifugação; b) opcionalmente, a desmineralização do caldo clarificado a fim de remover cátions e ânions; c) cristalização da metionina do caldo. Na presente invenção, o processo de separação de biomassa e sólidos insolúveis é similar ao descrito na patente. Entretanto o processo de obtenção da L-metionina na forma sólida diferencia por utilizar método de secagem por atomização ao invés de cristalização.I 35 sedimentation, microfiltration, ultrafiltration, nanofiltration, reverse osmosis and centrifugation; b) optionally, demineralization of the clarified broth in order to remove cations and anions; c) crystallization of the methionine from the broth. In the present invention, the process of separating biomass and insoluble solids is similar to that described in the patent. However, the process of obtaining L-methionine in solid form differs by using spray drying method instead of crystallization.

EXEMPLOSEXAMPLES

Exemplo 1:Example 1:

[77] As estirpes produtoras de metionina descritas na Tabela 1 foram cultivadas em frascos do tipo Erlenmeyer contendo 50 mL do meio de cultivo M1 (Tabela 2), a 37°C, por 48 h. Após a fermentação, a fração líquida da cultura foi separada da fração sólida. A quantificação de metionina presente na fração líquida de cultura foi realizada por análises de próton H1 e carbono C13 por espectrometria de ressonância magnética nuclear (RMN). A Tabela 03 apresenta os resultados referentes a diferentes estirpes produtoras de metionina.[77] The methionine-producing strains described in Table 1 were grown in Erlenmeyer flasks containing 50 mL of M1 culture medium (Table 2), at 37 ° C, for 48 h. After fermentation, the liquid fraction of the culture was separated from the solid fraction. The quantification of methionine present in the liquid fraction of culture was performed by analyzes of proton H 1 and carbon C 13 by nuclear magnetic resonance (NMR) spectrometry. Table 03 presents the results for different strains that produce methionine.

Tabela 2 - Descrição meio M1Table 2 - M1 medium description

Composto Compound Concentração (g L-1)Concentration (g L -1 ) KH2PO4 KH2PO4 3 3 Na2HPO4-7H2O Na2HPO4-7H2O 12,8 12.8 MgSO4 MgSO4 0,24 0.24 Extrato de levedura Yeast extract 5 5 NaCl NaCl 0,5 0.5 CaCl2 CaCl2 0,011 0.011 NH4Cl NH4Cl 1 1 (NH4)2SO4 (NH4) 2SO4 16 16 Na2S2O3 Na2S2O3 1 1 Glicerol Glycerol 20 20 Vitamina B1 Vitamin B1 0,001 0.001 Vitamina B7 Vitamin B7 0,001 0.001 Vitamina B12 B12 vitamin 0,001 0.001

Tabela 3 - Resultados obtidos em frascos agitados.Table 3 - Results obtained in shaken bottles.

Petição 870180128975, de 11/09/2018, pág. 33/52Petition 870180128975, of 9/11/2018, p. 33/52

I 35I 35

Estirpe Strain DOe00 48 h DOe00 48 h L-metionina g/L 48 h L-methionine g / L 48 h NBmet007 NBmet007 8,3 ±1 8.3 ± 1 5,1 ± 0,06 5.1 ± 0.06 NBmet012 NBmet012 7,9 ± 0,5 7.9 ± 0.5 8,5 ± 0,2 8.5 ± 0.2 NBmet019 NBmet019 6,9 ± 0,35 6.9 ± 0.35 15 ± 0,46 15 ± 0.46

Exemplo 2:Example 2:

[78] A melhor estirpe produtora em frascos agitados, neste caso a NBmet019, foi avaliada em um fermentador Minifors de 5 L. O volume de meio (NB01) utilizado foi 1,6 L. As alimentações foram realizadas a cada 12 h utilizando uma solução concentrada (500 g L-1 de glicerol, sulfato de amônio 16 g L-1, tiossulfato de sódio 23,8 g L-1, extrato de levedura 1 g L-1, vitaminas B1, B7 e B7 0,032 g L-1, L-lisina 4,3 g L-1). A condição de pH foi mantida em 6,8 utilizando hidróxido de amônio. A fermentação foi mantida a 30 °C, com taxa de aeração de 3 L.min-1, com agitação regida por controle de cascata associado a concentração de oxigênio dissolvido, com set-point ajustado em 20%. Na Tabela 4 estão apresentados os resultados obtidos no experimento descrito.[78] The best strain produced in agitated flasks, in this case NBmet019, was evaluated in a 5 L Minifors fermenter. The volume of medium (NB01) used was 1.6 L. The feeds were performed every 12 h using a concentrated solution (500 g L -1 of glycerol, ammonium sulphate 16 g L -1 , sodium thiosulfate 23.8 g L -1 , yeast extract 1 g L -1 , vitamins B1, B7 and B7 0.032 g L - 1 , L-lysine 4.3 g L -1 ). The pH condition was maintained at 6.8 using ammonium hydroxide. The fermentation was maintained at 30 ° C, with an aeration rate of 3 L.min -1 , with agitation governed by cascade control associated with the concentration of dissolved oxygen, with a set point adjusted to 20%. Table 4 shows the results obtained in the described experiment.

Tabela 4 - Resultados experimento Exemplo 2.Table 4 - Experiment results Example 2.

Estirpe Strain Biomassa Úmida g/L (72 h) Biomass Wet g / L (72 h) L-metionina g/L 72 h L-methionine g / L 72 h NBmet019 NBmet019 53 53 37 ± 0,83 37 ± 0.83

DEFINIÇÕES [79] Fica descrito aqui que os citados “glicerol”, “glicerina” e “água glicerinada” são a fonte de carbono utilizada, variando apenas a concentração de C3H8O3 em sua composição.DEFINITIONS [79] It is described here that the aforementioned "glycerol", "glycerin" and "glycerin water" are the carbon source used, varying only the concentration of C3H8O3 in its composition.

[80] O termo “metionina” refere-se ao aminoácido sulfurado de fórmula química HO2CCH(NH2)CH2CH2SCH3 e número CAS 59-51-8 ou 63-68-3 especificamente para o isômero L.[80] The term "methionine" refers to the sulfur amino acid of the chemical formula HO2CCH (NH2) CH2CH2SCH3 and CAS number 59-51-8 or 63-68-3 specifically for the L-isomer.

[81] O termo citado como “DMSP” caracteriza a fonte reduzida de enxofre e de radical metil utilizada, de fórmula molecular C5H10O2S, proveniente de micro e macroalgas, fitoplâncton e plantas, ou qualquer outra fonte biológica.[81] The term cited as “DMSP” characterizes the reduced source of sulfur and methyl radical used, of the molecular formula C5H10O2S, from micro and macroalgae, phytoplankton and plants, or any other biological source.

Petição 870180128975, de 11/09/2018, pág. 34/52Petition 870180128975, of 9/11/2018, p. 34/52

I 35 [82] O termo citado como “DMDS” caracteriza a fonte reduzida de enxofre e radical metil utilizada, de fórmula molecular C2H6S2 e número CAS 624-92-0.I 35 [82] The term cited as “DMDS” characterizes the reduced source of sulfur and methyl radical used, of molecular formula C2H6S2 and CAS number 624-92-0.

[83] Um microrganismo pode ser modificado para expressar genes exógenos se esses genes forem introduzidos no microorganismo com todos os elementos para sua expressão. A modificação do microrganismo com DNA exógeno é uma tarefa de rotina para especialistas na arte.[83] A microorganism can be modified to express exogenous genes if those genes are introduced into the microorganism with all the elements for its expression. Modification of the microorganism with exogenous DNA is a routine task for experts in the art.

[84] O termo microrganismo utilizado aqui refere-se preferencialmente à E. coli.[84] The term microorganism used here refers preferentially to E. coli.

[85] Os termos downstream e purificação são equivalentes, referindo-se aos métodos, após fermentação, para obtenção do produto em sua forma final.[85] The terms downstream and purification are equivalent, referring to the methods, after fermentation, to obtain the product in its final form.

[86] Define-se por gene metJ a sequência de deoxinucleotídeos identificada no genoma da estirpe chassi como b3938, entre os desoxinucleotídeos 4.128.078 a 4.128.395.[86] The metJ gene defines the deoxynucleotide sequence identified in the genome of the chassis strain as b3938, among deoxynucleotides 4,128,078 to 4,128,395.

[87] Define-se como sequência de deoxinucleotídeos qualquer cadeia de polinucleotídeos constituída por deoxinucleotídeos em cadeias simples fita ou dupla fita e que será referida na invenção como apenas sequência de DNA.[87] A deoxynucleotide sequence is defined as any polynucleotide chain consisting of single-stranded or double-stranded deoxynucleotides that will be referred to in the invention as a DNA sequence only.

[88] Define-se por gene metA a sequência de DNA identificada no genoma da estirpe chassi como b4013, entre os nucleotídeos 4.214.280 a 4.215.209 de acordo com o genoma de referência (Blattner et al., 1997).[88] The DNA sequence identified in the genome of the chassis strain as b4013 is defined by the metA gene, between nucleotides 4,214,280 to 4,215,209 according to the reference genome (Blattner et al., 1997).

[89] Define-se por metAfd a variante com três mutações pontuais nos nucleotídeos C79T (citosina da posição 79 é trocada por uma timina), T887G e C893T. Estas três mutações levam as trocas de aminoácidos R27C (arginina da posição 27 do polipeptídeo trocado por uma cisteína), I296S (isoleucina da posição 296 por serina) e P298L (prolina da posição 298 por leucina) e dessensibiliza a enzima MetA da inibição por feedback negativo causada pela L-metionina.[89] The variant with three point mutations in nucleotides C79T (cytosine at position 79 is replaced by a thymine), T887G and C893T is defined by metA fd . These three mutations lead to the exchange of amino acids R27C (arginine of position 27 of the polypeptide exchanged for a cysteine), I296S (isoleucine of position 296 for serine) and P298L (proline of position 298 for leucine) and desensitizes the enzyme MetA from feedback inhibition negative effect caused by L-methionine.

[90] Define-se por gene lysA a sequência de DNA identificada no genoma da estirpe chassi como b2838, entre os nucleotídeos 2977637 a 2978899 de acordo com o genoma de referência (Blattner et al., 1997).[90] The DNA sequence identified in the genome of the chassis strain as b2838, between nucleotides 2977637 to 2978899, is defined by the lysA gene according to the reference genome (Blattner et al., 1997).

[91] Define-se por gene arcA a sequência de DNA identificada no genoma da estirpe chassi como b4401, entre os nucleotídeos 4639590 a 4640306 de acordo com o genoma de referência (Blattner et al., 1997).[91] The DNA sequence identified in the genome of the chassis strain as b4401 is defined by the arcA gene, between nucleotides 4639590 to 4640306 according to the reference genome (Blattner et al., 1997).

[92] Define-se por gene arcB a sequência de DNA identificada no genoma da estirpe chassi como b3210, entre os nucleotídeos 3350689 a 3353025 de acordo com o genoma de referência (Blattner et al., 1997).[92] The DNA sequence identified in the genome of the chassis strain as b3210, between nucleotides 3350689 to 3353025, is defined by the arcB gene according to the reference genome (Blattner et al., 1997).

Petição 870180128975, de 11/09/2018, pág. 35/52Petition 870180128975, of 9/11/2018, p. 35/52

I 35 [93] Define-se por gene ptsG a sequência de DNA identificada no genoma da estirpe chassi como b1101, entre os nucleotídeos 1157859 a 1159302 de acordo com o genoma de referência (Blattner et al., 1997).I 35 [93] The DNA sequence identified in the genome of the chassis strain as b1101, between nucleotides 1157859 to 1159302, is defined by the ptsG gene according to the reference genome (Blattner et al., 1997).

[94] Define-se por gene thrB a sequência de DNA identificada no genoma da estirpe chassi como b0003, entre os nucleotídeos 2801 a 3733 de acordo com o genoma de referência (Blattner et al., 1997).[94] The DNA sequence identified in the genome of the chassis strain as b0003 is defined by the thrB gene, between nucleotides 2801 to 3733 according to the reference genome (Blattner et al., 1997).

[95] Define-se por gene thrC a sequência de DNA identificada no genoma da estirpe chassi como b0004, entre os nucleotídeos 3734 a 5020 de acordo com o genoma de referência (Blattner et al., 1997).[95] The DNA sequence identified in the genome of the chassis strain as b0004, between nucleotides 3734 to 5020, is defined by the thrC gene according to the reference genome (Blattner et al., 1997).

[96] Define-se por gene pta a sequência de DNA identificada no genoma da estirpe chassi como b2297, entre os nucleotídeos 2414747 a 2416891 de acordo com o genoma de referência (Blattner et al., 1997).[96] The DNA sequence identified in the genome of the chassis strain as b2297, between nucleotides 2414747 to 2416891, is defined by the pta gene according to the reference genome (Blattner et al., 1997).

[97] Define-se por gene ackA a sequência de DNA identificada no genoma da estirpe chassi como b2296, entre os nucleotídeos 2413470 a 2414672 de acordo com o genoma de referência (Blattner et al., 1997).[97] The DNA sequence identified in the genome of the chassis strain as b2296 is defined by the ackA gene, between nucleotides 2413470 to 2414672 according to the reference genome (Blattner et al., 1997).

[98] Define-se como gene yjeH a sequência identificada como b4141 e localizada entre os nucleotídeos 4369156 a 4370412 no genoma de referência (Blattner et al., 1997).[98] The yjeH gene is defined as the sequence identified as b4141 and located between nucleotides 4369156 to 4370412 in the reference genome (Blattner et al., 1997).

[99] Define-se como gene metF a sequência identificada como b3941 e localizada entre os nucleotídeos 4132616 a 4133506 no genoma de referência (Blattner et al., 1997).[99] The sequence identified as b3941 and located between nucleotides 4132616 to 4133506 in the reference genome is defined as the metF gene (Blattner et al., 1997).

[100] Define-se como gene metH a sequência identificada como b4019 e localizada entre os nucleotídeos 4223828 a 4227511 no genoma de referência (Blattner et al., 1997).[100] The sequence identified as b4019 and located between nucleotides 4223828 to 4227511 in the reference genome is defined as the metH gene (Blattner et al., 1997).

[101] Define-se como gene metL a sequência identificada como b3940 e localizada entre os nucleotídeos 4129835 a 4132267 no genoma de referência (Blattner et al., 1997).[101] The sequence identified as b3940 and located between nucleotides 4129835 to 4132267 in the reference genome is defined as the metL gene (Blattner et al., 1997).

[102] Define-se como gene cysE a sequência identificada como b3607 e localizada entre os nucleotídeos 3781741 a 3782562 no genoma de referência (Blattner et al., 1997).[102] The sequence identified as b3607 and located between nucleotides 3781741 to 3782562 in the reference genome is defined as the cysE gene (Blattner et al., 1997).

[103] Define-se como gene cysEfd a variante com três mutações pontuais nos nucleotídeos A721G (adenina da posição 721 é trocada por uma guanina), G727A (guanina da posição 727 é trocada por uma adenina) e G955A (guanina da posição 955 é trocada por uma adenina). Estas mutações levam a troca de aminoácidos[103] The variant with three point mutations in nucleotides A721G (adenine of position 721 is replaced by a guanine), G727A (guanine of position 727 is replaced by an adenine) and G955A (guanine of position 955) are defined as the cysE fd gene. is replaced by an adenine). These mutations lead to the exchange of amino acids

Petição 870180128975, de 11/09/2018, pág. 36/52Petition 870180128975, of 9/11/2018, p. 36/52

I 35I 35

T167A (tirosina da posição 167 do polipeptídeo trocado por uma alanina), G245S (glicina da posição 245 do polipeptídeo trocado por uma serina) e M254I (metionina da posição 254 do polipeptídeo trocado por uma isoleucina) e dessensibiliza a enzima cysE da inibição por feedback negativo causada pela L-cisteína.T167A (tyrosine of position 167 of the polypeptide exchanged for an alanine), G245S (glycine of position 245 of the polypeptide exchanged for a serine) and M254I (methionine of position 254 of the polypeptide exchanged for an isoleucine) and desensitizes the cysE enzyme for feedback inhibition negative effect caused by L-cysteine.

[104] Define-se como gene cysM a sequência identificada como b2421 e localizada entre os nucleotídeos 2538672 a 2539583 no genoma de referência (Blattner et al., 1997).[104] The sequence identified as b2421 and located between nucleotides 2538672 to 2539583 in the reference genome is defined as cysM gene (Blattner et al., 1997).

[105] Define-se como gene metK a sequência identificada como b2942 e localizada entre os nucleotídeos 3086076 a 3087860 no genoma de referência (Blattner et al., 1997).[105] The sequence identified as b2942 and located between nucleotides 3086076 to 3087860 in the reference genome is defined as the metK gene (Blattner et al., 1997).

[106] Define-se como gene aspC a sequência identificada como b0928 e localizada entre os nucleotídeos 984519 a 985709 no genoma de referência (Blattner et al., 1997).[106] The aspC gene is defined as the sequence identified as b0928 and located between nucleotides 984519 to 985709 in the reference genome (Blattner et al., 1997).

[107] Define-se como gene ftsA a sequência identificada como b0094 e localizada entre os nucleotídeos 103982 a 105244 no genoma de referência (Blattner et al., 1997).[107] The ftsA gene is defined as the sequence identified as b0094 and located between nucleotides 103982 to 105244 in the reference genome (Blattner et al., 1997).

[108] Define-se como gene ftsZ a sequência identificada como b0095 e localizada entre os nucleotídeos 105305 a 106456 no genoma de referência (Blattner et al., 1997).[108] The ftsZ gene is defined as the sequence identified as b0095 and located between nucleotides 105305 to 106456 in the reference genome (Blattner et al., 1997).

[109] Define-se como gene glpF a sequência identificada como b3927 e localizada entre os nucleotídeos 4117245 a 4118090 no genoma de referência (Blattner et al., 1997).[109] The sequence identified as b3927 and located between nucleotides 4117245 to 4118090 in the reference genome is defined as the glpF gene (Blattner et al., 1997).

[110] Define-se como gene glpK a sequência identificada como b3926 e localizada entre os nucleotídeos 4115714 a 4117222 no genoma de referência (Blattner et al., 1997).[110] The sequence identified as b3926 and located between nucleotides 4115714 to 4117222 in the reference genome is defined as the glpK gene (Blattner et al., 1997).

[111] Define-se como gene glpKfd a variante com uma mutação pontual no nucleotídeo G913A, gerando a substituição G305S (glicina na posição 305 trocado por uma serina). Esta alteração permite a dessensibilização desta proteína a enzimas do sistema fosfotransferase glucose-específico, permitindo que a estirpe que contenha esta mutação seja capaz de metabolizar glicerol e glucose simultaneamente.[111] The variant with a point mutation in nucleotide G913A is defined as the glpK fd gene, generating the G305S substitution (glycine at position 305 replaced by a serine). This change allows the desensitization of this protein to enzymes of the glucose-specific phosphotransferase system, allowing the strain that contains this mutation to be able to metabolize glycerol and glucose simultaneously.

[112] Define-se como gene glyA a sequência identificada como b2551 e localizada entre os nucleotídeos 2684254 a 2685507 no genoma de referência (Blattner et al., 1997).[112] The glyA gene is defined as the sequence identified as b2551 and located between nucleotides 2684254 to 2685507 in the reference genome (Blattner et al., 1997).

Petição 870180128975, de 11/09/2018, pág. 37/52Petition 870180128975, of 9/11/2018, p. 37/52

I 35 [113] Define-se como gene malY a sequência identificada como b1622 e localizada entre os nucleotídeos 1700957 a 1702129 no genoma de referência (Blattner et al., 1997).I 35 [113] The malY gene is defined as the sequence identified as b1622 and located between nucleotides 1700957 to 1702129 in the reference genome (Blattner et al., 1997).

[114] Define-se como gene metB a sequência identificada como b3939 e localizada entre os nucleotídeos 4128672 a 4129832 no genoma de referência (Blattner et al., 1997).[114] The sequence identified as b3939 and located between nucleotides 4128672 to 4129832 in the reference genome is defined as the metB gene (Blattner et al., 1997).

[115] Define-se como gene metC a sequência identificada como b3008 e localizada entre os nucleotídeos 3152236 a 3153413 no genoma de referência (Blattner et al., 1997).[115] The sequence identified as b3008 and located between nucleotides 3152236 to 3153413 in the reference genome is defined as the metC gene (Blattner et al., 1997).

[116] Define-se como gene pntA a sequência identificada como b1603 e localizada entre os nucleotídeos 1676371 a 1677903 no genoma de referência (Blattner et al., 1997).[116] The sequence identified as b1603 and located between nucleotides 1676371 to 1677903 in the reference genome is defined as the pntA gene (Blattner et al., 1997).

[117] Define-se como gene pntB a sequência identificada como b1602 e localizada entre os nucleotídeos 1674972 a 1776360 no genoma de referência (Blattner et al., 1997).[117] The sequence identified as b1602 and located between nucleotides 1674972 to 1776360 in the reference genome is defined as the pntB gene (Blattner et al., 1997).

[118] Define-se como gene sthA a sequência identificada como b3962 e localizada entre os nucleotídeos 4159390 a 4160790 no genoma de referência (Blattner et al., 1997).[118] The sequence identified as b3962 and located between nucleotides 4159390 to 4160790 in the reference genome is defined as the sthA gene (Blattner et al., 1997).

[119] Define-se como gene pyc a sequência identificada como RHECIAT_CH0004290 e localizada entre os nucleotídeos 4367027 a 4370491 no genoma de referência (Gonzalez et al., 2006).[119] The sequence identified as RHECIAT_CH0004290 and located between nucleotides 4367027 to 4370491 in the reference genome is defined as the pyc gene (Gonzalez et al., 2006).

[120] Define-se por gene dmdA a sequência de deoxinucleotídeos identificada no genoma da estirpe R. pomeroyi ATCC 700808 como SPO1913, entre os desoxinucleotídeos 2033982 a 2035076 no genoma de referência (Moran et al., 2004).[120] The deoxynucleotide sequence identified in the genome of R. pomeroyi strain ATCC 700808 is defined by the dmdA gene as SPO1913, among deoxynucleotides 2033982 to 2035076 in the reference genome (Moran et al., 2004).

[121] Define-se por gene dmdB a sequência de deoxinucleotídeos identificada no genoma da estirpe R. pomeroyi ATCC 700808 como SPO2045, entre os desoxinucleotídeos 2174586 a 2176205 no genoma de referência (Moran et al., 2004).[121] The deoxynucleotide sequence identified in the genome of strain R. pomeroyi ATCC 700808 is defined by the dmdB gene as SPO2045, among deoxynucleotides 2174586 to 2176205 in the reference genome (Moran et al., 2004).

[122] Define-se por gene dmdC a sequência de deoxinucleotídeos identificada no genoma da estirpe R. pomeroyi ATCC 700808 como SPO3804, entre os desoxinucleotídeos 4018434 a 4020200 no genoma de referência (Moran et al., 2004).[122] The deoxynucleotide sequence identified in the genome of strain R. pomeroyi ATCC 700808 is defined by the dmdC gene as SPO3804, among deoxynucleotides 4018434 to 4020200 in the reference genome (Moran et al., 2004).

Petição 870180128975, de 11/09/2018, pág. 38/52Petition 870180128975, of 9/11/2018, p. 38/52

I 35 [123] Define-se por gene dmdD a sequência de deoxinucleotídeos identificada no genoma da estirpe R. pomeroyi ATCC 700808 como SPO3805, entre os desoxinucleotídeos 4020260 a 4021063 no genoma de referência (Moran et al.,I 35 [123] The deoxynucleotide sequence identified in the genome of the R. pomeroyi strain ATCC 700808 is defined by the dmdD gene as SPO3805, among deoxynucleotides 4020260 to 4021063 in the reference genome (Moran et al.,

2004) .2004).

[124] Define-se por gene metX a sequência de deoxinucleotídeos identificada no genoma da estirpe C. glutamicum ATCC 13032 como cg0754, entre os desoxinucleotídeos 666641 a 667774 no genoma de referência (Kalinowski et al.,[124] The deoxynucleotide sequence identified in the genome of strain C. glutamicum ATCC 13032 as cg0754 is defined by the metX gene, among deoxynucleotides 666641 to 667774 in the reference genome (Kalinowski et al.,

2005) .2005).

[125] Define-se por gene metY a sequência de deoxinucleotídeos identificada no genoma da estirpe C. glutamicum ATCC 13032 como cg0755, entre os desoxinucleotídeos 667918 a 669231 no genoma de referência (Kalinowski et al., 2005).[125] The deoxynucleotide sequence identified in the genome of the strain C. glutamicum ATCC 13032 is defined by the metY gene as cg0755, among deoxynucleotides 667918 to 669231 in the reference genome (Kalinowski et al., 2005).

[126] Define-se por gene serA a sequência de DNA identificada no genoma da estirpe chassi como b2913, entre os nucleotídeos 3.057.178 a 3.058.410 de acordo com o genoma de referência (Blattner et al., 1997).[126] The serA gene is defined as the DNA sequence identified in the genome of the chassis strain as b2913, between nucleotides 3,057,178 to 3,058,410 according to the reference genome (Blattner et al., 1997).

[127] Define-se por gene serB a sequência de DNA identificada no genoma da estirpe chassi como b4388, entre os nucleotídeos 4.624.895 a 4.625.853 de acordo com o genoma de referência (Blattner et al., 1997).[127] SerB gene is defined as the DNA sequence identified in the genome of the chassis strain as b4388, between nucleotides 4,624,895 to 4,625,853 according to the reference genome (Blattner et al., 1997).

[128] Define-se por gene serC a sequência de DNA identificada no genoma da estirpe chassi como b0907, entre os nucleotídeos 957.653 a 958.741 de acordo com o genoma de referência (Blattner et al., 1997).[128] The serC gene is defined as the DNA sequence identified in the genome of the chassis strain as b0907, between nucleotides 957,653 to 958,741 according to the reference genome (Blattner et al., 1997).

[129] Define-se por partes genéticas qualquer sequência de DNA que pode ser unida a outra parte para gerar um dispositivo genético que objetive expressar um determinado gene ou regular sua expressão.[129] Genetic parts are defined as any sequence of DNA that can be joined to another part to generate a genetic device that aims to express a certain gene or regulate its expression.

SEQUÊNCIAS DOS GENES CITADOS NESTA PATENTESEQUENCES OF THE GENES CITED IN THIS PATENT

Sequência no1 (aspC): atgtttgagaacattaccgccgctcctgccgacccgattctgggcctggccgatctgtttcgtgccgatgaacgtcccggcaaaattaacctcgggattggtgt ctataaagatgagacgggcaaaaccccggtactgaccagcgtgaaaaaggctgaacagtatctgctcgaaaatgaaaccaccaaaaattacctcggc attgacggcatccctgaatttggtcgctgcactcaggaactgctgtttggtaaaggtagcgccctgatcaatgacaaacgtgctcgcacggcacagactcc ggggggcactggcgcactacgcgtggctgccgatttcctggcaaaaaataccagcgttaagcgtgtgtgggtgagcaacccaagctggccgaaccata agagcgtctttaactctgcgggtctggaagttcgtgaatacgcttattatgatgcggaaaatcacactcttgacttcgatgcactgattaacagcctgaatgaa gctcaggctggcgacgtagtgctgttccatggctgctgccataacccaaccggtatcgaccctacgctggaacaatggcaaacactggcacaactctccg ttgagaaaggctggttaccgctgtttgacttcgcttaccagggttttgcccgtggtctggaagaagatgctgaaggactgcgcgctttcgcggctatgcataaa gagctgattgttgccagttcctactctaaaaactttggcctgtacaacgagcgtgttggcgcttgtactctggttgctgccgacagtgaaaccgttgatcgcgca ttcagccaaatgaaagcggcgattcgcgctaactactctaacccaccagcacacggcgcttctgttgttgccaccatcctgagcaacgatgcgttacgtgc gatttgggaacaagagctgactgatatgcgccagcgtattcagcgtatgcgtcagttgttcgtcaatacgctgcaagaaaaaggcgcaaaccgcgacttcFollowing paragraph 1 (ASPC): atgtttgagaacattaccgccgctcctgccgacccgattctgggcctggccgatctgtttcgtgccgatgaacgtcccggcaaaattaacctcgggattggtgt ctataaagatgagacgggcaaaaccccggtactgaccagcgtgaaaaaggctgaacagtatctgctcgaaaatgaaaccaccaaaaattacctcggc attgacggcatccctgaatttggtcgctgcactcaggaactgctgtttggtaaaggtagcgccctgatcaatgacaaacgtgctcgcacggcacagactcc ggggggcactggcgcactacgcgtggctgccgatttcctggcaaaaaataccagcgttaagcgtgtgtgggtgagcaacccaagctggccgaaccata agagcgtctttaactctgcgggtctggaagttcgtgaatacgcttattatgatgcggaaaatcacactcttgacttcgatgcactgattaacagcctgaatgaa gctcaggctggcgacgtagtgctgttccatggctgctgccataacccaaccggtatcgaccctacgctggaacaatggcaaacactggcacaactctccg ttgagaaaggctggttaccgctgtttgacttcgcttaccagggttttgcccgtggtctggaagaagatgctgaaggactgcgcgctttcgcggctatgcataaa gagctgattgttgccagttcctactctaaaaactttggcctgtacaacgagcgtgttggcgcttgtactctggttgctgccgacagtgaaaccgttgatcgcgca ttcagccaaatgaaagcggcgattcgcgctaactactctaacccaccagcacacggcgcttctgttgttgccaccatcctgagcaacgatgcgttacgtgc gatttgggaacaagagctgactgatatgcgccagcgtattcagcgtatgcgt cagttgttcgtcaatacgctgcaagaaaaaggcgcaaaccgcgacttc

Petição 870180128975, de 11/09/2018, pág. 39/52Petition 870180128975, of 9/11/2018, p. 39/52

I 35 agctttatcatcaaacagaacggcatgttctccttcagtggcctgacaaaagaacaagtgctgcgtctgcgcgaagagtttggcgtatatgcggttgcttctg gtcgcgtaaatgtggccgggatgacaccagataacatggctccgctgtgcgaagcgattgtggcagtgctgtaaI 35 agctttatcatcaaacagaacggcatgttctccttcagtggcctgacaaaagaacaagtgctgcgtctgcgcgaagagtttggcgtatatgcggttgcttctg gtcgcgtaaatgtggccgggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggtg

Sequência no2 (cysE*): atgtcgtgtgaagaactggaaattgtctggaacaatattaaagccgaagccagaacgctggcggactgtgagccaatgctggccagtttttaccacgcga cgctactcaagcacgaaaaccttggcagtgcactgagctacatgctggcgaacaagctgtcatcgccaattatgcctgctattgctatccgtgaagtggtgg aagaagcctacgccgctgacccggaaatgatcgcctctgcggcctgtgatattcaggcggtgcgtacccgcgacccggcagtcgataaatactcaaccc cgttgttatacctgaagggttttcatgccttgcaggcctatcgcatcggtcactggttgtggaatcaggggcgtcgcgcactggcaatctttctgcaaaaccag gtttctgtgacgttccaggtcgatattcacccggcagcaaaaattggtcgcggtatcatgcttgaccacgcgacaggcatcgtcgttggtgaagcggcggtg attgaaaacgacgtatcgattctgcaatctgtgacgcttggcggtacgggtaaatctggtggtgaccgtcacccgaaaattcgtgaaggtgtgatgattggcg cgggcgcgaaaatcctcggcaatattgaagttgggcgcggcgcgaagattggcgcaggttccgtggtgctgcaaccggtgccgccgcataccaccgcc gctggcgttccggctcgtattgtcagtaaaccagacagcgataagccatcaatggatatagaccagcatttcaacggtattaaccatacatttgagtatggg gatgggatctaaSequence No. 2 (cysE *): atgtcgtgtgaagaactggaaattgtctggaacaatattaaagccgaagccagaacgctggcggactgtgagccaatgctggccagtttttaccacgcga cgctactcaagcacgaaaaccttggcagtgcactgagctacatgctggcgaacaagctgtcatcgccaattatgcctgctattgctatccgtgaagtggtgg aagaagcctacgccgctgacccggaaatgatcgcctctgcggcctgtgatattcaggcggtgcgtacccgcgacccggcagtcgataaatactcaaccc cgttgttatacctgaagggttttcatgccttgcaggcctatcgcatcggtcactggttgtggaatcaggggcgtcgcgcactggcaatctttctgcaaaaccag gtttctgtgacgttccaggtcgatattcacccggcagcaaaaattggtcgcggtatcatgcttgaccacgcgacaggcatcgtcgttggtgaagcggcggtg attgaaaacgacgtatcgattctgcaatctgtgacgcttggcggtacgggtaaatctggtggtgaccgtcacccgaaaattcgtgaaggtgtgatgattggcg cgggcgcgaaaatcctcggcaatattgaagttgggcgcggcgcgaagattggcgcaggttccgtggtgctgcaaccggtgccgccgcataccaccgcc gctggcgttccggctcgtattgtcagtaaaccagacagcgataagccatcaatggatatagaccagcatttcaacggtattaaccatacatttgagtatggg gatgggatctaa

Sequência no 3 (cysM): gtgagtacattagaacaaacaataggcaatacgcctctggtgaagttgcagcgaatggggccggataacggcagtgaagtgtggttaaaactggaagg caataacccggcaggttcggtgaaagatcgtgcggcactttcgatgatcgtcgaggcggaaaagcgcggggaaattaaaccgggtgatgtcttaatcga agccaccagtggtaacaccggcattgcgctggcaatgattgccgcgctgaaaggctatcgcatgaaattgctgatgcccgacaacatgagccaggaac gccgtgcggcgatgcgtgcttatggtgcggaactgattcttgtcaccaaagagcagggcatggaaggtgcgcgcgatctggcgctggagatggcgaatc gtggcgaaggaaagctgctcgatcagttcaataatcccgataacccttatgcgcattacaccaccactgggccggaaatctggcagcaaaccggcgggc gcatcactcattttgtctccagcatggggacgaccggcactatcaccggcgtctcacgctttatgcgcgaacaatccaaaccggtgaccattgtcggcctgc aaccggaagagggcagcagcattcccggcattcgccgctggcctacggaatatctgccggggattttcaacgcttctctggtggatgaggtgctggatattc atcagcgcgatgcggaaaacaccatgcgcgaactggcggtgcgggaaggaatattctgtggcgtcagctccggcggcgcggttgccggagcactgcg ggtggcaaaagctaaccctgacgcggtggtggtggcgatcatctgcgatcgtggcgatcgctacctttctaccggggtgtttggggaagagcattttagcca gggggcggggatttaaFollowing paragraph 3 (cysM): gtgagtacattagaacaaacaataggcaatacgcctctggtgaagttgcagcgaatggggccggataacggcagtgaagtgtggttaaaactggaagg caataacccggcaggttcggtgaaagatcgtgcggcactttcgatgatcgtcgaggcggaaaagcgcggggaaattaaaccgggtgatgtcttaatcga agccaccagtggtaacaccggcattgcgctggcaatgattgccgcgctgaaaggctatcgcatgaaattgctgatgcccgacaacatgagccaggaac gccgtgcggcgatgcgtgcttatggtgcggaactgattcttgtcaccaaagagcagggcatggaaggtgcgcgcgatctggcgctggagatggcgaatc gtggcgaaggaaagctgctcgatcagttcaataatcccgataacccttatgcgcattacaccaccactgggccggaaatctggcagcaaaccggcgggc gcatcactcattttgtctccagcatggggacgaccggcactatcaccggcgtctcacgctttatgcgcgaacaatccaaaccggtgaccattgtcggcctgc aaccggaagagggcagcagcattcccggcattcgccgctggcctacggaatatctgccggggattttcaacgcttctctggtggatgaggtgctggatattc atcagcgcgatgcggaaaacaccatgcgcgaactggcggtgcgggaaggaatattctgtggcgtcagctccggcggcgcggttgccggagcactgcg ggtggcaaaagctaaccctgacgcggtggtggtggcgatcatctgcgatcgtggcgatcgctacctttctaccggggtgtttggggaagagcattttagcca gggggcggggatttaa

Sequência no4 (ftsA) atgatcaaggcgacggacagaaaactggtagtaggactggagattggtaccgcgaaggttgccgctttagtaggggaagttctgcccgacggtatggtc aatatcattggcgtgggcagctgcccgtcgcgtggtatggataaaggcggggtgaacgacctcgaatccgtggtcaagtgcgtacaacgcgccattgacc aggcagaattgatggcagattgtcagatctcttcggtatatctggcgctttctggtaagcacatcagctgccagaatgaaattggtatggtgcctatttctgaag aagaagtgacgcaagaagatgtggaaaacgtcgtccataccgcgaaatcggtgcgtgtgcgcgatgagcatcgtgtgctgcatgtgatcccgcaagagt atgcgattgactatcaggaagggatcaagaatccggtaggactttcgggcgtgcggatgcaggcaaaagtgcacctgatcacatgtcacaacgatatgg cgaaaaacatcgtcaaagcggttgaacgttgtgggctgaaagttgaccaactgatatttgccggactggcatcaagttattcggtattgacggaagatgaa cgtgaactgggtgtctgcgtcgtcgatatcggtggtggtacaatggatatcgccgtttataccggtggggcattgcgccacactaaggtaattccttatgctgg caatgtcgtgaccagtgatatcgcttacgcctttggcacgccgccaagcgacgccgaagcgattaaagttcgccacggttgtgcgctgggttccatcgttgg aaaagatgagagcgtggaagtgccgagcgtaggtggtcgtccgccacggagtctgcaacgtcagacactggcagaggtgatcgagccgcgctatacc gagctgctcaacctggtcaacgaagagatattgcagttgcaggaaaagcttcgccaacaaggggttaaacatcacctggcggcaggcattgtattaacc ggtggcgcagcgcagatcgaaggtcttgcagcctgtgctcagcgcgtgtttcatacgcaagtgcgtatcggcgcgccgctgaacattaccggtttaacgga ttatgctcaggagccgtattattcgacggcggtgggattgcttcactatgggaaagagtcacatcttaacggtgaagctgaagtagaaaaacgtgttacagc atcagttggctcgtggatcaagcgactcaatagttggctgcgaaaagagttttaaSequence No. 4 (FTSA) atgatcaaggcgacggacagaaaactggtagtaggactggagattggtaccgcgaaggttgccgctttagtaggggaagttctgcccgacggtatggtc aatatcattggcgtgggcagctgcccgtcgcgtggtatggataaaggcggggtgaacgacctcgaatccgtggtcaagtgcgtacaacgcgccattgacc aggcagaattgatggcagattgtcagatctcttcggtatatctggcgctttctggtaagcacatcagctgccagaatgaaattggtatggtgcctatttctgaag aagaagtgacgcaagaagatgtggaaaacgtcgtccataccgcgaaatcggtgcgtgtgcgcgatgagcatcgtgtgctgcatgtgatcccgcaagagt atgcgattgactatcaggaagggatcaagaatccggtaggactttcgggcgtgcggatgcaggcaaaagtgcacctgatcacatgtcacaacgatatgg cgaaaaacatcgtcaaagcggttgaacgttgtgggctgaaagttgaccaactgatatttgccggactggcatcaagttattcggtattgacggaagatgaa cgtgaactgggtgtctgcgtcgtcgatatcggtggtggtacaatggatatcgccgtttataccggtggggcattgcgccacactaaggtaattccttatgctgg caatgtcgtgaccagtgatatcgcttacgcctttggcacgccgccaagcgacgccgaagcgattaaagttcgccacggttgtgcgctgggttccatcgttgg aaaagatgagagcgtggaagtgccgagcgtaggtggtcgtccgccacggagtctgcaacgtcagacactggcagaggtgatcgagccgcgctatacc gagctgctcaacctggtcaacgaagagatattgcagttgcaggaaaagcttcgccaacaag gggttaaacatcacctggcggcaggcattgtattaacc ggtggcgcagcgcagatcgaaggtcttgcagcctgtgctcagcgcgtgtttcatacgcaagtgcgtatcggcgcgccgctgaacattaccggtttaacgga ttatgctcaggagccgtattattcgacggcggtgggattgcttcactatgggaaagagtcacatcttaacggtgaagctgaagtagaaaaacgtgttacagc atcagttggctcgtggatcaagcgactcaatagttggctgcgaaaagagttttaa

Sequência no5 (ftsZ) atgtttgaaccaatggaacttaccaatgacgcggtgattaaagtcatcggcgtcggcggcggcggcggtaatgctgttgaacacatggtgcgcgagcgca ttgaaggtgttgaatttttcgcggtaaataccgatgcacaagcgctgcgtaaaacagcggttggacagacgattcaaatcggtagcggtatcaccaaagga ctgggcgctggcgctaatccagaagttggccgcaatgcggctgatgaggatcgcgatgcattgcgtgcggcgctggaaggtgcagacatggtctttattgc tgcgggtatgggtggtggtaccggtacaggtgcagcaccagtcgtcgctgaagtggcaaaagatttgggtatcctgaccgttgctgtcgtcactaagcctttc aactttgaaggcaagaagcgtatggcattcgcggagcaggggatcactgaactgtccaagcatgtggactctctgatcactatcccgaacgacaaactgc tgaaagttctgggccgcggtatctccctgctggatgcgtttggcgcagcgaacgatgtactgaaaggcgctgtgcaaggtatcgctgaactgattactcgtcc gggtttgatgaacgtggactttgcagacgtacgcaccgtaatgtctgagatgggctacgcaatgatgggttctggcgtggcgagcggtgaagaccgtgcgg aagaagctgctgaaatggctatctcttctccgctgctggaagatatcgacctgtctggcgcgcgcggcgtgctggttaacatcacggcgggcttcgacctgc gtctggatgagttcgaaacggtaggtaacaccatccgtgcatttgcttccgacaacgcgactgtggttatcggtacttctcttgacccggatatgaatgacgag ctgcgcgtaaccgttgttgcgacaggtatcggcatggacaaacgtcctgaaatcactctggtgaccaataagcaggttcagcagccagtgatggatcgcta ccagcagcatgggatggctccgctgacccaggagcagaagccggttgctaaagtcgtgaatgacaatgcgccgcaaactgcgaaagagccggattat ctggatatcccagcattcctgcgtaagcaagctgattaaFollowing paragraph 5 (FtsZ) atgtttgaaccaatggaacttaccaatgacgcggtgattaaagtcatcggcgtcggcggcggcggcggtaatgctgttgaacacatggtgcgcgagcgca ttgaaggtgttgaatttttcgcggtaaataccgatgcacaagcgctgcgtaaaacagcggttggacagacgattcaaatcggtagcggtatcaccaaagga ctgggcgctggcgctaatccagaagttggccgcaatgcggctgatgaggatcgcgatgcattgcgtgcggcgctggaaggtgcagacatggtctttattgc tgcgggtatgggtggtggtaccggtacaggtgcagcaccagtcgtcgctgaagtggcaaaagatttgggtatcctgaccgttgctgtcgtcactaagcctttc aactttgaaggcaagaagcgtatggcattcgcggagcaggggatcactgaactgtccaagcatgtggactctctgatcactatcccgaacgacaaactgc tgaaagttctgggccgcggtatctccctgctggatgcgtttggcgcagcgaacgatgtactgaaaggcgctgtgcaaggtatcgctgaactgattactcgtcc gggtttgatgaacgtggactttgcagacgtacgcaccgtaatgtctgagatgggctacgcaatgatgggttctggcgtggcgagcggtgaagaccgtgcgg aagaagctgctgaaatggctatctcttctccgctgctggaagatatcgacctgtctggcgcgcgcggcgtgctggttaacatcacggcgggcttcgacctgc gtctggatgagttcgaaacggtaggtaacaccatccgtgcatttgcttccgacaacgcgactgtggttatcggtacttctcttgacccggatatgaatgacgag ctgcgcgtaaccgttgttgcgacaggtatcggcatggacaaacgtcctgaaa tcactctggtgaccaataagcaggttcagcagccagtgatggatcgcta ccagcagcatgggatggctccgctgacccaggagcagaagccggttgctaaagtcgtgaatgacaatgcgccgcaaactgcgaaagagccgtcatgatgatcatgatgatcatgatgatcatgatgatgatgatgatgatgatgatgatgatgatgg

Sequência no6 (glpF) atgagtcaaacatcaaccttgaaaggccagtgcattgctgaatttctcggtaccgggttgttgattttcttcggtgtgggttgcgttgcagcactaaaagtcgctg gtgcgtcttttggtcagtgggaaatcagtgtcatttggggactgggggtggcaatggccatctacctgaccgcaggggtttccggcgcgcatcttaatcccgct gttaccattgcattgtggctgtttgcctgtttcgacaagcgcaaagttattccttttatcgtttcacaagttgccggcgctttctgtgctgcggctttagtttacgggcttt actacaatttatttttcgacttcgagcagactcatcacattgttcgcggcagcgttgaaagtgttgatctggctggcactttctctacttaccctaatcctcatatca attttgtgcaggctttcgcagttgagatggtgattaccgctattctgatggggctgatcctggcgttaacggacgatggcaacggtgtaccacgcggccctttgFollowing paragraph 6 (glpF) atgagtcaaacatcaaccttgaaaggccagtgcattgctgaatttctcggtaccgggttgttgattttcttcggtgtgggttgcgttgcagcactaaaagtcgctg gtgcgtcttttggtcagtgggaaatcagtgtcatttggggactgggggtggcaatggccatctacctgaccgcaggggtttccggcgcgcatcttaatcccgct gttaccattgcattgtggctgtttgcctgtttcgacaagcgcaaagttattccttttatcgtttcacaagttgccggcgctttctgtgctgcggctttagtttacgggcttt actacaatttatttttcgacttcgagcagactcatcacattgttcgcggcagcgttgaaagtgttgatctggctggcactttctctacttaccctaatcctcatatca attttgtgcaggctttcgcagttgagatggtgattaccgctattctgatggggctgatcctggcgttaacggacgatggcaacggtgtaccacgcggccctttg

Petição 870180128975, de 11/09/2018, pág. 40/52Petition 870180128975, of 9/11/2018, p. 40/52

I 35 gctcccttgctgattggtctactgattgcggtcattggcgcatctatgggcccattgacaggttttgccatgaacccagcgcgtgacttcggtccgaaagtctttg cctggctggcgggctggggcaatgtcgcctttaccggcggcagagacattccttacttcctggtgccgcttttcggccctatcgttggcgcgattgtaggtgcat ttgcctaccgcaaactgattggtcgccatttgccttgcgatatctgtgttgtggaagaaaaggaaaccacaactccttcagaacaaaaagcttcgctgtaaR 35 gctcccttgctgattggtctactgattgcggtcattggcgcatctatgggcccattgacaggttttgccatgaacccagcgcgtgacttcggtccgaaagtctttg cctggctggcgggctggggcaatgtcgcctttaccggcggcagagacattccttacttcctggtgccgcttttcggccctatcgttggcgcgattgtaggtgcat ttgcctaccgcaaactgattggtcgccatttgccttgcgatatctgtgttgtggaagaaaaggaaaccacaactccttcagaacaaaaagcttcgctgtaa

Sequência no7 (glpKfd) atgactgaaaaaaaatatatcgttgcgctcgaccagggcaccaccagctcccgcgcggtcgtaatggatcacgatgccaatatcattagcgtgtcgcagc gcgaatttgagcaaatctacccaaaaccaggttgggtagaacacgacccaatggaaatctgggccacccaaagctccacgctggtagaagtgctggcg aaagccgatatcagttccgatcaaattgcagctatcggtattacgaaccagcgtgaaaccactattgtctgggaaaaagaaaccggcaagcctatctata acgccattgtctggcagtgccgtcgtaccgcagaaatctgcgagcatttaaaacgtgacggtttagaagattatatccgcagcaataccggtctggtgattg acccgtacttttctggcaccaaagtgaagtggattctcgaccatgtggaaggctctcgcgagcgtgcacgtcgtggtgaattgctgtttggtacggttgatacg tggcttatctggaaaatgactcagggccgtgtccatgtgaccgattacaccaacgcctctcgtaccatgttgttcaacatccataccctggactgggacgaca aaatgctggaagtgctggatattccgcgcgagatgctgccagaagtgcgtcgttcttccgaagtatacggtcagactaacattggcggcaaaggcggcac gcgtattccaatctccgggatcgccggtgaccagcaggccgcgctgtttggtcagttgtgcgtgaaagaagggatggcgaagaacacctatggcactggc tgctttatgctgatgaacactggcgagaaagcggtgaaatcagaaaacggcctgctgaccaccatcgcctgcggcccgactggcgaagtgaactatgcg ttggaaagtgcggtgtttatggcaggcgcatccattcagtggctgcgcgatgaaatgaagttgattaacgacgcctacgattccgaatatttcgccaccaaa gtgcaaaacaccaatggtgtgtatgtggttccggcatttaccgggctgggtgcgccgtactgggacccgtatgcgcgcggggcgattttcggtctgactcgtg gggtgaacgctaaccacattatacgcgcgacgctggagtctattgcttatcagacgcgtgacgtgctggaagcgatgcaggccgactctggtatccgtctg cacgccctgcgcgtggatggtggcgcagtagcaaacaatttcctgatgcagttccagtccgatattctcggcacccgcgttgagcgcccggaagtgcgcg aagtcaccgcattgggtgcggcctatctcgcaggcctggcggttggcttctggcagaacctcgacgagctgcaagagaaagcggtgattgagcgcgagtt ccgtccaggcatcgaaaccactgagcgtaattaccgttacgcaggctggaaaaaagcggttaaacgcgcgatggcgtgggaagaacacgacgaata aSequence No. 7 (glpK d) atgactgaaaaaaaatatatcgttgcgctcgaccagggcaccaccagctcccgcgcggtcgtaatggatcacgatgccaatatcattagcgtgtcgcagc gcgaatttgagcaaatctacccaaaaccaggttgggtagaacacgacccaatggaaatctgggccacccaaagctccacgctggtagaagtgctggcg aaagccgatatcagttccgatcaaattgcagctatcggtattacgaaccagcgtgaaaccactattgtctgggaaaaagaaaccggcaagcctatctata acgccattgtctggcagtgccgtcgtaccgcagaaatctgcgagcatttaaaacgtgacggtttagaagattatatccgcagcaataccggtctggtgattg acccgtacttttctggcaccaaagtgaagtggattctcgaccatgtggaaggctctcgcgagcgtgcacgtcgtggtgaattgctgtttggtacggttgatacg tggcttatctggaaaatgactcagggccgtgtccatgtgaccgattacaccaacgcctctcgtaccatgttgttcaacatccataccctggactgggacgaca aaatgctggaagtgctggatattccgcgcgagatgctgccagaagtgcgtcgttcttccgaagtatacggtcagactaacattggcggcaaaggcggcac gcgtattccaatctccgggatcgccggtgaccagcaggccgcgctgtttggtcagttgtgcgtgaaagaagggatggcgaagaacacctatggcactggc tgctttatgctgatgaacactggcgagaaagcggtgaaatcagaaaacggcctgctgaccaccatcgcctgcggcccgactggcgaagtgaactatgcg ttggaaagtgcggtgtttatggcaggcgcatccattcagtggctgcgcgatgaaatg aagttgattaacgacgcctacgattccgaatatttcgccaccaaa gtgcaaaacaccaatggtgtgtatgtggttccggcatttaccgggctgggtgcgccgtactgggacccgtatgcgcgcggggcgattttcggtctgactcgtg gggtgaacgctaaccacattatacgcgcgacgctggagtctattgcttatcagacgcgtgacgtgctggaagcgatgcaggccgactctggtatccgtctg cacgccctgcgcgtggatggtggcgcagtagcaaacaatttcctgatgcagttccagtccgatattctcggcacccgcgttgagcgcccggaagtgcgcg aagtcaccgcattgggtgcggcctatctcgcaggcctggcggttggcttctggcagaacctcgacgagctgcaagagaaagcggtgattgagcgcgagtt the ccgtccaggcatcgaaaccactgagcgtaattaccgttacgcaggctggaaaaaagcggttaaacgcgcgatggcgtgggaagaacacgacgaata

Sequência no8 (glyA) atgttaaagcgtgaaatgaacattgccgattatgatgccgaactgtggcaggctatggagcaggaaaaagtacgtcaggaagagcacatcgaactgatc gcctccgaaaactacaccagcccgcgcgtaatgcaggcgcagggttctcagctgaccaacaaatatgctgaaggttatccgggcaaacgctactacgg cggttgcgagtatgttgatatcgttgaacaactggcgatcgatcgtgcgaaagaactgttcggcgctgactacgctaacgtccagccgcactccggctccca ggctaactttgcggtctacaccgcgctgctggaaccaggtgataccgttctgggtatgaacctggcgcatggcggtcacctgactcacggttctccggttaac ttctccggtaaactgtacaacatcgttccttacggtatcgatgctaccggtcatatcgactacgccgatctggaaaaacaagccaaagaacacaagccga aaatgattatcggtggtttctctgcatattccggcgtggtggactgggcgaaaatgcgtgaaatcgctgacagcatcggtgcttacctgttcgttgatatggcgc acgttgcgggcctggttgctgctggcgtctacccgaacccggttcctcatgctcacgttgttactaccaccactcacaaaaccctggcgggtccgcgcggcg gcctgatcctggcgaaaggtggtagcgaagagctgtacaaaaaactgaactctgccgttttccctggtggtcagggcggtccgttgatgcacgtaatcgcc ggtaaagcggttgctctgaaagaagcgatggagcctgagttcaaaacttaccagcagcaggtcgctaaaaacgctaaagcgatggtagaagtgttcctc gagcgcggctacaaagtggtttccggcggcactgataaccacctgttcctggttgatctggttgataaaaacctgaccggtaaagaagcagacgccgctct gggccgtgctaacatcaccgtcaacaaaaacagcgtaccgaacgatccgaagagcccgtttgtgacctccggtattcgtgtaggtactccggcgattacc cgtcgcggctttaaagaagccgaagcgaaagaactggctggctggatgtgtgacgtgctggacagcatcaatgatgaagccgttatcgagcgcatcaaa ggtaaagttctcgacatctgcgcacgttacccggtttacgcataaFollowing paragraph 8 (glyA) atgttaaagcgtgaaatgaacattgccgattatgatgccgaactgtggcaggctatggagcaggaaaaagtacgtcaggaagagcacatcgaactgatc gcctccgaaaactacaccagcccgcgcgtaatgcaggcgcagggttctcagctgaccaacaaatatgctgaaggttatccgggcaaacgctactacgg cggttgcgagtatgttgatatcgttgaacaactggcgatcgatcgtgcgaaagaactgttcggcgctgactacgctaacgtccagccgcactccggctccca ggctaactttgcggtctacaccgcgctgctggaaccaggtgataccgttctgggtatgaacctggcgcatggcggtcacctgactcacggttctccggttaac ttctccggtaaactgtacaacatcgttccttacggtatcgatgctaccggtcatatcgactacgccgatctggaaaaacaagccaaagaacacaagccga aaatgattatcggtggtttctctgcatattccggcgtggtggactgggcgaaaatgcgtgaaatcgctgacagcatcggtgcttacctgttcgttgatatggcgc acgttgcgggcctggttgctgctggcgtctacccgaacccggttcctcatgctcacgttgttactaccaccactcacaaaaccctggcgggtccgcgcggcg gcctgatcctggcgaaaggtggtagcgaagagctgtacaaaaaactgaactctgccgttttccctggtggtcagggcggtccgttgatgcacgtaatcgcc ggtaaagcggttgctctgaaagaagcgatggagcctgagttcaaaacttaccagcagcaggtcgctaaaaacgctaaagcgatggtagaagtgttcctc gagcgcggctacaaagtggtttccggcggcactgataaccacctgttcctggttgatc tggttgataaaaacctgaccggtaaagaagcagacgccgctct gggccgtgctaacatcaccgtcaacaaaaacagcgtaccgaacgatccgaagagcccgtttgtgacctccggtattcgtgtaggtactccggcgattacc cgtcgcggctttaaagaagccgaagcgaaagaactggctggctggatgtgtgacgtgctggacagcatcaatgatgaagccgttatcgagcgcatcaaa ggtaaagttctcgacatctgcgcacgttacccggtttacgcataa

Sequência no9 (malY) atgttcgatttttcaaaggtcgtggatcgtcatggcacatggtgtacacagtgggattatgtcgctgaccgtttcggcactgctgacctgttaccgttcacgatttc agacatggattttgccactgccccctgcattatcgaggcgctgaatcagcgcctgatgcacggcgtatttggctacagccgctggaaaaacgatgagtttct cgcggctattgcccactggttttccacccagcattacaccgccatcgattctcagacggtggtgtatggcccttctgtcatctatatggtttcagaactgattcgtc agtggtctgaaacaggtgaaggcgtggtgatccacacacccgcctatgacgcattttacaaggccattgaaggtaaccagcgcacagtaatgcccgttgc tttagagaagcaggctgatggttggttttgcgatatgggcaagttggaagccgtgttggcgaaaccagaatgtaaaattatgctcctgtgtagcccacagaat cctaccgggaaagtgtggacgtgcgatgagctggagatcatggctgacctgtgcgagcgtcatggtgtgcgggttatttccgatgaaatccatatggatatg gtttggggcgagcagccgcatattccctggagtaatgtggctcgcggagactgggcgttgctaacgtcgggctcgaaaagtttcaatattcccgccctgacc ggtgcttacgggattatagaaaatagcagtagccgcgatgcctatttatcggcactgaaaggccgtgatgggctttcttccccttcggtactggcgttaactgc ccatatcgccgcctatcagcaaggcgcgccgtggctggatgccttacgcatctatctgaaagataacctgacgtatatcgcagataaaatgaacgccgcgt ttcctgaactcaactggcagatcccacaatccacttatctggcatggcttgatttacgtccgttgaatattgacgacaacgcgttgcaaaaagcacttatcgaa caagaaaaagtcgcgatcatgccggggtatacctacggtgaagaaggtcgtggttttgtccgtctcaatgccggctgcccacgttcgaaactggaaaaag gtgtggctggattaattaacgccatccgcgctgttcgttaaFollowing paragraph 9 (Maly) atgttcgatttttcaaaggtcgtggatcgtcatggcacatggtgtacacagtgggattatgtcgctgaccgtttcggcactgctgacctgttaccgttcacgatttc agacatggattttgccactgccccctgcattatcgaggcgctgaatcagcgcctgatgcacggcgtatttggctacagccgctggaaaaacgatgagtttct cgcggctattgcccactggttttccacccagcattacaccgccatcgattctcagacggtggtgtatggcccttctgtcatctatatggtttcagaactgattcgtc agtggtctgaaacaggtgaaggcgtggtgatccacacacccgcctatgacgcattttacaaggccattgaaggtaaccagcgcacagtaatgcccgttgc tttagagaagcaggctgatggttggttttgcgatatgggcaagttggaagccgtgttggcgaaaccagaatgtaaaattatgctcctgtgtagcccacagaat cctaccgggaaagtgtggacgtgcgatgagctggagatcatggctgacctgtgcgagcgtcatggtgtgcgggttatttccgatgaaatccatatggatatg gtttggggcgagcagccgcatattccctggagtaatgtggctcgcggagactgggcgttgctaacgtcgggctcgaaaagtttcaatattcccgccctgacc ggtgcttacgggattatagaaaatagcagtagccgcgatgcctatttatcggcactgaaaggccgtgatgggctttcttccccttcggtactggcgttaactgc ccatatcgccgcctatcagcaaggcgcgccgtggctggatgccttacgcatctatctgaaagataacctgacgtatatcgcagataaaatgaacgccgcgt ttcctgaactcaactggcagatcccacaatccacttatc tggcatggcttgatttacgtccgttgaatattgacgacaacgcgttgcaaaaagcacttatcgaa caagaaaaagtcgcgatcatgccggggtatacctacggtgaagaaggtcgtggttttgtccgtctcaatgccggctgcccacgttcgaaactggaaaaag gtgtggctggattaattaacgccatccgcgctgttcgttaa

Sequência no10 (metAfd) atgccgattcgtgtgccggacgagctacccgccgtcaatttcttgcgtgaagaaaacgtctttgtgatgacaacttcttgtgcgtctggtcaggaaattcgtcca cttaaggttctgatccttaacctgatgccgaagaagattgaaactgaaaatcagtttctgcgcctgctttcaaactcacctttgcaggtcgatattcagctgttgc gcatcgattcccgtgaatcgcgcaacacgcccgcagagcatctgaacaacttctactgtaactttgaagatattcaggatcagaactttgacggtttgattgta actggtgcgccgctgggcctggtggagtttaatgatgtcgcttactggccgcagatcaaacaggtgctggagtggtcgaaagatcacgtcacctcgacgct gtttgtctgctgggcggtacaggccgcgctcaatatcctctacggcattcctaagcaaactcgcaccgaaaaactctctggcgtttacgagcatcatattctcc atcctcatgcgcttctgacgcgtggctttgatgattcattcctggcaccgcattcgcgctatgctgactttccggcagcgttgattcgtgattacaccgatctggaa attctggcagagacggaagaaggggatgcatatctgtttgccagtaaagataagcgcattgcctttgtgacgggccatcccgaatatgatgcgcaaacgctSequence No. 10 (Goal fd) atgccgattcgtgtgccggacgagctacccgccgtcaatttcttgcgtgaagaaaacgtctttgtgatgacaacttcttgtgcgtctggtcaggaaattcgtcca cttaaggttctgatccttaacctgatgccgaagaagattgaaactgaaaatcagtttctgcgcctgctttcaaactcacctttgcaggtcgatattcagctgttgc gcatcgattcccgtgaatcgcgcaacacgcccgcagagcatctgaacaacttctactgtaactttgaagatattcaggatcagaactttgacggtttgattgta actggtgcgccgctgggcctggtggagtttaatgatgtcgcttactggccgcagatcaaacaggtgctggagtggtcgaaagatcacgtcacctcgacgct gtttgtctgctgggcggtacaggccgcgctcaatatcctctacggcattcctaagcaaactcgcaccgaaaaactctctggcgtttacgagcatcatattctcc atcctcatgcgcttctgacgcgtggctttgatgattcattcctggcaccgcattcgcgctatgctgactttccggcagcgttgattcgtgattacaccgatctggaa attctggcagagacggaagaaggggatgcatatctgtttgccagtaaagataagcgcattgcctttgtgacgggccatcccgaatatgatgcgcaaacgct

Petição 870180128975, de 11/09/2018, pág. 41/52Petition 870180128975, of 9/11/2018, p. 41/52

I 35 ggcgcaggaatttttccgcgatgtggaagccggactagacccggatgtaccgtataactatttcccgcacaatgatccgcaaaatacaccgcgagcgag ctggcgtagtcacggtaatttactgtttaccaactggctcaactattacgtctaccagagcacgctatacgatctacggcacatgaatccaacgctggattaa35 I

Sequência no 11 (metB) atgacgcgtaaacaggccaccatcgcagtgcgtagcgggttaaatgacgacgaacagtatggttgcgttgtcccaccgatccatctttccagcacctataa ctttaccggatttaatgaaccgcgcgcgcatgattactcgcgtcgcggcaacccaacgcgcgatgtggttcagcgtgcgctggcagaactggaaggtggt gctggtgcagtacttactaataccggcatgtccgcgattcacctggtaacgaccgtctttttgaaacctggcgatctgctggttgcgccgcacgactgctacgg cggtagctatcgcctgttcgacagtctggcgaaacgcggttgctatcgcgtgttgtttgttgatcaaggcgatgaacaggcattacgggcagcgctggcaga aaaacccaaactggtactggtagaaagcccaagtaatccattgttacgcgtcgtggatattgcgaaaatctgccatctggcaagggaagtcggggcggtg agcgtggtggataacaccttcttaagcccggcattacaaaatccgctggcattaggtgccgatctggtgttgcattcatgcacgaaatatctgaacggtcact cagacgtagtggccggcgtggtgattgctaaagacccggacgttgtcactgaactggcctggtgggcaaacaatattggcgtgacgggcggcgcgtttga cagctatctgctgctacgtgggttgcgaacgctggtgccgcgtatggagctggcgcagcgcaacgcgcaggcgattgtgaaatacctgcaaacccagcc gttggtgaaaaaactgtatcacccgtcgttgccggaaaatcaggggcatgaaattgccgcgcgccagcaaaaaggctttggcgcaatgttgagttttgaac tggatggcgatgagcagacgctgcgtcgtttcctgggcgggctgtcgttgtttacgctggcggaatcattagggggagtggaaagtttaatctctcacgccgc aaccatgacacatgcaggcatggcaccagaagcgcgtgctgccgccgggatctccgagacgctgctgcgtatctccaccggtattgaagatggcgaag atttaattgccgacctggaaaatggcttccgggctgcaaacaaggggtaaFollowing paragraph 11 (metB) atgacgcgtaaacaggccaccatcgcagtgcgtagcgggttaaatgacgacgaacagtatggttgcgttgtcccaccgatccatctttccagcacctataa ctttaccggatttaatgaaccgcgcgcgcatgattactcgcgtcgcggcaacccaacgcgcgatgtggttcagcgtgcgctggcagaactggaaggtggt gctggtgcagtacttactaataccggcatgtccgcgattcacctggtaacgaccgtctttttgaaacctggcgatctgctggttgcgccgcacgactgctacgg cggtagctatcgcctgttcgacagtctggcgaaacgcggttgctatcgcgtgttgtttgttgatcaaggcgatgaacaggcattacgggcagcgctggcaga aaaacccaaactggtactggtagaaagcccaagtaatccattgttacgcgtcgtggatattgcgaaaatctgccatctggcaagggaagtcggggcggtg agcgtggtggataacaccttcttaagcccggcattacaaaatccgctggcattaggtgccgatctggtgttgcattcatgcacgaaatatctgaacggtcact cagacgtagtggccggcgtggtgattgctaaagacccggacgttgtcactgaactggcctggtgggcaaacaatattggcgtgacgggcggcgcgtttga cagctatctgctgctacgtgggttgcgaacgctggtgccgcgtatggagctggcgcagcgcaacgcgcaggcgattgtgaaatacctgcaaacccagcc gttggtgaaaaaactgtatcacccgtcgttgccggaaaatcaggggcatgaaattgccgcgcgccagcaaaaaggctttggcgcaatgttgagttttgaac tggatggcgatgagcagacgctgcgtcgtttcctgggcgggctgtcgttgtttacg ctggcggaatcattagggggagtggaaagtttaatctctcacgccgc aaccatgacacatatccaggcatggcaccagaagcgcgtgctgccgccgggatctccgagacgctgctgcgtatctccacggggaaatggga

Sequência no 12 (metC) atggcggacaaaaagcttgatactcaactggtgaatgcaggacgcagcaaaaaatacactctcggcgcggtaaatagcgtgattcagcgcgcttcttcgc tggtctttgacagtgtagaagccaaaaaacacgcgacacgtaatcgcgccaatggagagttgttctatggacggcgcggaacgttaacccatttctccttac aacaagcgatgtgtgaactggaaggtggcgcaggctgcgtgctatttccctgcggggcggcagcggttgctaattccattcttgcttttatcgaacagggcg atcatgtgttgatgaccaacaccgcctatgaaccgagtcaggatttctgtagcaaaatcctcagcaaactgggcgtaacgacatcatggtttgatccgctgat tggtgccgatatcgttaagcatctgcaaccaaacactaaaatcgtgtttctggaatcgccaggctccatcaccatggaagtccacgacgttccggcgattgtt gccgccgtacgcagtgtggtgccggatgccatcattatgatcgacaacacctgggcagccggtgtgctgtttaaggcgctggattttggcatcgatgtttctatt caagccgccaccaaatatctggttgggcattcagatgcgatgattggcactgccgtgtgcaatgcccgttgctgggagcagctacgggaaaatgcctatct gatgggccagatggtcgatgccgataccgcctatataaccagccgtggcctgcgcacattaggtgtgcgtttgcgtcaacatcatgaaagcagtctgaaag tggctgaatggctggcagaacatccgcaagttgcgcgagttaaccaccctgctctgcctggcagtaaaggtcacgaattttggaaacgagactttacaggc agcagcgggctattttcctttgtgcttaagaaaaaactcaataatgaagagctggcgaactatctggataacttcagtttattcagcatggcctactcgtgggg cgggtatgaatcgttgatcctggcaaatcaaccagaacatatcgccgccattcgcccacaaggcgagatcgattttagcgggaccttgattcgcctgcatat tggtctggaagatgtcgacgatctgattgccgatctggacgccggttttgcgcgaattgtataaFollowing paragraph 12 (metC) atggcggacaaaaagcttgatactcaactggtgaatgcaggacgcagcaaaaaatacactctcggcgcggtaaatagcgtgattcagcgcgcttcttcgc tggtctttgacagtgtagaagccaaaaaacacgcgacacgtaatcgcgccaatggagagttgttctatggacggcgcggaacgttaacccatttctccttac aacaagcgatgtgtgaactggaaggtggcgcaggctgcgtgctatttccctgcggggcggcagcggttgctaattccattcttgcttttatcgaacagggcg atcatgtgttgatgaccaacaccgcctatgaaccgagtcaggatttctgtagcaaaatcctcagcaaactgggcgtaacgacatcatggtttgatccgctgat tggtgccgatatcgttaagcatctgcaaccaaacactaaaatcgtgtttctggaatcgccaggctccatcaccatggaagtccacgacgttccggcgattgtt gccgccgtacgcagtgtggtgccggatgccatcattatgatcgacaacacctgggcagccggtgtgctgtttaaggcgctggattttggcatcgatgtttctatt caagccgccaccaaatatctggttgggcattcagatgcgatgattggcactgccgtgtgcaatgcccgttgctgggagcagctacgggaaaatgcctatct gatgggccagatggtcgatgccgataccgcctatataaccagccgtggcctgcgcacattaggtgtgcgtttgcgtcaacatcatgaaagcagtctgaaag tggctgaatggctggcagaacatccgcaagttgcgcgagttaaccaccctgctctgcctggcagtaaaggtcacgaattttggaaacgagactttacaggc agcagcgggctattttcctttgtgcttaagaaaaaactcaataatgaa gagctggcgaactatctggataacttcagtttattcagcatggcctactcgtgggg cgggtatgaatcgttgatcctggcaaatcaaccagaacatatcgccgccattcgcccacaaggcgagatcgattttagcgggaccttgattcgcctgcatat tggtctggaagatgtcgacgatctgattgccgatctggacgccggttttgcgcgaattgtataa

Sequência no 13 (metF) atgagcttttttcacgccagccagcgggatgccctgaatcagagcctggcagaagtccaggggcagattaacgtttcgttcgagtttttcccgccgcgtacca gtgaaatggagcagaccctgtggaactccatcgatcgccttagcagcctgaaaccgaagtttgtatcggtgacctatggcgcgaactccggcgagcgcg accgtacgcacagcattattaaaggcattaaagatcgcactggtctggaagcggcaccgcatcttacttgcattgatgcgacgcccgacgagctgcgcac cattgcacgcgactactggaataacggtattcgtcatatcgtggcgctgcgtggcgatctgccgccgggaagtggtaagccagaaatgtatgcttctgacct ggtgacgctgttaaaagaagtggcagatttcgatatctccgtggcggcgtatccggaagttcacccggaagcaaaaagcgctcaggcggatttgcttaatc tgaaacgcaaagtggatgccggagccaaccgcgcgattactcagttcttcttcgatgtcgaaagctacctgcgttttcgtgaccgctgtgtatcggcgggcat tgatgtggaaattattccgggaattttgccggtatctaactttaaacaggcgaagaaatttgccgatatgaccaacgtgcgtattccggcgtggatggcgcaa atgttcgacggtctggatgatgatgccgaaacccgcaaactggttggcgcgaatattgccatggatatggtgaagattttaagccgtgaaggagtgaaaga tttccacttctatacgcttaaccgtgctgaaatgagttacgcgatttgccatacgctgggggttcgacctggtttataaFollowing paragraph 13 (metformin) atgagcttttttcacgccagccagcgggatgccctgaatcagagcctggcagaagtccaggggcagattaacgtttcgttcgagtttttcccgccgcgtacca gtgaaatggagcagaccctgtggaactccatcgatcgccttagcagcctgaaaccgaagtttgtatcggtgacctatggcgcgaactccggcgagcgcg accgtacgcacagcattattaaaggcattaaagatcgcactggtctggaagcggcaccgcatcttacttgcattgatgcgacgcccgacgagctgcgcac cattgcacgcgactactggaataacggtattcgtcatatcgtggcgctgcgtggcgatctgccgccgggaagtggtaagccagaaatgtatgcttctgacct ggtgacgctgttaaaagaagtggcagatttcgatatctccgtggcggcgtatccggaagttcacccggaagcaaaaagcgctcaggcggatttgcttaatc tgaaacgcaaagtggatgccggagccaaccgcgcgattactcagttcttcttcgatgtcgaaagctacctgcgttttcgtgaccgctgtgtatcggcgggcat tgatgtggaaattattccgggaattttgccggtatctaactttaaacaggcgaagaaatttgccgatatgaccaacgtgcgtattccggcgtggatggcgcaa atgttcgacggtctggatgatgatgccgaaacccgcaaactggttggcgcgaatattgccatggatatggtgaagattttaagccgtgaaggagtgaaaga tttccacttctatacgcttaaccgtgctgaaatgagttacgcgatttgccatacgctgggggttcgacctggtttataa

Sequência no 14 (metH) gtgagcagcaaagtggaacaactgcgtgcgcagttaaatgaacgtattctggtgctggacggcggtatgggcaccatgatccagagttatcgactgaacg aagccgattttcgtggtgaacgctttgccgactggccatgcgacctcaaaggcaacaacgacctgctggtactcagtaaaccggaagtgatcgccgctatc cacaacgcctactttgaagcgggcgcggatatcatcgaaaccaacaccttcaactccacgaccattgcgatggcggattaccagatggaatccctgtcgg cggaaatcaactttgcggcggcgaaactggcgcgagcttgtgctgacgagtggaccgcgcgcacgccagagaaaccgcgctacgttgccggtgttctcg gcccgaccaaccgcacggcgtctatttctccggacgtcaacgatccggcatttcgtaatatcacttttgacgggctggtggcggcttatcgagagtccacca aagcgctggtggaaggtggcgcggatctgatcctgattgaaaccgttttcgacacccttaacgccaaagcggcggtatttgcggtgaaaacggagtttgaa gcgctgggcgttgagctgccgattatgatctccggcaccatcaccgacgcctccgggcgcacgctctccgggcagaccaccgaagcattttacaactcatt gcgccacgccgaagctctgacctttggcctgaactgtgcgctggggcccgatgaactgcgccagtacgtgcaggagctgtcacggattgcggaatgctac gtcaccgcgcacccgaacgccgggctacccaacgcctttggtgagtacgatctcgacgccgacacgatggcaaaacagatacgtgaatgggcgcaag cgggttttctcaatatcgtcggcggctgctgtggcaccacgccacaacatattgcagcgatgagtcgtgcagtagaaggattagcgccgcgcaaactgcc ggaaattcccgtagcctgccgtttgtccggcctggagccgctgaacattggcgaagatagcctgtttgtgaacgtgggtgaacgcaccaacgtcaccggtt ccgctaagttcaagcgcctgatcaaagaagagaaatacagcgaggcgctggatgtcgcgcgtcaacaggtggaaaacggcgcgcagattatcgatat caacatggatgaagggatgctcgatgccgaagcggcgatggtgcgttttctcaatctgattgccggtgaaccggatatcgctcgcgtgccgattatgatcga ctcctcaaaatgggacgtcattgaaaaaggtctgaagtgtatccagggcaaaggcattgttaactctatctcgatgaaagagggcgtcgatgcctttatccat cacgcgaaattgttgcgtcgctacggtgcggcagtggtggtaatggcctttgacgaacagggacaggccgatactcgcgcacggaaaatcgagatttgcc gtcgggcgtacaaaatcctcaccgaagaggttggcttcccgccagaagatatcatcttcgacccaaacatcttcgcggtcgcaactggcattgaagagca caacaactacgcgcaggactttatcggcgcgtgtgaagacatcaaacgcgaactgccgcacgcgctgatttccggcggcgtatctaacgtttctttctcgttcSequence No. 14 (meth) gtgagcagcaaagtggaacaactgcgtgcgcagttaaatgaacgtattctggtgctggacggcggtatgggcaccatgatccagagttatcgactgaacg aagccgattttcgtggtgaacgctttgccgactggccatgcgacctcaaaggcaacaacgacctgctggtactcagtaaaccggaagtgatcgccgctatc cacaacgcctactttgaagcgggcgcggatatcatcgaaaccaacaccttcaactccacgaccattgcgatggcggattaccagatggaatccctgtcgg cggaaatcaactttgcggcggcgaaactggcgcgagcttgtgctgacgagtggaccgcgcgcacgccagagaaaccgcgctacgttgccggtgttctcg gcccgaccaaccgcacggcgtctatttctccggacgtcaacgatccggcatttcgtaatatcacttttgacgggctggtggcggcttatcgagagtccacca aagcgctggtggaaggtggcgcggatctgatcctgattgaaaccgttttcgacacccttaacgccaaagcggcggtatttgcggtgaaaacggagtttgaa gcgctgggcgttgagctgccgattatgatctccggcaccatcaccgacgcctccgggcgcacgctctccgggcagaccaccgaagcattttacaactcatt gcgccacgccgaagctctgacctttggcctgaactgtgcgctggggcccgatgaactgcgccagtacgtgcaggagctgtcacggattgcggaatgctac gtcaccgcgcacccgaacgccgggctacccaacgcctttggtgagtacgatctcgacgccgacacgatggcaaaacagatacgtgaatgggcgcaag cgggttttctcaatatcgtcggcggctgctgtggcaccacgccacaacatattgcagcgatgagt cgtgcagtagaaggattagcgccgcgcaaactgcc ggaaattcccgtagcctgccgtttgtccggcctggagccgctgaacattggcgaagatagcctgtttgtgaacgtgggtgaacgcaccaacgtcaccggtt ccgctaagttcaagcgcctgatcaaagaagagaaatacagcgaggcgctggatgtcgcgcgtcaacaggtggaaaacggcgcgcagattatcgatat caacatggatgaagggatgctcgatgccgaagcggcgatggtgcgttttctcaatctgattgccggtgaaccggatatcgctcgcgtgccgattatgatcga ctcctcaaaatgggacgtcattgaaaaaggtctgaagtgtatccagggcaaaggcattgttaactctatctcgatgaaagagggcgtcgatgcctttatccat cacgcgaaattgttgcgtcgctacggtgcggcagtggtggtaatggcctttgacgaacagggacaggccgatactcgcgcacggaaaatcgagatttgcc gtcgggcgtacaaaatcctcaccgaagaggttggcttcccgccagaagatatcatcttcgacccaaacatcttcgcggtcgcaactggcattgaagagca caacaactacgcgcaggactttatcggcgcgtgtgaagacatcaaacgcgaactgccgcacgcgctgatttccggcggcgtatctaacgtttctttctcgttc

Petição 870180128975, de 11/09/2018, pág. 42/52Petition 870180128975, of 9/11/2018, p. 42/52

I 35 cgtggcaacgatccggtgcgcgaagccattcacgcagtgttcctctactacgctattcgcaatggcatggatatggggatcgtcaacgccgggcaactggc gatttacgacgacctacccgctgaactgcgcgacgcggtggaagatgtgattcttaatcgtcgcgacgatggcaccgagcgtttactggagcttgccgaga aatatcgcggcagcaaaaccgacgacaccgccaacgcccagcaggcggagtggcgctcgtgggaagtgaataaacgtctggaatactcgctggtca aaggcattaccgagtttatcgagcaggataccgaagaagcccgccagcaggctacgcgcccgattgaagtgattgaaggcccgttgatggacggcatg aatgtggtcggcgacctgtttggcgaagggaaaatgttcctgccacaggtggtcaaatcggcgcgcgtcatgaaacaggcggtggcctacctcgaaccgt ttattgaagccagcaaagagcagggcaaaaccaacggcaagatggtgatcgccaccgtgaagggcgacgtccacgacatcggtaaaaatatcgttgg tgtggtgctgcaatgtaacaactacgaaattgtcgatctcggcgttatggtgcctgcggaaaaaattctccgtaccgctaaagaagtgaatgctgatctgattg gcctttcggggcttatcacgccgtcgctggacgagatggttaacgtggcgaaagagatggagcgtcagggcttcactattccgttactgattggcggcgcga cgacctcaaaagcgcacacggcggtgaaaatcgagcagaactacagcggcccgacggtgtatgtgcagaatgcctcgcgtaccgttggtgtggtggcg gcgctgctttccgatacccagcgtgatgattttgtcgctcgtacccgcaaggagtacgaaaccgtacgtattcagcacgggcgcaagaaaccgcgcacac caccggtcacgctggaagcggcgcgcgataacgatttcgcttttgactggcaggcttacacgccgccggtggcgcaccgtctcggcgtgcaggaagtcg aagccagcatcgaaacgctgcgtaattacatcgactggacaccgttctttatgacctggtcgctggccgggaagtatccgcgcattctggaagatgaagtg gtgggcgttgaggcgcagcggctgtttaaagacgccaacgacatgctggataaattaagcgccgagaaaacgctgaatccgcgtggcgtggtgggcct gttcccggcaaaccgtgtgggcgatgacattgaaatctaccgtgacgaaacgcgtacccatgtgatcaacgtcagccaccatctgcgtcaacagaccga aaaaacaggcttcgctaactactgtctcgctgacttcgttgcgccgaagctttctggtaaagcagattacatcggcgcatttgccgtgactggcgggctggaa gaggacgcactggctgatgcctttgaagcgcagcacgatgattacaacaaaatcatggtgaaagcgcttgccgaccgtttagccgaagcctttgcggagt atctccatgagcgtgtgcgtaaagtctactggggctatgcgccgaacgagaacctcagcaacgaagagctgatccgcgaaaactaccagggcatccgt ccggcaccgggctatccggcctgcccggaacatacggaaaaagccaccatctgggagctgctggaagtggaaaaacacactggcatgaaactcaca gaatctttcgccatgtggcccggtgcatcggtttcgggttggtacttcagccacccggacagcaagtactacgctgtagcacaaattcagcgcgatcaggtt gaagattatgcccgccgtaaaggtatgagcgttaccgaagttgagcgctggctggcaccgaatctggggtatgacgcggactgaR 35 cgtggcaacgatccggtgcgcgaagccattcacgcagtgttcctctactacgctattcgcaatggcatggatatggggatcgtcaacgccgggcaactggc gatttacgacgacctacccgctgaactgcgcgacgcggtggaagatgtgattcttaatcgtcgcgacgatggcaccgagcgtttactggagcttgccgaga aatatcgcggcagcaaaaccgacgacaccgccaacgcccagcaggcggagtggcgctcgtgggaagtgaataaacgtctggaatactcgctggtca aaggcattaccgagtttatcgagcaggataccgaagaagcccgccagcaggctacgcgcccgattgaagtgattgaaggcccgttgatggacggcatg aatgtggtcggcgacctgtttggcgaagggaaaatgttcctgccacaggtggtcaaatcggcgcgcgtcatgaaacaggcggtggcctacctcgaaccgt ttattgaagccagcaaagagcagggcaaaaccaacggcaagatggtgatcgccaccgtgaagggcgacgtccacgacatcggtaaaaatatcgttgg tgtggtgctgcaatgtaacaactacgaaattgtcgatctcggcgttatggtgcctgcggaaaaaattctccgtaccgctaaagaagtgaatgctgatctgattg gcctttcggggcttatcacgccgtcgctggacgagatggttaacgtggcgaaagagatggagcgtcagggcttcactattccgttactgattggcggcgcga cgacctcaaaagcgcacacggcggtgaaaatcgagcagaactacagcggcccgacggtgtatgtgcagaatgcctcgcgtaccgttggtgtggtggcg gcgctgctttccgatacccagcgtgatgattttgtcgctcgtacccgcaaggagtacgaaaccgtacgtattcagcacgggcgcaagaa accgcgcacac caccggtcacgctggaagcggcgcgcgataacgatttcgcttttgactggcaggcttacacgccgccggtggcgcaccgtctcggcgtgcaggaagtcg aagccagcatcgaaacgctgcgtaattacatcgactggacaccgttctttatgacctggtcgctggccgggaagtatccgcgcattctggaagatgaagtg gtgggcgttgaggcgcagcggctgtttaaagacgccaacgacatgctggataaattaagcgccgagaaaacgctgaatccgcgtggcgtggtgggcct gttcccggcaaaccgtgtgggcgatgacattgaaatctaccgtgacgaaacgcgtacccatgtgatcaacgtcagccaccatctgcgtcaacagaccga aaaaacaggcttcgctaactactgtctcgctgacttcgttgcgccgaagctttctggtaaagcagattacatcggcgcatttgccgtgactggcgggctggaa gaggacgcactggctgatgcctttgaagcgcagcacgatgattacaacaaaatcatggtgaaagcgcttgccgaccgtttagccgaagcctttgcggagt atctccatgagcgtgtgcgtaaagtctactggggctatgcgccgaacgagaacctcagcaacgaagagctgatccgcgaaaactaccagggcatccgt ccggcaccgggctatccggcctgcccggaacatacggaaaaagccaccatctgggagctgctggaagtggaaaaacacactggcatgaaactcaca gaatctttcgccatgtggcccggtgcatcggtttcgggttggtacttcagccacccggacagcaagtactacgctgtagcacaaattcagcgcgatcaggtt gaagattatgcccgccgtaaaggtatgagcgttaccgaagttgagcgctggctggcaccgaatctggggtatgacgcggactg The

Sequência no 15 (metL) atgagtgtgattgcgcaggcaggggcgaaaggtcgtcagctgcataaatttggtggcagtagtctggctgatgtgaagtgttatttgcgtgtcgcgggcattat ggcggagtactctcagcctgacgatatgatggtggtttccgccgccggtagcaccactaaccagttgattaactggttgaaactaagccagaccgatcgtct ctctgcgcatcaggttcaacaaacgctgcgtcgctatcagtgcgatctgattagcggtctgctacccgctgaagaagccgatagcctcattagcgcttttgtca gcgaccttgagcgcctggcggcgctgctcgacagcggtattaacgacgcagtgtatgcggaagtggtgggccacggggaagtatggtcggcacgtctga tgtctgcggtacttaatcaacaagggctgccagcggcctggcttgatgcccgcgagtttttacgcgctgaacgcgccgcacaaccgcaggttgatgaagg gctttcttacccgttgctgcaacagctgctggtgcaacatccgggcaaacgtctggtggtgaccggatttatcagccgcaacaacgccggtgaaacggtgct gctggggcgtaacggttccgactattccgcgacacaaatcggtgcgctggcgggtgtttctcgcgtaaccatctggagcgacgtcgccggggtatacagtg ccgacccgcgtaaagtgaaagatgcctgcctgctgccgttgctgcgtctggatgaggccagcgaactggcgcgcctggcggctcccgttcttcacgcccgt actttacagccggtttctggcagcgaaatcgacctgcaactgcgctgtagctacacgccggatcaaggttccacgcgcattgaacgcgtgctggcctccgg tactggtgcgcgtattgtcaccagccacgatgatgtctgtttgattgagtttcaggtgcccgccagtcaggatttcaaactggcgcataaagagatcgaccaa atcctgaaacgcgcgcaggtacgcccgctggcggttggcgtacataacgatcgccagttgctgcaattttgctacacctcagaagtggccgacagtgcgct gaaaatcctcgacgaagcgggattacctggcgaactgcgcctgcgtcaggggctggcgctggtggcgatggtcggtgcaggcgtcacccgtaacccgct gcattgccaccgcttctggcagcaactgaaaggccagccggtcgaatttacctggcagtccgatgacggcatcagcctggtggcagtactgcgcaccgg cccgaccgaaagcctgattcaggggctgcatcagtccgtcttccgcgcagaaaaacgcatcggcctggtattgttcggtaagggcaatatcggttcccgttg gctggaactgttcgcccgtgagcagagcacgctttcggcacgtaccggctttgagtttgtgctggcaggtgtggtggacagccgccgcagcctgttgagcta tgacgggctggacgccagccgcgcgttagccttcttcaacgatgaagcggttgagcaggatgaagagtcgttgttcctgtggatgcgcgcccatccgtatg atgatttagtggtgctggacgttaccgccagccagcagcttgctgatcagtatcttgatttcgccagccacggtttccacgttatcagcgccaacaaactggcg ggagccagcgacagcaataaatatcgccagatccacgacgccttcgaaaaaaccgggcgtcactggctgtacaatgccaccgtcggtgcgggcttgcc gatcaaccacaccgtgcgcgatctgatcgacagcggcgatactattttgtcgatcagcgggatcttctccggcacgctctcctggctgttcctgcaattcgac ggtagcgtgccgtttaccgagctggtggatcaggcgtggcagcagggcttaaccgaacctgacccgcgtgacgatctctctggcaaagacgtgatgcgc aagctggtgattctggcgcgtgaagcaggttacaacatcgaaccggatcaggtacgtgtggaatcgctggtgcctgctcattgcgaaggcggcagcatcg accatttctttgaaaatggcgatgaactgaacgagcagatggtgcaacggctggaagcggcccgcgaaatggggctggtgctgcgctacgtggcgcgttt cgatgccaacggtaaagcgcgtgtaggcgtggaagcggtgcgtgaagatcatccgttggcatcactgctgccgtgcgataacgtctttgccatcgaaagc cgctggtatcgcgataaccctctggtgatccgcggacctggcgctgggcgcgacgtcaccgccggggcgattcagtcggatatcaaccggctggcacag ttgttgtaaFollowing paragraph 15 (METL) atgagtgtgattgcgcaggcaggggcgaaaggtcgtcagctgcataaatttggtggcagtagtctggctgatgtgaagtgttatttgcgtgtcgcgggcattat ggcggagtactctcagcctgacgatatgatggtggtttccgccgccggtagcaccactaaccagttgattaactggttgaaactaagccagaccgatcgtct ctctgcgcatcaggttcaacaaacgctgcgtcgctatcagtgcgatctgattagcggtctgctacccgctgaagaagccgatagcctcattagcgcttttgtca gcgaccttgagcgcctggcggcgctgctcgacagcggtattaacgacgcagtgtatgcggaagtggtgggccacggggaagtatggtcggcacgtctga tgtctgcggtacttaatcaacaagggctgccagcggcctggcttgatgcccgcgagtttttacgcgctgaacgcgccgcacaaccgcaggttgatgaagg gctttcttacccgttgctgcaacagctgctggtgcaacatccgggcaaacgtctggtggtgaccggatttatcagccgcaacaacgccggtgaaacggtgct gctggggcgtaacggttccgactattccgcgacacaaatcggtgcgctggcgggtgtttctcgcgtaaccatctggagcgacgtcgccggggtatacagtg ccgacccgcgtaaagtgaaagatgcctgcctgctgccgttgctgcgtctggatgaggccagcgaactggcgcgcctggcggctcccgttcttcacgcccgt actttacagccggtttctggcagcgaaatcgacctgcaactgcgctgtagctacacgccggatcaaggttccacgcgcattgaacgcgtgctggcctccgg tactggtgcgcgtattgtcaccagccacgatgatgtctgtttgattgagttt caggtgcccgccagtcaggatttcaaactggcgcataaagagatcgaccaa atcctgaaacgcgcgcaggtacgcccgctggcggttggcgtacataacgatcgccagttgctgcaattttgctacacctcagaagtggccgacagtgcgct gaaaatcctcgacgaagcgggattacctggcgaactgcgcctgcgtcaggggctggcgctggtggcgatggtcggtgcaggcgtcacccgtaacccgct gcattgccaccgcttctggcagcaactgaaaggccagccggtcgaatttacctggcagtccgatgacggcatcagcctggtggcagtactgcgcaccgg cccgaccgaaagcctgattcaggggctgcatcagtccgtcttccgcgcagaaaaacgcatcggcctggtattgttcggtaagggcaatatcggttcccgttg gctggaactgttcgcccgtgagcagagcacgctttcggcacgtaccggctttgagtttgtgctggcaggtgtggtggacagccgccgcagcctgttgagcta tgacgggctggacgccagccgcgcgttagccttcttcaacgatgaagcggttgagcaggatgaagagtcgttgttcctgtggatgcgcgcccatccgtatg atgatttagtggtgctggacgttaccgccagccagcagcttgctgatcagtatcttgatttcgccagccacggtttccacgttatcagcgccaacaaactggcg ggagccagcgacagcaataaatatcgccagatccacgacgccttcgaaaaaaccgggcgtcactggctgtacaatgccaccgtcggtgcgggcttgcc gatcaaccacaccgtgcgcgatctgatcgacagcggcgatactattttgtcgatcagcgggatcttctccggcacgctctcctggctgttcctgcaattcgac ggtagcgtgccgtttaccgagctggtggat caggcgtggcagcagggcttaaccgaacctgacccgcgtgacgatctctctggcaaagacgtgatgcgc aagctggtgattctggcgcgtgaagcaggttacaacatcgaaccggatcaggtacgtgtggaatcgctggtgcctgctcattgcgaaggcggcagcatcg accatttctttgaaaatggcgatgaactgaacgagcagatggtgcaacggctggaagcggcccgcgaaatggggctggtgctgcgctacgtggcgcgttt cgatgccaacggtaaagcgcgtgtaggcgtggaagcggtgcgtgaagatcatccgttggcatcactgctgccgtgcgataacgtctttgccatcgaaagc cgctggtatcgcgataaccctctggtgatccgcggacctggcgctgggcgcgacgtcaccgccggggcgattcagtcggatatcaaccggctggcacag ttgttgtaa

Sequência no 16 (pntA) atgcgaattggcataccaagagaacggttaaccaatgaaacccgtgttgcagcaacgccaaaaacagtggaacagctgctgaaactgggttttaccgtc gcggtagagagcggcgcgggtcaactggcaagttttgacgataaagcgtttgtgcaagcgggcgctgaaattgtagaagggaatagcgtctggcagtca gagatcattctgaaggtcaatgcgccgttagatgatgaaattgcgttactgaatcctgggacaacgctggtgagttttatctggcctgcgcagaatccggaatt aatgcaaaaacttgcggaacgtaacgtgaccgtgatggcgatggactctgtgccgcgtatctcacgcgcacaatcgctggacgcactaagctcgatggc gaacatcgccggttatcgcgccattgttgaagcggcacatgaatttgggcgcttctttaccgggcaaattactgcggccgggaaagtgccaccggcaaaa gtgatggtgattggtgcgggtgttgcaggtctggccgccattggcgcagcaaacagtctcggcgcgattgtgcgtgcattcgacacccgcccggaagtgaa agaacaagttcaaagtatgggcgcggaatttctcgagctggattttaaagaggaagctggcagcggcgatggctatgccaaagtgatgtcggacgcgttc atcaaagcggaaatggaactctttgccgcccaggcaaaagaggtcgatatcattgtcaccaccgcgcttattccaggcaaaccagcgccgaagctaatt acccgtgaaatggttgactccatgaaggcgggcagtgtgattgtcgacctggcagcccaaaacggcggcaactgtgaatacaccgtgccgggtgaaatc ttcactacggaaaatggtgtcaaagtgattggttataccgatcttccgggccgtctgccgacgcaatcctcacagctttacggcacaaacctcgttaatctgct gaaactgttgtgcaaagagaaagacggcaatatcactgttgattttgatgatgtggtgattcgcggcgtgaccgtgatccgtgcgggcgaaattacctggccSequence No. 16 (pntA) atgcgaattggcataccaagagaacggttaaccaatgaaacccgtgttgcagcaacgccaaaaacagtggaacagctgctgaaactgggttttaccgtc gcggtagagagcggcgcgggtcaactggcaagttttgacgataaagcgtttgtgcaagcgggcgctgaaattgtagaagggaatagcgtctggcagtca gagatcattctgaaggtcaatgcgccgttagatgatgaaattgcgttactgaatcctgggacaacgctggtgagttttatctggcctgcgcagaatccggaatt aatgcaaaaacttgcggaacgtaacgtgaccgtgatggcgatggactctgtgccgcgtatctcacgcgcacaatcgctggacgcactaagctcgatggc gaacatcgccggttatcgcgccattgttgaagcggcacatgaatttgggcgcttctttaccgggcaaattactgcggccgggaaagtgccaccggcaaaa gtgatggtgattggtgcgggtgttgcaggtctggccgccattggcgcagcaaacagtctcggcgcgattgtgcgtgcattcgacacccgcccggaagtgaa agaacaagttcaaagtatgggcgcggaatttctcgagctggattttaaagaggaagctggcagcggcgatggctatgccaaagtgatgtcggacgcgttc atcaaagcggaaatggaactctttgccgcccaggcaaaagaggtcgatatcattgtcaccaccgcgcttattccaggcaaaccagcgccgaagctaatt acccgtgaaatggttgactccatgaaggcgggcagtgtgattgtcgacctggcagcccaaaacggcggcaactgtgaatacaccgtgccgggtgaaatc ttcactacggaaaatggtgtcaaagtgattggttataccgatcttccgggccgtctgccgacgcaa tcctcacagctttacggcacaaacctcgttaatctgct gaaactgttgtgcaaagagaaagacggcaatatcactgttgattttgatgatgtggtgattcgcggcgtgaccgtgatccgtgcgggcgaaattacctggcc

Petição 870180128975, de 11/09/2018, pág. 43/52Petition 870180128975, of 9/11/2018, p. 43/52

I 35 ggcaccgccgattcaggtatcagctcagccgcaggcggcacaaaaagcggcaccggaagtgaaaactgaggaaaaatgtacctgctcaccgtggcg taaatacgcgttgatggcgctggcaatcattctttttggctggatggcaagcgttgcgccgaaagaatttcttgggcacttcaccgttttcgcgctggcctgcgtt gtcggttattacgtggtgtggaatgtatcgcacgcgctgcatacaccgttgatgtcggtcaccaacgcgatttcagggattattgttgtcggagcactgttgcag attggccagggcggctgggttagcttccttagttttatcgcggtgcttatagccagcattaatattttcggtggcttcaccgtgactcagcgcatgctgaaaatgtt ccgcaaaaattaaR 35 ggcaccgccgattcaggtatcagctcagccgcaggcggcacaaaaagcggcaccggaagtgaaaactgaggaaaaatgtacctgctcaccgtggcg taaatacgcgttgatggcgctggcaatcattctttttggctggatggcaagcgttgcgccgaaagaatttcttgggcacttcaccgttttcgcgctggcctgcgtt gtcggttattacgtggtgtggaatgtatcgcacgcgctgcatacaccgttgatgtcggtcaccaacgcgatttcagggattattgttgtcggagcactgttgcag attggccagggcggctgggttagcttccttagttttatcgcggtgcttatagccagcattaatattttcggtggcttcaccgtgactcagcgcatgctgaaaatgtt ccgcaaaaattaa

Sequência no 17 (pntB) atgtctggaggattagttacagctgcatacattgttgccgcgatcctgtttatcttcagtctggccggtctttcgaaacatgaaacgtctcgccagggtaacaact tcggtatcgccgggatggcgattgcgttaatcgcaaccatttttggaccggatacgggtaatgttggctggatcttgctggcgatggtcattggtggggcaattg gtatccgtctggcgaagaaagttgaaatgaccgaaatgccagaactggtggcgatcctgcatagcttcgtgggtctggcggcagtgctggttggctttaaca gctatctgcatcatgacgcgggaatggcaccgattctggtcaatattcacctgacggaagtgttcctcggtatcttcatcggggcggtaacgttcacgggttcg gtggtggcgttcggcaaactgtgtggcaagatttcgtctaaaccattgatgctgccaaaccgtcacaaaatgaacctggcggctctggtcgtttccttcctgct gctgattgtatttgttcgcacggacagcgtcggcctgcaagtgctggcattgctgataatgaccgcaattgcgctggtattcggctggcatttagtcgcctccat cggtggtgcagatatgccagtggtggtgtcgatgctgaactcgtactccggctgggcggctgcggctgcgggctttatgctcagcaacgacctgctgattgtg accggtgcgctggtcggttcttcgggggctatcctttcttacattatgtgtaaggcgatgaaccgttcctttatcagcgttattgcgggtggtttcggcaccgacgg ctcttctactggcgatgatcaggaagtgggtgagcaccgcgaaatcaccgcagaagagacagcggaactgctgaaaaactcccattcagtgatcattact ccggggtacggcatggcagtcgcgcaggcgcaatatcctgtcgctgaaattactgagaaattgcgcgctcgtggtattaatgtgcgtttcggtatccacccg gtcgcggggcgtttgcctggacatatgaacgtattgctggctgaagcaaaagtaccgtatgacatcgtgctggaaatggacgagatcaatgatgactttgct gataccgataccgtactggtgattggtgctaacgatacggttaacccggcggcgcaggatgatccgaagagtccgattgctggtatgcctgtgctggaagt gtggaaagcgcagaacgtgattgtctttaaacgttcgatgaacactggctatgctggtgtgcaaaacccgctgttcttcaaggaaaacacccacatgctgttt ggtgacgccaaagccagcgtggatgcaatcctgaaagctctgtaaSequence No. 17 (pntB) atgtctggaggattagttacagctgcatacattgttgccgcgatcctgtttatcttcagtctggccggtctttcgaaacatgaaacgtctcgccagggtaacaact tcggtatcgccgggatggcgattgcgttaatcgcaaccatttttggaccggatacgggtaatgttggctggatcttgctggcgatggtcattggtggggcaattg gtatccgtctggcgaagaaagttgaaatgaccgaaatgccagaactggtggcgatcctgcatagcttcgtgggtctggcggcagtgctggttggctttaaca gctatctgcatcatgacgcgggaatggcaccgattctggtcaatattcacctgacggaagtgttcctcggtatcttcatcggggcggtaacgttcacgggttcg gtggtggcgttcggcaaactgtgtggcaagatttcgtctaaaccattgatgctgccaaaccgtcacaaaatgaacctggcggctctggtcgtttccttcctgct gctgattgtatttgttcgcacggacagcgtcggcctgcaagtgctggcattgctgataatgaccgcaattgcgctggtattcggctggcatttagtcgcctccat cggtggtgcagatatgccagtggtggtgtcgatgctgaactcgtactccggctgggcggctgcggctgcgggctttatgctcagcaacgacctgctgattgtg accggtgcgctggtcggttcttcgggggctatcctttcttacattatgtgtaaggcgatgaaccgttcctttatcagcgttattgcgggtggtttcggcaccgacgg ctcttctactggcgatgatcaggaagtgggtgagcaccgcgaaatcaccgcagaagagacagcggaactgctgaaaaactcccattcagtgatcattact ccggggtacggcatggcagtcgcgcaggcg caatatcctgtcgctgaaattactgagaaattgcgcgctcgtggtattaatgtgcgtttcggtatccacccg gtcgcggggcgtttgcctggacatatgaacgtattgctggctgaagcaaaagtaccgtatgacatcgtgctggaaatggacgagatcaatgatgactttgct gataccgataccgtactggtgattggtgctaacgatacggttaacccggcggcgcaggatgatccgaagagtccgattgctggtatgcctgtgctggaagt gtggaaagcgcagaacgtgattgtctttaaacgttcgatgaacactggctatgctggtgtgcaaaacccgctgttcttcaaggaaaacacccacatgctgttt ggtgacgccaaagccagcgtggatgcaatcctgaaagctctgtaa

Sequência no 18 (Pyc) ttgcccatttccaagatactcgttgccaatcgctctgaaatagccatccgcgtgttccgcgcggccaacgagcttggaataaaaacggtggcgatctgggcg gaagaggacaagctggcgctgcaccgcttcaaggcggatgagagttatcaggtcggccgcggtccgcatctggcccgcgatctcgggccgatcgaga gctatctgtcgatcgacgaggtgatccgggtcgccaagctttcgggtgccgacgccattcaccccggttacggcctcttgtccgaaagcccggaatttgtcg atgcctgcaacaaggccgggatcatcttcatcggcccgaaggccgatacgatgcgccagctcggcaacaaggtcgcggcgcgcaatctggcgatctcg gtcggcgtgcccgtcgtgccggcgaccgagccgctaccggacgatatggccgaagtggcgaagatggcggcagcaatcggctatcccgtcatgctgaa agcctcctggggcggcggcggccgcggcatgcgcgtcatccgcgccgaagccgatctcgcccgcgaggtgacggaggccaagcgcgaggcgatgg ccgccttcggcaaggacgaggtctatctggaaaagctggtcgagcgcgcccgccacgtcgaaagccagatcctcggcgacacacacggcaatgtcgt gcatctgttcgagcgcgactgctcgatccagcgccgcaaccagaaggtcgtcgagcgcgcgcccgcgccctacctctcagaggcgcagcgccaggaa ctcgccgcctattcgctgaagatcgcagcggcgaccaactatatcggcgccggcaccgtcgaatatctgatggatgccgataccggcaaattctacttcat cgaggtcaatccgcgcatccaggtcgagcacacggtgaccgaagtcgtcaccggtatcgacatcgtcaaggcgcagatccacatcctcgacggcgctg cgatcggcacgccggaatcgggcgttcccgctcaggccgatatccggctcaacggccatgcgctgcaatgccgcatcaccaccgaagatcccgaaca caatttcattccggactacggccgcatcaccgcctatcgctcggcttccggcttcggcatccggcttgacggcggcacctcctattccggcgccatcattacc cgttattatgatccgctgctcgtcaaggtcacggcctgggcgccgaacccgtccgaagcgatttcccgtatggaccgggcgctgcgcgaatttcgcatccgc ggcgtcgccaccaacctgaccttcctcgaagcgatcatcggccatccgaagttccgcgacaacagctacaccacccgcttcatcgacaccacgccgga actcttccagcaggtcaagcgccaggaccgcgcgacgaagctcttgacctatctcgccgatgtcaccatcaatggccatcccgaggccaaggacaggc cgaagcccctcgaaaacgccgccaagccggtggtgccctatgccaatggcaacggggtcaaggatggcacgaagcagctgctcgacacgctcggcc cgaagaaattcggcgaatggatgcgcaatgagaagcgcgtgcttctgaccgatacgacgatgcgcgacgcccaccagtcgctgctcgccactcgcatg cgcacctatgacatcgccaggatcgccggcacctatgcgcacgcgctgccgaatctcttgtcgctcgaatgctggggtggcgccaccttcgacgtctccat gcgcttcctcaccgaagatccgtgggagcggctggcgctgatccgcgagggcgcgccgaacctgctcctgcaaatgctgttgcgcggcgccaacggcgt cggctacaccaactatcccgacaatgtcgtcaaatatttcgtccgccaggcggccagaggcggcatcgatcttttccgcgtcttcgactgcctgaactgggtc gagaacatgcgggtgtcgatggatgcgattgccgaggagaacaagctctgcgaggcggcgatctgctacaccggcgatatcctcaattccgcccgcccg aaatacgacctgaaatactataccgaccttgccgtcgaactcgagaaggccggcgcccatatcatcgcagtcaaggatatggcgggtctgttgaagccg gcggcggcgaaggtgctgttcaaggcgctgcgcgaagcgaccggcctgccgatccacttccacacgcatgacacttcgggcatcgcggccgcgaccgt ccttgccgcggtcgaagccggtgtcgatgccgtcgatgcggcgatggatgcgctttccggcaatacctcgcagccttgtctcggctcgatcgtcgaggcgct ctccggctccgagcgcgatccgggcctcgatccggaatggattcgccgtatctcgttctattgggaagcggtgcgcaaccagtatgccgccttcgaaagcg acctcaaggggccggcctcggaagtctatctgcatgaaatgccgggcggccagttcaccaatctcaaggagcaggcccgctcgctcggtctcgagaccc gctggcatcaggtggcgcaggcctatgccgacgccaaccagatgttcggcgatatcgtcaaggtgacgccctcctccaaggtggtcggcgacatggcgc tgatgatggtgtcccaggatctgacggtcgccgacgtcgtcagccccgagcgcgaagtctccttccccgaatcggtggtgtcgatgctgaagggcgatctc ggccagccgccgccgggatggccggcagcacttcagaaaaaggcactgaagggcgaaaagccctatacggtgcgtcccggctcgctgctgaaggaa gccgatctcgatgccgagcgcaaggtcatcgagacgaagctggagcgcgaggtcagcgacttcgaatttgcctcctatctgatgtatccgaaggtcttcac cgactttgcgctcgcctccgatacctatggcccggtctcggtgctgccgacgcctgcctatttctacgggctggccgacggcgaggagctgtttgccgatatc gaacgaggcaagacgctcgtcatcgtcaatcaggcaatgagcgccaccgacagccagggcatggtcaccgtcttcttcgaactcaacggccagccgc gccgcatcaaggtgccggaccgggcccatggggcgacgggtgcggccgtgcgccgcaaggccgagcccggtaatggtgctcatgtcggtgcgccgat gcccggcgtcatcagccgcgtcttcgcctcatccggccaagccgtcagcgccggtgatgtgctcgtctccatcgaagcgatgaagatggaaacggcgatc catgcggaaaaggatggaacggttgccgaaattctcgtcaaggccggcgatcagattgatgccaaggacctgcttgtcgtctacgccgcttgaFollowing paragraph 18 (PYC) ttgcccatttccaagatactcgttgccaatcgctctgaaatagccatccgcgtgttccgcgcggccaacgagcttggaataaaaacggtggcgatctgggcg gaagaggacaagctggcgctgcaccgcttcaaggcggatgagagttatcaggtcggccgcggtccgcatctggcccgcgatctcgggccgatcgaga gctatctgtcgatcgacgaggtgatccgggtcgccaagctttcgggtgccgacgccattcaccccggttacggcctcttgtccgaaagcccggaatttgtcg atgcctgcaacaaggccgggatcatcttcatcggcccgaaggccgatacgatgcgccagctcggcaacaaggtcgcggcgcgcaatctggcgatctcg gtcggcgtgcccgtcgtgccggcgaccgagccgctaccggacgatatggccgaagtggcgaagatggcggcagcaatcggctatcccgtcatgctgaa agcctcctggggcggcggcggccgcggcatgcgcgtcatccgcgccgaagccgatctcgcccgcgaggtgacggaggccaagcgcgaggcgatgg ccgccttcggcaaggacgaggtctatctggaaaagctggtcgagcgcgcccgccacgtcgaaagccagatcctcggcgacacacacggcaatgtcgt gcatctgttcgagcgcgactgctcgatccagcgccgcaaccagaaggtcgtcgagcgcgcgcccgcgccctacctctcagaggcgcagcgccaggaa ctcgccgcctattcgctgaagatcgcagcggcgaccaactatatcggcgccggcaccgtcgaatatctgatggatgccgataccggcaaattctacttcat cgaggtcaatccgcgcatccaggtcgagcacacggtgaccgaagtcgtcaccggtatcgacatcgtcaaggcgcagatcc acatcctcgacggcgctg cgatcggcacgccggaatcgggcgttcccgctcaggccgatatccggctcaacggccatgcgctgcaatgccgcatcaccaccgaagatcccgaaca caatttcattccggactacggccgcatcaccgcctatcgctcggcttccggcttcggcatccggcttgacggcggcacctcctattccggcgccatcattacc cgttattatgatccgctgctcgtcaaggtcacggcctgggcgccgaacccgtccgaagcgatttcccgtatggaccgggcgctgcgcgaatttcgcatccgc ggcgtcgccaccaacctgaccttcctcgaagcgatcatcggccatccgaagttccgcgacaacagctacaccacccgcttcatcgacaccacgccgga actcttccagcaggtcaagcgccaggaccgcgcgacgaagctcttgacctatctcgccgatgtcaccatcaatggccatcccgaggccaaggacaggc cgaagcccctcgaaaacgccgccaagccggtggtgccctatgccaatggcaacggggtcaaggatggcacgaagcagctgctcgacacgctcggcc cgaagaaattcggcgaatggatgcgcaatgagaagcgcgtgcttctgaccgatacgacgatgcgcgacgcccaccagtcgctgctcgccactcgcatg cgcacctatgacatcgccaggatcgccggcacctatgcgcacgcgctgccgaatctcttgtcgctcgaatgctggggtggcgccaccttcgacgtctccat gcgcttcctcaccgaagatccgtgggagcggctggcgctgatccgcgagggcgcgccgaacctgctcctgcaaatgctgttgcgcggcgccaacggcgt cggctacaccaactatcccgacaatgtcgtcaaatatttcgtccgccaggcggccagaggcggcatcgatcttttccgcg tcttcgactgcctgaactgggtc gagaacatgcgggtgtcgatggatgcgattgccgaggagaacaagctctgcgaggcggcgatctgctacaccggcgatatcctcaattccgcccgcccg aaatacgacctgaaatactataccgaccttgccgtcgaactcgagaaggccggcgcccatatcatcgcagtcaaggatatggcgggtctgttgaagccg gcggcggcgaaggtgctgttcaaggcgctgcgcgaagcgaccggcctgccgatccacttccacacgcatgacacttcgggcatcgcggccgcgaccgt ccttgccgcggtcgaagccggtgtcgatgccgtcgatgcggcgatggatgcgctttccggcaatacctcgcagccttgtctcggctcgatcgtcgaggcgct ctccggctccgagcgcgatccgggcctcgatccggaatggattcgccgtatctcgttctattgggaagcggtgcgcaaccagtatgccgccttcgaaagcg acctcaaggggccggcctcggaagtctatctgcatgaaatgccgggcggccagttcaccaatctcaaggagcaggcccgctcgctcggtctcgagaccc gctggcatcaggtggcgcaggcctatgccgacgccaaccagatgttcggcgatatcgtcaaggtgacgccctcctccaaggtggtcggcgacatggcgc tgatgatggtgtcccaggatctgacggtcgccgacgtcgtcagccccgagcgcgaagtctccttccccgaatcggtggtgtcgatgctgaagggcgatctc ggccagccgccgccgggatggccggcagcacttcagaaaaaggcactgaagggcgaaaagccctatacggtgcgtcccggctcgctgctgaaggaa gccgatctcgatgccgagcgcaaggtcatcgagacgaagctggagcgcgaggtcagcgacttcgaatttgcct cctatctgatgtatccgaaggtcttcac cgactttgcgctcgcctccgatacctatggcccggtctcggtgctgccgacgcctgcctatttctacgggctggccgacggcgaggagctgtttgccgatatc gaacgaggcaagacgctcgtcatcgtcaatcaggcaatgagcgccaccgacagccagggcatggtcaccgtcttcttcgaactcaacggccagccgc gccgcatcaaggtgccggaccgggcccatggggcgacgggtgcggccgtgcgccgcaaggccgagcccggtaatggtgctcatgtcggtgcgccgat gcccggcgtcatcagccgcgtcttcgcctcatccggccaagccgtcagcgccggtgatgtgctcgtctccatcgaagcgatgaagatggaaacggcgatc catgcggaaaaggatggaacggttgccgaaattctcgtcaaggccggcgatcagattgatgccaaggacctgcttgtcgtctacgccgcttga

Sequência no 19 (sthA)Following paragraph 19 (stha)

Petição 870180128975, de 11/09/2018, pág. 44/52Petition 870180128975, of 9/11/2018, p. 44/52

I 35 atgccacattcctacgattacgatgccatagtaataggttccggccccggcggcgaaggcgctgcaatgggcctggttaagcaaggtgcgcgcgtcgca gttatcgagcgttatcaaaatgttggcggcggttgcacccactggggcaccatcccgtcgaaagctctccgtcacgccgtcagccgcattatagaatttaatc aaaacccactttacagcgaccattcccgactgctccgctcttcttttgccgatatccttaaccatgccgataacgtgattaatcaacaaacgcgcatgcgtcag ggattttacgaacgtaatcactgtgaaatattgcagggaaacgctcgctttgttgacgagcatacgttggcgctggattgcccggacggcagcgttgaaaca ctaaccgctgaaaaatttgttattgcctgcggctctcgtccatatcatccaacagatgttgatttcacccatccacgcatttacgacagcgactcaattctcagc atgcaccacgaaccgcgccatgtacttatctatggtgctggagtgatcggctgtgaatatgcgtcgatcttccgcggtatggatgtaaaagtggatctgatca acacccgcgatcgcctgctggcatttctcgatcaagagatgtcagattctctctcctatcacttctggaacagtggcgtagtgattcgtcacaacgaagagtac gagaagatcgaaggctgtgacgatggtgtgatcatgcatctgaagtcgggtaaaaaactgaaagctgactgcctgctctatgccaacggtcgcaccggta ataccgattcgctggcgttacagaacattgggctagaaactgacagccgcggacagctgaaggtcaacagcatgtatcagaccgcacagccacacgttt acgcggtgggcgacgtgattggttatccgagcctggcgtcggcggcctatgaccaggggcgcattgccgcgcaggcgctggtaaaaggcgaagccac cgcacatctgattgaagatatccctaccggtatttacaccatcccggaaatcagctctgtgggcaaaaccgaacagcagctgaccgcaatgaaagtgcca tatgaagtgggccgcgcccagtttaaacatctggcacgcgcacaaatcgtcggcatgaacgtgggcacgctgaaaattttgttccatcgggaaacaaaag agattctgggtattcactgctttggcgagcgcgctgccgaaattattcatatcggtcaggcgattatggaacagaaaggtggcggcaacactattgagtactt cgtcaacaccacctttaactacccgacgatggcggaagcctatcgggtagctgcgttaaacggtttaaaccgcctgttttaaR 35 atgccacattcctacgattacgatgccatagtaataggttccggccccggcggcgaaggcgctgcaatgggcctggttaagcaaggtgcgcgcgtcgca gttatcgagcgttatcaaaatgttggcggcggttgcacccactggggcaccatcccgtcgaaagctctccgtcacgccgtcagccgcattatagaatttaatc aaaacccactttacagcgaccattcccgactgctccgctcttcttttgccgatatccttaaccatgccgataacgtgattaatcaacaaacgcgcatgcgtcag ggattttacgaacgtaatcactgtgaaatattgcagggaaacgctcgctttgttgacgagcatacgttggcgctggattgcccggacggcagcgttgaaaca ctaaccgctgaaaaatttgttattgcctgcggctctcgtccatatcatccaacagatgttgatttcacccatccacgcatttacgacagcgactcaattctcagc atgcaccacgaaccgcgccatgtacttatctatggtgctggagtgatcggctgtgaatatgcgtcgatcttccgcggtatggatgtaaaagtggatctgatca acacccgcgatcgcctgctggcatttctcgatcaagagatgtcagattctctctcctatcacttctggaacagtggcgtagtgattcgtcacaacgaagagtac gagaagatcgaaggctgtgacgatggtgtgatcatgcatctgaagtcgggtaaaaaactgaaagctgactgcctgctctatgccaacggtcgcaccggta ataccgattcgctggcgttacagaacattgggctagaaactgacagccgcggacagctgaaggtcaacagcatgtatcagaccgcacagccacacgttt acgcggtgggcgacgtgattggttatccgagcctggcgtcggcggcctatgaccaggggcgcattgc cgcgcaggcgctggtaaaaggcgaagccac cgcacatctgattgaagatatccctaccggtatttacaccatcccggaaatcagctctgtgggcaaaaccgaacagcagctgaccgcaatgaaagtgcca tatgaagtgggccgcgcccagtttaaacatctggcacgcgcacaaatcgtcggcatgaacgtgggcacgctgaaaattttgttccatcgggaaacaaaag agattctgggtattcactgctttggcgagcgcgctgccgaaattattcatatcggtcaggcgattatggaacagaaaggtggcggcaacactattgagtactt cgtcaacaccacctttaactacccgacgatggcggaagcctatcgggtagctgcgttaaacggtttaaaccgcctgttttaa

Sequência no20 (dmdA) atggccagcatcttcccgtcccgccgggtccggcgcacacctttttccgccggtgtcgaggcggccggggtcaagggctataccgtctacaatcacatgttg ctgcccacggtgttcgacagcctgcaggccgattgcgcccatctgaaggaacatgtgcaggtctgggacgtggcctgcgagcggcaggtcagcatccag gggcccgacgcgctgcggctgatgaagctgatcagcccgcgcgacatggaccggatggccgatgaccagtgttactacgtgcccacggtcgatcatcgt ggcggcatgctgaacgatccggtggcggtgaaactggccgccgatcattactggctgtcgctggccgatggcgacctgctgcaattcgggctggggattg cgatcgcccggggcttcgatgtcgagatcgtcgaacccgatgtctcgccgctggccgtgcagggacccagggccgacgatctgatggcgcgggtctttgg cgaggcggtgcgcgatatccgctttttccgctacaagcggctggcctttcagggagtcgagcttgtggtggcgcgctcaggctggtcgaaacagggcggct tcgagatctatgtcgagggttcggaactgggcatgccgctgtggaacgcgctgtttgccgccggtgcggacctgaacgtgcgcgcgggttgccccaacaa tatcgagcgcgtcgagagcgggttgttgagctatggcaacgacatgacccgcgagaacacgccgtatgaatgcggcctgggtaagttctgcaattcgccc gaggactatatcggcaaggcagcactggccgaacaggccaagaacggaccggcgcgccagatccgggcactggtgatcggtggcgagattccgccc tgtcaggatgcctggccgctgctggccgacggtcgccaggtggggcaggtggggtcagcgatccattcccctgaattcggcgtgaatgtcgcgatcggca tggtggatcgcagccattgggcgccgggcaccgggatggaagtggaaacgcccgacggcatgcggccggttacggtgcgcgaggggttctggcgttaSequence No. 20 (MAD) atggccagcatcttcccgtcccgccgggtccggcgcacacctttttccgccggtgtcgaggcggccggggtcaagggctataccgtctacaatcacatgttg ctgcccacggtgttcgacagcctgcaggccgattgcgcccatctgaaggaacatgtgcaggtctgggacgtggcctgcgagcggcaggtcagcatccag gggcccgacgcgctgcggctgatgaagctgatcagcccgcgcgacatggaccggatggccgatgaccagtgttactacgtgcccacggtcgatcatcgt ggcggcatgctgaacgatccggtggcggtgaaactggccgccgatcattactggctgtcgctggccgatggcgacctgctgcaattcgggctggggattg cgatcgcccggggcttcgatgtcgagatcgtcgaacccgatgtctcgccgctggccgtgcagggacccagggccgacgatctgatggcgcgggtctttgg cgaggcggtgcgcgatatccgctttttccgctacaagcggctggcctttcagggagtcgagcttgtggtggcgcgctcaggctggtcgaaacagggcggct tcgagatctatgtcgagggttcggaactgggcatgccgctgtggaacgcgctgtttgccgccggtgcggacctgaacgtgcgcgcgggttgccccaacaa tatcgagcgcgtcgagagcgggttgttgagctatggcaacgacatgacccgcgagaacacgccgtatgaatgcggcctgggtaagttctgcaattcgccc gaggactatatcggcaaggcagcactggccgaacaggccaagaacggaccggcgcgccagatccgggcactggtgatcggtggcgagattccgccc tgtcaggatgcctggccgctgctggccgacggtcgccaggtggggcaggtggggtcagcgatccattcc cctgaattcggcgtgaatgtcgcgatcggca tggtggatcgcagccattgggcgccgggcaccgggatggaagtggaaacgcccgacggcatgcggccggttacggtgcgcgagggttt

Sequência n°21 (dmdB) atgcttggacagatgatgtatcagccgctgctgatctcgtcgctgatagatcacgccgcgcgctatcacggcgaggcgcagatctggtcggtcagcaccga aggcggggtcgaggagaccaactgggcggggatcgccgacaatgcccgccgcctgggctcggtcctgaccgatgcagggctggcgccgcaatcgcg tgttgccacgctggcctggaacaaccggcggcatctggagatctattacggggtgtcgggcgccggctttgttctgcacacgatcaacccgcgcctgttccc cgaacagctggtctatatcctcaaccatgccgaggatcgcatcctgttcttcgatgccactttcctgccgctggtcgaggggattcgcccgcatctgaccacc gttgaacggctggttctgatggggccgcgcgacgaggcggcggcagcgcgcatcgaggggctggaattctacgacgagtttgtcgccaccggggatgc gggttttgactggcccgatcttgacgagcgcacggcttcgagcctgtgctatacctcggggaccacgggcaatcccaagggcgtactttattcgcaccgttc caccgtgctgcacagtttcggctcgaacacccgcgattgcatcggtttttcggcgcgcgatgtggtgatgccggtggtgccgatgttccatgtcaacgcctgg ggcacgccctatgcctgtgcgatgtctggatcgtgcatggtgctgccggggcccgatctgcatggcgaggcgctggttggtctgatcgaccgctatcgggtc accatcgcgctgggggtgccgaccatctggcaggggctgttggccaccgcccgcgccaagggcagcacgctggaaagcctgacgcgcacggtgatc ggcggcgcggcctgtccgccctcgatgatcgccgagttccgcgaccgctatggtgtcgataccgtccatgcctggggcatgtccgagatgagcccgctgg gcaccaccaaccagccgctggccaagcacggcgccctgccgatcgaggcgcagcacaagctgcgcgagaaccagggccgcccgccctatggggt ggagctgaagatcgtcgatgacgatggcaacacgttgcccaatgacggtcagacccagggcgaccttatggtgcgcggccattgggtgctggacagcta tttccagttgcaggaccagccgatcctgtcggatggctggttcgccaccggcgatgtggcgacgctggaccgcgacggctatatgacgatccgggaccgg tccaaggatatcatcaagtcgggcggcgaatggatcagctcggtcgagctggagaatatcgcggttgcgcatccgaaactggccaccgccgcggtgatc ggggtgccgcatccgaaatgggatgaacgcccgcttttggtggcggtcaaggccgagggcgagacgcctgacgaggcggagttgctggcgttctttgac ggcaagatcgcgaaatggcaggtgcctgaccgggtcgtgtttgtcgaggcgctgccgctgaatgccaccggcaaggtgctgaaacggacccttcgcga acagttcagggatgttctgaccgggtgaSEQ ID NO: 21 (DMDB) atgcttggacagatgatgtatcagccgctgctgatctcgtcgctgatagatcacgccgcgcgctatcacggcgaggcgcagatctggtcggtcagcaccga aggcggggtcgaggagaccaactgggcggggatcgccgacaatgcccgccgcctgggctcggtcctgaccgatgcagggctggcgccgcaatcgcg tgttgccacgctggcctggaacaaccggcggcatctggagatctattacggggtgtcgggcgccggctttgttctgcacacgatcaacccgcgcctgttccc cgaacagctggtctatatcctcaaccatgccgaggatcgcatcctgttcttcgatgccactttcctgccgctggtcgaggggattcgcccgcatctgaccacc gttgaacggctggttctgatggggccgcgcgacgaggcggcggcagcgcgcatcgaggggctggaattctacgacgagtttgtcgccaccggggatgc gggttttgactggcccgatcttgacgagcgcacggcttcgagcctgtgctatacctcggggaccacgggcaatcccaagggcgtactttattcgcaccgttc caccgtgctgcacagtttcggctcgaacacccgcgattgcatcggtttttcggcgcgcgatgtggtgatgccggtggtgccgatgttccatgtcaacgcctgg ggcacgccctatgcctgtgcgatgtctggatcgtgcatggtgctgccggggcccgatctgcatggcgaggcgctggttggtctgatcgaccgctatcgggtc accatcgcgctgggggtgccgaccatctggcaggggctgttggccaccgcccgcgccaagggcagcacgctggaaagcctgacgcgcacggtgatc ggcggcgcggcctgtccgccctcgatgatcgccgagttccgcgaccgctatggtgtcgataccg tccatgcctggggcatgtccgagatgagcccgctgg gcaccaccaaccagccgctggccaagcacggcgccctgccgatcgaggcgcagcacaagctgcgcgagaaccagggccgcccgccctatggggt ggagctgaagatcgtcgatgacgatggcaacacgttgcccaatgacggtcagacccagggcgaccttatggtgcgcggccattgggtgctggacagcta tttccagttgcaggaccagccgatcctgtcggatggctggttcgccaccggcgatgtggcgacgctggaccgcgacggctatatgacgatccgggaccgg tccaaggatatcatcaagtcgggcggcgaatggatcagctcggtcgagctggagaatatcgcggttgcgcatccgaaactggccaccgccgcggtgatc ggggtgccgcatccgaaatgggatgaacgcccgcttttggtggcggtcaaggccgagggcgagacgcctgacgaggcggagttgctggcgttctttgac ggcaagatcgcgaaatggcaggtgcctgaccgggtcgtgtttgtcgaggcgctgccgctgaatgccaccggcaaggtgctgaaacggacccttcgcga acagttcagggatgttctgaccgggtga

Sequência n°22 (dmdC) atgacctatcaggcgccggtccgtgacatcatgttcgccatcgaacacctttcgcaatggccccaagtcgaggcgctgcaaacctattccgagatcgaact ggacgatgcccgcgccgcgctggaggaattcggccgtttctgcggcgagatgatcgcccccctgtccaccatcggcgataccgaaggcgcccggctgg aaaatgggcgcgtcgtcctgcccgagggctacaagaccgcctatgaccagttcgtcgatatggggtggcaaagcctcagtcacccggccgaacatggc ggcatgggcctgcccaaggttgttggcgccgccgcgaccgaaatcgtcaacagcgccgatatgagctttggcctctgcccgttgttgaccaacggcgcca tcgacgcgctgtcgatcaccgggtccgatgcgcaaaaggccttctatctggacaagctgatcaccgggcgctggtcgggcaccatgaacctgaccgagc cgcaggcgggcagcgacctcagccgcgtgcgctgcacggcggtgccgcaggatgacggcacctatgcgatcagcggcaccaagatcttcatcaccttc ggcgaacatgacctgtcggaaaacatcgtgcatctggtgctggcccgcacccccgacgcacccgaaggggtgcgcgggctgagcctgttcgtggtgcc caagctgcttgcgggcgagggcggcgaaacctcgcagcgcaatacgctgggctgcgtcagcctggaacacaagctgggcgtgcgcgccagcccgac cgcggtgatggaatatgacaatgccaccggctatctggtgggcgaggaaaacagcggcctgcgctacatgttcatcatgatgacctcggcccgctatgcg gtgggtgtgcagggtgtggcgattgccgaacgcgcctatcagcatgcgctgtcctatgcccgtgaccggatacaaagccgacccgtagacggctcggcc caggacgcggtgccgatcatccagcaccccgatgtccgccggatgctgctcaggatgcgcgcgctgaccgaaggcgggcgggcgcttgccatcgcca cgggcggctggctcgacctggccgaacatgggcccgaagaggcccgcgccgaggcgcaatcaatggccgaattccttgtgccgctggtcaaggggttcSequence No. 22 (DMDC) atgacctatcaggcgccggtccgtgacatcatgttcgccatcgaacacctttcgcaatggccccaagtcgaggcgctgcaaacctattccgagatcgaact ggacgatgcccgcgccgcgctggaggaattcggccgtttctgcggcgagatgatcgcccccctgtccaccatcggcgataccgaaggcgcccggctgg aaaatgggcgcgtcgtcctgcccgagggctacaagaccgcctatgaccagttcgtcgatatggggtggcaaagcctcagtcacccggccgaacatggc ggcatgggcctgcccaaggttgttggcgccgccgcgaccgaaatcgtcaacagcgccgatatgagctttggcctctgcccgttgttgaccaacggcgcca tcgacgcgctgtcgatcaccgggtccgatgcgcaaaaggccttctatctggacaagctgatcaccgggcgctggtcgggcaccatgaacctgaccgagc cgcaggcgggcagcgacctcagccgcgtgcgctgcacggcggtgccgcaggatgacggcacctatgcgatcagcggcaccaagatcttcatcaccttc ggcgaacatgacctgtcggaaaacatcgtgcatctggtgctggcccgcacccccgacgcacccgaaggggtgcgcgggctgagcctgttcgtggtgcc caagctgcttgcgggcgagggcggcgaaacctcgcagcgcaatacgctgggctgcgtcagcctggaacacaagctgggcgtgcgcgccagcccgac cgcggtgatggaatatgacaatgccaccggctatctggtgggcgaggaaaacagcggcctgcgctacatgttcatcatgatgacctcggcccgctatgcg gtgggtgtgcagggtgtggcgattgccgaacgcgcctatcagcatgcgctgtcctatgcccgtgaccggatacaaagcc gacccgtagacggctcggcc caggacgcggtgccgatcatccagcaccccgatgtccgccggatgctgctcaggatgcgcgcgctgaccgaaggcgggcgggcgcttgccatcgcca cgggcggctggctcgacctggccgaacatgggcccgaagaggcccgcgccgaggcgcaatcaatggccgaattccttgtgccgctggtcaaggggttc

Petição 870180128975, de 11/09/2018, pág. 45/52Petition 870180128975, of 9/11/2018, p. 45/52

I 35 tgcaccgagcgcgcggtcgaggtcgcctcgctaggtgtccagatccacggcggcatgggtttcatcgaggaaaccggcgtggcccagttctatcgcgatg cccgcatcctgccgatctacgagggcaccaccgccattcaggccaatgacctgttgggtcgcaaggtgctgcgcgatggcggtcgcaccgcccgccgct ttgccgagatgatcgccgcaaccgagggtgagctgtccaagggtggcgcggcggcgcaacggatcgcccagcgcctggccgaagcgcgcgcggcct ttgccgccggcctcgaccatctgctggcaaccgccgggcaggaccccaaccgcgcctatgccggcagcgtgcccttcctgatgctgaccggcaatctgg ccacaggctggcagcttggcctgtcggcgctggccgccgaggccgagctggccaagggcggcgatgccgagttcctgcaggccaagatcgcaaccgc cgacatctttgcccagcaggtgctggtcgaatgttcggccgagcacagccgcatcaccgataccggcgacagcctgctgaccgcatcgctctgaR 35 tgcaccgagcgcgcggtcgaggtcgcctcgctaggtgtccagatccacggcggcatgggtttcatcgaggaaaccggcgtggcccagttctatcgcgatg cccgcatcctgccgatctacgagggcaccaccgccattcaggccaatgacctgttgggtcgcaaggtgctgcgcgatggcggtcgcaccgcccgccgct ttgccgagatgatcgccgcaaccgagggtgagctgtccaagggtggcgcggcggcgcaacggatcgcccagcgcctggccgaagcgcgcgcggcct ttgccgccggcctcgaccatctgctggcaaccgccgggcaggaccccaaccgcgcctatgccggcagcgtgcccttcctgatgctgaccggcaatctgg ccacaggctggcagcttggcctgtcggcgctggccgccgaggccgagctggccaagggcggcgatgccgagttcctgcaggccaagatcgcaaccgc cgacatctttgcccagcaggtgctggtcgaatgttcggccgagcacagccgcatcaccgataccggcgacagcctgctgaccgcatcgctctga

Sequência n°23 (dmdD) gtgacccaggatgtaacctccggctacagcaatctcgaccttgatctgcgcgacaatggcgtctgcgttgtgactctgaaccgcccggacaagcgcaacg cgctggatgtcgccaccatcgaggaactcgtcaccttcttcagcaccgcccatcgcaagggcgtgcgcgccgtggtgctgaccggcgcgggtgatcatttc tgcgccggccttgacctggtcgaacactggaaggccgaccgcagcgcggatgatttcatgcatgtctgcctgcgctggcacgaggcgttcaacaagatgg aatatggcggtgtgccgatcatcgccgcgcttcggggcgcggttgtcggcggcggtctggaactggccagcgccgcccacctccgggtcatggaccaga gcacctatttcgccctgcccgaaggccagcgcggcatcttcaccgggggcggcgccaccatccgcgtgtcggacatgatcggcaaataccggatgatcg acatgatcctgaccggtcgtgtctatcaggggcaagaggccgccgatctgggcctggcgcaatacatcaccgaaggatccagctttgacaaggcgatgg agctggccgacaagatcgccagcaacctgccgctgaccaacttcgccatctgttcggccatcagccacatgcagaacatgtcgggtctggacgccgcct atgccgaggcctttgtcggcggcatcgtcaacacccagcccgccgcccgcgaacggctcgaggccttcgccaacaagaccgcagcgcgcgtgcgccc caacagctgaSequence No. 23 (dmdD) gtgacccaggatgtaacctccggctacagcaatctcgaccttgatctgcgcgacaatggcgtctgcgttgtgactctgaaccgcccggacaagcgcaacg cgctggatgtcgccaccatcgaggaactcgtcaccttcttcagcaccgcccatcgcaagggcgtgcgcgccgtggtgctgaccggcgcgggtgatcatttc tgcgccggccttgacctggtcgaacactggaaggccgaccgcagcgcggatgatttcatgcatgtctgcctgcgctggcacgaggcgttcaacaagatgg aatatggcggtgtgccgatcatcgccgcgcttcggggcgcggttgtcggcggcggtctggaactggccagcgccgcccacctccgggtcatggaccaga gcacctatttcgccctgcccgaaggccagcgcggcatcttcaccgggggcggcgccaccatccgcgtgtcggacatgatcggcaaataccggatgatcg acatgatcctgaccggtcgtgtctatcaggggcaagaggccgccgatctgggcctggcgcaatacatcaccgaaggatccagctttgacaaggcgatgg agctggccgacaagatcgccagcaacctgccgctgaccaacttcgccatctgttcggccatcagccacatgcagaacatgtcgggtctggacgccgcct atgccgaggcctttgtcggcggcatcgtcaacacccagcccgccgcccgcgaacggctcgaggccttcgccaacaagaccgcagcgcgcgtgcgccc caacagctga

Sequência n°24 (metX) atgcccaccctcgcgccttcaggtcaacttgaaatccaagcgatcggtgatgtctccaccgaagccggagcaatcattacaaacgctgaaatcgcctatc accgctggggtgaataccgcgtagataaagaaggacgcagcaatgtcgttctcatcgaacacgccctcactggagattccaacgcagccgattggtggg ctgacttgctcggtcccggcaaagccatcaacactgatatttactgcgtgatctgtaccaacgtcatcggtggttgcaacggttccaccggacctggctccat gcatccagatggaaatttctggggtaatcgcttccccgccacgtccattcgtgatcaggtaaacgccgaaaaacaattcctcgacgcactcggcatcacca cggtcgccgcagtacttggtggttccatgggtggtgcccgcaccctagagtgggccgcaatgtacccagaaactgttggcgcagctgctgttcttgcagtttct gcacgcgccagcgcctggcaaatcggcattcaatccgcccaaattaaggcgattgaaaacgaccaccactggcacgaaggcaactactacgaatccg gctgcaacccagccaccggactcggcgccgcccgacgcatcgcccacctcacctaccgtggcgaactagaaatcgacgaacgcttcggcaccaaag cccaaaagaacgaaaacccactcggtccctaccgcaagcccgaccagcgcttcgccgtggaatcctacttggactaccaagcagacaagctagtaca gcgtttcgacgccggctcctacgtcttgctcaccgacgccctcaaccgccacgacattggtcgcgaccgcggaggcctcaacaaggcactcgaatccatc aaagttccagtccttgtcgcaggcgtagataccgatattttgtacccctaccaccagcaagaacacctctccagaaacctgggaaatctactggcaatggc aaaaatcgtatcccctgtcggccacgatgctttcctcaccgaaagccgccaaatggatcgcatcgtgaggaacttcttcagcctcatctccccagacgaag acaacccttcgacctacatcgagttctacatctaaSequence No. 24 (metX) atgcccaccctcgcgccttcaggtcaacttgaaatccaagcgatcggtgatgtctccaccgaagccggagcaatcattacaaacgctgaaatcgcctatc accgctggggtgaataccgcgtagataaagaaggacgcagcaatgtcgttctcatcgaacacgccctcactggagattccaacgcagccgattggtggg ctgacttgctcggtcccggcaaagccatcaacactgatatttactgcgtgatctgtaccaacgtcatcggtggttgcaacggttccaccggacctggctccat gcatccagatggaaatttctggggtaatcgcttccccgccacgtccattcgtgatcaggtaaacgccgaaaaacaattcctcgacgcactcggcatcacca cggtcgccgcagtacttggtggttccatgggtggtgcccgcaccctagagtgggccgcaatgtacccagaaactgttggcgcagctgctgttcttgcagtttct gcacgcgccagcgcctggcaaatcggcattcaatccgcccaaattaaggcgattgaaaacgaccaccactggcacgaaggcaactactacgaatccg gctgcaacccagccaccggactcggcgccgcccgacgcatcgcccacctcacctaccgtggcgaactagaaatcgacgaacgcttcggcaccaaag cccaaaagaacgaaaacccactcggtccctaccgcaagcccgaccagcgcttcgccgtggaatcctacttggactaccaagcagacaagctagtaca gcgtttcgacgccggctcctacgtcttgctcaccgacgccctcaaccgccacgacattggtcgcgaccgcggaggcctcaacaaggcactcgaatccatc aaagttccagtccttgtcgcaggcgtagataccgatattttgtacccctaccaccagcaagaacacctct ccagaaacctgggaaatctactggcaatggc aaaaatcgtatcccctgtcggccacgatgctttcctcaccgaaagccgccaaatggatcgcatcgtgaggaacttcttcagcctcatctccccagacgaacaacccttcgacctacatttt

Sequência n°25 (metY) atgccaaagtacgacaattccaatgctgaccagtggggctttgaaacccgctccattcacgcaggccagtcagtagacgcacagaccagcg cacgaaaccttccgatctaccaatccaccgctttcgtgttcgactccgctgagcacgccaagcagcgtttcgcacttgaggatctaggccctgttt actcccgcctcaccaacccaaccgttgaggctttggaaaaccgcatcgcttccctcgaaggtggcgtccacgctgtagcgttctcctccggaca ggccgcaaccaccaacgccattttgaacctggcaggagcgggcgaccacatcgtcacctccccacgcctctacggtggcaccgagactcta ttccttatcactcttaaccgcctgggtatcgatgtttccttcgtggaaaaccccgacgaccctgagtcctggcaggcagccgttcagccaaacacc aaagcattcttcggcgagactttcgccaacccacaggcagacgtcctggatattcctgcggtggctgaagttgcgcaccgcaacagcgttcca ctgatcatcgacaacaccatcgctaccgcagcgctcgtgcgcccgctcgagctcggcgcagacgttgtcgtcgcttccctcaccaagttctaca ccggcaacggctccggactgggcggcgtgcttatcgacggcggaaagttcgattggactgtcgaaaaggatggaaagccagtattcccctac ttcgtcactccagatgctgcttaccacggattgaagtacgcagaccttggtgcaccagccttcggcctcaaggttcgcgttggccttctacgcgac accggctccaccctctccgcattcaacgcatgggctgcagtccagggcatcgacaccctttccctgcgcctggagcgccacaacgaaaacgc catcaaggttgcagaattcctcaacaaccacgagaaggtggaaaaggttaacttcgcaggcctgaaggattccccttggtacgcaaccaagg aaaagcttggcctgaagtacaccggctccgttctcaccttcgagatcaagggcggcaaggatgaggcttgggcatttatcgacgccctgaagc tacactccaaccttgcaaacatcggcgatgttcgctccctcgttgttcacccagcaaccaccacccattcacagtccgacgaagctggcctggc acgcgcgggcgttacccagtccaccgtccgcctgtccgttggcatcgagaccattgatgatatcatcgctgacctcgaaggcggctttgctgca atctagSequence No. 25 (Mety) atgccaaagtacgacaattccaatgctgaccagtggggctttgaaacccgctccattcacgcaggccagtcagtagacgcacagaccagcg cacgaaaccttccgatctaccaatccaccgctttcgtgttcgactccgctgagcacgccaagcagcgtttcgcacttgaggatctaggccctgttt actcccgcctcaccaacccaaccgttgaggctttggaaaaccgcatcgcttccctcgaaggtggcgtccacgctgtagcgttctcctccggaca ggccgcaaccaccaacgccattttgaacctggcaggagcgggcgaccacatcgtcacctccccacgcctctacggtggcaccgagactcta ttccttatcactcttaaccgcctgggtatcgatgtttccttcgtggaaaaccccgacgaccctgagtcctggcaggcagccgttcagccaaacacc aaagcattcttcggcgagactttcgccaacccacaggcagacgtcctggatattcctgcggtggctgaagttgcgcaccgcaacagcgttcca ctgatcatcgacaacaccatcgctaccgcagcgctcgtgcgcccgctcgagctcggcgcagacgttgtcgtcgcttccctcaccaagttctaca ccggcaacggctccggactgggcggcgtgcttatcgacggcggaaagttcgattggactgtcgaaaaggatggaaagccagtattcccctac ttcgtcactccagatgctgcttaccacggattgaagtacgcagaccttggtgcaccagccttcggcctcaaggttcgcgttggccttctacgcgac accggctccaccctctccgcattcaacgcatgggctgcagtccagggcatcgacaccctttccctgcgcctggagcgccacaacgaaaacgc catcaaggttgcagaattcctcaacaaccac gagaaggtggaaaaggttaacttcgcaggcctgaaggattccccttggtacgcaaccaagg aaaagcttggcctgaagtacaccggctccgttctcaccttcgagatcaagggcggcaaggatgaggcttgggcatttatcgacgccctgaagc tacactccaaccttgcaaacatcggcgatgttcgctccctcgttgttcacccagcaaccaccacccattcacagtccgacgaagctggcctggc acgcgcgggcgttacccagtccaccgtccgcctgtccgttggcatcgagaccattgatgatatcatcgctgacctcgaaggcggctttgctgca atctag

Sequência n°26 (serA) atggcaaaggtatcgctggagaaagacaagattaagtttctgctggtagaaggcgtgcaccaaaaggcgctggaaagccttcgtgcagctg gttacaccaacatcgaatttcacaaaggcgcgctggatgatgaacaattaaaagaatccatccgcgatgcccacttcatcggcctgcgatccc gtacccatctgactgaagacgtgatcaacgccgcagaaaaactggtcgctattggctgtttctgtatcggaacaaaccaggttgatctggatgc ggcggcaaagcgcgggatcccggtatttaacgcaccgttctcaaatacgcgctctgttgcggagctggtgattggcgaactgctgctgctattgc gcggcgtgccggaagccaatgctaaagcgcaccgtggcgtgtggaacaaactggcggcgggttcttttgaagcgcgcggcaaaaagctgg gtatcatcggctacggtcatattggtacgcaattgggcattctggctgaatcgctgggaatgtatgtttacttttatgatattgaaaataaactgccgc tgggcaacgccactcaggtacagcatctttctgacctgctgaatatgagcgatgtggtgagtctgcatgtaccagagaatccgtccaccaaaaa tatgatgggcgcgaaagaaatttcactaatgaagcccggctcgctgctgattaatgcttcgcgcggtactgtggtggatattccggcgctgtgtga tgcgctggcgagcaaacatctggcgggggcggcaatcgacgtattcccgacggaaccggcgaccaatagcgatccatttacctctccgctgtSequence No. 26 (sera) atggcaaaggtatcgctggagaaagacaagattaagtttctgctggtagaaggcgtgcaccaaaaggcgctggaaagccttcgtgcagctg gttacaccaacatcgaatttcacaaaggcgcgctggatgatgaacaattaaaagaatccatccgcgatgcccacttcatcggcctgcgatccc gtacccatctgactgaagacgtgatcaacgccgcagaaaaactggtcgctattggctgtttctgtatcggaacaaaccaggttgatctggatgc ggcggcaaagcgcgggatcccggtatttaacgcaccgttctcaaatacgcgctctgttgcggagctggtgattggcgaactgctgctgctattgc gcggcgtgccggaagccaatgctaaagcgcaccgtggcgtgtggaacaaactggcggcgggttcttttgaagcgcgcggcaaaaagctgg gtatcatcggctacggtcatattggtacgcaattgggcattctggctgaatcgctgggaatgtatgtttacttttatgatattgaaaataaactgccgc tgggcaacgccactcaggtacagcatctttctgacctgctgaatatgagcgatgtggtgagtctgcatgtaccagagaatccgtccaccaaaaa tatgatgggcgcgaaagaaatttcactaatgaagcccggctcgctgctgattaatgcttcgcgcggtactgtggtggatattccggcgctgtgtga tgcgctggcgagcaaacatctggcgggggcggcaatcgacgtattcccgacggaaccggcgaccaatagcgatccatttacctctccgctgt

Petição 870180128975, de 11/09/2018, pág. 46/52Petition 870180128975, of 9/11/2018, p. 46/52

I 35 gtgaattcgacaacgtccttctgacgccacacattggcggttcgactcaggaagcgcaggagaatatcggcctggaagttgcgggtaaattga tcaagtattctgacaatggctcaacgctctctgcggtgaacttcccggaagtctcgctgccactgcacggtgggcgtcgtctgatgcacatccac gaaaaccgtccgggcgtgctaactgcgctgaacaaaatcttcgccgagcagggcgtcaacatcgccgcgcaatatctgcaaacttccgccc agatgggttatgtggttattgatattgaagccgacgaagacgttgccgaaaaagcgctgcaggcaatgaaagctattccgggtaccattcgcgc ccgtctgctgtactaaR 35 gtgaattcgacaacgtccttctgacgccacacattggcggttcgactcaggaagcgcaggagaatatcggcctggaagttgcgggtaaattga tcaagtattctgacaatggctcaacgctctctgcggtgaacttcccggaagtctcgctgccactgcacggtgggcgtcgtctgatgcacatccac gaaaaccgtccgggcgtgctaactgcgctgaacaaaatcttcgccgagcagggcgtcaacatcgccgcgcaatatctgcaaacttccgccc agatgggttatgtggttattgatattgaagccgacgaagacgttgccgaaaaagcgctgcaggcaatgaaagctattccgggtaccattcgcgc ccgtctgctgtactaa

Sequência n°27 (serB) atgcctaacattacctggtgcgacctgcctgaagatgtctctttatggccgggtctgcctctttcattaagtggtgatgaagtgatgccactggattac cacgcaggtcgtagcggctggctgctgtatggtcgtgggctggataaacaacgtctgacccaataccagagcaaactgggt gcggcgatggtgattgttgccgcctggtgcgtggaagattatcaggtgattcgtctggcaggttcactcaccgcacgggctacacgcctggccc acgaagcgcagctggatgtcgccccgctggggaaaatcccgcacctgcgcacgccgggtttgctggtgatggatatggactccaccgccatc cagattgaatgtattgatgaaattgccaaactggccggaacgggcgagatggtggcggaagtaaccgaacgggcgatgcgcggcgaactc gattttaccgccagcctgcgcagccgtgtggcgacgctgaaaggcgctgacgccaatattctgcaacaggtgcgtgaaaatctgccgctgatg ccaggcttaacgcaactggtgctcaagctggaaacgctgggctggaaagtggcgattgcctccggcggctttactttctttgctgaatacctgcg cgacaagctgcgcctgaccgccgtggtagccaatgaactggagatcatggacggtaaatttaccggcaatgtgatcggcgacatcgtagacg cgcagtacaaagcgaaaactctgactcgcctcgcgcaggagtatgaaatcccgctggcgcagaccgtggcgattggcgatggagccaatg acctgccgatgatcaaagcggcagggctggggattgcctaccatgccaagccaaaagtgaatgaaaaggcggaagtcaccatccgtcacg ctgacctgatgggggtattctgcatcctctcaggcagcctgaat cagaagtaaSequence No. 27 (Serb) atgcctaacattacctggtgcgacctgcctgaagatgtctctttatggccgggtctgcctctttcattaagtggtgatgaagtgatgccactggattac cacgcaggtcgtagcggctggctgctgtatggtcgtgggctggataaacaacgtctgacccaataccagagcaaactgggt gcggcgatggtgattgttgccgcctggtgcgtggaagattatcaggtgattcgtctggcaggttcactcaccgcacgggctacacgcctggccc acgaagcgcagctggatgtcgccccgctggggaaaatcccgcacctgcgcacgccgggtttgctggtgatggatatggactccaccgccatc cagattgaatgtattgatgaaattgccaaactggccggaacgggcgagatggtggcggaagtaaccgaacgggcgatgcgcggcgaactc gattttaccgccagcctgcgcagccgtgtggcgacgctgaaaggcgctgacgccaatattctgcaacaggtgcgtgaaaatctgccgctgatg ccaggcttaacgcaactggtgctcaagctggaaacgctgggctggaaagtggcgattgcctccggcggctttactttctttgctgaatacctgcg cgacaagctgcgcctgaccgccgtggtagccaatgaactggagatcatggacggtaaatttaccggcaatgtgatcggcgacatcgtagacg cgcagtacaaagcgaaaactctgactcgcctcgcgcaggagtatgaaatcccgctggcgcagaccgtggcgattggcgatggagccaatg acctgccgatgatcaaagcggcagggctggggattgcctaccatgccaagccaaaagtgaatgaaaaggcggaagtcaccatccgtcacg ctgacctgatgggggtattctgcatcctctcaggcagcctgaat cagaa gtaa

Sequência n°28 (serC) atggctcaaatcttcaattttagttctggtccggcaatgctaccggcagaggtgcttaaacaggctcaacaggaactgcgcgactggaacggtct tggtacgtcggtgatggaagtgagtcaccgtggcaaagagttcattcaggttgcagaggaagccgagaaggattttcgcgatcttcttaatgtcc cctccaactacaaggtattattctgccatggcggtggtcgcggtcagtttgctgcggtaccgctgaatattctcggtgataaaaccaccgcagatt atgttgatgccggttactgggcggcaagtgccattaaagaagcgaaaaaatactgcacgcctaatgtctttgacgccaaagtgactgttgatggt ctgcgcgcggttaagccaatgcgtgaatggcaactctctgataatgctgcttatatgcattattgcccgaatgaaaccatcgatggtatcgccatc gacgaaacgccagacttcggcgcagatgtggtggtcgccgctgacttctcttcaaccattctttcccgtccgattgacgtcagccgttatggtgtaa tttacgctggcgcgcagaaaaatatcggcccggctggcctgacaatcgtcatcgttcgtgaagatttgctgggcaaagcgaatatcgcgtgtcc gtcgattctggattattccatcctcaacgataacggctccatgtttaacacg ccgccgacatttgcctggtatctatctggtctggtctttaaatggctgaaagcgaacggcggtgtagctgaaatggataaaatcaatcagcaaaa agcagaactgctatatggggtgattgataacagcgatttctaccgcaatgacgtggcgaaagctaaccgttcgcggatgaacgtgccgttcca gttggcggacagtgcgcttgacaaattgttccttgaagagtcttttgctgctggccttcatgcactgaaaggtcaccgtgtggtcggcggaatgcg cgcttctatttataacgccatgccgctggaaggcgttaaagcgctgacagacttcatggttgagttcgaacgccgtcacggttaaSequence No. 28 (serC) atggctcaaatcttcaattttagttctggtccggcaatgctaccggcagaggtgcttaaacaggctcaacaggaactgcgcgactggaacggtct tggtacgtcggtgatggaagtgagtcaccgtggcaaagagttcattcaggttgcagaggaagccgagaaggattttcgcgatcttcttaatgtcc cctccaactacaaggtattattctgccatggcggtggtcgcggtcagtttgctgcggtaccgctgaatattctcggtgataaaaccaccgcagatt atgttgatgccggttactgggcggcaagtgccattaaagaagcgaaaaaatactgcacgcctaatgtctttgacgccaaagtgactgttgatggt ctgcgcgcggttaagccaatgcgtgaatggcaactctctgataatgctgcttatatgcattattgcccgaatgaaaccatcgatggtatcgccatc gacgaaacgccagacttcggcgcagatgtggtggtcgccgctgacttctcttcaaccattctttcccgtccgattgacgtcagccgttatggtgtaa tttacgctggcgcgcagaaaaatatcggcccggctggcctgacaatcgtcatcgttcgtgaagatttgctgggcaaagcgaatatcgcgtgtcc gtcgattctggattattccatcctcaacgataacggctccatgtttaacacg ccgccgacatttgcctggtatctatctggtctggtctttaaatggctgaaagcgaacggcggtgtagctgaaatggataaaatcaatcagcaaaa agcagaactgctatatggggtgattgataacagcgatttctaccgcaatgacgtggcgaaagctaaccgttcgcggatgaacgtgccgttcca gttggcggacagtgcgcttgacaaattgttccttgaagagtcttttgctgctggcctt catgcactgaaaggtcaccgtgtggtcggcggaatgcg cgcttctatttataacgccatgccgctggaaggcgttaaagcgctgacagacttcatggttgagttcgaacgccgtcacggttaac

Claims (24)

REIVINDICAÇÕES 1. MICRORGANISMO COM VIAS METABÓLICAS SINTÉTICAS OTIMIZADO PARA A PRODUÇÃO DE L-METIONINA A PARTIR DE MÚLTIPLAS FONTES DE CARBONO E ENXOFRE caracterizado por se tratar de um processo fermentativo para a produção de aminoácidos, especificamente Lmetionina, por meio do uso de diferentes fontes de carbono, como glucose, glicerol, xilose e arabinose, de maneira separada ou simultânea.1. MICRORGANISM WITH SYNTHETIC METABOLIC TRACKS OPTIMIZED FOR THE PRODUCTION OF L-METHIONIN FROM MULTIPLE SOURCES OF CARBON AND SULFUR characterized by being a fermentative process for the production of amino acids, specifically Lethionine, through the use of different carbon sources , such as glucose, glycerol, xylose and arabinose, separately or simultaneously. 2. MICRORGANISMO COM VIAS METABÓLICAS SINTÉTICAS OTIMIZADO PARA A PRODUÇÃO DE L-METIONINA A PARTIR DE MÚLTIPLAS FONTES DE CARBONO E ENXOFRE de acordo com a reivindicação 1, caracterizado por se tratar da aplicação de técnicas de engenharia genética para a obtenção de uma estirpe bacteriana superprodutora de L-metionina a partir das fontes de carbono mencionadas anteriormente.2. MICRO-ORGANISM WITH SYNTHETIC OPTIMIZED METABOLIC TRACKS FOR THE PRODUCTION OF L-METHIONIN FROM MULTIPLE SOURCES OF CARBON AND SULFUR according to claim 1, characterized by the application of genetic engineering techniques to obtain a superproductive bacterial strain of L-methionine from the carbon sources mentioned above. 3. MICRORGANISMO COM VIAS METABÓLICAS SINTÉTICAS OTIMIZADO PARA A PRODUÇÃO DE L-METIONINA A PARTIR DE MÚLTIPLAS FONTES DE CARBONO E ENXOFRE de acordo com a reivindicação 2, caracterizado por se tratar da atenuação do gene metJ por meio de RNA complementar, diminuindo a regulação negativa deste gene sobre genes produtores de L-metionina.3. MICRORGANISM WITH SYNTHETIC OPTIMIZED METABOLIC PATHWAYS FOR THE PRODUCTION OF L-METHIONIN FROM MULTIPLE SOURCES OF CARBON AND SULFUR according to claim 2, characterized by the attenuation of the metJ gene by means of complementary RNA, reducing the negative regulation of this gene on genes producing L-methionine. 4. MICRORGANISMO COM VIAS METABÓLICAS SINTÉTICAS OTIMIZADO PARA A PRODUÇÃO DE L-METIONINA A PARTIR DE MÚLTIPLAS FONTES DE CARBONO E ENXOFRE de acordo com as reivindicações 2 e4. MICRO-ORGANISM WITH SYNTHETIC METABOLIC TRACKS OPTIMIZED FOR THE PRODUCTION OF L-METHIONIN FROM MULTIPLE SOURCES OF CARBON AND SULFUR according to claims 2 and 3, caracterizado por se tratar da atenuação do gene metI por meio de RNA complementar, diminuindo a expressão do referido importador de Lmetionina.3, characterized by the fact that it is the attenuation of the metI gene by means of complementary RNA, decreasing the expression of said Lmethionine importer. 5. MICRORGANISMO COM VIAS METABÓLICAS SINTÉTICAS OTIMIZADO PARA A PRODUÇÃO DE L-METIONINA A PARTIR DE MÚLTIPLAS FONTES DE CARBONO E ENXOFRE de acordo com as reivindicações 2 a5. MICRO-ORGANISM WITH OPTIMIZED SYNTHETIC METABOLIC WAYS FOR THE PRODUCTION OF L-METHIONINE FROM MULTIPLE SOURCES OF CARBON AND SULFUR according to claims 2 to 4, caracterizado por se tratar da atenuação do gene lysA por meio de RNA complementar, diminuindo a produção de L-lisina e aumentando o fluxo metabólico para produção de L-metionina.4, characterized by the fact that it is the attenuation of the lysA gene by means of complementary RNA, decreasing the production of L-lysine and increasing the metabolic flow for the production of L-methionine. 6. MICRORGANISMO COM VIAS METABÓLICAS SINTÉTICAS OTIMIZADO PARA A PRODUÇÃO DE L-METIONINA A PARTIR DE MÚLTIPLAS FONTES DE CARBONO E ENXOFRE de acordo com as reivindicações 2 a6. MICRO-ORGANISM WITH OPTIMIZED SYNTHETIC METABOLIC PATHWAYS FOR THE PRODUCTION OF L-METHIONIN FROM MULTIPLE SOURCES OF CARBON AND SULFUR according to claims 2 to 5, caracterizado por se tratar da atenuação dos genes pta e ackA por meio de RNA complementar, diminuindo a produção de ácido acético e aumentando o fluxo metabólico para produção de L-metionina.5, characterized by the attenuation of the pta and ackA genes by means of complementary RNA, decreasing the production of acetic acid and increasing the metabolic flow for the production of L-methionine. 7. MICRORGANISMO COM VIAS METABÓLICAS SINTÉTICAS OTIMIZADO PARA A PRODUÇÃO DE L-METIONINA A PARTIR DE MÚLTIPLAS 7. MICRO-ORGANISM WITH OPTIMIZED SYNTHETIC METABOLIC WAYS FOR THE PRODUCTION OF L-METHIONIN FROM MULTIPLE Petição 870180128975, de 11/09/2018, pág. 48/52Petition 870180128975, of 9/11/2018, p. 48/52 2 I 52 I 5 FONTES DE CARBONO E ENXOFRE de acordo com as reivindicações 2 aSOURCES OF CARBON AND SULFUR according to claims 2 to 6, caracterizado por se tratar de um sistema de válvula metabólica baseada no promotor nar para o controle da expressão dos genes cysE e aspC inseridos no cromossomo da referida estirpe, aumentando o fluxo metabólico para a produção de cisteína e aspartato e atenuando sua expressão em situações de anaerobia para que não haja sobrecarga metabólica na ocorrência de tais eventos.6, characterized by being a metabolic valve system based on the nar promoter to control the expression of the cysE and aspC genes inserted in the chromosome of that strain, increasing the metabolic flow for the production of cysteine and aspartate and attenuating its expression in situations anaerobia so that there is no metabolic overload in the occurrence of such events. 8. MICRORGANISMO COM VIAS METABÓLICAS SINTÉTICAS OTIMIZADO PARA A PRODUÇÃO DE L-METIONINA A PARTIR DE MÚLTIPLAS FONTES DE CARBONO E ENXOFRE de acordo com as reivindicações 2 a8. MICRO-ORGANISM WITH OPTIMIZED SYNTHETIC METABOLIC WAYS FOR THE PRODUCTION OF L-METHIONINE FROM MULTIPLE SOURCES OF CARBON AND SULFUR according to claims 2 to 7, caracterizado por se tratar da atenuação do gene thrB por meio de RNA complementar, diminuindo a produção de treonina e aumentando o fluxo metabólico para produção de L-metionina.7, characterized by the fact that it is the attenuation of the thrB gene by means of complementary RNA, decreasing the production of threonine and increasing the metabolic flow for the production of L-methionine. 9. MICRORGANISMO COM VIAS METABÓLICAS SINTÉTICAS OTIMIZADO PARA A PRODUÇÃO DE L-METIONINA A PARTIR DE MÚLTIPLAS FONTES DE CARBONO E ENXOFRE de acordo com as reivindicações 2 a9. MICRO-ORGANISM WITH OPTIMIZED SYNTHETIC METABOLIC TRACKS FOR THE PRODUCTION OF L-METHIONIN FROM MULTIPLE SOURCES OF CARBON AND SULFUR according to claims 2 to 8, caracterizado por se tratar de um sistema de válvula metabólica baseada no promotor nar para o controle da expressão dos genes metF e metL inseridos no cromossomo da referida estirpe, aumentando o fluxo metabólico para a produção de 5,10 tetrahidrofolado e homoserina, e atenuando sua expressão em situações de anaerobia para que não haja sobrecarga metabólica na ocorrência de tais eventos.8, characterized by being a metabolic valve system based on the nar promoter to control the expression of the metF and metL genes inserted in the chromosome of that strain, increasing the metabolic flow for the production of 5.10 tetrahydrofolate and homoserine, and attenuating its expression in anaerobic situations so that there is no metabolic overload in the occurrence of such events. 10. MICRORGANISMO COM VIAS METABÓLICAS SINTÉTICAS OTIMIZADO PARA A PRODUÇÃO DE L-METIONINA A PARTIR DE MÚLTIPLAS FONTES DE CARBONO E ENXOFRE de acordo com as reivindicações 2 a10. MICRO-ORGANISM WITH OPTIMIZED SYNTHETIC METABOLIC WAYS FOR THE PRODUCTION OF L-METHIONIN FROM MULTIPLE SOURCES OF CARBON AND SULFUR according to claims 2 to 9, caracterizado por se tratar de um sistema de válvula metabólica baseada no promotor nar para o controle da expressão dos genes glpK, glpF, metC e cysM inseridos no cromossomo da referida estirpe, aumentando o fluxo metabólico para o consumo de glicerol e produção de homocisteína e cisteína, e atenuando sua expressão em situações de anaerobia para que não haja sobrecarga metabólica na ocorrência de tais eventos.9, characterized by being a metabolic valve system based on the nar promoter for the control of the expression of the glpK, glpF, metC and cysM genes inserted in the chromosome of that strain, increasing the metabolic flow for glycerol consumption and homocysteine production and cysteine, and attenuating its expression in anaerobic situations so that there is no metabolic overload in the occurrence of such events. 11. MICRORGANISMO COM VIAS METABÓLICAS SINTÉTICAS OTIMIZADO PARA A PRODUÇÃO DE L-METIONINA A PARTIR DE MÚLTIPLAS FONTES DE CARBONO E ENXOFRE de acordo com as reivindicações 2 a11. MICRO-ORGANISM WITH OPTIMIZED SYNTHETIC METABOLIC WAYS FOR THE PRODUCTION OF L-METHIONIN FROM MULTIPLE SOURCES OF CARBON AND SULFUR according to claims 2 to 10, caracterizado por se tratar de um sistema de válvula metabólica baseada no promotor nar para o controle da expressão dos genes glyA e metB inseridos no cromossomo da referida estirpe, aumentando o fluxo metabólico para produção de glicina e cistationina, e atenuando sua expressão em situações de anaerobia para que não haja sobrecarga metabólica na ocorrência de tais eventos.10, characterized by being a metabolic valve system based on the nar promoter to control the expression of the glyA and metB genes inserted in the chromosome of that strain, increasing the metabolic flow for the production of glycine and cystathionine, and attenuating its expression in situations anaerobia so that there is no metabolic overload in the occurrence of such events. 12. MICRORGANISMO COM VIAS METABÓLICAS SINTÉTICAS OTIMIZADO PARA A PRODUÇÃO DE L-METIONINA A PARTIR DE MÚLTIPLAS 12. MICRO-ORGANISM WITH OPTIMIZED SYNTHETIC METABOLIC PATHWAYS FOR THE PRODUCTION OF L-METHIONIN FROM MULTIPLES Petição 870180128975, de 11/09/2018, pág. 49/52Petition 870180128975, of 9/11/2018, p. 49/52 3 I 53 I 5 FONTES DE CARBONO E ENXOFRE de acordo com as reivindicações 2 aSOURCES OF CARBON AND SULFUR according to claims 2 to 11, caracterizado por se tratar de um sistema de válvula metabólica baseada no promotor nar para o controle da expressão dos genes metH e malY inseridos no cromossomo da referida estirpe, aumentando o fluxo metabólico para produção de metionina e homocisteina, e atenuando sua expressão em situações de anaerobia para que não haja sobrecarga metabólica na ocorrência de tais eventos.11, characterized by being a metabolic valve system based on the nar promoter to control the expression of the metH and malY genes inserted in the chromosome of that strain, increasing the metabolic flow for the production of methionine and homocysteine, and attenuating its expression in situations anaerobia so that there is no metabolic overload in the occurrence of such events. 13. MICRORGANISMO COM VIAS METABÓLICAS SINTÉTICAS OTIMIZADO PARA A PRODUÇÃO DE L-METIONINA A PARTIR DE MÚLTIPLAS FONTES DE CARBONO E ENXOFRE de acordo com as reivindicações 2 a13. MICRO-ORGANISM WITH OPTIMIZED SYNTHETIC METABOLIC WAYS FOR THE PRODUCTION OF L-METHIONIN FROM MULTIPLE SOURCES OF CARBON AND SULFUR according to claims 2 to 12, caracterizado por se tratar da inserção do conjunto gênico serA, serB e serC sob controle de um promotor sintético constitutivo na região correspondente ao gene lacZ, aumentando o fluxo metabólico para produção de L-serina e consequentemente L-metionina.12, characterized by the insertion of the serA, serB and serC gene set under the control of a constitutive synthetic promoter in the region corresponding to the lacZ gene, increasing the metabolic flow for the production of L-serine and consequently L-methionine. 14. MICRORGANISMO COM VIAS METABÓLICAS SINTÉTICAS OTIMIZADO PARA A PRODUÇÃO DE L-METIONINA A PARTIR DE MÚLTIPLAS FONTES DE CARBONO E ENXOFRE de acordo com as reivindicações 2 a14. MICRO-ORGANISM WITH SYNTHETIC OPTIMIZED METABOLIC WAYS FOR THE PRODUCTION OF L-METHIONIN FROM MULTIPLE SOURCES OF CARBON AND SULFUR according to claims 2 to 13, caracterizado por se tratar de um sistema de válvula metabólica baseada no promotor nar para o controle da expressão dos genes pntA, pntB e sthA inseridos no cromossomo da referida estirpe, aumentando a produção de NADH e NADPH, e atenuando sua expressão em situações de anaerobia para que não haja sobrecarga metabólica na ocorrência de tais eventos.13, characterized by being a metabolic valve system based on the nar promoter to control the expression of the pntA, pntB and sthA genes inserted in the chromosome of that strain, increasing the production of NADH and NADPH, and attenuating its expression in situations of anaerobia so that there is no metabolic overload in the occurrence of such events. 15. MICRORGANISMO COM VIAS METABÓLICAS SINTÉTICAS OTIMIZADO PARA A PRODUÇÃO DE L-METIONINA A PARTIR DE MÚLTIPLAS FONTES DE CARBONO E ENXOFRE de acordo com as reivindicações 2 a15. MICRO-ORGANISM WITH OPTIMIZED SYNTHETIC METABOLIC TRACKS FOR THE PRODUCTION OF L-METHIONIN FROM MULTIPLE SOURCES OF CARBON AND SULFUR according to claims 2 to 14, caracterizado por se tratar de um sistema de válvula metabólica baseada no promotor nar para o controle da expressão dos genes ftsA e ftsZ inseridos no cromossomo da referida estirpe, promovendo a divisão celular mesmo alta densidade celular, e atenuando sua expressão em situações de anaerobia para que não haja sobrecarga metabólica na ocorrência de tais eventos.14, characterized by being a metabolic valve system based on the nar promoter for the control of the expression of the ftsA and ftsZ genes inserted in the chromosome of that strain, promoting cell division even at high cell density, and attenuating its expression in anaerobic situations so that there is no metabolic overload in the occurrence of such events. 16. MICRORGANISMO COM VIAS METABÓLICAS SINTÉTICAS OTIMIZADO PARA A PRODUÇÃO DE L-METIONINA A PARTIR DE MÚLTIPLAS FONTES DE CARBONO E ENXOFRE de acordo com as reivindicações 2 a16. MICRO-ORGANISM WITH OPTIMIZED SYNTHETIC METABOLIC TRACKS FOR THE PRODUCTION OF L-METHIONIN FROM MULTIPLE SOURCES OF CARBON AND SULFUR according to claims 2 to 15, caracterizado por se tratar de um sistema de válvula metabólica baseada no promotor nar para o controle da expressão dos genes pyc e yJeH inseridos no cromossomo da referida estirpe, promovendo a produção de oxaloacetato e aumentando a exportação de metionina para o meio extracelular, e atenuando sua expressão em situações de anaerobia para que não haja sobrecarga metabólica na ocorrência de tais eventos.15, characterized by being a metabolic valve system based on the nar promoter to control the expression of the pyc and yJeH genes inserted in the chromosome of that strain, promoting the production of oxaloacetate and increasing the export of methionine to the extracellular medium, and attenuating its expression in anaerobic situations so that there is no metabolic overload in the occurrence of such events. Petição 870180128975, de 11/09/2018, pág. 50/52Petition 870180128975, of 9/11/2018, p. 50/52 4 I 54 I 5 17. MICRORGANISMO COM VIAS METABÓLICAS SINTÉTICAS OTIMIZADO PARA A PRODUÇÃO DE L-METIONINA A PARTIR DE MÚLTIPLAS FONTES DE CARBONO E ENXOFRE de acordo com as reivindicações 2 a17. MICRO-ORGANISM WITH OPTIMIZED SYNTHETIC METABOLIC PATHWAYS FOR THE PRODUCTION OF L-METHIONIN FROM MULTIPLE SOURCES OF CARBON AND SULFUR according to claims 2 to 16, caracterizado por se tratar da inserção regulação da expressão do gene metK por meio de uma válvula metabólica induzida por arabinose, onde a regulação de metK se dá pela expressão controlada de um RNA complementar, atenuando a expressão do referido gene e assim diminuindo a conversão de L-metionina para S-adenosilmetionina.16, characterized by the insertion of regulation regulation of the metK gene expression through a metabolic valve induced by arabinose, where the regulation of metK occurs through the controlled expression of a complementary RNA, attenuating the expression of that gene and thus reducing the conversion from L-methionine to S-adenosylmethionine. 18. MICRORGANISMO COM VIAS METABÓLICAS SINTÉTICAS OTIMIZADO PARA A PRODUÇÃO DE L-METIONINA A PARTIR DE MÚLTIPLAS FONTES DE CARBONO E ENXOFRE de acordo com as reivindicações 2 a18. MICRO-ORGANISM WITH OPTIMIZED SYNTHETIC METABOLIC PATHWAYS FOR THE PRODUCTION OF L-METHIONIN FROM MULTIPLE SOURCES OF CARBON AND SULFUR according to claims 2 to 17, caracterizado por se tratar de um processo fermentativo para a produção de aminoácidos, especificamente L-metionina, por meio do uso de diferentes fontes de enxofre, reduzidas ou não, como dimetil dissulfeto (DMDS), sulfato de amônio, dimetilsulfoniopropionato (DMSP), taurina, alcanos sulfonatos, tiossulfato.17, characterized by being a fermentative process for the production of amino acids, specifically L-methionine, through the use of different sources of sulfur, reduced or not, such as dimethyl disulfide (DMDS), ammonium sulfate, dimethylsulfoniopropionate (DMSP) , taurine, alkanes sulfonates, thiosulfate. 19. MICRORGANISMO COM VIAS METABÓLICAS SINTÉTICAS OTIMIZADO PARA A PRODUÇÃO DE L-METIONINA A PARTIR DE MÚLTIPLAS FONTES DE CARBONO E ENXOFRE de acordo com as reivindicações 2 e19. MICRO-ORGANISM WITH OPTIMIZED SYNTHETIC METABOLIC TRACKS FOR THE PRODUCTION OF L-METHIONIN FROM MULTIPLE SOURCES OF CARBON AND SULFUR according to claims 2 and 18, caracterizado pelo sistema de válvula metabólica controlada por arabinose que controla a expressão do conjunto gênico metX e metY de Corynebacterium glutamicum inserido no cromossomo da referida estirpe, sendo esta capaz de incorporar metanotiol e dimetil dissulfeto (DMDS) à metionina constituindo uma via alternativa sintética regulada para produção do referido aminoácido.18, characterized by the arabinose-controlled metabolic valve system that controls the expression of the metory and metY gene set of Corynebacterium glutamicum inserted in the chromosome of that strain, which is able to incorporate methanethiol and dimethyl disulfide (DMDS) into a methionine alternative regulated for the production of said amino acid. 20. MICRORGANISMO COM VIAS METABÓLICAS SINTÉTICAS OTIMIZADO PARA A PRODUÇÃO DE L-METIONINA A PARTIR DE MÚLTIPLAS FONTES DE CARBONO E ENXOFRE de acordo com a reivindicação 2 e20. MICRO-ORGANISM WITH OPTIMIZED SYNTHETIC METABOLIC TRACKS FOR THE PRODUCTION OF L-METHIONIN FROM MULTIPLE SOURCES OF CARBON AND SULFUR according to claim 2 and 19, caracterizado sistema de válvula metabólica controlada por arabinose que controla a expressão do gene dmdA de Ruegeria pomeroyi inserido no cromossomo da referida estirpe, sendo esta capaz de converter dimetilsulfoniopropionato em metilmercaptopropionato.19, characterized by a metabolic valve system controlled by arabinose that controls the expression of the dmdA gene from Ruegeria pomeroyi inserted in the chromosome of that strain, which is capable of converting dimethylsulfoniopropionate into methylmercaptopropionate. 21. MICRORGANISMO COM VIAS METABÓLICAS SINTÉTICAS OTIMIZADO PARA A PRODUÇÃO DE L-METIONINA A PARTIR DE MÚLTIPLAS FONTES DE CARBONO E ENXOFRE de acordo com a reivindicação 2 e21. MICRO-ORGANISM WITH OPTIMIZED SYNTHETIC METABOLIC WAYS FOR THE PRODUCTION OF L-METHIONIN FROM MULTIPLE SOURCES OF CARBON AND SULFUR according to claim 2 and 20, caracterizado sistema de válvula metabólica controlada por arabinose que controla a expressão do gene dmdB de Ruegeria pomeroyi inserido no cromossomo da referida estirpe, sendo esta capaz de converter metilmercaptopropionato em MMPA-coenzima A.20, characterized by a metabolic valve system controlled by arabinose that controls the expression of the dmdB gene from Ruegeria pomeroyi inserted in the chromosome of that strain, which is capable of converting methylmercaptopropionate into MMPA-coenzyme A. 22. MICRORGANISMO COM VIAS METABÓLICAS SINTÉTICAS OTIMIZADO PARA A PRODUÇÃO DE L-METIONINA A PARTIR DE MÚLTIPLAS FONTES DE CARBONO E ENXOFRE de acordo com a reivindicação 2 e22. MICRO-ORGANISM WITH OPTIMIZED SYNTHETIC METABOLIC WAYS FOR THE PRODUCTION OF L-METHIONIN FROM MULTIPLE SOURCES OF CARBON AND SULFUR according to claim 2 and Petição 870180128975, de 11/09/2018, pág. 51/52Petition 870180128975, of 9/11/2018, p. 51/52 5 I 55 I 5 21, caracterizado sistema de válvula metabólica controlada por arabinose que controla a expressão do gene dmdC de Ruegeria pomeroyi inserido no cromossomo da referida estirpe, sendo esta capaz de converter MMPAcoenzima A em metiltioacriloil-coenzima A.21, characterized by a metabolic valve system controlled by arabinose that controls the expression of the dmdC gene from Ruegeria pomeroyi inserted in the chromosome of that strain, which is able to convert MMPAcoenzyme A into methylthioacryloyl-coenzyme A. 23. MICRORGANISMO COM VIAS METABÓLICAS SINTÉTICAS OTIMIZADO PARA A PRODUÇÃO DE L-METIONINA A PARTIR DE MÚLTIPLAS FONTES DE CARBONO E ENXOFRE de acordo com a reivindicação 2 e23. MICRO-ORGANISM WITH OPTIMIZED SYNTHETIC METABOLIC WAYS FOR THE PRODUCTION OF L-METHIONIN FROM MULTIPLE SOURCES OF CARBON AND SULFUR according to claim 2 and 22, caracterizado sistema de válvula metabólica controlada por arabinose que controla a expressão do gene dmdD de Ruegeria pomeroyi inserido no cromossomo da referida estirpe, sendo esta capaz de converter metiltioacriloil-coenzima A em metanotiol.22, characterized by a metabolic valve system controlled by arabinose that controls the expression of the dmdD gene from Ruegeria pomeroyi inserted in the chromosome of that strain, which is capable of converting methylthioacryloyl-coenzyme A into methanethiol. 24. MICRORGANISMO COM VIAS METABÓLICAS SINTÉTICAS OTIMIZADO PARA A PRODUÇÃO DE L-METIONINA A PARTIR DE MÚLTIPLAS FONTES DE CARBONO E ENXOFRE de acordo com a reivindicação 1 e 2, caracterizado por ser um microrganismo geneticamente modificado capaz de metabolizar fontes de carbono variáveis, provenientes de resíduos da produção de biocombustíveis ou de outro processo que resulte na formação de um resíduo que contenha glucose, glicerol, xilose e/ou arabinose.24. MICRO-ORGANISM WITH OPTIMIZED SYNTHETIC METABOLIC PATHWAYS FOR THE PRODUCTION OF L-METHIONIN FROM MULTIPLE SOURCES OF CARBON AND SULFUR according to claims 1 and 2, characterized by being a genetically modified microorganism capable of metabolizing variable carbon sources residues from the production of biofuels or from another process that results in the formation of a residue containing glucose, glycerol, xylose and / or arabinose.
BR102018068380-2A 2018-09-11 2018-09-11 MICRO-ORGANISM WITH SYNTHETIC METABOLIC TRACKS OPTIMIZED FOR THE PRODUCTION OF L-METHIONIN FROM MULTIPLE SOURCES OF CARBON AND SULFUR BR102018068380A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
BR102018068380-2A BR102018068380A2 (en) 2018-09-11 2018-09-11 MICRO-ORGANISM WITH SYNTHETIC METABOLIC TRACKS OPTIMIZED FOR THE PRODUCTION OF L-METHIONIN FROM MULTIPLE SOURCES OF CARBON AND SULFUR

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
BR102018068380-2A BR102018068380A2 (en) 2018-09-11 2018-09-11 MICRO-ORGANISM WITH SYNTHETIC METABOLIC TRACKS OPTIMIZED FOR THE PRODUCTION OF L-METHIONIN FROM MULTIPLE SOURCES OF CARBON AND SULFUR

Publications (1)

Publication Number Publication Date
BR102018068380A2 true BR102018068380A2 (en) 2020-03-24

Family

ID=70156133

Family Applications (1)

Application Number Title Priority Date Filing Date
BR102018068380-2A BR102018068380A2 (en) 2018-09-11 2018-09-11 MICRO-ORGANISM WITH SYNTHETIC METABOLIC TRACKS OPTIMIZED FOR THE PRODUCTION OF L-METHIONIN FROM MULTIPLE SOURCES OF CARBON AND SULFUR

Country Status (1)

Country Link
BR (1) BR102018068380A2 (en)

Similar Documents

Publication Publication Date Title
JP5805202B2 (en) Microorganism producing O-phosphoserine and method for producing L-cysteine or a derivative thereof from O-phosphoserine using the same
ES2459617T3 (en) Procedure for the preparation of methionine and its homoserine or succinylhomoserine precursors using a microorganism
CN103087971B (en) Increase methionine yield
JP2017169576A (en) Increase supply of NADPH for methionine production
JP5880434B2 (en) Method for producing L-cysteine, L-cystine, a derivative or precursor thereof, or a mixture thereof using a bacterium of Enterobacteriaceae
US20070004014A1 (en) Method for producing l-threonine
EP1896599B1 (en) Method for producing l-threonine
BR112014031425B1 (en) RECOMBINANT MICRO-ORGANISMS FOR FERMENTATIVE PRODUCTION OF METHIONINE
CN105264064B (en) O-phosphoserine export proteins and methods of producing O-phosphoserine using the same
RU2678757C2 (en) Microorganism for methionine production with enhanced methionine efflux
BR112012016908B1 (en) LINES AND METHODS FOR THE PRODUCTION OF METHIONIN
BR112016004367B1 (en) RECOMBINANT MICRO-ORGANISMS AND METHOD FOR THE FERMENTATIVE PRODUCTION OF METHIONINE AND/OR ITS DERIVATIVES
US10329591B2 (en) Method and microorganism for methionine production by fermentation with improved methionine efflux
ES2670035T3 (en) New variants of the RhtB protein and O-phosphoserine production method using the same
BR102018068380A2 (en) MICRO-ORGANISM WITH SYNTHETIC METABOLIC TRACKS OPTIMIZED FOR THE PRODUCTION OF L-METHIONIN FROM MULTIPLE SOURCES OF CARBON AND SULFUR
BR102017014956A2 (en) FERMENTATIVE PROCESS FOR THE PRODUCTION OF L-METHYTHIN FROM WASTE FROM BIOFUEL PRODUCTION
KR101770150B1 (en) Fermentative production of methionine hydroxy analog (mha)
KR102472559B1 (en) A method of producing sulfur-containing amino acids and derivatives thereof
KR102472558B1 (en) A method of producing sulfur-containing amino acids and derivatives thereof
RU2458982C2 (en) Method of producing l-cysteine, l-cystine, s-sulphocysteine or l-cysteine thiazolidine derivative, or mixture thereof using bacteria of enterobacteriaceae family
BR112021026486B1 (en) METHOD OF PRODUCING AMINO ACID CONTAINING SULFUR OR A DERIVATIVE THEREOF, MICRO-ORGANISM, COMPOSITION FOR PRODUCING AN AMINO ACID, USE OF A PROTEIN AND A MICRO-ORGANISM
JP2017143756A (en) Method for producing l-cysteine
BR102018001011A2 (en) FERMENTATIVE PROCESS FOR L-LYSINE PRODUCTION FROM MULTIPLE CARBON SOURCES
BR112017019153B1 (en) COMPOSITION FOR FOOD ADDITIVE, AND ANIMAL FOOD COMPOSITION CONTAINING THE SAME
KR100859088B1 (en) A Modified Microorganism Producing L-Threonine and A Method for Producing L-Threonine Using thereof

Legal Events

Date Code Title Description
B03A Publication of a patent application or of a certificate of addition of invention [chapter 3.1 patent gazette]
B08F Application dismissed because of non-payment of annual fees [chapter 8.6 patent gazette]

Free format text: REFERENTE A 3A ANUIDADE.

B08K Patent lapsed as no evidence of payment of the annual fee has been furnished to inpi [chapter 8.11 patent gazette]

Free format text: EM VIRTUDE DO ARQUIVAMENTO PUBLICADO NA RPI 2650 DE 19-10-2021 E CONSIDERANDO AUSENCIA DE MANIFESTACAO DENTRO DOS PRAZOS LEGAIS, INFORMO QUE CABE SER MANTIDO O ARQUIVAMENTO DO PEDIDO DE PATENTE, CONFORME O DISPOSTO NO ARTIGO 12, DA RESOLUCAO 113/2013.