BR102017014956A2 - FERMENTATIVE PROCESS FOR THE PRODUCTION OF L-METHYTHIN FROM WASTE FROM BIOFUEL PRODUCTION - Google Patents

FERMENTATIVE PROCESS FOR THE PRODUCTION OF L-METHYTHIN FROM WASTE FROM BIOFUEL PRODUCTION Download PDF

Info

Publication number
BR102017014956A2
BR102017014956A2 BR102017014956-0A BR102017014956A BR102017014956A2 BR 102017014956 A2 BR102017014956 A2 BR 102017014956A2 BR 102017014956 A BR102017014956 A BR 102017014956A BR 102017014956 A2 BR102017014956 A2 BR 102017014956A2
Authority
BR
Brazil
Prior art keywords
production
strain
methionine
gene
waste
Prior art date
Application number
BR102017014956-0A
Other languages
Portuguese (pt)
Inventor
De Leão Rosenmann Bernardo
Original Assignee
Natbio Ltda Me
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Natbio Ltda Me filed Critical Natbio Ltda Me
Priority to BR102017014956-0A priority Critical patent/BR102017014956A2/en
Publication of BR102017014956A2 publication Critical patent/BR102017014956A2/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

a presente invenção descreve o processo fermentativo para a produção do aminoácido l-metionina a partir de resíduos da indústria de biocombustíveis utilizando o microrganismo escherichia coli. a presente invenção apresenta também as modificações genéticas necessárias para que a bactéria escherichia coli possa consumir de maneira satisfatória a matéria prima e, da mesma forma, produzir o aminoácido l-metionina. está descrito o processo de modificação genética na bactéria e. coli. a presente invenção também descreve o processo de produção de l-metionina, o qual ocorre em regime aeróbico e em bateladas alimentadas. a produção de metionina pelo método aqui descrito tem como objetivo aproveitar um rejeito industrial de maneira sustentável e de baixo impacto ambiental.The present invention describes the fermentative process for the production of the amino acid 1-methionine from biofuel industry residues using the microorganism Escherichia coli. The present invention also provides the genetic modifications necessary for the bacterium Escherichia coli to satisfactorily consume the raw material and thereby produce the amino acid 1-methionine. The process of genetic modification in the bacterium e. coli. The present invention also describes the production process of 1-methionine, which occurs in aerobic regime and in fed batches. Methionine production by the method described here aims to harness industrial waste in a sustainable and low environmental impact manner.

Description

(54) Título: PROCESSO FERMENTATIVO PARA A PRODUÇÃO DE L-METIONINA A PARTIR DE RESÍDUOS DA PRODUÇÃO DE BIOCOMBUSTÍVEIS (51) Int. Cl.: C12P 13/12; C12N 15/09; C12N 1/21; C12R 1/19 (73) Titular(es): NATBIO LTDA ME (72) Inventor(es): BERNARDO DE LEÃO ROSENMANN (57) Resumo: A presente invenção descreve o processo fermentativo para a produção do aminoácido L-metionina a partir de resíduos da indústria de biocombustíveis utilizando o microrganismo Escherichia coli. A presente invenção apresenta também as modificações genéticas necessárias para que a bactéria Escherichia coli possa consumir de maneira satisfatória a matéria prima e, da mesma forma, produzir o aminoácido L-metionina. Está descrito o processo de modificação genética na bactéria E. coli. A presente invenção também descreve o processo de produção de L-metionina, o qual ocorre em regime aeróbico e em bateladas alimentadas. A produção de metionina pelo método aqui descrito tem como objetivo aproveitar um rejeito industrial de maneira sustentável e de baixo impacto ambiental.(54) Title: FERMENTATIVE PROCESS FOR THE PRODUCTION OF L-METHIONINE FROM WASTE FROM THE PRODUCTION OF BIOFUELS (51) Int. Cl .: C12P 13/12; C12N 9/15; 1/12 C12N; C12R 1/19 (73) Holder (s): NATBIO LTDA ME (72) Inventor (s): BERNARDO DE LEÃO ROSENMANN (57) Abstract: The present invention describes the fermentation process for the production of the amino acid L-methionine from waste from the biofuel industry using the microorganism Escherichia coli. The present invention also presents the necessary genetic modifications so that the bacterium Escherichia coli can satisfactorily consume the raw material and, in the same way, produce the amino acid L-methionine. The process of genetic modification in E. coli bacteria is described. The present invention also describes the process of producing L-methionine, which occurs in an aerobic regime and in fed batches. The production of methionine by the method described here aims to take advantage of industrial waste in a sustainable manner and with low environmental impact.

1/381/38

PROCESSO FERMENTATIVO PARA A PRODUÇÃO DE L-METIONINA A PARTIR DE RESÍDUOS DA PRODUÇÃO DE BIOCOMBUSTÍVEISFERMENTATIVE PROCESS FOR THE PRODUCTION OF L-METHIONINE FROM WASTE FROM THE PRODUCTION OF BIOFUELS

CAMPO DA INVENÇÃO [001] A presente invenção trata de um processo fermentativo para a produção bacteriana de aminoácidos, mais especificamente o aminoácido L-metionina, através de técnicas fermentativas e aproveitamento de água glicerinada proveniente da produção de biodiesel. A presente invenção se aplica a qualquer área industrial que se objetive a produção sustentável de aminoácidos, em específico L-metionina, aproveitando um resíduo de baixo custo.FIELD OF THE INVENTION [001] The present invention deals with a fermentative process for the bacterial production of amino acids, more specifically the amino acid L-methionine, through fermentative techniques and use of glycerinated water from the production of biodiesel. The present invention applies to any industrial area that aims at the sustainable production of amino acids, in particular L-methionine, taking advantage of a low cost residue.

[002] A invenção descreve a aplicação de engenharia genética para obtenção de uma estirpe bacteriana superprodutora e excretora de metionina, em um processo fermentativo a partir de água glicerinada residual do processo de produção do biodiesel.[002] The invention describes the application of genetic engineering to obtain a superproductive and excretory bacterial strain of methionine, in a fermentative process from residual glycerin water from the biodiesel production process.

FUNDAMENTOS DA INVENÇÃO E ESTADO DA TÉCNICA [003] Processos industriais de fermentação bacteriana são utilizados para produzir uma ampla variedade de metabólitos de interesse comercial, entre alguns exemplos, aminoácidos, ácidos orgânicos, antibióticos, nucleotídeos, vitaminas e alguns polímeros biodegradáveis (Wendisch et al., 2016) [004] A disponibilidade da informação genômica de bactérias usualmente utilizadas em processos fermentativos permite a utilização de engenharia metabólica através de deleções gênicas ou introdução de genes homólogos e heterólogos, visando o aumento da produção de aminoácidos sem gerar mutações secundárias deletérias por métodos aleatórios de mutagênese (Wright, 2000).BACKGROUND OF THE INVENTION AND STATUS OF THE TECHNIQUE [003] Industrial bacterial fermentation processes are used to produce a wide variety of metabolites of commercial interest, including, for example, amino acids, organic acids, antibiotics, nucleotides, vitamins and some biodegradable polymers (Wendisch et al ., 2016) [004] The availability of genomic information on bacteria usually used in fermentation processes allows the use of metabolic engineering through gene deletions or the introduction of homologous and heterologous genes, aiming at increasing the production of amino acids without generating deleterious secondary mutations by random mutagenesis methods (Wright, 2000).

[005] Além disso, a informação genômica serve como base para construção de modelos computacionais do metabolismo bacteriano, permitindo simular o rendimento de um determinado produto em uma estirpe modificada (Edwards et al., 2002).[005] In addition, genomic information serves as a basis for building computational models of bacterial metabolism, allowing to simulate the yield of a given product in a modified strain (Edwards et al., 2002).

[006] Sendo assim, evita-se a ocorrência de interferências no crescimento e na tolerância a estresse pela bactéria que podem ocorrer quando uma técnica de[006] Therefore, it prevents the occurrence of interferences in the growth and in the tolerance to stress by the bacteria that can occur when a technique of

Petição 870170048524, de 12/07/2017, pág. 5/55Petition 870170048524, of 7/12/2017, p. 5/55

2/38 mutação aleatória é utilizada, através do uso de luz ultravioleta (UV) ou de agentes químicos alquilantes.2/38 random mutation is used, through the use of ultraviolet (UV) light or alkylating chemical agents.

[007] Para tornar a presente invenção sustentável, descreve-se a utilização de água glicerinada obtida a partir da síntese de biodiesel como fonte de carbono. [008] A L-metionina é um aminoácido essencial para nutrição humana e animal. Além disso, a metionina é aplicada em diversas áreas industriais, entre elas indústrias alimentícias, farmacêuticas e cosméticas. Sendo assim, a grande demanda mundial por metionina o torna um produto biotecnológico de interesse para produção industrial em larga escala.[007] To make the present invention sustainable, the use of glycerinated water obtained from the synthesis of biodiesel as a carbon source is described. [008] L-methionine is an essential amino acid for human and animal nutrition. In addition, methionine is applied in several industrial areas, including food, pharmaceutical and cosmetic industries. Thus, the great worldwide demand for methionine makes it a biotechnological product of interest for large-scale industrial production.

[009] As principais limitações em aumentar a produção de aminoácidos por fermentação bacteriana consistem em identificar e eliminar as restrições impostas por mecanismos de regulação intrínsecos de cada bactéria e, geralmente, apresentam especificidades dependendo do tipo de bactéria empregada no processo.[009] The main limitations in increasing the production of amino acids by bacterial fermentation are to identify and eliminate the restrictions imposed by intrinsic regulatory mechanisms of each bacterium and, generally, present specificities depending on the type of bacteria used in the process.

[010] A bactéria Escherichia coli é um dos micro-organismos mais utilizados para a produção de aminoácidos em processos fermentativos (Ikeda, 2003; Wendisch, 2014; Wendisch et al., 2006). A biossíntese e metabolismo de L-metionina tem sido bem estudada nesta bactéria (WO2009043803A2), revelando detalhes funcionais dos fatores regulatórios envolvidos no controle da síntese (Usuda and Kurahashi, 2005). No nível transcricional, a expressão dos genes envolvidos na síntese de metionina é reprimida pelo repressor MetJ e seu co-repressor SAM (S-adenosil-Lmetionina).[010] The bacterium Escherichia coli is one of the most used microorganisms for the production of amino acids in fermentation processes (Ikeda, 2003; Wendisch, 2014; Wendisch et al., 2006). The biosynthesis and metabolism of L-methionine has been well studied in this bacterium (WO2009043803A2), revealing functional details of the regulatory factors involved in the control of synthesis (Usuda and Kurahashi, 2005). At the transcriptional level, the expression of the genes involved in the synthesis of methionine is repressed by the repressor MetJ and its co-repressor SAM (S-adenosyl-Lmethionine).

[011] Um fator importante a ser considerado ao se modificar geneticamente uma estirpe bacteriana para a produção de aminoácidos é qual o sistema de efluxo seria o mais adequado para a excreção do aminoácido em questão. Escherichia coli dispõe de um sistema ABC de captação de metionina expresso pelos genes metN, metI e metQ já bem caracterizado (Kadner, 1977; Merlin et al., 2002; Zhang et al., 2003). Entretanto, o transportador ABC MetNIQ não opera no sentido do efluxo de metionina, apenas para a sua capatação. Portanto, novos transportadores de efluxo foram caracterizados e aplicados para maximizar a excreção de L-metionina em E. coli e outros microrganismos.[011] An important factor to consider when genetically modifying a bacterial strain for the production of amino acids is which efflux system would be the most suitable for the excretion of the amino acid in question. Escherichia coli has an ABC methionine uptake system expressed by the well-characterized metN, metI and metQ genes (Kadner, 1977; Merlin et al., 2002; Zhang et al., 2003). However, the ABC MetNIQ transporter does not operate in the direction of methionine efflux, only for its capture. Therefore, new efflux transporters have been characterized and applied to maximize the excretion of L-methionine in E. coli and other microorganisms.

Petição 870170048524, de 12/07/2017, pág. 6/55Petition 870170048524, of 7/12/2017, p. 6/55

3/38 [012] O transportador BrnFE (expresso pelo operon brnFE) de Corynebacterium glutamicum foi caracterizado como um transportador de efluxo para metionina e aminoácidos de cadeia ramificada, entre eles, L-valina, L-isoleucina e L-leucina (Lange et al., 2012; Trotschel et al., 2005). A superexpressão do transportador BrnFE levou a maior excreção de L-metionina em C. glutamicum, atingindo 6,3 g/L em 64h de fermentação (Qin et al., 2015).3/38 [012] The BrnFE transporter (expressed by the brnFE operon) of Corynebacterium glutamicum was characterized as an efflux transporter for methionine and branched chain amino acids, including L-valine, L-isoleucine and L-leucine (Lange et al., 2012; Trotschel et al., 2005). Overexpression of the BrnFE transporter led to a greater excretion of L-methionine in C. glutamicum, reaching 6.3 g / L in 64h of fermentation (Qin et al., 2015).

[013] Em E. coli foi encontrado um sistema de efluxo homólogo ao transportador BrnFE de C. glutamicum denominado YgaZH (expresso pelos genes ygaZH) (Park et al., 2007). O transportador YgaZH foi caracterizado inicialmente como um transportador específico para L-valina (Park et al., 2007), entretanto diversas patentes empregam o seu uso para aumentar a excreção também de L-metionina em E. coli (Dischert et al., 2016; Figge et al., 2016; Park et al., 2008).[013] In E. coli an efflux system homologous to the BrnFE transporter of C. glutamicum called YgaZH (expressed by the ygaZH genes) was found (Park et al., 2007). The YgaZH transporter was initially characterized as a specific transporter for L-valine (Park et al., 2007), however several patents employ its use to increase the excretion of L-methionine in E. coli as well (Dischert et al., 2016 ; Figge et al., 2016; Park et al., 2008).

[014] Recentemente, um novo transportador de efluxo de aminoácidos denominado yjeH foi caracterizado em E. coli. A superexpressão do transportador na estirpe mutante de E. coli sem o gene metJ levou a excreção de metionina aumentada em experimentos em frascos agitados (Liu et al., 2015). A patente US2009/0298135A1 da Consortium fur Elektrochemische Industrie GmbH reivindica a utilização do gene yjeH em algumas aplicações (Maier et al., 2009). Os autores desta patente demonstraram a produção de até 4,8 g/L de L-metionina em fermentadores de 5 L utilizando glucose como fonte de carbono e em condições de alta aeração e alta densidade celular.[014] Recently, a new amino acid efflux transporter called yjeH was characterized in E. coli. Overexpression of the transporter in the E. coli mutant strain without the metJ gene led to increased methionine excretion in shaken flask experiments (Liu et al., 2015). The US2009 / 0298135A1 from Consortium fur Elektrochemische Industrie GmbH claims the use of the yjeH gene in some applications (Maier et al., 2009). The authors of this patent demonstrated the production of up to 4.8 g / L of L-methionine in 5 L fermenters using glucose as a carbon source and under conditions of high aeration and high cell density.

[015] Diversas patentes já descreveram modificações gênicas para o aumento da produção de L-metionina (WO2007077041, WO2009043803, WO2007012078, US9034611, US20080194030), porém nenhuma com o uso de transportadores específicos para melhorar o rendimento do processo. Patentes das empresas Evonik, Metabolic Explorer, BASF, CJ, entre outras descrevem os processos utilizando fontes de carbono puras e de origem vegetal, como a glicose, dextrose, açúcar invertido, entre outros. A invenção aqui descrita usará preferencialmente água glicerinada, em suas diferentes concentrações, podendo utilizar uma fonte de carbono de origem vegetal como start do processo, visando um início de produção mais rápido.[015] Several patents have already described gene modifications to increase the production of L-methionine (WO2007077041, WO2009043803, WO2007012078, US9034611, US20080194030), but none with the use of specific carriers to improve the performance of the process. Patents from companies Evonik, Metabolic Explorer, BASF, CJ, among others describe the processes using pure and plant-based carbon sources, such as glucose, dextrose, inverted sugar, among others. The invention described here will preferably use glycerinated water, in its different concentrations, being able to use a carbon source of vegetable origin as a start of the process, aiming at a faster production start.

Petição 870170048524, de 12/07/2017, pág. 7/55Petition 870170048524, of 7/12/2017, p. 7/55

4/38 [016] As patentes da empresa Metabolic Explorer, onde o rendimento máximo citado é de até 19% (WO2009043803) ou 12,65% (US9034611B2), assim como a patente WO2007077041, utilizam como fonte de carbono glucose ou sucrose. Nessas patentes as modificações ocorrem preferencialmente em Coryne bacterium e E. coli, aumentando a expressão de alguns genes dentre eles cysA, cysU, cysT, cysM, cysL, cysC, cysE, cysI, cysJ, cysM, cysK. Ocorre também a superexpressão dos genes metE, metH, glyA, gvcTHP e metR. Os genes metA e metJ são deletados e é inserido um gene metA com alteração de feedback (WO2007077041). Em suas melhorias a empresa altera os genes pykA, pykF, lpd, serA, serB, serC e glyA (WO2009043803), além de alterar pntA, pntB, udhA, metF, thrA, thrA com alteração de feedback, purU, yncA e utiliza promotores indutivos (US9034611B2).4/38 [016] The patents of the company Metabolic Explorer, where the maximum yield quoted is up to 19% (WO2009043803) or 12.65% (US9034611B2), as well as the patent WO2007077041, use glucose or sucrose as a carbon source. In these patents, the modifications occur preferably in Coryne bacterium and E. coli, increasing the expression of some genes, among them cysA, cysU, cysT, cysM, cysL, cysC, cysE, cysI, cysJ, cysM, cysK. There is also an overexpression of the metE, metH, glyA, gvcTHP and metR genes. The metA and metJ genes are deleted and a metA gene with feedback change is inserted (WO2007077041). In its improvements, the company changes the genes pykA, pykF, lpd, serA, serB, serC and glyA (WO2009043803), in addition to changing pntA, pntB, udhA, metF, thrA, thrA with feedback changes, purU, yncA and uses promoters inductive (US9034611B2).

[017] Já a empresa BASF, na patente WO2007012078, cita produção de até 25 g/L de L-metionina em 72 horas de fermentação. Para isso os genes metQ, metK e pepcK são alterados e reinseridos no organismo. Os genes metX, metY, metB, metH, metF, metE, zwf, asK, horn, frpA, pyc, asd, cysE, cysK, cysM, cysZ, cysC, cysG, cysN, cysD e cysH.[017] The BASF company, in patent WO2007012078, cites production of up to 25 g / L of L-methionine in 72 hours of fermentation. For this, the metQ, metK and pepcK genes are changed and reinserted in the body. The genes metX, metY, metB, metH, metF, metE, zwf, asK, horn, frpA, pyc, asd, cysE, cysK, cysM, cysZ, cysC, cysG, cysN, cysD and cysH.

[018] A patente WO2002010209 da empresa Evonik também objetiva a produção de L-metionina, utilizando como fonte de carbono glucose. Para isso cita alterações genéticas nos genes metH, lysC, pgk, pyc, metA, metB, glyA, aecD, etY, thrB, thrC, ddh.[018] The patent WO2002010209 of the company Evonik also aims at the production of L-methionine, using glucose as a carbon source. For that, he mentions genetic changes in the genes metH, lysC, pgk, pyc, metA, metB, glyA, aecD, etY, thrB, thrC, ddh.

[019] O processo fermentativo para a produção de L-metionina tem sido relatado utilizando diferentes microrganismos incluindo bactérias e fungos (Gomes, J.; Kumar, D. Production of l-methionine by submerged fermentation: A review. Enzyme and Microbial Technology, v. 37, n. 1, p. 3-18, 2005; Willke, T. Methionine production---a critical review. Applied Microbiology and Biotechnology, v. 98, n. 24, p. 9893-9914, 2014). Dentre estes, bactérias do gênero Corynebacterium ou Brevibacterium possuem um mecanismo regulatório mais simples e tem sido aplicadas para produção de metionina (WO2009043372A1), bactérias da espécie Escherichia coli (Shakoori, F. R.; Butt, A. M.; Ali, N. M.; et al. Optimization of fermentation media for enhanced amino acids production by bacteria isolated from natural sources. Pak J Zool, v. 44, n. 4, p. 1145-1157, 2012; Ozulu, U. S.; Nwanah, O. U.; Ekwealor, C. C.; et al. A New Approach to Screening for MethioninePetição 870170048524, de 12/07/2017, pág. 8/55[019] The fermentative process for the production of L-methionine has been reported using different microorganisms including bacteria and fungi (Gomes, J .; Kumar, D. Production of l-methionine by submerged fermentation: A review. Enzyme and Microbial Technology, v. 37, n. 1, p. 3-18, 2005; Willke, T. Methionine production --- a critical review. Applied Microbiology and Biotechnology, v. 98, n. 24, p. 9893-9914, 2014) . Among these, bacteria of the genus Corynebacterium or Brevibacterium have a simpler regulatory mechanism and have been applied to the production of methionine (WO2009043372A1), bacteria of the species Escherichia coli (Shakoori, FR; Butt, AM; Ali, NM; et al. Optimization of fermentation media for enhanced amino acids production by bacteria isolated from natural sources.Pak J Zool, v. 44, n. 4, p. 1145-1157, 2012; Ozulu, US; Nwanah, OU; Ekwealor, CC; et al. New Approach to Screening for MethioninePetition 870170048524, of 12/07/2017, page 8/55

5/385/38

Producing Bacteria. , 2012) e estratégias de melhoramento genético têm sido aplicada em bactérias da espécie Escherichia coli (WO2007077041A1; WO2012055798A1; Huang, J.-F.; Liu, Z.-Q.; Jin, L.-Q.; et al. Metabolic engineering of Escherichia coli for microbial production of L-methionine. Biotechnology and Bioengineering, p. n/a--n/a, 2016). Como fonte de carbono foi relatado o uso de glicose.Producing Bacteria. , 2012) and breeding strategies have been applied to bacteria of the species Escherichia coli (WO2007077041A1; WO2012055798A1; Huang, J.-F .; Liu, Z.-Q .; Jin, L.-Q .; et al. Metabolic engineering of Escherichia coli for microbial production of L-methionine. Biotechnology and Bioengineering, p. n / a - n / a, 2016). As a carbon source, the use of glucose has been reported.

[020] O glicerol é um subproduto proveniente da transesterificação de triglicerídeos para produção de biodiesel, cuja fração representa 10% dos ésteres produzidos (Yang, F.; Hanna, M. A.; Sun, R. Value-added uses for crude glycerol-a byproduct of biodiesel production. Biotechnology for Biofuels, v. 5, n. 1, p. 13, 2012).[020] Glycerol is a by-product from the transesterification of triglycerides for biodiesel production, the fraction of which represents 10% of the esters produced (Yang, F .; Hanna, MA; Sun, R. Value-added uses for crude glycerol-a byproduct of biodiesel production. Biotechnology for Biofuels, v. 5, n. 1, p. 13, 2012).

[021] A composição do glicerol depende de condições da produção do biodiesel e uso de diferentes substratos. O glicerol bruto é um líquido marrom viscoso, o qual contém uma mistura de glicerol, álcool (geralmente metanol), ácidos graxos livres, água, sais inorgânicos e outros materiais como impurezas (Sivasankaran, C.; Ramanujam, P. K.; Balasubramanian, B.; Mani, J. Recent progress on transforming crude glycerol into high value chemicals: a critical review. Biofuels, v. 0, n. 0, p. 16, 2016).[021] The composition of glycerol depends on conditions of biodiesel production and use of different substrates. Crude glycerol is a viscous brown liquid, which contains a mixture of glycerol, alcohol (usually methanol), free fatty acids, water, inorganic salts and other materials such as impurities (Sivasankaran, C .; Ramanujam, PK; Balasubramanian, B. ; Mani, J. Recent progress on transforming crude glycerol into high value chemicals: a critical review. Biofuels, v. 0, n. 0, p. 16, 2016).

[022] O glicerol bruto possui baixo valor de mercado devido à presença de impurezas. Entretanto, o glicerol puro possui alto valor com uma ampla aplicação (Thompson, J. C.; He, B. B. Characterization of crude glycerol from biodiesel production from multiple feedstocks. Fuel (g), v. 98, p. 0-23, 2006; Yang, F.; Hanna, M. A.; Sun, R. Value-added uses for crude glycerol--a byproduct of biodiesel production. Biotechnology for Biofuels, v. 5, n. 1, p. 13, 2012). A purificação do glicerol bruto para aplicação industrial possui um alto custo, cerca de três vezes o valor do produto, portanto não é uma solução economicamente viável (Venkataramanan, K. P.; Boatman, J. J.; Kurniawan, Y.; Et al. Impact of impurities in biodiesel-derived crude glycerol on the fermentation by Clostridium pasteurianum ATCC 6013. Applied Microbiology and Biotechnology, v. 93, n. 3, p. 1325-1335, 2012; Yazdani, S. S.; Gonzalez, R. Anaerobic fermentation of glycerol: a path to economic viability for the biofuels industry. Current Opinion in Biotechnology, v. 18, n. 3, p. 213-219, 2007).[022] Crude glycerol has a low market value due to the presence of impurities. However, pure glycerol has high value with a wide application (Thompson, JC; He, BB Characterization of crude glycerol from biodiesel production from multiple feedstocks. Fuel (g), v. 98, p. 0-23, 2006; Yang, F .; Hanna, MA; Sun, R. Value-added uses for crude glycerol - a byproduct of biodiesel production. Biotechnology for Biofuels, v. 5, n. 1, p. 13, 2012). Purification of crude glycerol for industrial application has a high cost, about three times the value of the product, therefore it is not an economically viable solution (Venkataramanan, KP; Boatman, JJ; Kurniawan, Y .; Et al. Impact of impurities in biodiesel-derived crude glycerol on the fermentation by Clostridium pasteurianum ATCC 6013. Applied Microbiology and Biotechnology, v. 93, n. 3, p. 1325-1335, 2012; Yazdani, SS; Gonzalez, R. Anaerobic fermentation of glycerol: a path to economic viability for the biofuels industry. Current Opinion in Biotechnology, v. 18, n. 3, p. 213-219, 2007).

Petição 870170048524, de 12/07/2017, pág. 9/55Petition 870170048524, of 7/12/2017, p. 9/55

6/38 [023] Deste modo, estratégias têm sido para converter o glicerol bruto em produtos de alto valor agregado. A grande quantidade gerada diminuiu o valor do glicerol, tornando-o um competitivo substrato utilizados em processos fermentativos em relação aos açúcares (Przystatowska, H.; Lipiriski, D.; Stomski, R.; et al. Biotechnological conversion of glycerol from biofuels to 1, 3-propanediol using Escherichia coli. Acta Biochimica Polonica, v. 62, n. 1, p. 23-34, 2015). Vários microrganismos têm sido relatados como capazes de utilizar glicerol bruto como fonte de carbono para síntese de metabólicos como dihidroacetona, ácidos orgânicos, etanol, propanodiol, dentre outros (Sivasankaran, C.; Ramanujam, P. K.; Balasubramanian, B.; Mani, J. Recent progress on transforming crude glycerol into high value chemicals: a critical review. Biofuels, v. 0, n. 0, p. 1-6, 2016).6/38 [023] Thus, strategies have been used to convert crude glycerol into products with high added value. The large amount generated decreased the value of glycerol, making it a competitive substrate used in fermentation processes in relation to sugars (Przystatowska, H .; Lipiriski, D .; Stomski, R .; et al. Biotechnological conversion of glycerol from biofuels to 1, 3-propanediol using Escherichia coli (Acta Biochimica Polonica, v. 62, n. 1, p. 23-34, 2015). Several microorganisms have been reported to be able to use crude glycerol as a carbon source for the synthesis of metabolic compounds such as dihydroacetone, organic acids, ethanol, propanediol, among others (Sivasankaran, C .; Ramanujam, PK; Balasubramanian, B .; Mani, J. Recent progress on transforming crude glycerol into high value chemicals: a critical review. Biofuels, v. 0, n. 0, p. 1-6, 2016).

[024] Patentes relacionadas à produção de aminoácidos, incluindo a L-metionina utilizando glicerol como substrato podem ser citadas:[024] Patents related to the production of amino acids, including L-methionine using glycerol as substrate can be cited:

[025] A patente WO2008002053A1 relata um microrganismo com capacidade de produzir aminoácidos utilizando glicerol como substrato. O microrganismo relatado é E. coli, o qual foram inativados os genes galR e/ou glpR para produção dos aminoácidos treonina e metionina. Na presente invenção a diferença está nas modificações genéticas realizadas na bactéria E. coli, assim como o método de produção de L-metionina utilizando estratégia de batelada alimentada, crescimento da bactéria utilizando meio de cultivo similar ao de produção e método de purificação do aminoácido.[025] The patent WO2008002053A1 reports a microorganism capable of producing amino acids using glycerol as a substrate. The microorganism reported is E. coli, which has inactivated the galR and / or glpR genes to produce the amino acids threonine and methionine. In the present invention the difference is in the genetic modifications carried out in the E. coli bacterium, as well as the method of production of L-methionine using fed batch strategy, growth of the bacterium using culture medium similar to the production and method of purification of the amino acid.

[026] A patente US20090317876 relata a produção de L- aminoácidos em meio de cultivo contendo glicerol utilizando bactéria da família Enterobacteriaceae, gêneros Escherichia e Pantoea. Nestes microrganismos são modificados a atividade das enzimas glicerol kinase e glicerol 3-fosfato desidrogenase. São produzidos os aminoácidos L-fenilalanina, L-tirosina e L-triptofano. O aminoácido L-metionina é citado. A presente invenção diferencia na produção do aminoácido L-metionina utilizando uma bactéria com diferentes modificações conforme descrito na presente invenção.[026] The patent US20090317876 reports the production of L-amino acids in a culture medium containing glycerol using bacteria from the Enterobacteriaceae family, Escherichia and Pantoea genera. In these microorganisms, the activity of the enzymes glycerol kinase and glycerol 3-phosphate dehydrogenase is modified. The amino acids L-phenylalanine, L-tyrosine and L-tryptophan are produced. The amino acid L-methionine is cited. The present invention differentiates in the production of the amino acid L-methionine using a bacterium with different modifications as described in the present invention.

[027][027]

DESCRIÇÃO DA INVENÇÃODESCRIPTION OF THE INVENTION

Petição 870170048524, de 12/07/2017, pág. 10/55Petition 870170048524, of 7/12/2017, p. 10/55

7/38 [028] Como mencionado no estado da arte da invenção, várias estirpes da bactéria E. coli são utilizadas para engenharia metabólica visando maior produção de aminoácidos. Como a estirpe E. coli K-12 MG1655 teve seu genoma totalmente sequenciado e anotado (Blattner et al., 1997), além de vários modelos metabólicos já estarem disponíveis (Orth et al., 2011), essa invenção utilizará essa bactéria como estirpe inicial, que será referida desse ponto ao longo do documento como estirpe chassi.7/38 [028] As mentioned in the state of the art of the invention, several strains of the E. coli bacterium are used for metabolic engineering aiming at greater production of amino acids. As the E. coli K-12 MG1655 strain had its genome fully sequenced and annotated (Blattner et al., 1997), in addition to several metabolic models already being available (Orth et al., 2011), this invention will use this bacterium as a strain that will be referred to from that point throughout the document as a chassis strain.

[029] Define-se por estirpe chassi a bactéria E. coli K-12 MG1655 conforme genoma sequenciado por Blattner et al. (1997) e quaisquer mutações espontâneas que tenham sido geradas até o início das etapas de modificação genéticas descritas abaixo.[029] The E. coli K-12 MG1655 bacterium is defined by a chassis strain according to the genome sequenced by Blattner et al. (1997) and any spontaneous mutations that have been generated until the beginning of the genetic modification steps described below.

[030] Com o intuito de aumentar o fluxo metabólico para a produção da Lmetionina, uma série de deleções gênicas foram realizadas na estirpe MG1655. As deleções foram realizadas com o sistema de transdução utilizando o fago P1, de acordo com Thomason et al., 2007. O princípio da técnica se dá inicialmente pela infecção da estirpe doadora com o gene de interesse deletado do genoma com o fago P1. Após o rompimento celular, é realizada a purificação dos fagos e subsequente infecção da cepa alvo, de modo que, após a infecção, a deleção ocorre por meio de recombinação homóloga do DNA com a deleção carregado pelo fago P1 com o DNA genômico da cepa alvo. A sequência de deleções segue como descrito a seguir.[030] In order to increase the metabolic flow for the production of Lmethionine, a series of gene deletions were performed on the MG1655 strain. Deletions were performed with the transduction system using the P1 phage, according to Thomason et al., 2007. The principle of the technique is initially caused by the infection of the donor strain with the gene of interest deleted from the genome with the P1 phage. After cell disruption, phage purification and subsequent infection of the target strain is performed, so that after infection, the deletion occurs through homologous recombination of the DNA with the deletion carried by the P1 phage with the genomic DNA of the target strain. . The sequence of deletions follows as described below.

[031] O gene metJ é deletado da estirpe MG1655 utilizando a estirpe JW3909-1 como estirpe doadora. A estirpe resultante foi nomeada NB1701. O gene metJ codifica para o fator transcricional que suprime a expressão dos genes metA, metB, metC e metL, essenciais para a produção de L-metionina, como cita a patente JP2000157267.[031] The metJ gene is deleted from strain MG1655 using strain JW3909-1 as the donor strain. The resulting strain was named NB1701. The metJ gene codes for the transcriptional factor that suppresses the expression of the metA, metB, metC and metL genes, essential for the production of L-methionine, as cited in the patent JP2000157267.

[032] O gene metA é deletado da estirpe NB1701 utilizando a estirpe JW3973-1 como estirpe doadora. A estirpe resultante foi nomeada NB1702. A proteína resultante da expressão do gene metA, em condições nativas, é regulada negativamente pela metionina e S-adenosil-metionina, de modo que uma isoforma mutada metAfd é superexpressada evitando a regulação negativa.[032] The metA gene is deleted from strain NB1701 using strain JW3973-1 as the donor strain. The resulting strain was named NB1702. The protein resulting from the expression of the metA gene, under native conditions, is negatively regulated by methionine and S-adenosyl-methionine, so that a mutated metA fd isoform is overexpressed avoiding negative regulation.

Petição 870170048524, de 12/07/2017, pág. 11/55Petition 870170048524, of 7/12/2017, p. 11/55

8/38 [033] O gene metI é deletado da estirpe NB1702 utilizando a estirpe KW0194-1 como estirpe doadora. A estirpe resultante foi nomeada NB1703. O gene metI codifica para um importador de L-metionina, de modo que a estirpe gerada com esta mutação é incapaz de transportar metionina do meio extracelular para o citosol, diferenciando-se das patentes citadas.8/38 [033] The metI gene is deleted from strain NB1702 using strain KW0194-1 as the donor strain. The resulting strain was named NB1703. The metI gene codes for an importer of L-methionine, so that the strain generated with this mutation is unable to transport methionine from the extracellular medium to the cytosol, differing from the cited patents.

[034] O gene lysA é deletado da estirpe 1703, diferentemente da patente WO2002010209 a qual realiza a deleção do gene lysC, utilizando a estirpe JW28061 como estirpe doadora. A estirpe resultante foi nomeada NB1704. O gene lysA codifica para a proteína diaminopimelato decarboxilase, envolvida na última etapa da via de produção de L-lisina. A produção de L-lisina utiliza como precursor inicial a L-homoserina, esta utilizada também para a produção de L-metionina. Desta forma, a estirpe 1704, auxotrófica para lisina, possui o fluxo metabólico direcionado para a produção de L-metionina.[034] The lysA gene is deleted from strain 1703, differently from WO2002010209 which deletes the lysC gene, using strain JW28061 as donor strain. The resulting strain was named NB1704. The lysA gene codes for the protein diaminopimelate decarboxylase, involved in the last stage of the L-lysine production pathway. The production of L-lysine uses L-homoserine as an initial precursor, which is also used for the production of L-methionine. Thus, strain 1704, auxotrophic for lysine, has the metabolic flow directed towards the production of L-methionine.

[035] O gene pta é deletado da estirpe 1704 utilizando a estirpe JW2294-1 como estirpe doadora. A estirpe resultante foi nomeada NB1705. O gene pta codifica para a enzima fosfato acetiltransferase, associada à via de produção de acetato utilizando como precursor acetil-CoA. Esta modificação permite que a estirpe NB1705 possua maior disponibilidade de acetil-CoA e menor produção de acetato, reduzindo geração de subprodutos.[035] The pta gene is deleted from strain 1704 using strain JW2294-1 as the donor strain. The resulting strain was named NB1705. The pta gene codes for the enzyme phosphate acetyltransferase, associated with the acetate production pathway using acetyl-CoA as a precursor. This modification allows the NB1705 strain to have greater availability of acetyl-CoA and less production of acetate, reducing the generation of by-products.

[036] O gene ackA é deletado da estirpe 1705 utilizando a estirpe JW2293-1 como estirpe doadora. A estirpe resultante foi nomeada NB1706. O gene ackA codifica para a enzima acetato kinase, associada à via de produção de acetato utilizando como precursor acetil fosfato. Esta modificação permite que a estirpe NB1706 possua menor produção de acetato.[036] The ackA gene is deleted from strain 1705 using strain JW2293-1 as the donor strain. The resulting strain was named NB1706. The ackA gene codes for the enzyme acetate kinase, associated with the acetate production pathway using acetyl phosphate as a precursor. This modification allows the NB1706 strain to have less acetate production.

[037] O gene arcA é deletado da estirpe 1706 utilizando a estirpe JW4364-1 como estirpe doadora. A estirpe resultante foi nomeada NB1707. O gene arcA codifica para o fator transcricional que, em conjunto com arcB, atua como regulador negativo global do ciclo do ácido cítrico, suprimindo o mesmo em condições de anaerobia ou microoxigenação. Esta modificação permite que a estirpe 1707 seja capaz de suportar condições de oxigenação mais limitadas em relação as estirpes anteriores, permitindo que o ciclo do ácido ciclo permaneça ativo, mantendo o fluxo metabólico constante para a produção de L-metionina.[037] The arcA gene is deleted from strain 1706 using strain JW4364-1 as the donor strain. The resulting strain was named NB1707. The arcA gene codes for the transcription factor that, together with arcB, acts as a global negative regulator of the citric acid cycle, suppressing it under conditions of anaerobia or microoxygenation. This modification allows strain 1707 to be able to withstand more limited oxygenation conditions compared to previous strains, allowing the acid cycle cycle to remain active, keeping the metabolic flow constant for the production of L-methionine.

Petição 870170048524, de 12/07/2017, pág. 12/55Petition 870170048524, of 7/12/2017, p. 12/55

9/38 [038] O gene arcB é deletado da estirpe 1707 utilizando a estirpe JW5536-1 como estirpe doadora. A estirpe resultante foi nomeada NB1708. Esta modificação, assim como descrita para a estirpe 1707, permite que a estirpe NB1708 seja capaz de manter o ciclo do ácido cítrico funcional em condições limitadas de oxigenação, mantendo o fluxo metabólico constante para a produção de L-metionina.9/38 [038] The arcB gene is deleted from strain 1707 using strain JW5536-1 as the donor strain. The resulting strain was named NB1708. This modification, as described for strain 1707, allows strain NB1708 to be able to keep the citric acid cycle functional under limited oxygenation conditions, keeping the metabolic flow constant for the production of L-methionine.

[039] O gene ptsG é deletado da estirpe 1708 utilizando a estirpe JW1087-2 como estirpe doadora. A estirpe resultante foi nomeada NB1709. O gene ptsG codifica para o componente IIBC da enzima PTS glucose específica, enzima essa envolvida no processo de assimilação da glucose como fonte de carbono. Este domínio, quando fosforilado, se liga à enzima glicerol kinase, inibindo a atividade da mesma. Esta modificação permite que a estirpe NB1709 seja capaz de metabolizar tanto glicerol quanto glucose simultaneamente, uma vez que não ocorre a inibição da glicerol kinase.[039] The ptsG gene is deleted from strain 1708 using strain JW1087-2 as the donor strain. The resulting strain was named NB1709. The ptsG gene codes for the IIBC component of the specific glucose PTS enzyme, an enzyme involved in the glucose assimilation process as a carbon source. This domain, when phosphorylated, binds to the enzyme glycerol kinase, inhibiting its activity. This modification allows the strain NB1709 to be able to metabolize both glycerol and glucose simultaneously, since there is no inhibition of glycerol kinase.

[040] A alteração nos genes arcA, arcB e ptsG diferencia-se as outras patentes citadas, mantendo o ciclo do ácido cítrico ativo e permitindo que a estipe metabolize glicerol e glucose.[040] The alteration in the arcA, arcB and ptsG genes differs from the other cited patents, keeping the citric acid cycle active and allowing the stripe to metabolize glycerol and glucose.

[041] O gene thrB é deletado da estirpe 1716 utilizando a estirpe JW0002-3 como estirpe doadora. A estirpe resultante foi nomeada NB1717. O gene thrB codifica para a enzima homoserina kinase, que consome L-homoserina como precursor para a síntese de treonina. Esta modificação permite que a estirpe 1717, auxotrófica para treonina, possua o fluxo metabólico direcionado para a produção de Lmetionina.[041] The thrB gene is deleted from strain 1716 using strain JW0002-3 as the donor strain. The resulting strain was named NB1717. The thrB gene codes for the enzyme homoserine kinase, which consumes L-homoserine as a precursor for the synthesis of threonine. This modification allows the strain 1717, auxotrophic for threonine, to have the metabolic flow directed towards the production of Lmethionine.

[042] As estirpes doadoras paras as deleções são provenientes do Coli Genetic Stock Center.[042] The donor strains for the deletions come from the Coli Genetic Stock Center.

[043] Além das deleções já citadas, outras modificações auxiliam no aumento da produção de metionina.[043] In addition to the deletions already mentioned, other modifications help to increase the production of methionine.

[044] Visando a maior disponibilidade de NADPH, os genes pntA e pntB, que convertem NADP+ e NADH em NADPH e NAD+, respectivamente, foram inseridos no genoma em conjunto com o gene sthA, que converte NAD+ e NADPH em NADH e NADP+, respectivamente, assim como na patente US9034611. Os três genes foram inseridos no genoma em condição de operon e estão sob controle do promotor sintético constitutivo J23118.[044] In order to increase the availability of NADPH, the pntA and pntB genes, which convert NADP + and NADH into NADPH and NAD +, respectively, were inserted into the genome together with the sthA gene, which converts NAD + and NADPH into NADH and NADP +, respectively , as well as in US9034611. The three genes were inserted into the genome in an operon condition and are under the control of the constitutive synthetic promoter J23118.

Petição 870170048524, de 12/07/2017, pág. 13/55Petition 870170048524, of 7/12/2017, p. 13/55

10/38 [045] O gene glyA, como citado nas patentes WO2007077041 e WO2009043803, tem sua expressão aumentada fazendo com que ocorra a transferência de um grupo metil para a molécula de tetrahidrofolato, intermediário chave na biossíntese da metionina. Este gene, em conjunto com o gene aspC, que codifica para proteína aspartato aminotransferase e promove a formação de oxaloacetato a partir de aspartato, foi inserido no genoma em condição de operon, diferentemente das patentes citadas. Os dois genes estão sob controle do promotor sintético constitutivo J23118, de modo que a disponibilidade de tetrahidrofolato e oxaloacetato são aumentadas, direcionando o fluxo metabólico para a formação de metionina.10/38 [045] The glyA gene, as mentioned in the WO2007077041 and WO2009043803 patents, has its expression increased causing the transfer of a methyl group to the tetrahydrofolate molecule, a key intermediate in methionine biosynthesis. This gene, together with the aspC gene, which codes for the protein aspartate aminotransferase and promotes the formation of oxaloacetate from aspartate, was inserted into the genome in an operon condition, unlike the patents cited. Both genes are under the control of the constitutive synthetic promoter J23118, so that the availability of tetrahydrofolate and oxaloacetate are increased, directing the metabolic flow to the formation of methionine.

[046] Os genes ftsA e ftsZ, envolvidos na formação da estrutura em anel responsável por promover a divisão celular, tem a sua expressão aumentada para que as células mantenham o processo de divisão celular mesmo quando há sinalização para a parada da proliferação causada principalmente por contato célula-célula. Os dois genes foram inseridos no genoma em condição de operon, e a expressão destes é controlada pelo promotor sintético constitutivo J23118 com o intuito de manter a expressão constante dos mesmos. Modificações estas que não ocorrem em patentes de produção de L-metionina. Esta modificação permite que a cultura celular permaneça em fase de crescimento mesmo em alta densidade. O gene metK* gera a enzima metionina adenosiltransferase, que gera S-adenosilmetionina a partir da metionina, molécula de interesse desta patente. Desta forma, o gene metK* possui mutações que reduzem a atividade desta enzima em aproximadamente 90%, afetando o acúmulo de biomassa, porém, não utilizando metionina, sendo esta transportada para o meio extracelular.[046] The ftsA and ftsZ genes, involved in the formation of the ring structure responsible for promoting cell division, have their expression increased so that cells maintain the cell division process even when there is a signal to stop proliferation caused mainly by cell-cell contact. Both genes were inserted into the genome in an operon condition, and their expression is controlled by the constitutive synthetic promoter J23118 in order to maintain their constant expression. These modifications do not occur in L-methionine production patents. This modification allows the cell culture to remain in the growth phase even at high density. The metK * gene generates the enzyme methionine adenosyltransferase, which generates S-adenosylmethionine from methionine, a molecule of interest in this patent. Thus, the metK * gene has mutations that reduce the activity of this enzyme by approximately 90%, affecting the accumulation of biomass, however, not using methionine, which is transported to the extracellular medium.

[047] O gene yjeH, descrito como exportador de L-metionina para o meio extracelular, também modificado na patente US20090298135, tem sua expressão aumentada devido à inserção de uma cópia adicional no genoma, sendo este gene sob controle do promotor sintético constitutivo J23118. Constituindo um operon sob controle do mesmo promotor, também foi inserida uma cópia do gene pyc, de Rizhobium etli, que codifica para a enzima piruvato carboxilase, promovendo a formação de oxaloacetado diretamente de piruvato. Estas duas modificações têm como intuito reduzir o acúmulo intracelular de metionina, bem como promover o[047] The yjeH gene, described as an exporter of L-methionine to the extracellular medium, also modified in the patent US20090298135, has its expression increased due to the insertion of an additional copy in the genome, this gene being under the control of the constitutive synthetic promoter J23118. Constituting an operon under the control of the same promoter, a copy of the pyc gene from Rizhobium etli, which codes for the enzyme pyruvate carboxylase, was also inserted, promoting the formation of oxaloacetate directly from pyruvate. These two modifications are intended to reduce the intracellular accumulation of methionine, as well as to promote the

Petição 870170048524, de 12/07/2017, pág. 14/55Petition 870170048524, of 7/12/2017, p. 14/55

11/38 transporte deste aminoácido para o meio extracelular, e aumentar a disponibilidade de oxaloacetato intracelular, intermediário essencial na via de síntese de metionina. [048] A biossíntese de L-metionina é um processo oneroso de energia que envolve diferentes intermediários de várias outras vias. O esqueleto de carbono é derivado de aspartato enquanto o enxofre é proveniente da cisteína. Visando o aumento do fluxo metabólico para a produção de cisteína, os genes cysM e cysE que codificam para as enzimas cisteína síntese e serina acetiltransferase, respectivamente, foram superexpressos, assim como nas patentes WO2007077041, WO2007012078 e US9034611. Porém, diferenciando-se das outras patentes citadas, a invenção aqui descrita, no caso do gene cysE, uma variante do gene com mutações nas posições T167A, G245S e M256I, foi utilizada com o objetivo de atenuar a inibição pelo produto cisteína.11/38 transport of this amino acid to the extracellular environment, and increase the availability of intracellular oxaloacetate, an essential intermediate in the methionine synthesis pathway. [048] L-methionine biosynthesis is a costly energy process that involves different intermediates from several other pathways. The carbon skeleton is derived from aspartate while the sulfur comes from cysteine. In order to increase the metabolic flow for cysteine production, the cysM and cysE genes that code for the enzymes cysteine synthesis and serine acetyltransferase, respectively, have been overexpressed, as well as in the patents WO2007077041, WO2007012078 and US9034611. However, differently from the other cited patents, the invention described here, in the case of the cysE gene, a variant of the gene with mutations in positions T167A, G245S and M256I, was used in order to attenuate the inhibition by the cysteine product.

[049] Os genes aspC e metL, que codificam para as enzimas aspartato transaminase e aspartato kinase II foram superexpressos visando aumento do fluxo metabólico para a produção de homoserina, intermediário chave para a produção de metionina. Em seguida, a homoserina é convertida em O-succinil homoserina pela ação da enzima homoserina-O-succinil transferase, codificada a partir do gene metA. Uma variante do gene metA- metAfd (fd- feedback desensitized) contendo tripla mutação (Arg27,Iso296 e Pro298) foi utilizado com o objetivo de atenuar o inibição pelo produtos L-metionina e S-adenosil-metionina.[049] The aspC and metL genes, which code for the enzymes aspartate transaminase and aspartate kinase II were overexpressed in order to increase the metabolic flow for the production of homoserine, a key intermediate for the production of methionine. Then, homoserine is converted to O-succinyl homoserine by the action of the enzyme homoserine-O-succinyl transferase, encoded from the metA gene. A variant of the metA-metA fd gene ( fd- desensitized feedback) containing triple mutation (Arg 27 , Iso 296 and Pro 298 ) was used in order to attenuate the inhibition by the products L-methionine and S-adenosyl-methionine.

[050] O-succinil homoserina é subsequentemente convertido em L-metionina em reações com os intermediários cisteína e 5-metiltetrahidrofolato em três etapas que envolvem os genes metB, metC ou malY e metH, que codificam para as enzimas O-succinilhomoserina-liase, cistationa-beta-liase, beta-cistationa bifuncional e metionina sintase, respectivamente. Esses genes tiveram sua expressão aumentada visando o aumento/direcionamento do fluxo metabólico para a produção de L-metionina.[050] O-succinyl homoserine is subsequently converted to L-methionine in reactions with the cysteine and 5-methyltetrahydrofolate intermediates in three steps involving the metB, metC or malY and metH genes, which code for the enzymes O-succinylmoserin-lyase, cystathione-beta-lyase, bifunctional beta-cystathione and methionine synthase, respectively. These genes had their expression increased in order to increase / direct the metabolic flow for the production of L-methionine.

[051] Visando o aumento do fluxo metabólico para a produção do intermediário 5metiltetrahidrofolato, o gene metF que codifica para a enzima 5,10metilenotetrahidrofolato redutase foi superexpressão.[051] Aiming at increasing the metabolic flow for the production of the intermediate 5methyltetrahydrofolate, the metF gene encoding the enzyme 5,10methylene tetrahydrofolate reductase was overexpression.

[052] O gene metK* tem sua expressão atenuada por uma mutação sitio-dirigida na região -10 e diminuição da atividade catalítica da proteína metionina[052] The metK * gene has its expression attenuated by a site-directed mutation in the -10 region and decreased catalytic activity of the methionine protein

Petição 870170048524, de 12/07/2017, pág. 15/55Petition 870170048524, of 7/12/2017, p. 15/55

12/38 adenosiltransferase por meio de uma dupla mutação nas regiões 554 e 1132, diferenciando-se da patente EP1715055, onde ocorre a deleção do gene.12/38 adenosyltransferase by means of a double mutation in regions 554 and 1132, different from the patent EP1715055, where the gene deletion occurs.

[053] Uma grande diferenciação da presente invenção é a alteração do gene ydhU, para que a disponibilidade de enxofre seja aumentada para a produção de cisteína, o gene ydhU tem sua expressão aumentada, levando à produção da subunidade b do complexo citocromo YdhYVWXUT oxidoredutase, visando a conversão de tiossulfato para sulfito com maior eficiência, sendo este intermediário para a formação de cisteína, e subsequente incorporação à L-metionina.[053] A major differentiation of the present invention is the alteration of the ydhU gene, so that the availability of sulfur is increased for the production of cysteine, the ydhU gene has its expression increased, leading to the production of the subunit b of the cytochrome YdhYVWXUT oxidoreductase complex, aiming at the conversion of thiosulfate to sulfite with greater efficiency, being this intermediate for the formation of cysteine, and subsequent incorporation to L-methionine.

[054] Como a fonte de carbono preferencial é o glicerol, para que esse seja importado com maior eficiência do meio de cultivo, o gene glpF, transportador de glicerol para o meio intracelular, em conjunto com o gene glpKfd, que promove a fosforilação do glicerol, formando glicerol-3-fosfato, são inseridos no genoma na forma de operon e ambos apresentam expressão controlada pelo mesmo promotor sintético constitutivo J23118. O gene glpKíd mutado é dessensibilizado à frutose1,6-bisfosfato e à forma não fosforilada da enzima //AGlc, permitindo assim que a estirpe contendo este gene mutado seja capaz de assimilar glicerol e glucose como fontes de carbono simultaneamente, diferentemente das patentes citadas, onde utilizam glucose como fonte de carbono. Na Tabela 1 encontram-se as estirpes construídas com suas modificações.[054] As the preferred carbon source is glycerol, so that it can be imported more efficiently from the culture medium, the glpF gene, a glycerol transporter for the intracellular medium, together with the glpK fd gene, which promotes phosphorylation of glycerol, forming glycerol-3-phosphate, are inserted into the genome in the form of an operon and both show expression controlled by the same constitutive synthetic promoter J23118. The glpK ID mutated gene is desensitized to frutose1,6 bisphosphate and non-phosphorylated form of the enzyme // GLC, thereby allowing the strain containing this mutant gene is capable of assimilating glucose and glycerol as carbon sources simultaneously, unlike the patent mentioned, where they use glucose as a carbon source. Table 1 shows the strains constructed with their modifications.

Tabela 1 - Estirpes modificadas geneticamente para produção de L-metionina.Table 1 - Genetically modified strains for the production of L-methionine.

NB1701 NB1701 AmetJ AmetJ NB1702 NB1702 AmetJ, AmetA AmetJ, AmetA NB1703 NB1703 AmetJ, AmetA, AmetI; AmetJ, AmetA, AmetI; NB1704 NB1704 AmetJ, AmetA, AmetI, AlysA, AmetJ, AmetA, AmetI, AlysA, NB1705 NB1705 AmetJ, AmetA, AmetI, AlysA, Apta, AmetJ, AmetA, AmetI, AlysA, Apta, NB1706 NB1706 AmetJ, AmetA, AmetI, AlysA, Apta, AackA AmetJ, AmetA, AmetI, AlysA, Apta, AackA NB1707 NB1707 AmetJ, AmetA, AmetI, AlysA, Apta, AackA, AarcA, AmetJ, AmetA, AmetI, AlysA, Apta, AackA, AarcA, NB1708 NB1708 AmetJ, AmetA, AmetI, AlysA, Apta, AackA, AarcA, AarcB, AmetJ, AmetA, AmetI, AlysA, Apta, AackA, AarcA, AarcB, NB1709 NB1709 AmetJ, AmetA, AmetI, AlysA, Apta, AackA, AarcA, AarcB, AptsG AmetJ, AmetA, AmetI, AlysA, Apta, AackA, AarcA, AarcB, AptsG NB1710 NB1710 AmetJ, AmetA, AmetI, AlysA, Apta, AackA, AarkA, AarkB, AptsG, PJ23118 glpK glpF AmetJ, AmetA, AmetI, AlysA, Apta, AackA, AarkA, AarkB, AptsG, PJ23118 glpK glpF NB1711 NB1711 AmetJ, AmetA, AmetI, AlysA, Apta, AackA, AarcA, AarcB, AptsG, PJ23118 glpK glpF, PJ23118 pntAB sthA, AmetJ, AmetA, AmetI, AlysA, Apta, AackA, AarcA, AarcB, AptsG, PJ23118 glpK glpF, PJ23118 pntAB sthA, NB1712 NB1712 AmetJ, AmetA, AmetI, AlysA, Apta, AackA, AarcA, AarcB, AptsG, PJ23118 glpK glpF, PJ23118 pntAB sthA, PJ23118 aspC glyA AmetJ, AmetA, AmetI, AlysA, Apta, AackA, AarcA, AarcB, AptsG, PJ23118 glpK glpF, PJ23118 pntAB sthA, PJ23118 aspC glyA

Petição 870170048524, de 12/07/2017, pág. 16/55Petition 870170048524, of 7/12/2017, p. 16/55

13/3813/38

NB1713 NB1713 AmetJ, AmetA, AmetI, AlysA, Apta, AackA, AarcA, AarcB, AptsG, PJ23118_glpK_glpF_, PJ23118_pntAB_sthA, PJ23118_aspC_glyA, PJ23118 pyc yjeH AmetJ, AmetA, AmetI, AlysA, Apt, AackA, AarcA, AarcB, AptsG, PJ23118_glpK_glpF_, PJ23118_pntAB_sthA, PJ23118_aspC_glyA, PJ23118 pyc yjeH NB1714 NB1714 AmetJ, AmetA, AmetI, AlysA, Apta, AackA, AarcA, AarcB, AptsG, PJ23118_glpK_glpF_, PJ23118_pntAB_sthA, PJ23118_aspC_glyA, PJ23118 pyc yjeH, PJ23118 ftsA ftsZ AmetJ, AmetA, AmetI, AlysA, Fit, AackA, AarcA, AarcB, AptsG, PJ23118_glpK_glpF_, PJ23118_pntAB_sthA, PJ23118_aspC_glyA, PJ23118 pyc yjeH, PJ23118 ftsAts NB1715 NB1715 AmetJ, AmetA, AmetI, AlysA, Apta, AackA, AarcA, AarcB, AptsG, PJ23118_glpK_glpF_, PJ23118_pntAB_sthA, PJ23118_aspC_glyA, PJ23118 pyc yjeH, PJ23118 ftsA ftsZ, metK* AmetJ, AmetA, AmetI, AlysA, Apta, AackA, AarcA, AarcB, AptsG, PJ23118_glpK_glpF_, PJ23118_pntAB_sthA, PJ23118_aspC_glyA, PJ23118 pyc yjeH, PJ23118 ftsAts NB1716 NB1716 AmetJ, AmetA, AmetI, AlysA, Apta, AackA, AarcA, AarcB, AptsG, PJ23118_glpK_glpF_, PJ23118_pntAB_sthA, PJ23118_aspC_glyA, PJ23118 pyc yjeH, PJ23118 metH cysE AmetJ, AmetA, AmetI, AlysA, Apta, AackA, AarcA, AarcB, AptsG, PJ23118_glpK_glpF_, PJ23118_pntAB_sthA, PJ23118_aspC_glyA, PJ23118 pyc yjeH, PJ23118 metH cysE NB1717 NB1717 AmetJ, AmetA, AmetI, AlysA, Apta, AackA, AarcA, AarcB, AptsG, AthrB, PJ23118_glpK_glpF_, PJ23118_pntAB_sthA, PJ23118_aspC_glyA, PJ23118 pyc yjeH, PJ23118 metH cysE, metK* AmetJ, AmetA, AmetI, AlysA, Fit, AackA, AarcA, AarcB, AptsG, AthrB, PJ23118_glpK_glpF_, PJ23118_pntAB_sthA, PJ23118_aspC_glyA, PJ23118 pyc yjeH, cJE118 NB1718 NB1718 AmetJ, AmetA, AmetI, AlysA, Apta, AackA, AarkA, AarkB, AptsG, AthrB, PJ23118_glpK_glpF_, PJ23118_pntAB_sthA, PJ23118_aspC_glyA, PJ23118 pyc yjeH, PJ23118 ftsA ftsZ, PJ23118 metH cysE, AmetJ, AmetA, AmetI, AlysA, Fit, AackA, AarkA, AarkB, AptsG, AthrB, PJ23118_glpK_glpF_, PJ23118_pntAB_sthA, PJ23118_aspC_glyA, PJ23118 pyc yjeH, pJ23118, fJ23118 NB1719 NB1719 AmetJ, AmetA, AmetI, AlysA, Apta, AackA, AarkA, AarkB, AptsG, AthrB, PJ23118_glpK_glpF_, PJ23118_pntAB_sthA, PJ23118_aspC_glyA, PJ23118_pyc_yjeH, PJ23118_ftsA_ftsZ PJ23118_metH_cysE, metK*, AmetJ, AmetA, AmetI, AlysA, Fit, AackA, AarkA, AarkB, AptsG, AthrB, PJ23118_glpK_glpF_, PJ23118_pntAB_sthA, PJ23118_aspC_glyA, PJ23118_pyc_yje_, PJ23118_pyc_yjeH, PJ23, PJ23118_pyc_yjeH, PJ2311

[055] Os termos aumento da expressão do gene, expressão melhorada do gene ou superexpressão do gene são usados ao longo do texto e têm similar significado.[055] The terms increased gene expression, improved gene expression or gene overexpression are used throughout the text and have a similar meaning.

[056] Para aumentar a expressão de um gene, diferentes técnicas de biologia molecular podem ser utilizadas: aumento do número de cópias do vetor; aumento do número de cópias do gene no cromossomo, utilização de um promotor induzível visando um alto nível de expressão do gene, atenuando ou reprimindo a transcrição de repressores; alteração da região promotora.[056] To increase the expression of a gene, different molecular biology techniques can be used: increasing the number of copies of the vector; increase in the number of copies of the gene on the chromosome, use of an inducible promoter aiming at a high level of gene expression, attenuating or repressing the transcription of repressors; change in the promoter region.

[057] O gene pode ser expresso a partir do DNA cromossomal ou extracromossomal. Quando o gene está localizado no cromossomo, várias cópias do gene podem ser introduzidas utilizando diferentes técnicas de recombinação. Diferentes plasmídeos que diferem em relação à origem de replicação, e portanto, seu número de cópias na célula. Estes plasmídeos presentes na célula podem variar em 5 a 20 cópias (pSB3C5), cerca de 100 (pSB1C3), ou até 500 cópias (pUC57, pUC57bricks) dependendo da natureza do plasmídeo.[057] The gene can be expressed from chromosomal or extrachromosomal DNA. When the gene is located on the chromosome, several copies of the gene can be introduced using different recombination techniques. Different plasmids that differ in relation to the origin of replication, and therefore, their number of copies in the cell. These plasmids present in the cell can vary from 5 to 20 copies (pSB3C5), about 100 (pSB1C3), or up to 500 copies (pUC57, pUC57bricks) depending on the nature of the plasmid.

Petição 870170048524, de 12/07/2017, pág. 17/55Petition 870170048524, of 7/12/2017, p. 17/55

14/38 [058] As sequências codificadoras dos genes descritos foram sintetizados quimicamente ou obtidos por PCR. Para construir as unidades transcricionais em plasmídeos, os grupamentos de genes recombinantes e os diferentes promotores foram montados através do método Biobrick® e protocolos previamente descritos (Sambrook,1989).14/38 [058] The coding sequences for the described genes were either chemically synthesized or obtained by PCR. To construct the transcriptional units in plasmids, the groups of recombinant genes and the different promoters were assembled using the Biobrick® method and previously described protocols (Sambrook, 1989).

[059] Para a construção do vetor pNB01, o gene metAfd o prefixo e sufixo Biobrick® é clonado no plasmídeo pUC57 utilizando os sítios de endonucleases de restrição EcoRI e PstI, sob controle do promotor nativo.[059] For the construction of the vector pNB01, the metA fd gene the prefix and suffix Biobrick® is cloned into plasmid pUC57 using the restriction endonuclease sites EcoRI and PstI, under control of the native promoter.

[060] O gene yjeH contendo o prefixo e sufixo Biobrick® foi clonado no plasmídeo pNB01_pmet_metAatm utilizando os sítios de endonucleases de restrição EcoRI e PstI, originado a construção pNB02_ pmet_metAatm_yjeH.[060] The yjeH gene containing the Biobrick® prefix and suffix was cloned in the plasmid pNB01_pmet_metA atm using the restriction endonuclease sites EcoRI and PstI, originating the construction pNB02_ pmet_metA atm _yjeH.

[061] Para a obtenção da construção pNB03, o grupamento gênico metAatm_yjeH contendo o prefixo e sufixo Biobrick® foi obtido a partir do vetor pNB02 utilizando os sítios de endonucleases de restrição XbaI e PstI e clonado a jusante dos genes metH e metL obtidos a partir do vetor pUC57 utilizando endonucleases de restrição XbaI e PstI. O conjunto gênico metL_metH_metAatm_yjeH foi clonado no vetor pUCbrick a jusante do promotor constitutivo J23118 originando o vetor p NB03_pJ23118_metL_metH_metA atm_yjeH.[061] To obtain the pNB03 construct, the metA atm _yjeH gene group containing the Biobrick® prefix and suffix was obtained from the pNB02 vector using the XbaI and PstI restriction endonuclease sites and cloned downstream of the metH and metL genes obtained from the vector pUC57 using XbaI and PstI restriction endonucleases. The gene set metL_metH_metA atm _yjeH was cloned into the pUCbrick vector downstream of the constitutive promoter J23118 giving rise to the vector p NB03_pJ23118_metL_metH_metA atm _yjeH.

[062] Os genes cysM, cysE, metB, metC, ydhU e metF contendo o prefixo e sufixo Biobrick® foram obtidos a partir do vetor pUC57 utilizando os sítios de endonucleases de restrição XbaI e PstI e posteriormente clonados no vetor pNB03 originando a construção pNB04. Para a obtenção da construção pNB05, o gene malY foi clonado a jusante do gene metB, na mesma posição do gene metC.[062] The cysM, cysE, metB, metC, ydhU and metF genes containing the Biobrick® prefix and suffix were obtained from the pUC57 vector using the XbaI and PstI restriction endonuclease sites and subsequently cloned into the pNB03 vector giving rise to the pNB04 construct . To obtain the pNB05 construct, the malY gene was cloned downstream from the metB gene, in the same position as the metC gene.

Tabela 2 - Construções gênicas.Table 2 - Gene constructions.

01 01 pNB01_pmet_metAfd pNB01_pmet_metA fd 02 02 pNB02_ pmet_metAfd_yjeHpNB02_ pmet_metA fd _yjeH 03 03 pNB03_pJ23118_metL_metH_metAfd_yjeHpNB03_pJ23118_metL_metH_metA fd _yjeH 04 04 pNB04_pJ23118_cysM_cysE_metL_metH_metB_metC_ydhU_metF_metAfd pNB04_pJ23118_cysM_cysE_metL_metH_metB_metC_ydhU_metF_metA fd 05 05 pNB05_pJ23118_cysM_cysE_metL_metH_metB_malY_ydhU_metF_metAfd pNB05_pJ23118_cysM_cysE_metL_metH_metB_malY_ydhU_metF_metA fd 06 06 pNB05_pJ23118_cysM_metL_metB_malY_metF_metAfd pNB05_pJ23118_cysM_metL_metB_malY_metF_metA fd

Petição 870170048524, de 12/07/2017, pág. 18/55Petition 870170048524, of 7/12/2017, p. 18/55

15/3815/38

PROCESSO DE PRODUÇÃO DE L-METIONINA [063] O aminoácido L-metionina é produzido conforme a descrito na invenção pela bactéria Escherichia coli utilizando resíduos da indústria de biocombustíveis como fonte de carbono. Substratos adicionais a fonte de carbono tais como carboidratos simples, complexos, amido, glicerol, ácidos graxos, entre outros podem ser adicionados e combinados com os resíduos. Outros nutrientes são adicionados ao meio de cultivo, como fonte de nitrogênio, podendo ser utilizado extrato de levedura, ureia, água de maceração de milho, sais inorgânicos como NH4NO3, KNO3, NaNO3 e NH4Cl. Como a L-metionina é um aminoácido sulfurado, a suplementação de fonte de enxofre é necessária. Os sais adicionados ao meio como fonte de enxofre, podem ser Na2SO4, MgSO4, H2S, (NH4)2SO4 ou ainda Na2S2O3. Nutrientes adicionais são requeridos tais como fósforo, magnésio, cálcio, molibdênio, ácido bórico, cobalto, cobre, manganês, zinco, ferro e vitaminas do complexo B.L-METHIONINE PRODUCTION PROCESS [063] The amino acid L-methionine is produced as described in the invention by the bacterium Escherichia coli using residues from the biofuel industry as a carbon source. Additional substrates to carbon source such as simple, complex carbohydrates, starch, glycerol, fatty acids, among others can be added and combined with the residues. Other nutrients are added to the culture medium, as a source of nitrogen, and yeast extract, urea, corn steeping water, inorganic salts such as NH4NO3, KNO3, NaNO3 and NH4Cl can be used. Since L-methionine is a sulfur amino acid, supplementation with a sulfur source is necessary. The salts added to the medium as a sulfur source, can be Na2SO4, MgSO4, H2S, (NH4) 2SO4 or Na2S2O3. Additional nutrients are required such as phosphorus, magnesium, calcium, molybdenum, boric acid, cobalt, copper, manganese, zinc, iron and B vitamins.

[064] O inóculo de E. coli é cultivado em meio de cultura similar ao meio de produção de L-metionina para adaptação da bactéria ao meio de cultivo e assim, há ganho de produtividade durante o processo pela redução da fase lag de crescimento bacteriano.[064] The E. coli inoculum is grown in a culture medium similar to the L-methionine production medium to adapt the bacteria to the culture medium and thus, there is a productivity gain during the process by reducing the lag phase of bacterial growth .

[065] Na presente invenção, preferencialmente utiliza-se a bactéria E. coli modificada geneticamente como já descrito anteriormente. O crescimento do microrganismo é conduzido a temperatura entre 30°C e 40°C, pH entre 6,8 e 7,2, com agitação constante. Esta etapa pode ser realizada em frascos agitados ou em biorreatores com agitação mecânica e aeração forçada com ar esterilizado. Para garantir a qualidade do crescimento bacteriano, são utilizados sistemas de controle de temperatura, pH, oxigênio dissolvido. O monitoramento do crescimento bacteriano é feito por densidade óptica, células viáveis e biomassa seca.[065] In the present invention, the genetically modified E. coli bacterium is preferably used as previously described. The growth of the microorganism is carried out at a temperature between 30 ° C and 40 ° C, pH between 6.8 and 7.2, with constant agitation. This step can be performed in agitated flasks or in bioreactors with mechanical agitation and forced aeration with sterile air. To guarantee the quality of bacterial growth, temperature, pH, dissolved oxygen control systems are used. The monitoring of bacterial growth is done by optical density, viable cells and dry biomass.

[066] Como a prioridade do pré-inoculo e do inoculo são o crescimento dos microrganismos, cada uma dessas fases dura 24 horas, podendo operar em modo de batelada ou batelada alimentada por pulsos de substrato.[066] As the pre-inoculum and inoculum priority are the growth of microorganisms, each of these phases lasts 24 hours, being able to operate in batch or batch mode fed by substrate pulses.

[067] O processo de fermentação, para a formação dos produtos, ocorre em biorreator com sistema de agitação mecânica e aeração forçada entre 1 e 2 vvm (volume de ar por volume de meio de cultura por minuto). O processo fermentativo é submetido as condições de temperatura entre 30°C e 40°C, pH entre 6,8 e 7,2,[067] The fermentation process, for product formation, takes place in a bioreactor with a mechanical stirring system and forced aeration between 1 and 2 vvm (volume of air per volume of culture medium per minute). The fermentation process is subjected to temperature conditions between 30 ° C and 40 ° C, pH between 6.8 and 7.2,

Petição 870170048524, de 12/07/2017, pág. 19/55Petition 870170048524, of 7/12/2017, p. 19/55

16/38 controlado por meio solução tampão fosfato ou similares, ou ainda pela adição de solução de base (NaOH, NH4OH, entre outros) ou solução de ácido (HCl, entre outros).16/38 controlled by means of phosphate buffer solution or similar, or by the addition of base solution (NaOH, NH4OH, among others) or acid solution (HCl, among others).

[068] Na etapa de fermentação e produção de L-metionina, o reator opera de maneira batelada alimentada, ou seja, a fonte de carbono e/ou outros nutrientes são alimentados ao longo do processo para que haja o aumento no rendimento do aminoácido L-metionina. A duração desta etapa é de 48 a 72 horas.[068] In the fermentation and L-methionine production stage, the reactor operates in a batch-fed way, that is, the carbon source and / or other nutrients are fed throughout the process so that there is an increase in the yield of the amino acid L -methionine. The duration of this step is 48 to 72 hours.

[069] O processo em escala laboratorial, conforme a presente invenção, é desenvolvido em maior escala em biorreatores. O aumento da escala é realizado a uma taxa fixa de volume e com o uso meio de cultivo similar, já descrito na presente invenção, para que haja uma ambientação e adaptação do microrganismo.[069] The laboratory-scale process, according to the present invention, is developed on a larger scale in bioreactors. The scale increase is carried out at a fixed volume rate and with the use of a similar culture medium, already described in the present invention, so that there is an environment and adaptation of the microorganism.

[070] Como o processo fermentativo é desenvolvido em ambiente estéril, o meio de cultura é esterilizado dentro do biorreator com vapor vivo para que não ocorra contaminações durante a fermentação. Para evitar contaminações, a matéria-prima é previamente esterilizada por meios químicos ou físicos, como o uso de calor rápido ou antibiótico específico. A concentração da fonte de carbono no meio de cultura não deve passar de 100 g/L para não causar repressão do microrganismo por excesso de substrato.[070] As the fermentation process is developed in a sterile environment, the culture medium is sterilized inside the bioreactor with live steam so that contamination does not occur during fermentation. To avoid contamination, the raw material is previously sterilized by chemical or physical means, such as the use of rapid heat or specific antibiotics. The concentration of the carbon source in the culture medium should not exceed 100 g / L to avoid repression of the microorganism by excess substrate.

[071] As etapas de desenvolvimento do inóculo, crescimento bacteriano, ocorrem em modo batelada, conforme descrito, ou seja, o meio de cultivo incluindo a fonte de carbono e demais nutrientes são adicionados no início do processo.[071] The stages of development of the inoculum, bacterial growth, occur in batch mode, as described, that is, the culture medium including the carbon source and other nutrients are added at the beginning of the process.

[072] Nas etapas de pré-inoculo e inoculo a fonte de carbono, preferencialmente glicerol, é adicionada em batelada, ou seja, toda a quantidade necessária entrará juntamente com os outros sais. O crescimento do inóculo também pode ser realizado por batelada alimentada. As condições ótimas de crescimento serão mantidas por meio de controle de temperatura, pH, oxigênio e agitação, conforme descrito anteriormente na invenção.[072] In the pre-inoculum and inoculation steps the carbon source, preferably glycerol, is added in batches, that is, all the necessary quantity will enter together with the other salts. Inoculum growth can also be accomplished by powered batching. Optimal growth conditions will be maintained by controlling temperature, pH, oxygen and agitation, as described previously in the invention.

[073] Para o processo de fermentação, onde ocorrerá a formação dos produtos, o biorreator deverá ser mantido entre temperaturas de 30oC e 40oC para melhor crescimento do microrganismo e produção de L-metionina. Para que o pH se mantenha entre 6,8 e 7,2, o controle é realizado por meio de sensores e correção[073] For the fermentation process, where the formation of the products will occur, the bioreactor must be kept between temperatures of 30 o C and 40 o C for better growth of the microorganism and production of L-methionine. In order for the pH to remain between 6.8 and 7.2, control is carried out by means of sensors and correction

Petição 870170048524, de 12/07/2017, pág. 20/55Petition 870170048524, of 7/12/2017, p. 20/55

17/38 utilizando solução básica ou ácida conforme já descrito. A injeção de ar deve ser mantida constante.17/38 using basic or acidic solution as already described. The air injection must be kept constant.

[074] Na fermentação para produção da L-metionina, o biorreator opera de maneira batelada alimentada, ou seja, a fonte de carbono e/ou demais nutrientes são alimentadas ao longo do processo fermentativo, para que tenha seu rendimento aumentado. A fermentação é uma etapa com duração de 48 a 72 horas.[074] In fermentation for the production of L-methionine, the bioreactor operates in a batch-fed way, that is, the carbon source and / or other nutrients are fed throughout the fermentation process, so that its yield is increased. Fermentation is a stage lasting 48 to 72 hours.

PROCESSO DE RECUPERAÇÃO E PURIFICAÇÃO DE L-METIONINA [075] A presente invenção trata também da recuperação e purificação do aminoácido L-metionina do caldo fermentado e assim a obtenção de um produto com alto grau de pureza. O caldo fermentado é enviado para um tanque pulmão onde ocorre processo de inativação das células bacterianas.L-METHIONINE RECOVERY AND PURIFICATION PROCESS [075] The present invention also deals with the recovery and purification of the amino acid L-methionine from the fermented broth and thus obtaining a product with a high degree of purity. The fermented broth is sent to a lung tank where the bacterial cell inactivation process occurs.

[076] O caldo fermentado contendo o aminoácido L-metionina é submetido a um processo de separação a fim de remover a biomassa e outros sólidos suspensos presentes. O processo de separação pode ser realizado pelo processo de centrifugação, assim como pelo processo de filtração, microfiltração ou ultrafiltração. O sobrenadante, contendo a L-metionina, segue para o processo de purificação enquanto a biomassa é um resíduo do processo.[076] The fermented broth containing the amino acid L-methionine is subjected to a separation process in order to remove the biomass and other suspended solids present. The separation process can be carried out by the centrifugation process, as well as by the filtration, microfiltration or ultrafiltration process. The supernatant, containing L-methionine, proceeds to the purification process while the biomass is a residue of the process.

[077] Conforme a invenção, o caldo é submetido a um processo de purificação utilizando uma resina de troca iônica do tipo catiônica. Para este processo, o caldo deve ter seu pH diminuído para um valor que menor que o pKa do aminoácido Lmetionina, o que converte o aminoácido para a forma ácida. A resina de troca iônica adsorve o aminoácido em pH ácido e elui em pH alcalino. O tempo de contato do caldo com a resina para que haja adsorção do aminoácido é entre 45 a 120 minutos. Em seguida, é passado água pela resina e na sequência é realizada a eluição do aminoácido adsorvido utilizando uma solução básica de hidróxido de amônio, pelo mesmo tempo de passagem do produto.[077] According to the invention, the broth is subjected to a purification process using an ion exchange resin of the cationic type. For this process, the broth must have its pH decreased to a value that is less than the pKa of the amino acid Lmethionine, which converts the amino acid to the acid form. The ion exchange resin adsorbs the amino acid at acidic pH and elutes at alkaline pH. The contact time of the broth with the resin for adsorption of the amino acid is between 45 to 120 minutes. Then, water is passed through the resin and then the adsorbed amino acid is eluted using a basic ammonium hydroxide solution, for the same time the product passes.

[078] O produto eluído pode passar por um processo de evaporação a fim de aumentar a concentração de sólidos na solução e assim obter um produto final na forma líquida.[078] The eluted product can undergo an evaporation process in order to increase the concentration of solids in the solution and thus obtain a final product in liquid form.

[079] Para obtenção de um produto na forma sólida, há o processo de secagem do caldo por atomização. Na secagem por atomização, o caldo deve conter uma[079] To obtain a product in solid form, there is the spray drying process. In spray drying, the broth must contain a

Petição 870170048524, de 12/07/2017, pág. 21/55Petition 870170048524, of 7/12/2017, p. 21/55

18/38 quantidade mínima de sólidos de 10 a 12%. Essa quantidade mínima de sólidos pode ser obtida pela evaporação do caldo ou pela eluição do caldo da resina de troca iônica com soluções concentradas de base.18/38 minimum amount of solids of 10 to 12%. This minimum amount of solids can be obtained by evaporating the broth or by eluting the broth from the ion exchange resin with concentrated base solutions.

[080] A patente WO 2013083934A1 realiza a purificação da metionina pelos seguintes métodos: a) clarificação do caldo fermentado e remoção de sólidos insolúveis e solúveis por floculação, sedimentação, microfiltração, ultrafiltração, nanofiltração, osmose reversa e centrifugação; b) opcionalmente, a desmineralização do caldo clarificado a fim de remover cátions e ânions; c) cristalização da metionina do caldo. Na presente invenção, o processo de separação de biomassa e sólidos insolúveis é similar ao descrito na patente. Entretanto o processo de obtenção da L-metionina na forma sólida diferencia por utilizar método de secagem por atomização ao invés de cristalização.[080] WO 2013083934A1 purifies methionine by the following methods: a) clarification of the fermented broth and removal of insoluble and soluble solids by flocculation, sedimentation, microfiltration, ultrafiltration, nanofiltration, reverse osmosis and centrifugation; b) optionally, demineralization of the clarified broth in order to remove cations and anions; c) crystallization of the methionine from the broth. In the present invention, the process of separating biomass and insoluble solids is similar to that described in the patent. However, the process of obtaining L-methionine in solid form differs by using the spray drying method instead of crystallization.

EXEMPLOSEXAMPLES

Exemplo 1:Example 1:

[081] As estirpes produtoras de metionina descritas na Tabela 1 foram cultivadas em frascos do tipo Erlemeyer contendo 50 mL do meio de cultivo NB01 (Tabela 03), a 37°C, por 48 h. Após a fermentação, sobrenadante de cultura foi centrifugado e pellet celular descartado. A quantificação de metionina presente sobrenadante de cultura foi realizada por análises de próton H1 e carbono C13 por espectrometria de ressonância magnética nuclear (RMN). A Tabela 04 apresenta os resultados referentes a diferentes estirpes produtoras de metionina.[081] The methionine-producing strains described in Table 1 were grown in Erlemeyer-type flasks containing 50 mL of the NB01 culture medium (Table 03), at 37 ° C, for 48 h. After fermentation, the culture supernatant was centrifuged and the cell pellet was discarded. The quantification of methionine present in the culture supernatant was carried out by H 1 proton and C 13 carbon analyzes by nuclear magnetic resonance (NMR) spectrometry. Table 04 presents the results for different strains producing methionine.

Tabela 3 - Descrição meio NB01Table 3 - Description of NB01 medium

Composto Compound Concentração (g L-1)Concentration (g L -1 ) KH2PO4 KH2PO4 3 3 Na2HPO4-7H2O Na2HPO4-7H2O 12,8 12.8 MgSO4 MgSO4 0,24 0.24 Extrato de levedura Yeast extract 5 5 NaCl NaCl 0,5 0.5 CaCl2 CaCl2 0,011 0.011 NH4Cl NH4Cl 1 1

Petição 870170048524, de 12/07/2017, pág. 22/55Petition 870170048524, of 7/12/2017, p. 22/55

19/3819/38

(NH4)2SO4 (NH4) 2SO4 16 16 Na2S2O3 Na2S2O3 1 1 Glicerol Glycerol 20 20 Vitamina B1 Vitamin B1 0,001 0.001 Vitamina B7 Vitamin B7 0,001 0.001 Vitamina B12 B12 vitamin 0,001 0.001

Tabela 04 - Resultados obtidos em frascos agitados.Table 04 - Results obtained in shaken bottles.

Estirpe Strain DO600 48 h DO600 48 h L-metionina g/L 48 h L-methionine g / L 48 h NB1701 NB1701 9,3 ±1 9.3 ± 1 0,09 ± 0,02 0.09 ± 0.02 NB1703 + pNB01_pmet_metAatm NB1703 + pNB01_pmet_metA atm 8,4 ± 0,5 8.4 ± 0.5 0,65 ± 0,1 0.65 ± 0.1 NB1704 + pNB01_pmet_metAatm NB1704 + pNB01_pmet_metA atm 6,7 ± 0,43 6.7 ± 0.43 1,9 ± 0,22 1.9 ± 0.22 NB1706 + pNB03_pJ23118_metL_metH_metAat m_yjeHNB1706 + pNB03_pJ23118_metL_metH_metA at m _yjeH 6,8 ± 0,89 6.8 ± 0.89 3,2 ± 0,19 3.2 ± 0.19 NB1712 + pNB05_pJ23118_cysM_cysE_metL_ metH_metB_malY_metF_metAatm_yje HNB1712 + pNB05_pJ23118_cysM_cysE_metL_ metH_metB_malY_metF_metA atm _yje H 7,6 ± 0,54 7.6 ± 0.54 5,4 ± 0,12 5.4 ± 0.12

Exemplo 2:Example 2:

[082] As melhores estirpes produtoras em frascos agitados foram avaliadas em um fermentador Minifors de 5 L. O volume de meio (NB01) utilizado foi 1,6 L, suplementado com o aminoácido L-lisina (0,146 g L-1). As alimentações foram realizadas a cada 12 h utilizando uma solução concentrada (500 g L-1 de glicerol, sulfato de amônio 16 g L-1, tiossulfato de sódio 23,8 g L-1, extrato de levedura 1 g L’1, vitaminas B1, B7 e B7 0,032 g L-1, L-lisina 4,3 g L-1 . O pH foi ajustado e mantido automaticamente em 6,8 utilizando hidróxido de amônio. A fermentação foi mantida a 30 °C, com taxa de aeração de 3 L.min-1, com agitação regida por controle de cascata associado a concentração de oxigênio dissolvido, com set-point ajustado[082] The best strains producing in shaken flasks were evaluated in a 5 L Minifors fermenter. The volume of medium (NB01) used was 1.6 L, supplemented with the amino acid L-lysine (0.146 g L -1 ). Feedings were performed every 12 h using a concentrated solution (500 g L -1 glycerol, ammonium sulphate 16 g L -1 , sodium thiosulfate 23.8 g L -1 , yeast extract 1 g L ' 1 , vitamins B1, B7 and B7 0.032 g L -1 , L-lysine 4.3 g L -1 The pH was automatically adjusted and maintained at 6.8 using ammonium hydroxide, fermentation was maintained at 30 ° C, with a aeration rate of 3 L.min -1 , with agitation governed by cascade control associated with dissolved oxygen concentration, with adjusted set point

Petição 870170048524, de 12/07/2017, pág. 23/55Petition 870170048524, of 7/12/2017, p. 23/55

20/38 em 20%. Na Tabela 5 estão apresentados os resultados obtidos no experimento descrito.20/38 by 20%. Table 5 shows the results obtained in the described experiment.

Tabela 05 - Resultados experimento Exemplo 2.Table 05 - Experiment results Example 2.

Estirpe Strain Biomassa Úmida g/L (72 h) Biomass Wet g / L (72 h) L-metionina g/L 72 h L-methionine g / L 72 h NNB1704 + pNB01_pmet_metAatm NNB1704 + pNB01_pmet_metA atm 60 60 4,3 ± 0,6 4.3 ± 0.6 NB1706 + pNB03_pJ23118_metL_metH_metAatm_yjeHNB1706 + pNB03_pJ23118_metL_metH_metA atm _yjeH 56 56 6,9 ± 1,2 6.9 ± 1.2 NB1712+ pNB05_pJ23118_cysM_cysE_metL_metH_ mmetB_malY_metF_metAatm_yjeHNB1712 + pNB05_pJ23118_cysM_cysE_metL_metH_ mmetB_malY_metF_metA atm _yjeH 49 49 11,8 ± 0,8 11.8 ± 0.8

DEFINIÇÕES [083] Fica descrito aqui que os citados “glicerol”, “glicerina” e “água glicerinada” são a fonte de carbono utilizada, variando apenas a concentração de C3H8O3 em sua composição.DEFINITIONS [083] It is described here that the aforementioned "glycerol", "glycerin" and "glycerin water" are the carbon source used, varying only the concentration of C3H8O3 in its composition.

[084] O termo “metionina” refere-se ao aminoácido sulfurado de fórmula química HO2CCH(NH2)CH2CH2SCH3 e número CAS 59-51-8 ou 63-68-3 especificamente para o isômero L.[084] The term “methionine” refers to the sulfur amino acid of the chemical formula HO2CCH (NH2) CH2CH2SCH3 and CAS number 59-51-8 or 63-68-3 specifically for the L isomer.

[085] Um microorganismo pode ser modificado para expressar genes exógenos se esses genes forem introduzinos no microorganismo com todos os elementos para sua expressão. A modificação do microorganismo com DNA exógeno é uma tarefa de rotina para especialistas na arte.[085] A microorganism can be modified to express exogenous genes if those genes are introduced into the microorganism with all the elements for its expression. Modifying the microorganism with exogenous DNA is a routine task for experts in the art.

[086] O termo microorganismo utilizado aqui refere-se preferencialmente à E. coli. [087] Os termos downstream e purificação são equivalentes, referindo-se aos métodos, após fermentação, para obtenção do produto em sua forma final.[086] The term microorganism used here refers preferably to E. coli. [087] The terms downstream and purification are equivalent, referring to the methods, after fermentation, to obtain the product in its final form.

[088] Define-se por gene metJ a sequência de deoxinucleotídeos identificada no genoma da estirpe chassi como b3938, entre os desoxinucleotídeos 4.128.078 a 4.128.395.[088] The deoxynucleotide sequence identified in the genome of the chassis strain as b3938 is defined by the metJ gene, among deoxynucleotides 4,128,078 to 4,128,395.

[089] Define-se como sequência de deoxinucleotídeos qualquer cadeia de polinucleotídeos constituída por deoxinucleotídeos em cadeias simples fita ou dupla fita e que será referida na invenção como apenas sequência de DNA.[089] A deoxynucleotide sequence is defined as any polynucleotide chain consisting of single-stranded or double-stranded deoxynucleotides and which will be referred to in the invention as only DNA sequence.

Petição 870170048524, de 12/07/2017, pág. 24/55Petition 870170048524, of 7/12/2017, p. 24/55

21/38 [090] Define-se por gene metA a sequência de DNA identificada no genoma da estirpe chassi como b4013, entre os nucleotídeos 4.214.280 a 4.215.209 de acordo com o genoma de referência (Blattner et al., 1997).21/38 [090] The DNA sequence identified in the genome of the chassis strain as b4013 is defined by the metA gene, between nucleotides 4,214,280 to 4,215,209 according to the reference genome (Blattner et al., 1997) .

[091] Define-se por metAfd a variante com três mutações pontuais nos nucleotídeos C79T (citosina da posição 79 é trocada por uma timina), T887G e C893T. Estas três mutações levam as trocas de aminoácidos R27C (arginina da posição 27 do polipeptídeo trocado por uma cisteína), I296S (isoleucina da posição 296 por serina) e P298L (prolina da posição 298 por leucina) e dessensibilizam a enzima MetA da inibição por feedback negativo causada pela L-metionina.[091] The variant with three point mutations in nucleotides C79T (cytosine at position 79 is replaced by a thymine), T887G and C893T is defined by metA fd . These three mutations lead to the exchange of amino acids R27C (arginine of position 27 of the polypeptide exchanged for a cysteine), I296S (isoleucine of position 296 for serine) and P298L (proline of position 298 for leucine) and desensitize the enzyme MetA from feedback inhibition negative effect caused by L-methionine.

[092] Define-se por gene lysA a sequência de DNA identificada no genoma da estirpe chassi como b2838, entre os nucleotídeos 2977637 a 2978899 de acordo com o genoma de referência (Blattner et al., 1997).[092] The DNA sequence identified in the genome of the chassis strain as b2838 is defined by the lysA gene, between nucleotides 2977637 to 2978899 according to the reference genome (Blattner et al., 1997).

[093] Define-se por gene arcA a sequência de DNA identificada no genoma da estirpe chassi como b4401, entre os nucleotídeos 4639590 a 4640306 de acordo com o genoma de referência (Blattner et al., 1997).[093] The DNA sequence identified in the genome of the chassis strain as b4401 is defined by the arcA gene, between nucleotides 4639590 to 4640306 according to the reference genome (Blattner et al., 1997).

[094] Define-se por gene arcB a sequência de DNA identificada no genoma da estirpe chassi como b3210, entre os nucleotídeos 3350689 a 3353025 de acordo com o genoma de referência (Blattner et al., 1997).[094] The DNA sequence identified in the genome of the chassis strain as b3210, between nucleotides 3350689 to 3353025, is defined by the arcB gene according to the reference genome (Blattner et al., 1997).

[095] Define-se por gene ptsG a sequência de DNA identificada no genoma da estirpe chassi como b1101, entre os nucleotídeos 1157859 a 1159302 de acordo com o genoma de referência (Blattner et al., 1997).[095] The DNA sequence identified in the genome of the chassis strain as b1101 is defined by the ptsG gene, between nucleotides 1157859 to 1159302 according to the reference genome (Blattner et al., 1997).

[096] Define-se por gene thrB a sequência de DNA identificada no genoma da estirpe chassi como b0003, entre os nucleotídeos 2801 a 3733 de acordo com o genoma de referência (Blattner et al., 1997).[096] The DNA sequence identified in the genome of the chassis strain as b0003 is defined by thrB gene, between nucleotides 2801 to 3733 according to the reference genome (Blattner et al., 1997).

[097] Define-se por gene thrC a sequência de DNA identificada no genoma da estirpe chassi como b0004, entre os nucleotídeos 3734 a 5020 de acordo com o genoma de referência (Blattner et al., 1997).[097] The DNA sequence identified in the genome of the chassis strain as b0004, between nucleotides 3734 to 5020, is defined by the thrC gene according to the reference genome (Blattner et al., 1997).

[098] Define-se por gene pta a sequência de DNA identificada no genoma da estirpe chassi como b2297, entre os nucleotídeos 2414747 a 2416891 de acordo com o genoma de referência (Blattner et al., 1997).[098] The DNA sequence identified in the genome of the chassis strain as b2297, between nucleotides 2414747 to 2416891, is defined by the pta gene according to the reference genome (Blattner et al., 1997).

Petição 870170048524, de 12/07/2017, pág. 25/55Petition 870170048524, of 7/12/2017, p. 25/55

22/38 [099] Define-se por gene ackA a sequência de DNA identificada no genoma da estirpe chassi como b2296, entre os nucleotídeos 2413470 a 2414672 de acordo com o genoma de referência (Blattner et al., 1997).22/38 [099] The DNA sequence identified in the genome of the chassis strain as b2296, between nucleotides 2413470 to 2414672, is defined by the ackA gene according to the reference genome (Blattner et al., 1997).

[100] Define-se como gene yjeH a sequência identificada como b4141 e localizada entre os nucleotídeos 4369156 a 4370412 no genoma de referência (Blattner et al., 1997).[100] The yjeH gene is defined as the sequence identified as b4141 and located between nucleotides 4369156 to 4370412 in the reference genome (Blattner et al., 1997).

[101] Define-se como gene metF a sequência identificada como b3941 e localizada entre os nucleotídeos 4132616 a 4133506 no genoma de referência (Blattner et al., 1997).[101] The sequence identified as b3941 and located between nucleotides 4132616 to 4133506 in the reference genome is defined as the metF gene (Blattner et al., 1997).

[102] Define-se como gene metH a sequência identificada como b4019 e localizada entre os nucleotídeos 4223828 a 4227511 no genoma de referência (Blattner et al., 1997).[102] The sequence identified as b4019 and located between nucleotides 4223828 to 4227511 in the reference genome is defined as the metH gene (Blattner et al., 1997).

[103] Define-se como gene metL a sequência identificada como b3940 e localizada entre os nucleotídeos 4129835 a 4132267 no genoma de referência (Blattner et al., 1997).[103] The sequence identified as b3940 and located between nucleotides 4129835 to 4132267 in the reference genome is defined as the metL gene (Blattner et al., 1997).

[104] Define-se como gene cysE a sequência identificada como b3607 e localizada entre os nucleotídeos 3781741 a 3782562 no genoma de referência (Blattner et al., 1997).[104] The sequence identified as b3607 and located between nucleotides 3781741 to 3782562 in the reference genome is defined as the cysE gene (Blattner et al., 1997).

[105] Define-se como gene cysEfd a variante com três mutações pontuais nos nucleotídeos A721G (adenina da posição 721 é trocada por uma guanina), G727A (guanina da posição 727 é trocada por uma adenina) e G955A (guanina da posição 955 é trocada por uma adenina). Estas mutações levam a troca de aminoácidos T167A (tirosina da posição 167 do polipeptídeo trocado por uma alanina), G245S (glicina da posição 245 do polipeptídeo trocado por uma serina) e M254I (metionina da posição 254 do polipeptídeo trocado por uma isoleucina) e dessensibilizam a enzima cysE da inibição por feedback negativo causada pela L-cisteína.[105] The variant with three point mutations in nucleotides A721G (adenine of position 721 is replaced by a guanine), G727A (guanine of position 727 is replaced by an adenine) and G955A (guanine of position 955) are defined as the cysE fd gene. is replaced by an adenine). These mutations lead to the exchange of amino acids T167A (tyrosine of position 167 of the polypeptide exchanged for an alanine), G245S (glycine of position 245 of the polypeptide exchanged for a serine) and M254I (methionine of position 254 of the polypeptide exchanged for an isoleucine) and desensitize the cysE enzyme of negative feedback inhibition caused by L-cysteine.

[106] Define-se como gene cysM a sequência identificada como b2421 e localizada entre os nucleotídeos 2538672 a 2539583 no genoma de referência (Blattner et al., 1997).[106] The sequence identified as b2421 and located between nucleotides 2538672 to 2539583 in the reference genome is defined as cysM gene (Blattner et al., 1997).

[107] Define-se como gene metK a sequência identificada como b2942 e localizada entre os nucleotídeos 3086076 a 3087860 no genoma de referência (Blattner et al., 1997).[107] The sequence identified as b2942 and located between nucleotides 3086076 to 3087860 in the reference genome is defined as the metK gene (Blattner et al., 1997).

Petição 870170048524, de 12/07/2017, pág. 26/55Petition 870170048524, of 7/12/2017, p. 26/55

23/38 [108] Define-se por metK* a variante com duas mutações pontuais nos nucleotídeos T554A (timina da posição 554 é trocada por uma adenina) e deleção da citosina na posição 1132. Estas duas mutações levam as trocas de aminoácidos V185E (valina da posição 185 do polipeptídeo trocado por um ácido glutâmico) e alteração da fase de leitura substituindo uma arginina para uma alanina na posição 378 e formação de códon de parada antecipado, atenuando a atividade da enzima metionina adenosiltransferase.23/38 [108] The variant with two point mutations in the T554A nucleotides (thymine of position 554 is replaced by an adenine) and deletion of the cytosine at position 1132 are defined by metK *. These two mutations lead to the exchange of amino acids V185E ( valine of position 185 of the polypeptide exchanged for a glutamic acid) and alteration of the reading phase substituting an arginine for an alanine at position 378 and formation of an early stop codon, attenuating the activity of the enzyme methionine adenosyltransferase.

[109] Define-se como gene aspC a sequência identificada como b0928 e localizada entre os nucleotídeos 984519 a 985709 no genoma de referência (Blattner et al., 1997).[109] The aspC gene is defined as the sequence identified as b0928 and located between nucleotides 984519 to 985709 in the reference genome (Blattner et al., 1997).

[110] Define-se como gene ftsA a sequência identificada como b0094 e localizada entre os nucleotídeos 103982 a 105244 no genoma de referência (Blattner et al., 1997).[110] The ftsA gene is defined as the sequence identified as b0094 and located between nucleotides 103982 to 105244 in the reference genome (Blattner et al., 1997).

[111] Define-se como gene ftsZ a sequência identificada como b0095 e localizada entre os nucleotídeos 105305 a 106456 no genoma de referência (Blattner et al., 1997).[111] The ftsZ gene is defined as the sequence identified as b0095 and located between nucleotides 105305 to 106456 in the reference genome (Blattner et al., 1997).

[112] Define-se como gene glpF a sequência identificada como b3927 e localizada entre os nucleotídeos 4117245 a 4118090 no genoma de referência (Blattner et al., 1997).[112] The sequence identified as b3927 and located between nucleotides 4117245 to 4118090 in the reference genome is defined as the glpF gene (Blattner et al., 1997).

[113] Define-se como gene glpK a sequência identificada como b3926 e localizada entre os nucleotídeos 4115714 a 4117222 no genoma de referência (Blattner et al., 1997).[113] The sequence identified as b3926 and located between nucleotides 4115714 to 4117222 in the reference genome is defined as the glpK gene (Blattner et al., 1997).

[114] Define-se como gene glpKfd a variante com uma mutação pontual no nucleotídeo G913A, gerando a substituição G305S (glicina na posição 305 trocado por uma serina). Esta alteração permite a desensibilização desta proteína a enzimas do sistema fosfotransferase glucose-específico, permitindo que a estirpe que contenha esta mutação seja capa de metabolizar glicerol e glucose simultaneamente.[114] The variant with a point mutation in the G913A nucleotide is defined as the glpK fd gene, generating the G305S substitution (glycine at position 305 replaced by a serine). This change allows the desensitization of this protein to enzymes of the glucose-specific phosphotransferase system, allowing the strain containing this mutation to be able to metabolize glycerol and glucose simultaneously.

[115] Define-se como gene glyA a sequência identificada como b2551 e localizada entre os nucleotídeos 2684254 a 2685507 no genoma de refência (Blattner et al., 1997).[115] The glyA gene is defined as the sequence identified as b2551 and located between nucleotides 2684254 to 2685507 in the reference genome (Blattner et al., 1997).

Petição 870170048524, de 12/07/2017, pág. 27/55Petition 870170048524, of 7/12/2017, p. 27/55

24/38 [116] Define-se como gene malY a sequência identificada como b1622 e localizada entre os nucleotídeos 1700957 a 1702129 no genoma de referência (Blattner et al., 1997).24/38 [116] The malY gene is defined as the sequence identified as b1622 and located between nucleotides 1700957 to 1702129 in the reference genome (Blattner et al., 1997).

[117] Define-se como gene metB a sequência identificada como b3939 e localizada entre os nucleotídeos 4128672 a 4129832 no genoma de referência (Blattner et al., 1997).[117] The sequence identified as b3939 and located between nucleotides 4128672 to 4129832 in the reference genome is defined as the metB gene (Blattner et al., 1997).

[118] Define-se como gene metC a sequência identificada como b3008 e localizada entre os nucleotídeos 3152236 a 3153413 no genoma de referência (Blattner et al., 1997).[118] The sequence identified as b3008 and located between nucleotides 3152236 to 3153413 in the reference genome is defined as the metC gene (Blattner et al., 1997).

[119] Define-se como gene pntA a sequência identificada como b1603 e localizada entre os nucleotídeos 1676371 a 1677903 no genoma de referência (Blattner et al., 1997).[119] The sequence identified as b1603 and located between nucleotides 1676371 to 1677903 in the reference genome is defined as the pntA gene (Blattner et al., 1997).

[120] Define-se como gene pntB a sequência identificada como b1602 e localizada entre os nucleotídeos 1674972 a 1776360 no genoma de referência (Blattner et al., 1997).[120] The pntB gene is defined as the sequence identified as b1602 and located between nucleotides 1674972 to 1776360 in the reference genome (Blattner et al., 1997).

[121 ] Define-se como gene sthA a sequência identificada como b3962 e localizada entre os nucleotídeos 4159390 a 4160790 no genoma de referência (Blattner et al., 1997).[121] The sthA gene is defined as the sequence identified as b3962 and located between nucleotides 4159390 to 4160790 in the reference genome (Blattner et al., 1997).

[122] Define-se como gene ydhU a sequencia identificada como b1670 e localizada entre os nucleotídeos 1749563 a 1750348 no genoma de referência (Blattner et al., 1997).[122] The ydhU gene is defined as the sequence identified as b1670 and located between nucleotides 1749563 to 1750348 in the reference genome (Blattner et al., 1997).

[123] Define-se como gene pyc a sequência identificada como RHECIAT_CH0004290 e localizada entre os nucleotídeos 4367027 a 4370491 no genoma de referência (Gonzalez et al., 2006).[123] The pyc gene is defined as the sequence identified as RHECIAT_CH0004290 and located between nucleotides 4367027 to 4370491 in the reference genome (Gonzalez et al., 2006).

[124] Define-se por partes genéticas qualquer sequência de DNA que pode ser unida a outra parte para gerar um dispositivo genético que objetive expressar um determinado gene ou regular sua expressão.[124] Genetic parts are defined as any sequence of DNA that can be joined to another part to generate a genetic device that aims to express a certain gene or regulate its expression.

[125] O termo BioBrick® refere-se a uma marca comercial da BioBricks Foundation. As partes genéticas em formato BioBrick® são sequências de DNA obtidas de maneira que cada parte tem o mesmo padrão prefixo (sequência para os sítios de endonucleases de restrição EcoRI, Notl e Xbal, 5' GAATTCGCGGCCGCTTCTAGA 3') e “sufixo (sequência para os sítios de[125] The term BioBrick ® refers to a trademark of the BioBricks Foundation. The genetic parts in BioBrick ® format are DNA sequences obtained so that each part has the same prefix pattern (sequence for the restriction endonuclease sites EcoRI, Notl and Xbal, 5 'GAATTCGCGGCCGCTTCTAGA 3') and “suffix (sequence for sites of

Petição 870170048524, de 12/07/2017, pág. 28/55Petition 870170048524, of 7/12/2017, p. 28/55

25/38 endonucleases de restrição Spel, Notl e PstI, 5' TACTAGTAGCGGCCG CTGCAG 3') (Shetty et al., 2008).25/38 Spel, Notl and PstI restriction endonucleases, 5 'TACTAGTAGCGGCCG CTGCAG 3') (Shetty et al., 2008).

SEQUENCIAS DOS GENES CITADOS NESTA PATENTESEQUENCES OF THE GENES CITED IN THIS PATENT

Sequência no1 (aspC):Following Article 1 (ASPC):

atgtttgagaacattaccgccgctcctgccgacccgattctgggcctggccgatctgtttcgtgccgatgaacgtccc ggcaaaattaacctcgggattggtgtctataaagatgagacgggcaaaaccccggtactgaccagcgtgaaaa aggctgaacagtatctgctcgaaaatgaaaccaccaaaaattacctcggcattgacggcatccctgaatttggtcg ctgcactcaggaactgctgtttggtaaaggtagcgccctgatcaatgacaaacgtgctcgcacggcacagactcc ggggggcactggcgcactacgcgtggctgccgatttcctggcaaaaaataccagcgttaagcgtgtgtgggtgag caacccaagctggccgaaccataagagcgtctttaactctgcgggtctggaagttcgtgaatacgcttattatgatg cggaaaatcacactcttgacttcgatgcactgattaacagcctgaatgaagctcaggctggcgacgtagtgctgttc catggctgctgccataacccaaccggtatcgaccctacgctggaacaatggcaaacactggcacaactctccgtt gagaaaggctggttaccgctgtttgacttcgcttaccagggttttgcccgtggtctggaagaagatgctgaaggact gcgcgctttcgcggctatgcataaagagctgattgttgccagttcctactctaaaaactttggcctgtacaacgagcg tgttggcgcttgtactctggttgctgccgacagtgaaaccgttgatcgcgcattcagccaaatgaaagcggcgattc gcgctaactactctaacccaccagcacacggcgcttctgttgttgccaccatcctgagcaacgatgcgttacgtgcg atttgggaacaagagctgactgatatgcgccagcgtattcagcgtatgcgtcagttgttcgtcaatacgctgcaaga aaaaggcgcaaaccgcgacttcagctttatcatcaaacagaacggcatgttctccttcagtggcctgacaaaaga acaagtgctgcgtctgcgcgaagagtttggcgtatatgcggttgcttctggtcgcgtaaatgtggccgggatgacac cagataacatggctccgctgtgcgaagcgattgtggcagtgctgtaaatgtttgagaacattaccgccgctcctgccgacccgattctgggcctggccgatctgtttcgtgccgatgaacgtccc ggcaaaattaacctcgggattggtgtctataaagatgagacgggcaaaaccccggtactgaccagcgtgaaaa aggctgaacagtatctgctcgaaaatgaaaccaccaaaaattacctcggcattgacggcatccctgaatttggtcg ctgcactcaggaactgctgtttggtaaaggtagcgccctgatcaatgacaaacgtgctcgcacggcacagactcc ggggggcactggcgcactacgcgtggctgccgatttcctggcaaaaaataccagcgttaagcgtgtgtgggtgag caacccaagctggccgaaccataagagcgtctttaactctgcgggtctggaagttcgtgaatacgcttattatgatg cggaaaatcacactcttgacttcgatgcactgattaacagcctgaatgaagctcaggctggcgacgtagtgctgttc catggctgctgccataacccaaccggtatcgaccctacgctggaacaatggcaaacactggcacaactctccgtt gagaaaggctggttaccgctgtttgacttcgcttaccagggttttgcccgtggtctggaagaagatgctgaaggact gcgcgctttcgcggctatgcataaagagctgattgttgccagttcctactctaaaaactttggcctgtacaacgagcg tgttggcgcttgtactctggttgctgccgacagtgaaaccgttgatcgcgcattcagccaaatgaaagcggcgattc gcgctaactactctaacccaccagcacacggcgcttctgttgttgccaccatcctgagcaacgatgcgttacgtgcg atttgggaacaagagctgactgatatgcgccagcgtattcagcgtatgcgtcagttgttcgtcaatacgctgc aaga aaaaggcgcaaaccgcgacttcagctttatcatcaaaagaaga

Sequência no2 (cysE*):Following Article 2 (cysE *):

[126] atgtcgtgtgaagaactggaaattgtctggaacaatattaaagccgaagccagaacgctggcggactgt gagccaatgctggccagtttttaccacgcgacgctactcaagcacgaaaaccttggcagtgcactgagctacatg ctggcgaacaagctgtcatcgccaattatgcctgctattgctatccgtgaagtggtggaagaagcctacgccgctg acccggaaatgatcgcctctgcggcctgtgatattcaggcggtgcgtacccgcgacccggcagtcgataaatact caaccccgttgttatacctgaagggttttcatgccttgcaggcctatcgcatcggtcactggttgtggaatcaggggc gtcgcgcactggcaatctttctgcaaaaccaggtttctgtgacgttccaggtcgatattcacccggcagcaaaaatt[126] atgtcgtgtgaagaactggaaattgtctggaacaatattaaagccgaagccagaacgctggcggactgt gagccaatgctggccagtttttaccacgcgacgctactcaagcacgaaaaccttggcagtgcactgagctacatg ctggcgaacaagctgtcatcgccaattatgcctgctattgctatccgtgaagtggtggaagaagcctacgccgctg acccggaaatgatcgcctctgcggcctgtgatattcaggcggtgcgtacccgcgacccggcagtcgataaatact caaccccgttgttatacctgaagggttttcatgccttgcaggcctatcgcatcggtcactggttgtggaatcaggggc gtcgcgcactggcaatctttctgcaaaaccaggtttctgtgacgttccaggtcgatattcacccggcagcaaaaatt

Petição 870170048524, de 12/07/2017, pág. 29/55Petition 870170048524, of 7/12/2017, p. 29/55

26/38 ggtcgcggtatcatgcttgaccacgcgacaggcatcgtcgttggtgaagcggcggtgattgaaaacgacgtatcg attctgcaatctgtgacgcttggcggtacgggtaaatctggtggtgaccgtcacccgaaaattcgtgaaggtgtgat gattggcgcgggcgcgaaaatcctcggcaatattgaagttgggcgcggcgcgaagattggcgcaggttccgtgg tgctgcaaccggtgccgccgcataccaccgccgctggcgttccggctcgtattgtcagtaaaccagacagcgata agccatcaatggatatagaccagcatttcaacggtattaaccatacatttgagtatggggatgggatctaa26/38 ggtcgcggtatcatgcttgaccacgcgacaggcatcgtcgttggtgaagcggcggtgattgaaaacgacgtatcg attctgcaatctgtgacgcttggcggtacgggtaaatctggtggtgaccgtcacccgaaaattcgtgaaggtgtgat gattggcgcgggcgcgaaaatcctcggcaatattgaagttgggcgcggcgcgaagattggcgcaggttccgtgg tgctgcaaccggtgccgccgcataccaccgccgctggcgttccggctcgtattgtcagtaaaccagacagcgata agccatcaatggatatagaccagcatttcaacggtattaaccatacatttgagtatggggatgggatctaa

Sequência no 3 (cysM):Following paragraph 3 (cysM):

gtgagtacattagaacaaacaataggcaatacgcctctggtgaagttgcagcgaatggggccggataacggca gtgaagtgtggttaaaactggaaggcaataacccggcaggttcggtgaaagatcgtgcggcactttcgatgatcgt cgaggcggaaaagcgcggggaaattaaaccgggtgatgtcttaatcgaagccaccagtggtaacaccggcatt gcgctggcaatgattgccgcgctgaaaggctatcgcatgaaattgctgatgcccgacaacatgagccaggaacg ccgtgcggcgatgcgtgcttatggtgcggaactgattcttgtcaccaaagagcagggcatggaaggtgcgcgcga tctggcgctggagatggcgaatcgtggcgaaggaaagctgctcgatcagttcaataatcccgataacccttatgcg cattacaccaccactgggccggaaatctggcagcaaaccggcgggcgcatcactcattttgtctccagcatgggg acgaccggcactatcaccggcgtctcacgctttatgcgcgaacaatccaaaccggtgaccattgtcggcctgcaa ccggaagagggcagcagcattcccggcattcgccgctggcctacggaatatctgccggggattttcaacgcttctc tggtggatgaggtgctggatattcatcagcgcgatgcggaaaacaccatgcgcgaactggcggtgcgggaagg aatattctgtggcgtcagctccggcggcgcggttgccggagcactgcgggtggcaaaagctaaccctgacgcgg tggtggtggcgatcatctgcgatcgtggcgatcgctacctttctaccggggtgtttggggaagagcattttagccagg gggcggggatttaagtgagtacattagaacaaacaataggcaatacgcctctggtgaagttgcagcgaatggggccggataacggca gtgaagtgtggttaaaactggaaggcaataacccggcaggttcggtgaaagatcgtgcggcactttcgatgatcgt cgaggcggaaaagcgcggggaaattaaaccgggtgatgtcttaatcgaagccaccagtggtaacaccggcatt gcgctggcaatgattgccgcgctgaaaggctatcgcatgaaattgctgatgcccgacaacatgagccaggaacg ccgtgcggcgatgcgtgcttatggtgcggaactgattcttgtcaccaaagagcagggcatggaaggtgcgcgcga tctggcgctggagatggcgaatcgtggcgaaggaaagctgctcgatcagttcaataatcccgataacccttatgcg cattacaccaccactgggccggaaatctggcagcaaaccggcgggcgcatcactcattttgtctccagcatgggg acgaccggcactatcaccggcgtctcacgctttatgcgcgaacaatccaaaccggtgaccattgtcggcctgcaa ccggaagagggcagcagcattcccggcattcgccgctggcctacggaatatctgccggggattttcaacgcttctc tggtggatgaggtgctggatattcatcagcgcgatgcggaaaacaccatgcgcgaactggcggtgcgggaagg aatattctgtggcgtcagctccggcggcgcggttgccggagcactgcgggtggcaaaagctaaccctgacgcgg tggtggtggcgatcatctgcgatcgtggcgatcgctacctttctaccggggtgtttggggaagagcattttagccagg gggcggggatttaa

Sequência no4 (ftsA) [127] atgatcaaggcgacggacagaaaactggtagtaggactggagattggtaccgcgaaggttgccgcttt agtaggggaagttctgcccgacggtatggtcaatatcattggcgtgggcagctgcccgtcgcgtggtatggataaa ggcggggtgaacgacctcgaatccgtggtcaagtgcgtacaacgcgccattgaccaggcagaattgatggcag attgtcagatctcttcggtatatctggcgctttctggtaagcacatcagctgccagaatgaaattggtatggtgcctattt ctgaagaagaagtgacgcaagaagatgtggaaaacgtcgtccataccgcgaaatcggtgcgtgtgcgcgatga gcatcgtgtgctgcatgtgatcccgcaagagtatgcgattgactatcaggaagggatcaagaatccggtaggactt tcgggcgtgcggatgcaggcaaaagtgcacctgatcacatgtcacaacgatatggcgaaaaacatcgtcaaag cggttgaacgttgtgggctgaaagttgaccaactgatatttgccggactggcatcaagttattcggtattgacggaag atgaacgtgaactgggtgtctgcgtcgtcgatatcggtggtggtacaatggatatcgccgtttataccggtggggcat tgcgccacactaaggtaattccttatgctggcaatgtcgtgaccagtgatatcgcttacgcctttggcacgccgccaa gcgacgccgaagcgattaaagttcgccacggttgtgcgctgggttccatcgttggaaaagatgagagcgtggaaSequence No. 4 (France Télécom SA) [127] atgatcaaggcgacggacagaaaactggtagtaggactggagattggtaccgcgaaggttgccgcttt agtaggggaagttctgcccgacggtatggtcaatatcattggcgtgggcagctgcccgtcgcgtggtatggataaa ggcggggtgaacgacctcgaatccgtggtcaagtgcgtacaacgcgccattgaccaggcagaattgatggcag attgtcagatctcttcggtatatctggcgctttctggtaagcacatcagctgccagaatgaaattggtatggtgcctattt ctgaagaagaagtgacgcaagaagatgtggaaaacgtcgtccataccgcgaaatcggtgcgtgtgcgcgatga gcatcgtgtgctgcatgtgatcccgcaagagtatgcgattgactatcaggaagggatcaagaatccggtaggactt tcgggcgtgcggatgcaggcaaaagtgcacctgatcacatgtcacaacgatatggcgaaaaacatcgtcaaag cggttgaacgttgtgggctgaaagttgaccaactgatatttgccggactggcatcaagttattcggtattgacggaag atgaacgtgaactgggtgtctgcgtcgtcgatatcggtggtggtacaatggatatcgccgtttataccggtggggcat tgcgccacactaaggtaattccttatgctggcaatgtcgtgaccagtgatatcgcttacgcctttggcacgccgccaa gcgacgccgaagcgattaaagttcgccacggttgtgcgctgggttccatcgttggaaaagatgagagcgtggaa

Petição 870170048524, de 12/07/2017, pág. 30/55Petition 870170048524, of 7/12/2017, p. 30/55

27/38 gtgccgagcgtaggtggtcgtccgccacggagtctgcaacgtcagacactggcagaggtgatcgagccgcgct ataccgagctgctcaacctggtcaacgaagagatattgcagttgcaggaaaagcttcgccaacaaggggttaaa catcacctggcggcaggcattgtattaaccggtggcgcagcgcagatcgaaggtcttgcagcctgtgctcagcgc gtgtttcatacgcaagtgcgtatcggcgcgccgctgaacattaccggtttaacggattatgctcaggagccgtattatt cgacggcggtgggattgcttcactatgggaaagagtcacatcttaacggtgaagctgaagtagaaaaacgtgtta cagcatcagttggctcgtggatcaagcgactcaatagttggctgcgaaaagagttttaa27/38 gtgccgagcgtaggtggtcgtccgccacggagtctgcaacgtcagacactggcagaggtgatcgagccgcgct ataccgagctgctcaacctggtcaacgaagagatattgcagttgcaggaaaagcttcgccaacaaggggttaaa catcacctggcggcaggcattgtattaaccggtggcgcagcgcagatcgaaggtcttgcagcctgtgctcagcgc gtgtttcatacgcaagtgcgtatcggcgcgccgctgaacattaccggtttaacggattatgctcaggagccgtattatt cgacggcggtgggattgcttcactatgggaaagagtcacatcttaacggtgaagctgaagtagaaaaacgtgtta cagcatcagttggctcgtggatcaagcgactcaatagttggctgcgaaaagagttttaa

Sequência no5 (ftsZ) [128] atgtttgaaccaatggaacttaccaatgacgcggtgattaaagtcatcggcgtcggcggcggcggcggt aatgctgttgaacacatggtgcgcgagcgcattgaaggtgttgaatttttcgcggtaaataccgatgcacaagcgct gcgtaaaacagcggttggacagacgattcaaatcggtagcggtatcaccaaaggactgggcgctggcgctaatc cagaagttggccgcaatgcggctgatgaggatcgcgatgcattgcgtgcggcgctggaaggtgcagacatggtc tttattgctgcgggtatgggtggtggtaccggtacaggtgcagcaccagtcgtcgctgaagtggcaaaagatttggg tatcctgaccgttgctgtcgtcactaagcctttcaactttgaaggcaagaagcgtatggcattcgcggagcagggga tcactgaactgtccaagcatgtggactctctgatcactatcccgaacgacaaactgctgaaagttctgggccgcggt atctccctgctggatgcgtttggcgcagcgaacgatgtactgaaaggcgctgtgcaaggtatcgctgaactgattac tcgtccgggtttgatgaacgtggactttgcagacgtacgcaccgtaatgtctgagatgggctacgcaatgatgggtt ctggcgtggcgagcggtgaagaccgtgcggaagaagctgctgaaatggctatctcttctccgctgctggaagatat cgacctgtctggcgcgcgcggcgtgctggttaacatcacggcgggcttcgacctgcgtctggatgagttcgaaacg gtaggtaacaccatccgtgcatttgcttccgacaacgcgactgtggttatcggtacttctcttgacccggatatgaatg acgagctgcgcgtaaccgttgttgcgacaggtatcggcatggacaaacgtcctgaaatcactctggtgaccaata agcaggttcagcagccagtgatggatcgctaccagcagcatgggatggctccgctgacccaggagcagaagc cggttgctaaagtcgtgaatgacaatgcgccgcaaactgcgaaagagccggattatctggatatcccagcattcct gcgtaagcaagctgattaaSequence No. 5 (FtsZ) [128] atgtttgaaccaatggaacttaccaatgacgcggtgattaaagtcatcggcgtcggcggcggcggcggt aatgctgttgaacacatggtgcgcgagcgcattgaaggtgttgaatttttcgcggtaaataccgatgcacaagcgct gcgtaaaacagcggttggacagacgattcaaatcggtagcggtatcaccaaaggactgggcgctggcgctaatc cagaagttggccgcaatgcggctgatgaggatcgcgatgcattgcgtgcggcgctggaaggtgcagacatggtc tttattgctgcgggtatgggtggtggtaccggtacaggtgcagcaccagtcgtcgctgaagtggcaaaagatttggg tatcctgaccgttgctgtcgtcactaagcctttcaactttgaaggcaagaagcgtatggcattcgcggagcagggga tcactgaactgtccaagcatgtggactctctgatcactatcccgaacgacaaactgctgaaagttctgggccgcggt atctccctgctggatgcgtttggcgcagcgaacgatgtactgaaaggcgctgtgcaaggtatcgctgaactgattac tcgtccgggtttgatgaacgtggactttgcagacgtacgcaccgtaatgtctgagatgggctacgcaatgatgggtt ctggcgtggcgagcggtgaagaccgtgcggaagaagctgctgaaatggctatctcttctccgctgctggaagatat cgacctgtctggcgcgcgcggcgtgctggttaacatcacggcgggcttcgacctgcgtctggatgagttcgaaacg gtaggtaacaccatccgtgcatttgcttccgacaacgcgactgtggttatcggtacttctcttgacccggatatgaatg acgagctgcgcgtaaccgttgttgcgacaggtatcggcatggacaaacg tcctgaaatcactctggtgaccaata agcaggttcagcagccagtgatggatcgctaccagcagcatgggatggctccgctgacccaggagcagaagc cggttgctaaagtcgtgaatgacaatgcgccgcaaagggcgactagatgatgatta

Sequência no6 (glpF) [129] atgagtcaaacatcaaccttgaaaggccagtgcattgctgaatttctcggtaccgggttgttgattttcttcgg tgtgggttgcgttgcagcactaaaagtcgctggtgcgtcttttggtcagtgggaaatcagtgtcatttggggactgggg gtggcaatggccatctacctgaccgcaggggtttccggcgcgcatcttaatcccgctgttaccattgcattgtggctgt ttgcctgtttcgacaagcgcaaagttattccttttatcgtttcacaagttgccggcgctttctgtgctgcggctttagtttac gggctttactacaatttatttttcgacttcgagcagactcatcacattgttcgcggcagcgttgaaagtgttgatctggct ggcactttctctacttaccctaatcctcatatcaattttgtgcaggctttcgcagttgagatggtgattaccgctattctgatSequence No. 6 (glpF) [129] atgagtcaaacatcaaccttgaaaggccagtgcattgctgaatttctcggtaccgggttgttgattttcttcgg tgtgggttgcgttgcagcactaaaagtcgctggtgcgtcttttggtcagtgggaaatcagtgtcatttggggactgggg gtggcaatggccatctacctgaccgcaggggtttccggcgcgcatcttaatcccgctgttaccattgcattgtggctgt ttgcctgtttcgacaagcgcaaagttattccttttatcgtttcacaagttgccggcgctttctgtgctgcggctttagtttac gggctttactacaatttatttttcgacttcgagcagactcatcacattgttcgcggcagcgttgaaagtgttgatctggct ggcactttctctacttaccctaatcctcatatcaattttgtgcaggctttcgcagttgagatggtgattaccgctattctgat

Petição 870170048524, de 12/07/2017, pág. 31/55Petition 870170048524, of 7/12/2017, p. 31/55

28/38 ggggctgatcctggcgttaacggacgatggcaacggtgtaccacgcggccctttggctcccttgctgattggtctact gattgcggtcattggcgcatctatgggcccattgacaggttttgccatgaacccagcgcgtgacttcggtccgaaag tctttgcctggctggcgggctggggcaatgtcgcctttaccggcggcagagacattccttacttcctggtgccgcttttc ggccctatcgttggcgcgattgtaggtgcatttgcctaccgcaaactgattggtcgccatttgccttgcgatatctgtgtt gtggaagaaaaggaaaccacaactccttcagaacaaaaagcttcgctgtaa28/38 ggggctgatcctggcgttaacggacgatggcaacggtgtaccacgcggccctttggctcccttgctgattggtctact gattgcggtcattggcgcatctatgggcccattgacaggttttgccatgaacccagcgcgtgacttcggtccgaaag tctttgcctggctggcgggctggggcaatgtcgcctttaccggcggcagagacattccttacttcctggtgccgcttttc ggccctatcgttggcgcgattgtaggtgcatttgcctaccgcaaactgattggtcgccatttgccttgcgatatctgtgtt gtggaagaaaaggaaaccacaactccttcagaacaaaaagcttcgctgtaa

Sequência no7 (glpKfd) [130] atgactgaaaaaaaatatatcgttgcgctcgaccagggcaccaccagctcccgcgcggtcgtaatgga tcacgatgccaatatcattagcgtgtcgcagcgcgaatttgagcaaatctacccaaaaccaggttgggtagaaca cgacccaatggaaatctgggccacccaaagctccacgctggtagaagtgctggcgaaagccgatatcagttccg atcaaattgcagctatcggtattacgaaccagcgtgaaaccactattgtctgggaaaaagaaaccggcaagccta tctataacgccattgtctggcagtgccgtcgtaccgcagaaatctgcgagcatttaaaacgtgacggtttagaagatt atatccgcagcaataccggtctggtgattgacccgtacttttctggcaccaaagtgaagtggattctcgaccatgtgg aaggctctcgcgagcgtgcacgtcgtggtgaattgctgtttggtacggttgatacgtggcttatctggaaaatgactc agggccgtgtccatgtgaccgattacaccaacgcctctcgtaccatgttgttcaacatccataccctggactgggac gacaaaatgctggaagtgctggatattccgcgcgagatgctgccagaagtgcgtcgttcttccgaagtatacggtc agactaacattggcggcaaaggcggcacgcgtattccaatctccgggatcgccggtgaccagcaggccgcgct gtttggtcagttgtgcgtgaaagaagggatggcgaagaacacctatggcactggctgctttatgctgatgaacactg gcgagaaagcggtgaaatcagaaaacggcctgctgaccaccatcgcctgcggcccgactggcgaagtgaact atgcgttggaaagtgcggtgtttatggcaggcgcatccattcagtggctgcgcgatgaaatgaagttgattaacgac gcctacgattccgaatatttcgccaccaaagtgcaaaacaccaatggtgtgtatgtggttccggcatttaccgggct gggtgcgccgtactgggacccgtatgcgcgcggggcgattttcggtctgactcgtggggtgaacgctaaccacatt atacgcgcgacgctggagtctattgcttatcagacgcgtgacgtgctggaagcgatgcaggccgactctggtatcc gtctgcacgccctgcgcgtggatggtggcgcagtagcaaacaatttcctgatgcagttccagtccgatattctcggc acccgcgttgagcgcccggaagtgcgcgaagtcaccgcattgggtgcggcctatctcgcaggcctggcggttgg cttctggcagaacctcgacgagctgcaagagaaagcggtgattgagcgcgagttccgtccaggcatcgaaacc actgagcgtaattaccgttacgcaggctggaaaaaagcggttaaacgcgcgatggcgtgggaagaacacgac gaataaSequence No. 7 (glpK d) [130] atgactgaaaaaaaatatatcgttgcgctcgaccagggcaccaccagctcccgcgcggtcgtaatgga tcacgatgccaatatcattagcgtgtcgcagcgcgaatttgagcaaatctacccaaaaccaggttgggtagaaca cgacccaatggaaatctgggccacccaaagctccacgctggtagaagtgctggcgaaagccgatatcagttccg atcaaattgcagctatcggtattacgaaccagcgtgaaaccactattgtctgggaaaaagaaaccggcaagccta tctataacgccattgtctggcagtgccgtcgtaccgcagaaatctgcgagcatttaaaacgtgacggtttagaagatt atatccgcagcaataccggtctggtgattgacccgtacttttctggcaccaaagtgaagtggattctcgaccatgtgg aaggctctcgcgagcgtgcacgtcgtggtgaattgctgtttggtacggttgatacgtggcttatctggaaaatgactc agggccgtgtccatgtgaccgattacaccaacgcctctcgtaccatgttgttcaacatccataccctggactgggac gacaaaatgctggaagtgctggatattccgcgcgagatgctgccagaagtgcgtcgttcttccgaagtatacggtc agactaacattggcggcaaaggcggcacgcgtattccaatctccgggatcgccggtgaccagcaggccgcgct gtttggtcagttgtgcgtgaaagaagggatggcgaagaacacctatggcactggctgctttatgctgatgaacactg gcgagaaagcggtgaaatcagaaaacggcctgctgaccaccatcgcctgcggcccgactggcgaagtgaact atgcgttggaaagtgcggtgtttatggcaggcgcatccattcagtggctgcgcg atgaaatgaagttgattaacgac gcctacgattccgaatatttcgccaccaaagtgcaaaacaccaatggtgtgtatgtggttccggcatttaccgggct gggtgcgccgtactgggacccgtatgcgcgcggggcgattttcggtctgactcgtggggtgaacgctaaccacatt atacgcgcgacgctggagtctattgcttatcagacgcgtgacgtgctggaagcgatgcaggccgactctggtatcc gtctgcacgccctgcgcgtggatggtggcgcagtagcaaacaatttcctgatgcagttccagtccgatattctcggc acccgcgttgagcgcccggaagtgcgcgaagtcaccgcattgggtgcggcctatctcgcaggcctggcggttgg cttctggcagaacctcgacgagctgcaagagaaagcggtgattgagcgcgagttccgtccaggcatcgaaacc actgagcgtaattaccgttacgcaggctggaaaaaagcggttaaacgcgcgatggcgtgggaagaacacgac gaataa

Sequência no8 (glyA) [131] atgttaaagcgtgaaatgaacattgccgattatgatgccgaactgtggcaggctatggagcaggaaaaa gtacgtcaggaagagcacatcgaactgatcgcctccgaaaactacaccagcccgcgcgtaatgcaggcgcagSequence No. 8 (glyA) [131] atgttaaagcgtgaaatgaacattgccgattatgatgccgaactgtggcaggctatggagcaggaaaaa gtacgtcaggaagagcacatcgaactgatcgcctccgaaaactacaccagcccgcgcgtaatgcaggcgcag

Petição 870170048524, de 12/07/2017, pág. 32/55Petition 870170048524, of 7/12/2017, p. 32/55

29/38 ggttctcagctgaccaacaaatatgctgaaggttatccgggcaaacgctactacggcggttgcgagtatgttgatat cgttgaacaactggcgatcgatcgtgcgaaagaactgttcggcgctgactacgctaacgtccagccgcactccgg ctcccaggctaactttgcggtctacaccgcgctgctggaaccaggtgataccgttctgggtatgaacctggcgcatg gcggtcacctgactcacggttctccggttaacttctccggtaaactgtacaacatcgttccttacggtatcgatgctac cggtcatatcgactacgccgatctggaaaaacaagccaaagaacacaagccgaaaatgattatcggtggtttctc tgcatattccggcgtggtggactgggcgaaaatgcgtgaaatcgctgacagcatcggtgcttacctgttcgttgatat ggcgcacgttgcgggcctggttgctgctggcgtctacccgaacccggttcctcatgctcacgttgttactaccaccac tcacaaaaccctggcgggtccgcgcggcggcctgatcctggcgaaaggtggtagcgaagagctgtacaaaaa actgaactctgccgttttccctggtggtcagggcggtccgttgatgcacgtaatcgccggtaaagcggttgctctgaa agaagcgatggagcctgagttcaaaacttaccagcagcaggtcgctaaaaacgctaaagcgatggtagaagtg ttcctcgagcgcggctacaaagtggtttccggcggcactgataaccacctgttcctggttgatctggttgataaaaac ctgaccggtaaagaagcagacgccgctctgggccgtgctaacatcaccgtcaacaaaaacagcgtaccgaac gatccgaagagcccgtttgtgacctccggtattcgtgtaggtactccggcgattacccgtcgcggctttaaagaagc cgaagcgaaagaactggctggctggatgtgtgacgtgctggacagcatcaatgatgaagccgttatcgagcgca tcaaaggtaaagttctcgacatctgcgcacgttacccggtttacgcataa29/38 ggttctcagctgaccaacaaatatgctgaaggttatccgggcaaacgctactacggcggttgcgagtatgttgatat cgttgaacaactggcgatcgatcgtgcgaaagaactgttcggcgctgactacgctaacgtccagccgcactccgg ctcccaggctaactttgcggtctacaccgcgctgctggaaccaggtgataccgttctgggtatgaacctggcgcatg gcggtcacctgactcacggttctccggttaacttctccggtaaactgtacaacatcgttccttacggtatcgatgctac cggtcatatcgactacgccgatctggaaaaacaagccaaagaacacaagccgaaaatgattatcggtggtttctc tgcatattccggcgtggtggactgggcgaaaatgcgtgaaatcgctgacagcatcggtgcttacctgttcgttgatat ggcgcacgttgcgggcctggttgctgctggcgtctacccgaacccggttcctcatgctcacgttgttactaccaccac tcacaaaaccctggcgggtccgcgcggcggcctgatcctggcgaaaggtggtagcgaagagctgtacaaaaa actgaactctgccgttttccctggtggtcagggcggtccgttgatgcacgtaatcgccggtaaagcggttgctctgaa agaagcgatggagcctgagttcaaaacttaccagcagcaggtcgctaaaaacgctaaagcgatggtagaagtg ttcctcgagcgcggctacaaagtggtttccggcggcactgataaccacctgttcctggttgatctggttgataaaaac ctgaccggtaaagaagcagacgccgctctgggccgtgctaacatcaccgtcaacaaaaacagcgtaccgaac gatccgaagagcccgtttgtgacctccggtattcgtgtaggtactccggcgattacccgtcgcggcttta aagaagc cgaagcgaaagaactggctggctggatgtgtgacgtgctggacagcatcaatgatgaagccgttatcgagcgca tcaaaggtaaagttctcgacatctgcgcacgttacccggtttacgcataaaaaaaaaaaa

Sequência no9 (malY) [132] atgttcgatttttcaaaggtcgtggatcgtcatggcacatggtgtacacagtgggattatgtcgctgaccgttt cggcactgctgacctgttaccgttcacgatttcagacatggattttgccactgccccctgcattatcgaggcgctgaat cagcgcctgatgcacggcgtatttggctacagccgctggaaaaacgatgagtttctcgcggctattgcccactggtt ttccacccagcattacaccgccatcgattctcagacggtggtgtatggcccttctgtcatctatatggtttcagaactga ttcgtcagtggtctgaaacaggtgaaggcgtggtgatccacacacccgcctatgacgcattttacaaggccattga aggtaaccagcgcacagtaatgcccgttgctttagagaagcaggctgatggttggttttgcgatatgggcaagttgg aagccgtgttggcgaaaccagaatgtaaaattatgctcctgtgtagcccacagaatcctaccgggaaagtgtgga cgtgcgatgagctggagatcatggctgacctgtgcgagcgtcatggtgtgcgggttatttccgatgaaatccatatg gatatggtttggggcgagcagccgcatattccctggagtaatgtggctcgcggagactgggcgttgctaacgtcgg gctcgaaaagtttcaatattcccgccctgaccggtgcttacgggattatagaaaatagcagtagccgcgatgcctat ttatcggcactgaaaggccgtgatgggctttcttccccttcggtactggcgttaactgcccatatcgccgcctatcagc aaggcgcgccgtggctggatgccttacgcatctatctgaaagataacctgacgtatatcgcagataaaatgaacg ccgcgtttcctgaactcaactggcagatcccacaatccacttatctggcatggcttgatttacgtccgttgaatattgac gacaacgcgttgcaaaaagcacttatcgaacaagaaaaagtcgcgatcatgccggggtatacctacggtgaagSequence No. 9 (Maly) [132] atgttcgatttttcaaaggtcgtggatcgtcatggcacatggtgtacacagtgggattatgtcgctgaccgttt cggcactgctgacctgttaccgttcacgatttcagacatggattttgccactgccccctgcattatcgaggcgctgaat cagcgcctgatgcacggcgtatttggctacagccgctggaaaaacgatgagtttctcgcggctattgcccactggtt ttccacccagcattacaccgccatcgattctcagacggtggtgtatggcccttctgtcatctatatggtttcagaactga ttcgtcagtggtctgaaacaggtgaaggcgtggtgatccacacacccgcctatgacgcattttacaaggccattga aggtaaccagcgcacagtaatgcccgttgctttagagaagcaggctgatggttggttttgcgatatgggcaagttgg aagccgtgttggcgaaaccagaatgtaaaattatgctcctgtgtagcccacagaatcctaccgggaaagtgtgga cgtgcgatgagctggagatcatggctgacctgtgcgagcgtcatggtgtgcgggttatttccgatgaaatccatatg gatatggtttggggcgagcagccgcatattccctggagtaatgtggctcgcggagactgggcgttgctaacgtcgg gctcgaaaagtttcaatattcccgccctgaccggtgcttacgggattatagaaaatagcagtagccgcgatgcctat ttatcggcactgaaaggccgtgatgggctttcttccccttcggtactggcgttaactgcccatatcgccgcctatcagc aaggcgcgccgtggctggatgccttacgcatctatctgaaagataacctgacgtatatcgcagataaaatgaacg ccgcgtttcctgaactcaactggcagatcccacaatc cacttatctggcatggcttgatttacgtccgttgaatattgac gacaacgcgttgcaaaaagcacttatcgaacaagaaaaagtcgcgatcatgccggggtatacctacggtgaag

Petição 870170048524, de 12/07/2017, pág. 33/55Petition 870170048524, of 7/12/2017, p. 33/55

30/38 aaggtcgtggttttgtccgtctcaatgccggctgcccacgttcgaaactggaaaaaggtgtggctggattaattaac gccatccgcgctgttcgttaa30/38 aaggtcgtggttttgtccgtctcaatgccggctgcccacgttcgaaactggaaaaaggtgtggctggattaattaac gccatccgcgctgttcgttaa

Sequência no10 (metAfd) [133] atgccgattcgtgtgccggacgagctacccgccgtcaatttcttgcgtgaagaaaacgtctttgtgatgac aacttcttgtgcgtctggtcaggaaattcgtccacttaaggttctgatccttaacctgatgccgaagaagattgaaact gaaaatcagtttctgcgcctgctttcaaactcacctttgcaggtcgatattcagctgttgcgcatcgattcccgtgaatc gcgcaacacgcccgcagagcatctgaacaacttctactgtaactttgaagatattcaggatcagaactttgacggtt tgattgtaactggtgcgccgctgggcctggtggagtttaatgatgtcgcttactggccgcagatcaaacaggtgctg gagtggtcgaaagatcacgtcacctcgacgctgtttgtctgctgggcggtacaggccgcgctcaatatcctctacgg cattcctaagcaaactcgcaccgaaaaactctctggcgtttacgagcatcatattctccatcctcatgcgcttctgac gcgtggctttgatgattcattcctggcaccgcattcgcgctatgctgactttccggcagcgttgattcgtgattacaccg atctggaaattctggcagagacggaagaaggggatgcatatctgtttgccagtaaagataagcgcattgcctttgtg acgggccatcccgaatatgatgcgcaaacgctggcgcaggaatttttccgcgatgtggaagccggactagaccc ggatgtaccgtataactatttcccgcacaatgatccgcaaaatacaccgcgagcgagctggcgtagtcacggtaa tttactgtttaccaactggctcaactattacgtctaccagagcacgctatacgatctacggcacatgaatccaacgct ggattaaSequence No. 10 (meth d) [133] atgccgattcgtgtgccggacgagctacccgccgtcaatttcttgcgtgaagaaaacgtctttgtgatgac aacttcttgtgcgtctggtcaggaaattcgtccacttaaggttctgatccttaacctgatgccgaagaagattgaaact gaaaatcagtttctgcgcctgctttcaaactcacctttgcaggtcgatattcagctgttgcgcatcgattcccgtgaatc gcgcaacacgcccgcagagcatctgaacaacttctactgtaactttgaagatattcaggatcagaactttgacggtt tgattgtaactggtgcgccgctgggcctggtggagtttaatgatgtcgcttactggccgcagatcaaacaggtgctg gagtggtcgaaagatcacgtcacctcgacgctgtttgtctgctgggcggtacaggccgcgctcaatatcctctacgg cattcctaagcaaactcgcaccgaaaaactctctggcgtttacgagcatcatattctccatcctcatgcgcttctgac gcgtggctttgatgattcattcctggcaccgcattcgcgctatgctgactttccggcagcgttgattcgtgattacaccg atctggaaattctggcagagacggaagaaggggatgcatatctgtttgccagtaaagataagcgcattgcctttgtg acgggccatcccgaatatgatgcgcaaacgctggcgcaggaatttttccgcgatgtggaagccggactagaccc ggatgtaccgtataactatttcccgcacaatgatccgcaaaatacaccgcgagcgagctggcgtagtcacggtaa tttactgtttaccaactggctcaactattacgtctaccagagcacgctatacgatctacggcacatgaatccaacgct ggattaa

Sequência no 11 (metB) [134] atgacgcgtaaacaggccaccatcgcagtgcgtagcgggttaaatgacgacgaacagtatggttgcgtt gtcccaccgatccatctttccagcacctataactttaccggatttaatgaaccgcgcgcgcatgattactcgcgtcgc ggcaacccaacgcgcgatgtggttcagcgtgcgctggcagaactggaaggtggtgctggtgcagtacttactaat accggcatgtccgcgattcacctggtaacgaccgtctttttgaaacctggcgatctgctggttgcgccgcacgactg ctacggcggtagctatcgcctgttcgacagtctggcgaaacgcggttgctatcgcgtgttgtttgttgatcaaggcgat gaacaggcattacgggcagcgctggcagaaaaacccaaactggtactggtagaaagcccaagtaatccattgtt acgcgtcgtggatattgcgaaaatctgccatctggcaagggaagtcggggcggtgagcgtggtggataacacctt cttaagcccggcattacaaaatccgctggcattaggtgccgatctggtgttgcattcatgcacgaaatatctgaacg gtcactcagacgtagtggccggcgtggtgattgctaaagacccggacgttgtcactgaactggcctggtgggcaa acaatattggcgtgacgggcggcgcgtttgacagctatctgctgctacgtgggttgcgaacgctggtgccgcgtatg gagctggcgcagcgcaacgcgcaggcgattgtgaaatacctgcaaacccagccgttggtgaaaaaactgtatc acccgtcgttgccggaaaatcaggggcatgaaattgccgcgcgccagcaaaaaggctttggcgcaatgttgagttSequence No. 11 (metB) [134] atgacgcgtaaacaggccaccatcgcagtgcgtagcgggttaaatgacgacgaacagtatggttgcgtt gtcccaccgatccatctttccagcacctataactttaccggatttaatgaaccgcgcgcgcatgattactcgcgtcgc ggcaacccaacgcgcgatgtggttcagcgtgcgctggcagaactggaaggtggtgctggtgcagtacttactaat accggcatgtccgcgattcacctggtaacgaccgtctttttgaaacctggcgatctgctggttgcgccgcacgactg ctacggcggtagctatcgcctgttcgacagtctggcgaaacgcggttgctatcgcgtgttgtttgttgatcaaggcgat gaacaggcattacgggcagcgctggcagaaaaacccaaactggtactggtagaaagcccaagtaatccattgtt acgcgtcgtggatattgcgaaaatctgccatctggcaagggaagtcggggcggtgagcgtggtggataacacctt cttaagcccggcattacaaaatccgctggcattaggtgccgatctggtgttgcattcatgcacgaaatatctgaacg gtcactcagacgtagtggccggcgtggtgattgctaaagacccggacgttgtcactgaactggcctggtgggcaa acaatattggcgtgacgggcggcgcgtttgacagctatctgctgctacgtgggttgcgaacgctggtgccgcgtatg gagctggcgcagcgcaacgcgcaggcgattgtgaaatacctgcaaacccagccgttggtgaaaaaactgtatc acccgtcgttgccggaaaatcaggggcatgaaattgccgcgcgccagcaaaaaggctttggcgcaatgttgagtt

Petição 870170048524, de 12/07/2017, pág. 34/55Petition 870170048524, of 7/12/2017, p. 34/55

31/38 ttgaactggatggcgatgagcagacgctgcgtcgtttcctgggcgggctgtcgttgtttacgctggcggaatcattag ggggagtggaaagtttaatctctcacgccgcaaccatgacacatgcaggcatggcaccagaagcgcgtgctgc cgccgggatctccgagacgctgctgcgtatctccaccggtattgaagatggcgaagatttaattgccgacctggaa aatggcttccgggctgcaaacaaggggtaa31/38 ttgaactggatggcgatgagcagacgctgcgtcgtttcctgggcgggctgtcgttgtttacgctggcggaatcattag ggggagtggaaagtttaatctctcacgccgcaaccatgacacatgcaggcatggcaccagaagcgcgtgctgc cgccgggatctccgagacgctgctgcgtatctccaccggtattgaagatggcgaagatttaattgccgacctggaa aatggcttccgggctgcaaacaaggggtaa

Sequência no 12 (metC) [135] atggcggacaaaaagcttgatactcaactggtgaatgcaggacgcagcaaaaaatacactctcggcg cggtaaatagcgtgattcagcgcgcttcttcgctggtctttgacagtgtagaagccaaaaaacacgcgacacgtaa tcgcgccaatggagagttgttctatggacggcgcggaacgttaacccatttctccttacaacaagcgatgtgtgaac tggaaggtggcgcaggctgcgtgctatttccctgcggggcggcagcggttgctaattccattcttgcttttatcgaaca gggcgatcatgtgttgatgaccaacaccgcctatgaaccgagtcaggatttctgtagcaaaatcctcagcaaactg ggcgtaacgacatcatggtttgatccgctgattggtgccgatatcgttaagcatctgcaaccaaacactaaaatcgt gtttctggaatcgccaggctccatcaccatggaagtccacgacgttccggcgattgttgccgccgtacgcagtgtgg tgccggatgccatcattatgatcgacaacacctgggcagccggtgtgctgtttaaggcgctggattttggcatcgatg tttctattcaagccgccaccaaatatctggttgggcattcagatgcgatgattggcactgccgtgtgcaatgcccgttg ctgggagcagctacgggaaaatgcctatctgatgggccagatggtcgatgccgataccgcctatataaccagcc gtggcctgcgcacattaggtgtgcgtttgcgtcaacatcatgaaagcagtctgaaagtggctgaatggctggcaga acatccgcaagttgcgcgagttaaccaccctgctctgcctggcagtaaaggtcacgaattttggaaacgagacttt acaggcagcagcgggctattttcctttgtgcttaagaaaaaactcaataatgaagagctggcgaactatctggata acttcagtttattcagcatggcctactcgtggggcgggtatgaatcgttgatcctggcaaatcaaccagaacatatcg ccgccattcgcccacaaggcgagatcgattttagcgggaccttgattcgcctgcatattggtctggaagatgtcgac gatctgattgccgatctggacgccggttttgcgcgaattgtataaSequence No. 12 (metC) [135] atggcggacaaaaagcttgatactcaactggtgaatgcaggacgcagcaaaaaatacactctcggcg cggtaaatagcgtgattcagcgcgcttcttcgctggtctttgacagtgtagaagccaaaaaacacgcgacacgtaa tcgcgccaatggagagttgttctatggacggcgcggaacgttaacccatttctccttacaacaagcgatgtgtgaac tggaaggtggcgcaggctgcgtgctatttccctgcggggcggcagcggttgctaattccattcttgcttttatcgaaca gggcgatcatgtgttgatgaccaacaccgcctatgaaccgagtcaggatttctgtagcaaaatcctcagcaaactg ggcgtaacgacatcatggtttgatccgctgattggtgccgatatcgttaagcatctgcaaccaaacactaaaatcgt gtttctggaatcgccaggctccatcaccatggaagtccacgacgttccggcgattgttgccgccgtacgcagtgtgg tgccggatgccatcattatgatcgacaacacctgggcagccggtgtgctgtttaaggcgctggattttggcatcgatg tttctattcaagccgccaccaaatatctggttgggcattcagatgcgatgattggcactgccgtgtgcaatgcccgttg ctgggagcagctacgggaaaatgcctatctgatgggccagatggtcgatgccgataccgcctatataaccagcc gtggcctgcgcacattaggtgtgcgtttgcgtcaacatcatgaaagcagtctgaaagtggctgaatggctggcaga acatccgcaagttgcgcgagttaaccaccctgctctgcctggcagtaaaggtcacgaattttggaaacgagacttt acaggcagcagcgggctattttcctttgtgcttaagaaaaaactca ataatgaagagctggcgaactatctggata acttcagtttattcagcatggcctactcgtggggcgggtatgaatcgttgatcctggcaaatcaaccagaacatatcg ccgccattcgcccacaaggcgagatcgattttagcgggaccttgattcgcctgcatattggtctggaagatgtcgac gatctgattgccgatctggacgccggttttgcgcgaattgtataa

Sequência no 13 (metF) [136] atgagcttttttcacgccagccagcgggatgccctgaatcagagcctggcagaagtccaggggcagatt aacgtttcgttcgagtttttcccgccgcgtaccagtgaaatggagcagaccctgtggaactccatcgatcgccttagc agcctgaaaccgaagtttgtatcggtgacctatggcgcgaactccggcgagcgcgaccgtacgcacagcattatt aaaggcattaaagatcgcactggtctggaagcggcaccgcatcttacttgcattgatgcgacgcccgacgagctg cgcaccattgcacgcgactactggaataacggtattcgtcatatcgtggcgctgcgtggcgatctgccgccgggaa gtggtaagccagaaatgtatgcttctgacctggtgacgctgttaaaagaagtggcagatttcgatatctccgtggcg gcgtatccggaagttcacccggaagcaaaaagcgctcaggcggatttgcttaatctgaaacgcaaagtggatgc cggagccaaccgcgcgattactcagttcttcttcgatgtcgaaagctacctgcgttttcgtgaccgctgtgtatcggcgSequence No. 13 (metformin) [136] atgagcttttttcacgccagccagcgggatgccctgaatcagagcctggcagaagtccaggggcagatt aacgtttcgttcgagtttttcccgccgcgtaccagtgaaatggagcagaccctgtggaactccatcgatcgccttagc agcctgaaaccgaagtttgtatcggtgacctatggcgcgaactccggcgagcgcgaccgtacgcacagcattatt aaaggcattaaagatcgcactggtctggaagcggcaccgcatcttacttgcattgatgcgacgcccgacgagctg cgcaccattgcacgcgactactggaataacggtattcgtcatatcgtggcgctgcgtggcgatctgccgccgggaa gtggtaagccagaaatgtatgcttctgacctggtgacgctgttaaaagaagtggcagatttcgatatctccgtggcg gcgtatccggaagttcacccggaagcaaaaagcgctcaggcggatttgcttaatctgaaacgcaaagtggatgc cggagccaaccgcgcgattactcagttcttcttcgatgtcgaaagctacctgcgttttcgtgaccgctgtgtatcggcg

Petição 870170048524, de 12/07/2017, pág. 35/55Petition 870170048524, of 7/12/2017, p. 35/55

32/38 ggcattgatgtggaaattattccgggaattttgccggtatctaactttaaacaggcgaagaaatttgccgatatgacc aacgtgcgtattccggcgtggatggcgcaaatgttcgacggtctggatgatgatgccgaaacccgcaaactggttg gcgcgaatattgccatggatatggtgaagattttaagccgtgaaggagtgaaagatttccacttctatacgcttaacc gtgctgaaatgagttacgcgatttgccatacgctgggggttcgacctggtttataa32/38 ggcattgatgtggaaattattccgggaattttgccggtatctaactttaaacaggcgaagaaatttgccgatatgacc aacgtgcgtattccggcgtggatggcgcaaatgttcgacggtctggatgatgatgccgaaacccgcaaactggttg gcgcgaatattgccatggatatggtgaagattttaagccgtgaaggagtgaaagatttccacttctatacgcttaacc gtgctgaaatgagttacgcgatttgccatacgctgggggttcgacctggtttataa

Sequência no 14 (metH) [137] gtgagcagcaaagtggaacaactgcgtgcgcagttaaatgaacgtattctggtgctggacggcggtatg ggcaccatgatccagagttatcgactgaacgaagccgattttcgtggtgaacgctttgccgactggccatgcgacc tcaaaggcaacaacgacctgctggtactcagtaaaccggaagtgatcgccgctatccacaacgcctactttgaag cgggcgcggatatcatcgaaaccaacaccttcaactccacgaccattgcgatggcggattaccagatggaatcc ctgtcggcggaaatcaactttgcggcggcgaaactggcgcgagcttgtgctgacgagtggaccgcgcgcacgcc agagaaaccgcgctacgttgccggtgttctcggcccgaccaaccgcacggcgtctatttctccggacgtcaacga tccggcatttcgtaatatcacttttgacgggctggtggcggcttatcgagagtccaccaaagcgctggtggaaggtg gcgcggatctgatcctgattgaaaccgttttcgacacccttaacgccaaagcggcggtatttgcggtgaaaacgga gtttgaagcgctgggcgttgagctgccgattatgatctccggcaccatcaccgacgcctccgggcgcacgctctcc gggcagaccaccgaagcattttacaactcattgcgccacgccgaagctctgacctttggcctgaactgtgcgctgg ggcccgatgaactgcgccagtacgtgcaggagctgtcacggattgcggaatgctacgtcaccgcgcacccgaa cgccgggctacccaacgcctttggtgagtacgatctcgacgccgacacgatggcaaaacagatacgtgaatgg gcgcaagcgggttttctcaatatcgtcggcggctgctgtggcaccacgccacaacatattgcagcgatgagtcgtg cagtagaaggattagcgccgcgcaaactgccggaaattcccgtagcctgccgtttgtccggcctggagccgctga acattggcgaagatagcctgtttgtgaacgtgggtgaacgcaccaacgtcaccggttccgctaagttcaagcgcct gatcaaagaagagaaatacagcgaggcgctggatgtcgcgcgtcaacaggtggaaaacggcgcgcagattat cgatatcaacatggatgaagggatgctcgatgccgaagcggcgatggtgcgttttctcaatctgattgccggtgaa ccggatatcgctcgcgtgccgattatgatcgactcctcaaaatgggacgtcattgaaaaaggtctgaagtgtatcca gggcaaaggcattgttaactctatctcgatgaaagagggcgtcgatgcctttatccatcacgcgaaattgttgcgtcg ctacggtgcggcagtggtggtaatggcctttgacgaacagggacaggccgatactcgcgcacggaaaatcgag atttgccgtcgggcgtacaaaatcctcaccgaagaggttggcttcccgccagaagatatcatcttcgacccaaaca tcttcgcggtcgcaactggcattgaagagcacaacaactacgcgcaggactttatcggcgcgtgtgaagacatca aacgcgaactgccgcacgcgctgatttccggcggcgtatctaacgtttctttctcgttccgtggcaacgatccggtgc gcgaagccattcacgcagtgttcctctactacgctattcgcaatggcatggatatggggatcgtcaacgccgggca actggcgatttacgacgacctacccgctgaactgcgcgacgcggtggaagatgtgattcttaatcgtcgcgacgat ggcaccgagcgtttactggagcttgccgagaaatatcgcggcagcaaaaccgacgacaccgccaacgcccagSequence No. 14 (Meth) [137] gtgagcagcaaagtggaacaactgcgtgcgcagttaaatgaacgtattctggtgctggacggcggtatg ggcaccatgatccagagttatcgactgaacgaagccgattttcgtggtgaacgctttgccgactggccatgcgacc tcaaaggcaacaacgacctgctggtactcagtaaaccggaagtgatcgccgctatccacaacgcctactttgaag cgggcgcggatatcatcgaaaccaacaccttcaactccacgaccattgcgatggcggattaccagatggaatcc ctgtcggcggaaatcaactttgcggcggcgaaactggcgcgagcttgtgctgacgagtggaccgcgcgcacgcc agagaaaccgcgctacgttgccggtgttctcggcccgaccaaccgcacggcgtctatttctccggacgtcaacga tccggcatttcgtaatatcacttttgacgggctggtggcggcttatcgagagtccaccaaagcgctggtggaaggtg gcgcggatctgatcctgattgaaaccgttttcgacacccttaacgccaaagcggcggtatttgcggtgaaaacgga gtttgaagcgctgggcgttgagctgccgattatgatctccggcaccatcaccgacgcctccgggcgcacgctctcc gggcagaccaccgaagcattttacaactcattgcgccacgccgaagctctgacctttggcctgaactgtgcgctgg ggcccgatgaactgcgccagtacgtgcaggagctgtcacggattgcggaatgctacgtcaccgcgcacccgaa cgccgggctacccaacgcctttggtgagtacgatctcgacgccgacacgatggcaaaacagatacgtgaatgg gcgcaagcgggttttctcaatatcgtcggcggctgctgtggcaccacgccacaacatattgcag cgatgagtcgtg cagtagaaggattagcgccgcgcaaactgccggaaattcccgtagcctgccgtttgtccggcctggagccgctga acattggcgaagatagcctgtttgtgaacgtgggtgaacgcaccaacgtcaccggttccgctaagttcaagcgcct gatcaaagaagagaaatacagcgaggcgctggatgtcgcgcgtcaacaggtggaaaacggcgcgcagattat cgatatcaacatggatgaagggatgctcgatgccgaagcggcgatggtgcgttttctcaatctgattgccggtgaa ccggatatcgctcgcgtgccgattatgatcgactcctcaaaatgggacgtcattgaaaaaggtctgaagtgtatcca gggcaaaggcattgttaactctatctcgatgaaagagggcgtcgatgcctttatccatcacgcgaaattgttgcgtcg ctacggtgcggcagtggtggtaatggcctttgacgaacagggacaggccgatactcgcgcacggaaaatcgag atttgccgtcgggcgtacaaaatcctcaccgaagaggttggcttcccgccagaagatatcatcttcgacccaaaca tcttcgcggtcgcaactggcattgaagagcacaacaactacgcgcaggactttatcggcgcgtgtgaagacatca aacgcgaactgccgcacgcgctgatttccggcggcgtatctaacgtttctttctcgttccgtggcaacgatccggtgc gcgaagccattcacgcagtgttcctctactacgctattcgcaatggcatggatatggggatcgtcaacgccgggca actggcgatttacgacgacctacccgctgaactgcgcgacgcggtggaagatgtgattcttaatcgtcgcgacgat ggcaccgagcgtttactggagcttgccgagaaatatcgcggcagcaaaaccgacgacaccgccaacg cccag

Petição 870170048524, de 12/07/2017, pág. 36/55Petition 870170048524, of 7/12/2017, p. 36/55

33/38 caggcggagtggcgctcgtgggaagtgaataaacgtctggaatactcgctggtcaaaggcattaccgagtttatc gagcaggataccgaagaagcccgccagcaggctacgcgcccgattgaagtgattgaaggcccgttgatggac ggcatgaatgtggtcggcgacctgtttggcgaagggaaaatgttcctgccacaggtggtcaaatcggcgcgcgtc atgaaacaggcggtggcctacctcgaaccgtttattgaagccagcaaagagcagggcaaaaccaacggcaag atggtgatcgccaccgtgaagggcgacgtccacgacatcggtaaaaatatcgttggtgtggtgctgcaatgtaac aactacgaaattgtcgatctcggcgttatggtgcctgcggaaaaaattctccgtaccgctaaagaagtgaatgctg atctgattggcctttcggggcttatcacgccgtcgctggacgagatggttaacgtggcgaaagagatggagcgtca gggcttcactattccgttactgattggcggcgcgacgacctcaaaagcgcacacggcggtgaaaatcgagcaga actacagcggcccgacggtgtatgtgcagaatgcctcgcgtaccgttggtgtggtggcggcgctgctttccgatacc cagcgtgatgattttgtcgctcgtacccgcaaggagtacgaaaccgtacgtattcagcacgggcgcaagaaacc gcgcacaccaccggtcacgctggaagcggcgcgcgataacgatttcgcttttgactggcaggcttacacgccgc cggtggcgcaccgtctcggcgtgcaggaagtcgaagccagcatcgaaacgctgcgtaattacatcgactggac accgttctttatgacctggtcgctggccgggaagtatccgcgcattctggaagatgaagtggtgggcgttgaggcgc agcggctgtttaaagacgccaacgacatgctggataaattaagcgccgagaaaacgctgaatccgcgtggcgtg gtgggcctgttcccggcaaaccgtgtgggcgatgacattgaaatctaccgtgacgaaacgcgtacccatgtgatc aacgtcagccaccatctgcgtcaacagaccgaaaaaacaggcttcgctaactactgtctcgctgacttcgttgcgc cgaagctttctggtaaagcagattacatcggcgcatttgccgtgactggcgggctggaagaggacgcactggctg atgcctttgaagcgcagcacgatgattacaacaaaatcatggtgaaagcgcttgccgaccgtttagccgaagcctt tgcggagtatctccatgagcgtgtgcgtaaagtctactggggctatgcgccgaacgagaacctcagcaacgaag agctgatccgcgaaaactaccagggcatccgtccggcaccgggctatccggcctgcccggaacatacggaaa aagccaccatctgggagctgctggaagtggaaaaacacactggcatgaaactcacagaatctttcgccatgtgg cccggtgcatcggtttcgggttggtacttcagccacccggacagcaagtactacgctgtagcacaaattcagcgcg atcaggttgaagattatgcccgccgtaaaggtatgagcgttaccgaagttgagcgctggctggcaccgaatctgg ggtatgacgcggactga33/38 caggcggagtggcgctcgtgggaagtgaataaacgtctggaatactcgctggtcaaaggcattaccgagtttatc gagcaggataccgaagaagcccgccagcaggctacgcgcccgattgaagtgattgaaggcccgttgatggac ggcatgaatgtggtcggcgacctgtttggcgaagggaaaatgttcctgccacaggtggtcaaatcggcgcgcgtc atgaaacaggcggtggcctacctcgaaccgtttattgaagccagcaaagagcagggcaaaaccaacggcaag atggtgatcgccaccgtgaagggcgacgtccacgacatcggtaaaaatatcgttggtgtggtgctgcaatgtaac aactacgaaattgtcgatctcggcgttatggtgcctgcggaaaaaattctccgtaccgctaaagaagtgaatgctg atctgattggcctttcggggcttatcacgccgtcgctggacgagatggttaacgtggcgaaagagatggagcgtca gggcttcactattccgttactgattggcggcgcgacgacctcaaaagcgcacacggcggtgaaaatcgagcaga actacagcggcccgacggtgtatgtgcagaatgcctcgcgtaccgttggtgtggtggcggcgctgctttccgatacc cagcgtgatgattttgtcgctcgtacccgcaaggagtacgaaaccgtacgtattcagcacgggcgcaagaaacc gcgcacaccaccggtcacgctggaagcggcgcgcgataacgatttcgcttttgactggcaggcttacacgccgc cggtggcgcaccgtctcggcgtgcaggaagtcgaagccagcatcgaaacgctgcgtaattacatcgactggac accgttctttatgacctggtcgctggccgggaagtatccgcgcattctggaagatgaagtggtgggcgttgaggcgc agcggctgttt aaagacgccaacgacatgctggataaattaagcgccgagaaaacgctgaatccgcgtggcgtg gtgggcctgttcccggcaaaccgtgtgggcgatgacattgaaatctaccgtgacgaaacgcgtacccatgtgatc aacgtcagccaccatctgcgtcaacagaccgaaaaaacaggcttcgctaactactgtctcgctgacttcgttgcgc cgaagctttctggtaaagcagattacatcggcgcatttgccgtgactggcgggctggaagaggacgcactggctg atgcctttgaagcgcagcacgatgattacaacaaaatcatggtgaaagcgcttgccgaccgtttagccgaagcctt tgcggagtatctccatgagcgtgtgcgtaaagtctactggggctatgcgccgaacgagaacctcagcaacgaag agctgatccgcgaaaactaccagggcatccgtccggcaccgggctatccggcctgcccggaacatacggaaa aagccaccatctgggagctgctggaagtggaaaaacacactggcatgaaactcacagaatctttcgccatgtgg cccggtgcatcggtttcgggttggtacttcagccacccggacagcaagtactacgctgtagcacaaattcagcgcg atcaggttgaagattatgcccgccgtaaaggtatgagcgttaccgaagttgagcgctggctggcaccgaatctgg ggtatgacgcggactga

Sequência no 15 (metL) [138] atgagtgtgattgcgcaggcaggggcgaaaggtcgtcagctgcataaatttggtggcagtagtctggctg atgtgaagtgttatttgcgtgtcgcgggcattatggcggagtactctcagcctgacgatatgatggtggtttccgccgc cggtagcaccactaaccagttgattaactggttgaaactaagccagaccgatcgtctctctgcgcatcaggttcaac aaacgctgcgtcgctatcagtgcgatctgattagcggtctgctacccgctgaagaagccgatagcctcattagcgct tttgtcagcgaccttgagcgcctggcggcgctgctcgacagcggtattaacgacgcagtgtatgcggaagtggtgg gccacggggaagtatggtcggcacgtctgatgtctgcggtacttaatcaacaagggctgccagcggcctggcttgSequence No. 15 (Metl) [138] atgagtgtgattgcgcaggcaggggcgaaaggtcgtcagctgcataaatttggtggcagtagtctggctg atgtgaagtgttatttgcgtgtcgcgggcattatggcggagtactctcagcctgacgatatgatggtggtttccgccgc cggtagcaccactaaccagttgattaactggttgaaactaagccagaccgatcgtctctctgcgcatcaggttcaac aaacgctgcgtcgctatcagtgcgatctgattagcggtctgctacccgctgaagaagccgatagcctcattagcgct tttgtcagcgaccttgagcgcctggcggcgctgctcgacagcggtattaacgacgcagtgtatgcggaagtggtgg gccacggggaagtatggtcggcacgtctgatgtctgcggtacttaatcaacaagggctgccagcggcctggcttg

Petição 870170048524, de 12/07/2017, pág. 37/55Petition 870170048524, of 7/12/2017, p. 37/55

34/38 atgcccgcgagtttttacgcgctgaacgcgccgcacaaccgcaggttgatgaagggctttcttacccgttgctgcaa cagctgctggtgcaacatccgggcaaacgtctggtggtgaccggatttatcagccgcaacaacgccggtgaaac ggtgctgctggggcgtaacggttccgactattccgcgacacaaatcggtgcgctggcgggtgtttctcgcgtaacc atctggagcgacgtcgccggggtatacagtgccgacccgcgtaaagtgaaagatgcctgcctgctgccgttgctg cgtctggatgaggccagcgaactggcgcgcctggcggctcccgttcttcacgcccgtactttacagccggtttctgg cagcgaaatcgacctgcaactgcgctgtagctacacgccggatcaaggttccacgcgcattgaacgcgtgctgg cctccggtactggtgcgcgtattgtcaccagccacgatgatgtctgtttgattgagtttcaggtgcccgccagtcagg atttcaaactggcgcataaagagatcgaccaaatcctgaaacgcgcgcaggtacgcccgctggcggttggcgta cataacgatcgccagttgctgcaattttgctacacctcagaagtggccgacagtgcgctgaaaatcctcgacgaa gcgggattacctggcgaactgcgcctgcgtcaggggctggcgctggtggcgatggtcggtgcaggcgtcacccg taacccgctgcattgccaccgcttctggcagcaactgaaaggccagccggtcgaatttacctggcagtccgatga cggcatcagcctggtggcagtactgcgcaccggcccgaccgaaagcctgattcaggggctgcatcagtccgtctt ccgcgcagaaaaacgcatcggcctggtattgttcggtaagggcaatatcggttcccgttggctggaactgttcgcc cgtgagcagagcacgctttcggcacgtaccggctttgagtttgtgctggcaggtgtggtggacagccgccgcagc ctgttgagctatgacgggctggacgccagccgcgcgttagccttcttcaacgatgaagcggttgagcaggatgaa gagtcgttgttcctgtggatgcgcgcccatccgtatgatgatttagtggtgctggacgttaccgccagccagcagctt gctgatcagtatcttgatttcgccagccacggtttccacgttatcagcgccaacaaactggcgggagccagcgaca gcaataaatatcgccagatccacgacgccttcgaaaaaaccgggcgtcactggctgtacaatgccaccgtcggt gcgggcttgccgatcaaccacaccgtgcgcgatctgatcgacagcggcgatactattttgtcgatcagcgggatctt ctccggcacgctctcctggctgttcctgcaattcgacggtagcgtgccgtttaccgagctggtggatcaggcgtggc agcagggcttaaccgaacctgacccgcgtgacgatctctctggcaaagacgtgatgcgcaagctggtgattctgg cgcgtgaagcaggttacaacatcgaaccggatcaggtacgtgtggaatcgctggtgcctgctcattgcgaaggcg gcagcatcgaccatttctttgaaaatggcgatgaactgaacgagcagatggtgcaacggctggaagcggcccgc gaaatggggctggtgctgcgctacgtggcgcgtttcgatgccaacggtaaagcgcgtgtaggcgtggaagcggt gcgtgaagatcatccgttggcatcactgctgccgtgcgataacgtctttgccatcgaaagccgctggtatcgcgata accctctggtgatccgcggacctggcgctgggcgcgacgtcaccgccggggcgattcagtcggatatcaaccgg ctggcacagttgttgtaa34/38 atgcccgcgagtttttacgcgctgaacgcgccgcacaaccgcaggttgatgaagggctttcttacccgttgctgcaa cagctgctggtgcaacatccgggcaaacgtctggtggtgaccggatttatcagccgcaacaacgccggtgaaac ggtgctgctggggcgtaacggttccgactattccgcgacacaaatcggtgcgctggcgggtgtttctcgcgtaacc atctggagcgacgtcgccggggtatacagtgccgacccgcgtaaagtgaaagatgcctgcctgctgccgttgctg cgtctggatgaggccagcgaactggcgcgcctggcggctcccgttcttcacgcccgtactttacagccggtttctgg cagcgaaatcgacctgcaactgcgctgtagctacacgccggatcaaggttccacgcgcattgaacgcgtgctgg cctccggtactggtgcgcgtattgtcaccagccacgatgatgtctgtttgattgagtttcaggtgcccgccagtcagg atttcaaactggcgcataaagagatcgaccaaatcctgaaacgcgcgcaggtacgcccgctggcggttggcgta cataacgatcgccagttgctgcaattttgctacacctcagaagtggccgacagtgcgctgaaaatcctcgacgaa gcgggattacctggcgaactgcgcctgcgtcaggggctggcgctggtggcgatggtcggtgcaggcgtcacccg taacccgctgcattgccaccgcttctggcagcaactgaaaggccagccggtcgaatttacctggcagtccgatga cggcatcagcctggtggcagtactgcgcaccggcccgaccgaaagcctgattcaggggctgcatcagtccgtctt c ccgcgcagaaaaacgcatcggcctggtattgttcggtaagggcaatatcggttcccgttggctggaactgttcgcc gtgagcagagcacgctttcggcacgtaccggctttgagtttgtgctggcaggtgtggtggacagccgccgcagc ctgttgagctatgacgggctggacgccagccgcgcgttagccttcttcaacgatgaagcggttgagcaggatgaa gagtcgttgttcctgtggatgcgcgcccatccgtatgatgatttagtggtgctggacgttaccgccagccagcagctt gctgatcagtatcttgatttcgccagccacggtttccacgttatcagcgccaacaaactggcgggagccagcgaca gcaataaatatcgccagatccacgacgccttcgaaaaaaccgggcgtcactggctgtacaatgccaccgtcggt gcgggcttgccgatcaaccacaccgtgcgcgatctgatcgacagcggcgatactattttgtcgatcagcgggatctt ctccggcacgctctcctggctgttcctgcaattcgacggtagcgtgccgtttaccgagctggtggatcaggcgtggc agcagggcttaaccgaacctgacccgcgtgacgatctctctggcaaagacgtgatgcgcaagctggtgattctgg cgcgtgaagcaggttacaacatcgaaccggatcaggtacgtgtggaatcgctggtgcctgctcattgcgaaggcg gcagcatcgaccatttctttgaaaatggcgatgaactgaacgagcagatggtgcaacggctggaagcggcccgc gaaatggggctggtgctgcgctacgtggcgcgtttcgatgccaacggtaaagcgcgtgtaggcgtggaagcggt gcgtgaagatcatccgttggcatcactgctgccgtgcgataacgtctttgccatcgaaagccgctggtatcgcgata accctctggtgatccgcggacctggcgctgggcgcgacgtcaccgccggggcgattcagtcggatatcaaccgg ctggcac agttgttgtaa

Sequência no 16 (pntA) [139] atgcgaattggcataccaagagaacggttaaccaatgaaacccgtgttgcagcaacgccaaaaacag tggaacagctgctgaaactgggttttaccgtcgcggtagagagcggcgcgggtcaactggcaagttttgacgata aagcgtttgtgcaagcgggcgctgaaattgtagaagggaatagcgtctggcagtcagagatcattctgaaggtcaSequence No. 16 (pntA) [139] atgcgaattggcataccaagagaacggttaaccaatgaaacccgtgttgcagcaacgccaaaaacag tggaacagctgctgaaactgggttttaccgtcgcggtagagagcggcgcgggtcaactggcaagttttgacgata aagcgtttgtgcaagcgggcgctgaaattgtagaagggaatagcgtctggcagtcagagatcattctgaaggtca

Petição 870170048524, de 12/07/2017, pág. 38/55Petition 870170048524, of 7/12/2017, p. 38/55

35/38 atgcgccgttagatgatgaaattgcgttactgaatcctgggacaacgctggtgagttttatctggcctgcgcagaatc cggaattaatgcaaaaacttgcggaacgtaacgtgaccgtgatggcgatggactctgtgccgcgtatctcacgcg cacaatcgctggacgcactaagctcgatggcgaacatcgccggttatcgcgccattgttgaagcggcacatgaat ttgggcgcttctttaccgggcaaattactgcggccgggaaagtgccaccggcaaaagtgatggtgattggtgcgg gtgttgcaggtctggccgccattggcgcagcaaacagtctcggcgcgattgtgcgtgcattcgacacccgcccgg aagtgaaagaacaagttcaaagtatgggcgcggaatttctcgagctggattttaaagaggaagctggcagcggc gatggctatgccaaagtgatgtcggacgcgttcatcaaagcggaaatggaactctttgccgcccaggcaaaaga ggtcgatatcattgtcaccaccgcgcttattccaggcaaaccagcgccgaagctaattacccgtgaaatggttgact ccatgaaggcgggcagtgtgattgtcgacctggcagcccaaaacggcggcaactgtgaatacaccgtgccggg tgaaatcttcactacggaaaatggtgtcaaagtgattggttataccgatcttccgggccgtctgccgacgcaatcctc acagctttacggcacaaacctcgttaatctgctgaaactgttgtgcaaagagaaagacggcaatatcactgttgatt ttgatgatgtggtgattcgcggcgtgaccgtgatccgtgcgggcgaaattacctggccggcaccgccgattcaggt atcagctcagccgcaggcggcacaaaaagcggcaccggaagtgaaaactgaggaaaaatgtacctgctcac cgtggcgtaaatacgcgttgatggcgctggcaatcattctttttggctggatggcaagcgttgcgccgaaagaatttc ttgggcacttcaccgttttcgcgctggcctgcgttgtcggttattacgtggtgtggaatgtatcgcacgcgctgcataca ccgttgatgtcggtcaccaacgcgatttcagggattattgttgtcggagcactgttgcagattggccagggcggctgg gttagcttccttagttttatcgcggtgcttatagccagcattaatattttcggtggcttcaccgtgactcagcgcatgctga aaatgttccgcaaaaattaa35/38 atgcgccgttagatgatgaaattgcgttactgaatcctgggacaacgctggtgagttttatctggcctgcgcagaatc cggaattaatgcaaaaacttgcggaacgtaacgtgaccgtgatggcgatggactctgtgccgcgtatctcacgcg cacaatcgctggacgcactaagctcgatggcgaacatcgccggttatcgcgccattgttgaagcggcacatgaat ttgggcgcttctttaccgggcaaattactgcggccgggaaagtgccaccggcaaaagtgatggtgattggtgcgg gtgttgcaggtctggccgccattggcgcagcaaacagtctcggcgcgattgtgcgtgcattcgacacccgcccgg aagtgaaagaacaagttcaaagtatgggcgcggaatttctcgagctggattttaaagaggaagctggcagcggc gatggctatgccaaagtgatgtcggacgcgttcatcaaagcggaaatggaactctttgccgcccaggcaaaaga ggtcgatatcattgtcaccaccgcgcttattccaggcaaaccagcgccgaagctaattacccgtgaaatggttgact ccatgaaggcgggcagtgtgattgtcgacctggcagcccaaaacggcggcaactgtgaatacaccgtgccggg tgaaatcttcactacggaaaatggtgtcaaagtgattggttataccgatcttccgggccgtctgccgacgcaatcctc acagctttacggcacaaacctcgttaatctgctgaaactgttgtgcaaagagaaagacggcaatatcactgttgatt ttgatgatgtggtgattcgcggcgtgaccgtgatccgtgcgggcgaaattacctggccggcaccgccgattcaggt atcagctcagccgcaggcggcacaaaaagcggcaccggaagtgaaaactgaggaaaaatgtacctgctcac cgt ggcgtaaatacgcgttgatggcgctggcaatcattctttttggctggatggcaagcgttgcgccgaaagaatttc ttgggcacttcaccgttttcgcgctggcctgcgttgtcggttattacgtggtgtggaatgtatcgcacgcgctgcataca ccgttgatgtcggtcaccaacgcgatttcagggattattgttgtcggagcactgttgcagattggccagggcggctgg gttagcttccttagttttatcgcggtgcttatagccagcattaatattttcggtggcttcaccgtgactcagcgcatgctga aaatgttccgcaaaaattaa

Sequência no 17 (pntB) [140] atgtctggaggattagttacagctgcatacattgttgccgcgatcctgtttatcttcagtctggccggtctttcg aaacatgaaacgtctcgccagggtaacaacttcggtatcgccgggatggcgattgcgttaatcgcaaccatttttgg accggatacgggtaatgttggctggatcttgctggcgatggtcattggtggggcaattggtatccgtctggcgaaga aagttgaaatgaccgaaatgccagaactggtggcgatcctgcatagcttcgtgggtctggcggcagtgctggttgg ctttaacagctatctgcatcatgacgcgggaatggcaccgattctggtcaatattcacctgacggaagtgttcctcgg tatcttcatcggggcggtaacgttcacgggttcggtggtggcgttcggcaaactgtgtggcaagatttcgtctaaacc attgatgctgccaaaccgtcacaaaatgaacctggcggctctggtcgtttccttcctgctgctgattgtatttgttcgcac ggacagcgtcggcctgcaagtgctggcattgctgataatgaccgcaattgcgctggtattcggctggcatttagtcg cctccatcggtggtgcagatatgccagtggtggtgtcgatgctgaactcgtactccggctgggcggctgcggctgc gggctttatgctcagcaacgacctgctgattgtgaccggtgcgctggtcggttcttcgggggctatcctttcttacattat gtgtaaggcgatgaaccgttcctttatcagcgttattgcgggtggtttcggcaccgacggctcttctactggcgatgat caggaagtgggtgagcaccgcgaaatcaccgcagaagagacagcggaactgctgaaaaactcccattcagtgSequence No. 17 (pntB) [140] atgtctggaggattagttacagctgcatacattgttgccgcgatcctgtttatcttcagtctggccggtctttcg aaacatgaaacgtctcgccagggtaacaacttcggtatcgccgggatggcgattgcgttaatcgcaaccatttttgg accggatacgggtaatgttggctggatcttgctggcgatggtcattggtggggcaattggtatccgtctggcgaaga aagttgaaatgaccgaaatgccagaactggtggcgatcctgcatagcttcgtgggtctggcggcagtgctggttgg ctttaacagctatctgcatcatgacgcgggaatggcaccgattctggtcaatattcacctgacggaagtgttcctcgg tatcttcatcggggcggtaacgttcacgggttcggtggtggcgttcggcaaactgtgtggcaagatttcgtctaaacc attgatgctgccaaaccgtcacaaaatgaacctggcggctctggtcgtttccttcctgctgctgattgtatttgttcgcac ggacagcgtcggcctgcaagtgctggcattgctgataatgaccgcaattgcgctggtattcggctggcatttagtcg cctccatcggtggtgcagatatgccagtggtggtgtcgatgctgaactcgtactccggctgggcggctgcggctgc gggctttatgctcagcaacgacctgctgattgtgaccggtgcgctggtcggttcttcgggggctatcctttcttacattat gtgtaaggcgatgaaccgttcctttatcagcgttattgcgggtggtttcggcaccgacggctcttctactggcgatgat caggaagtgggtgagcaccgcgaaatcaccgcagaagagacagcggaactgctgaaaaactcccattcagtg

Petição 870170048524, de 12/07/2017, pág. 39/55Petition 870170048524, of 7/12/2017, p. 39/55

36/38 atcattactccggggtacggcatggcagtcgcgcaggcgcaatatcctgtcgctgaaattactgagaaattgcgcg ctcgtggtattaatgtgcgtttcggtatccacccggtcgcggggcgtttgcctggacatatgaacgtattgctggctga agcaaaagtaccgtatgacatcgtgctggaaatggacgagatcaatgatgactttgctgataccgataccgtactg gtgattggtgctaacgatacggttaacccggcggcgcaggatgatccgaagagtccgattgctggtatgcctgtgct ggaagtgtggaaagcgcagaacgtgattgtctttaaacgttcgatgaacactggctatgctggtgtgcaaaacccg ctgttcttcaaggaaaacacccacatgctgtttggtgacgccaaagccagcgtggatgcaatcctgaaagctctgt aa36/38 atcattactccggggtacggcatggcagtcgcgcaggcgcaatatcctgtcgctgaaattactgagaaattgcgcg ctcgtggtattaatgtgcgtttcggtatccacccggtcgcggggcgtttgcctggacatatgaacgtattgctggctga agcaaaagtaccgtatgacatcgtgctggaaatggacgagatcaatgatgactttgctgataccgataccgtactg gtgattggtgctaacgatacggttaacccggcggcgcaggatgatccgaagagtccgattgctggtatgcctgtgct ggaagtgtggaaagcgcagaacgtgattgtctttaaacgttcgatgaacactggctatgctggtgtgcaaaacccg aa ctgttcttcaaggaaaacacccacatgctgtttggtgacgccaaagccagcgtggatgcaatcctgaaagctctgt

Sequência no 18 (Pyc) [141 ] ttgcccatttccaagatactcgttgccaatcgctctgaaatagccatccgcgtgttccgcgcggccaacga gcttggaataaaaacggtggcgatctgggcggaagaggacaagctggcgctgcaccgcttcaaggcggatga gagttatcaggtcggccgcggtccgcatctggcccgcgatctcgggccgatcgagagctatctgtcgatcgacga ggtgatccgggtcgccaagctttcgggtgccgacgccattcaccccggttacggcctcttgtccgaaagcccgga atttgtcgatgcctgcaacaaggccgggatcatcttcatcggcccgaaggccgatacgatgcgccagctcggcaa caaggtcgcggcgcgcaatctggcgatctcggtcggcgtgcccgtcgtgccggcgaccgagccgctaccggac gatatggccgaagtggcgaagatggcggcagcaatcggctatcccgtcatgctgaaagcctcctggggcggcg gcggccgcggcatgcgcgtcatccgcgccgaagccgatctcgcccgcgaggtgacggaggccaagcgcgag gcgatggccgccttcggcaaggacgaggtctatctggaaaagctggtcgagcgcgcccgccacgtcgaaagcc agatcctcggcgacacacacggcaatgtcgtgcatctgttcgagcgcgactgctcgatccagcgccgcaaccag aaggtcgtcgagcgcgcgcccgcgccctacctctcagaggcgcagcgccaggaactcgccgcctattcgctga agatcgcagcggcgaccaactatatcggcgccggcaccgtcgaatatctgatggatgccgataccggcaaattct acttcatcgaggtcaatccgcgcatccaggtcgagcacacggtgaccgaagtcgtcaccggtatcgacatcgtca aggcgcagatccacatcctcgacggcgctgcgatcggcacgccggaatcgggcgttcccgctcaggccgatatc cggctcaacggccatgcgctgcaatgccgcatcaccaccgaagatcccgaacacaatttcattccggactacgg ccgcatcaccgcctatcgctcggcttccggcttcggcatccggcttgacggcggcacctcctattccggcgccatca ttacccgttattatgatccgctgctcgtcaaggtcacggcctgggcgccgaacccgtccgaagcgatttcccgtatg gaccgggcgctgcgcgaatttcgcatccgcggcgtcgccaccaacctgaccttcctcgaagcgatcatcggccat ccgaagttccgcgacaacagctacaccacccgcttcatcgacaccacgccggaactcttccagcaggtcaagc gccaggaccgcgcgacgaagctcttgacctatctcgccgatgtcaccatcaatggccatcccgaggccaaggac aggccgaagcccctcgaaaacgccgccaagccggtggtgccctatgccaatggcaacggggtcaaggatggc acgaagcagctgctcgacacgctcggcccgaagaaattcggcgaatggatgcgcaatgagaagcgcgtgcttc tgaccgatacgacgatgcgcgacgcccaccagtcgctgctcgccactcgcatgcgcacctatgacatcgccaggSequence No. 18 (PyC) [141] ttgcccatttccaagatactcgttgccaatcgctctgaaatagccatccgcgtgttccgcgcggccaacga gcttggaataaaaacggtggcgatctgggcggaagaggacaagctggcgctgcaccgcttcaaggcggatga gagttatcaggtcggccgcggtccgcatctggcccgcgatctcgggccgatcgagagctatctgtcgatcgacga ggtgatccgggtcgccaagctttcgggtgccgacgccattcaccccggttacggcctcttgtccgaaagcccgga atttgtcgatgcctgcaacaaggccgggatcatcttcatcggcccgaaggccgatacgatgcgccagctcggcaa caaggtcgcggcgcgcaatctggcgatctcggtcggcgtgcccgtcgtgccggcgaccgagccgctaccggac gatatggccgaagtggcgaagatggcggcagcaatcggctatcccgtcatgctgaaagcctcctggggcggcg gcggccgcggcatgcgcgtcatccgcgccgaagccgatctcgcccgcgaggtgacggaggccaagcgcgag gcgatggccgccttcggcaaggacgaggtctatctggaaaagctggtcgagcgcgcccgccacgtcgaaagcc agatcctcggcgacacacacggcaatgtcgtgcatctgttcgagcgcgactgctcgatccagcgccgcaaccag aaggtcgtcgagcgcgcgcccgcgccctacctctcagaggcgcagcgccaggaactcgccgcctattcgctga agatcgcagcggcgaccaactatatcggcgccggcaccgtcgaatatctgatggatgccgataccggcaaattct g acttcatcgaggtcaatccgcgcatccaggtcgagcacacggtgaccgaagtcgtcaccggtatcgacatcgtca gcgcagatccacatcctcgacggcgctgcgatcggcacgccggaatcgggcgttcccgctcaggccgatatc cggctcaacggccatgcgctgcaatgccgcatcaccaccgaagatcccgaacacaatttcattccggactacgg ccgcatcaccgcctatcgctcggcttccggcttcggcatccggcttgacggcggcacctcctattccggcgccatca ttacccgttattatgatccgctgctcgtcaaggtcacggcctgggcgccgaacccgtccgaagcgatttcccgtatg gaccgggcgctgcgcgaatttcgcatccgcggcgtcgccaccaacctgaccttcctcgaagcgatcatcggccat ccgaagttccgcgacaacagctacaccacccgcttcatcgacaccacgccggaactcttccagcaggtcaagc gccaggaccgcgcgacgaagctcttgacctatctcgccgatgtcaccatcaatggccatcccgaggccaaggac aggccgaagcccctcgaaaacgccgccaagccggtggtgccctatgccaatggcaacggggtcaaggatggc acgaagcagctgctcgacacgctcggcccgaagaaattcggcgaatggatgcgcaatgagaagcgcgtgcttc tgaccgatacgacgatgcgcgacgcccaccagtcgctgctcgccactcgcatgcgcacctatgacatcgccagg

Petição 870170048524, de 12/07/2017, pág. 40/55Petition 870170048524, of 7/12/2017, p. 40/55

37/38 atcgccggcacctatgcgcacgcgctgccgaatctcttgtcgctcgaatgctggggtggcgccaccttcgacgtctc catgcgcttcctcaccgaagatccgtgggagcggctggcgctgatccgcgagggcgcgccgaacctgctcctgc aaatgctgttgcgcggcgccaacggcgtcggctacaccaactatcccgacaatgtcgtcaaatatttcgtccgcca ggcggccagaggcggcatcgatcttttccgcgtcttcgactgcctgaactgggtcgagaacatgcgggtgtcgatg gatgcgattgccgaggagaacaagctctgcgaggcggcgatctgctacaccggcgatatcctcaattccgcccg cccgaaatacgacctgaaatactataccgaccttgccgtcgaactcgagaaggccggcgcccatatcatcgcag tcaaggatatggcgggtctgttgaagccggcggcggcgaaggtgctgttcaaggcgctgcgcgaagcgaccgg cctgccgatccacttccacacgcatgacacttcgggcatcgcggccgcgaccgtccttgccgcggtcgaagccg gtgtcgatgccgtcgatgcggcgatggatgcgctttccggcaatacctcgcagccttgtctcggctcgatcgtcgag gcgctctccggctccgagcgcgatccgggcctcgatccggaatggattcgccgtatctcgttctattgggaagcggt gcgcaaccagtatgccgccttcgaaagcgacctcaaggggccggcctcggaagtctatctgcatgaaatgccgg gcggccagttcaccaatctcaaggagcaggcccgctcgctcggtctcgagacccgctggcatcaggtggcgca ggcctatgccgacgccaaccagatgttcggcgatatcgtcaaggtgacgccctcctccaaggtggtcggcgacat ggcgctgatgatggtgtcccaggatctgacggtcgccgacgtcgtcagccccgagcgcgaagtctccttccccga atcggtggtgtcgatgctgaagggcgatctcggccagccgccgccgggatggccggcagcacttcagaaaaag gcactgaagggcgaaaagccctatacggtgcgtcccggctcgctgctgaaggaagccgatctcgatgccgagc gcaaggtcatcgagacgaagctggagcgcgaggtcagcgacttcgaatttgcctcctatctgatgtatccgaaggt cttcaccgactttgcgctcgcctccgatacctatggcccggtctcggtgctgccgacgcctgcctatttctacgggctg gccgacggcgaggagctgtttgccgatatcgaacgaggcaagacgctcgtcatcgtcaatcaggcaatgagcg ccaccgacagccagggcatggtcaccgtcttcttcgaactcaacggccagccgcgccgcatcaaggtgccgga ccgggcccatggggcgacgggtgcggccgtgcgccgcaaggccgagcccggtaatggtgctcatgtcggtgcg ccgatgcccggcgtcatcagccgcgtcttcgcctcatccggccaagccgtcagcgccggtgatgtgctcgtctcca tcgaagcgatgaagatggaaacggcgatccatgcggaaaaggatggaacggttgccgaaattctcgtcaaggc cggcgatcagattgatgccaaggacctgcttgtcgtctacgccgcttga37/38 atcgccggcacctatgcgcacgcgctgccgaatctcttgtcgctcgaatgctggggtggcgccaccttcgacgtctc catgcgcttcctcaccgaagatccgtgggagcggctggcgctgatccgcgagggcgcgccgaacctgctcctgc aaatgctgttgcgcggcgccaacggcgtcggctacaccaactatcccgacaatgtcgtcaaatatttcgtccgcca ggcggccagaggcggcatcgatcttttccgcgtcttcgactgcctgaactgggtcgagaacatgcgggtgtcgatg gatgcgattgccgaggagaacaagctctgcgaggcggcgatctgctacaccggcgatatcctcaattccgcccg cccgaaatacgacctgaaatactataccgaccttgccgtcgaactcgagaaggccggcgcccatatcatcgcag tcaaggatatggcgggtctgttgaagccggcggcggcgaaggtgctgttcaaggcgctgcgcgaagcgaccgg cctgccgatccacttccacacgcatgacacttcgggcatcgcggccgcgaccgtccttgccgcggtcgaagccg gtgtcgatgccgtcgatgcggcgatggatgcgctttccggcaatacctcgcagccttgtctcggctcgatcgtcgag gcgctctccggctccgagcgcgatccgggcctcgatccggaatggattcgccgtatctcgttctattgggaagcggt gcgcaaccagtatgccgccttcgaaagcgacctcaaggggccggcctcggaagtctatctgcatgaaatgccgg gcggccagttcaccaatctcaaggagcaggcccgctcgctcggtctcgagacccgctggcatcaggtggcgca ggcctatgccgacgccaaccagatgttcggcgatatcgtcaaggtgacgccctcctccaaggtggtcggcgacat ggcgctg atgatggtgtcccaggatctgacggtcgccgacgtcgtcagccccgagcgcgaagtctccttccccga atcggtggtgtcgatgctgaagggcgatctcggccagccgccgccgggatggccggcagcacttcagaaaaag gcactgaagggcgaaaagccctatacggtgcgtcccggctcgctgctgaaggaagccgatctcgatgccgagc gcaaggtcatcgagacgaagctggagcgcgaggtcagcgacttcgaatttgcctcctatctgatgtatccgaaggt cttcaccgactttgcgctcgcctccgatacctatggcccggtctcggtgctgccgacgcctgcctatttctacgggctg gccgacggcgaggagctgtttgccgatatcgaacgaggcaagacgctcgtcatcgtcaatcaggcaatgagcg ccaccgacagccagggcatggtcaccgtcttcttcgaactcaacggccagccgcgccgcatcaaggtgccgga ccgggcccatggggcgacgggtgcggccgtgcgccgcaaggccgagcccggtaatggtgctcatgtcggtgcg ccgatgcccggcgtcatcagccgcgtcttcgcctcatccggccaagccgtcagcgccggtgatgtgctcgtctcca tcgaagcgatgaagatggaaacggcgatccatgcggaaaaggatggaacggttgccgaaattctcgtcaaggc cggcgatcagattgatgccaaggacctgcttgtcgtctacgccgcttga

Sequência no 19 (sthA) [142] atgccacattcctacgattacgatgccatagtaataggttccggccccggcggcgaaggcgctgcaatg ggcctggttaagcaaggtgcgcgcgtcgcagttatcgagcgttatcaaaatgttggcggcggttgcacccactggg gcaccatcccgtcgaaagctctccgtcacgccgtcagccgcattatagaatttaatcaaaacccactttacagcga ccattcccgactgctccgctcttcttttgccgatatccttaaccatgccgataacgtgattaatcaacaaacgcgcatg cgtcagggattttacgaacgtaatcactgtgaaatattgcagggaaacgctcgctttgttgacgagcatacgttggc gctggattgcccggacggcagcgttgaaacactaaccgctgaaaaatttgttattgcctgcggctctcgtccatatcSequence No. 19 (stha) [142] atgccacattcctacgattacgatgccatagtaataggttccggccccggcggcgaaggcgctgcaatg ggcctggttaagcaaggtgcgcgcgtcgcagttatcgagcgttatcaaaatgttggcggcggttgcacccactggg gcaccatcccgtcgaaagctctccgtcacgccgtcagccgcattatagaatttaatcaaaacccactttacagcga ccattcccgactgctccgctcttcttttgccgatatccttaaccatgccgataacgtgattaatcaacaaacgcgcatg cgtcagggattttacgaacgtaatcactgtgaaatattgcagggaaacgctcgctttgttgacgagcatacgttggc gctggattgcccggacggcagcgttgaaacactaaccgctgaaaaatttgttattgcctgcggctctcgtccatatc

Petição 870170048524, de 12/07/2017, pág. 41/55Petition 870170048524, of 7/12/2017, p. 41/55

38/38 atccaacagatgttgatttcacccatccacgcatttacgacagcgactcaattctcagcatgcaccacgaaccgcg ccatgtacttatctatggtgctggagtgatcggctgtgaatatgcgtcgatcttccgcggtatggatgtaaaagtggat ctgatcaacacccgcgatcgcctgctggcatttctcgatcaagagatgtcagattctctctcctatcacttctggaaca gtggcgtagtgattcgtcacaacgaagagtacgagaagatcgaaggctgtgacgatggtgtgatcatgcatctga agtcgggtaaaaaactgaaagctgactgcctgctctatgccaacggtcgcaccggtaataccgattcgctggcgtt acagaacattgggctagaaactgacagccgcggacagctgaaggtcaacagcatgtatcagaccgcacagcc acacgtttacgcggtgggcgacgtgattggttatccgagcctggcgtcggcggcctatgaccaggggcgcattgc cgcgcaggcgctggtaaaaggcgaagccaccgcacatctgattgaagatatccctaccggtatttacaccatccc ggaaatcagctctgtgggcaaaaccgaacagcagctgaccgcaatgaaagtgccatatgaagtgggccgcgc ccagtttaaacatctggcacgcgcacaaatcgtcggcatgaacgtgggcacgctgaaaattttgttccatcgggaa acaaaagagattctgggtattcactgctttggcgagcgcgctgccgaaattattcatatcggtcaggcgattatgga acagaaaggtggcggcaacactattgagtacttcgtcaacaccacctttaactacccgacgatggcggaagcct atcgggtagctgcgttaaacggtttaaaccgcctgttttaa38/38 atccaacagatgttgatttcacccatccacgcatttacgacagcgactcaattctcagcatgcaccacgaaccgcg ccatgtacttatctatggtgctggagtgatcggctgtgaatatgcgtcgatcttccgcggtatggatgtaaaagtggat ctgatcaacacccgcgatcgcctgctggcatttctcgatcaagagatgtcagattctctctcctatcacttctggaaca gtggcgtagtgattcgtcacaacgaagagtacgagaagatcgaaggctgtgacgatggtgtgatcatgcatctga agtcgggtaaaaaactgaaagctgactgcctgctctatgccaacggtcgcaccggtaataccgattcgctggcgtt acagaacattgggctagaaactgacagccgcggacagctgaaggtcaacagcatgtatcagaccgcacagcc acacgtttacgcggtgggcgacgtgattggttatccgagcctggcgtcggcggcctatgaccaggggcgcattgc cgcgcaggcgctggtaaaaggcgaagccaccgcacatctgattgaagatatccctaccggtatttacaccatccc ggaaatcagctctgtgggcaaaaccgaacagcagctgaccgcaatgaaagtgccatatgaagtgggccgcgc ccagtttaaacatctggcacgcgcacaaatcgtcggcatgaacgtgggcacgctgaaaattttgttccatcgggaa acaaaagagattctgggtattcactgctttggcgagcgcgctgccgaaattattcatatcggtcaggcgattatgga acagaaaggtggcggcaacactattgagtacttcgtcaacaccacctttaactacccgacgatggcggaagcct atcgggtagctgcgttaaacggtttaaaccgcctgttttaa

Sequência no 20 (ydhU) [143] atgaacccgtcgcaacatgctgaacagtttcagagccagttagcgaactatgtgccacagttcactcccg aattttggccggtgtggttgatcattgccggagtattgctggttgggatgtggttggtgctggggctgcatgccttgcttc gtgctcgtggcgtgaagaaatcagccaccgatcatggtgagaagatttatctttacagcaaagcggtcagattatg gcactggtcgaatgcgttactctttgtattgttgctggccagtgggctgataaatcactttgcgatggtgggcgcaact gcggttaaaagtctggttgcggtgcatgaagtttgcggatttttgttactggcatgctggctcggctttgtgctgatcaat gccgttggggataatggtcaccactatcgcattcgtcgtcaggggtggctggaacgagcggcaaaacaaacgcg attttatttgtttggcattatgcagggggaagaacatcctttcccggcaacaacccagtctaaatttaatcccttacagc aggtcgcctatgttggtgtcatgtatggattgctgccgttgttactattgacggggctgctgtgtctctatccgcaagccg tgggagatgtgtttcctggcgtaagatactggttattgcagacacattttgctctggcatttataagcctcttttttatcttcg gtcatctttatctttgcaccacggggcgtacgccacacgaaacctttaaaagcatggtcgatggctatcaccggcac taaSequence No. 20 (ydhU) [143] atgaacccgtcgcaacatgctgaacagtttcagagccagttagcgaactatgtgccacagttcactcccg aattttggccggtgtggttgatcattgccggagtattgctggttgggatgtggttggtgctggggctgcatgccttgcttc gtgctcgtggcgtgaagaaatcagccaccgatcatggtgagaagatttatctttacagcaaagcggtcagattatg gcactggtcgaatgcgttactctttgtattgttgctggccagtgggctgataaatcactttgcgatggtgggcgcaact gcggttaaaagtctggttgcggtgcatgaagtttgcggatttttgttactggcatgctggctcggctttgtgctgatcaat gccgttggggataatggtcaccactatcgcattcgtcgtcaggggtggctggaacgagcggcaaaacaaacgcg attttatttgtttggcattatgcagggggaagaacatcctttcccggcaacaacccagtctaaatttaatcccttacagc aggtcgcctatgttggtgtcatgtatggattgctgccgttgttactattgacggggctgctgtgtctctatccgcaagccg tgggagatgtgtttcctggcgtaagatactggttattgcagacacattttgctctggcatttataagcctcttttttatcttcg cup gtcatctttatctttgcaccacggggcgtacgccacacgaaacctttaaaagcatggtcgatggctatcaccggcac

Petição 870170048524, de 12/07/2017, pág. 42/55Petition 870170048524, of 7/12/2017, p. 42/55

1/61/6

Claims (30)

REIVINDICAÇÕES 1. PROCESSO FERMENTATIVO PARA A PRODUÇÃO DE L-METIONINA A PARTIR DE RESÍDUOS DA PRODUÇÃO DE BIOCOMBUSTÍVEIS caracterizado por se tratar de um processo fermentativo para a produção bacteriana de aminoácidos, mais especificamente o aminoácido L-metionina, através de técnicas fermentativas e aproveitamento de água glicerinada proveniente da produção de biodiesel.1. FERMENTATIVE PROCESS FOR THE PRODUCTION OF L-METHIONINE FROM WASTE FROM THE PRODUCTION OF BIOFUELS characterized by being a fermentative process for the bacterial production of amino acids, more specifically the amino acid L-methionine, through fermentative techniques and use of water glycerin from biodiesel production. 2. PROCESSO FERMENTATIVO PARA A PRODUÇÃO DE L-METIONINA A PARTIR DE RESÍDUOS DA PRODUÇÃO DE BIOCOMBUSTÍVEIS de acordo com a reivindicação 1 caracterizado por se tratar de aplicar engenharia genética para obtenção de uma estirpe bacteriana superprodutora e excretora de metionina.2. FERMENTATIVE PROCESS FOR THE PRODUCTION OF L-METHIONINE FROM WASTE FROM THE PRODUCTION OF BIOFUELS according to claim 1 characterized by the fact that it involves applying genetic engineering to obtain a bacterial strain that is superproductive and excretory of methionine. 3. PROCESSO FERMENTATIVO PARA A PRODUÇÃO DE L-METIONINA A PARTIR DE RESÍDUOS DA PRODUÇÃO DE BIOCOMBUSTÍVEIS de acordo com a reivindicação 2 caracterizado por ter a deleção do gene metJ, gerando a estirpe NB1701, o qual codifica para o fator transcricional que suprime a expressão dos genes metA, metB, metC e metL, essenciais para a produção de L-metionina.3. FERMENTATIVE PROCESS FOR THE PRODUCTION OF L-METHIONIN FROM WASTE FROM THE PRODUCTION OF BIOFUELS according to claim 2 characterized by having the deletion of the metJ gene, generating the strain NB1701, which codes for the transcription factor that suppresses the expression of the metA, metB, metC and metL genes, essential for the production of L-methionine. 4. PROCESSO FERMENTATIVO PARA A PRODUÇÃO DE L-METIONINA4. FERMENTATIVE PROCESS FOR THE PRODUCTION OF L-METHIONIN A PARTIR DE RESÍDUOS DA PRODUÇÃO DE BIOCOMBUSTÍVEIS de acordo com a reivindicação 2 e 3 caracterizado por ter o gene metA, resultando na estirpe NB1702, o qual é regulado negativamente pela metionina e S-adenosilmetionina, de modo que uma isoforma mutada metAfd é superexpressada evitando a regulação negativa.FROM BIOFUEL PRODUCTION WASTE according to claim 2 and 3 characterized by having the metA gene, resulting in the strain NB1702, which is downregulated by methionine and S-adenosylmethionine, so that a mutated metA fd isoform is overexpressed avoiding negative regulation. 5. PROCESSO FERMENTATIVO PARA A PRODUÇÃO DE L-METIONINA A PARTIR DE RESÍDUOS DA PRODUÇÃO DE BIOCOMBUSTÍVEIS de acordo com a reivindicação 2 a 4 caracterizado por ter o gene metI deletado da estirpe NB1702, o qual codifica para um importador de L-metionina, de modo que a estirpe gerada com esta mutação é incapaz de transportar metionina do meio5. FERMENTATIVE PROCESS FOR THE PRODUCTION OF L-METHIONINE FROM WASTE FROM THE PRODUCTION OF BIOFUELS according to claims 2 to 4 characterized by having the deleted metI gene of the strain NB1702, which codes for an importer of L-methionine, from so the strain generated with this mutation is unable to transport methionine from the medium Petição 870170048524, de 12/07/2017, pág. 43/55Petition 870170048524, of 7/12/2017, p. 43/55 2/6 extracelular para o citosol, diferenciando-se das patentes citadas, resultando na estirpe NB1703.2/6 extracellular to the cytosol, differing from the cited patents, resulting in strain NB1703. 6. PROCESSO FERMENTATIVO PARA A PRODUÇÃO DE L-METIONINA A PARTIR DE RESÍDUOS DA PRODUÇÃO DE BIOCOMBUSTÍVEIS de acordo com a reivindicação 2 a 5 caracterizado por ter o gene lysA deletado da estirpe6. FERMENTATIVE PROCESS FOR THE PRODUCTION OF L-METHIONINE FROM WASTE FROM THE PRODUCTION OF BIOFUELS according to claims 2 to 5 characterized by having the lysA gene deleted from the strain 1703 resultando na estirpe NB1704, o gene lysA codifica para a proteína diaminopimelato decarboxilase, envolvida na última etapa da via de produção de L-lisina.1703 resulting in strain NB1704, the lysA gene codes for the protein diaminopimelate decarboxylase, involved in the last stage of the L-lysine production pathway. 7. PROCESSO FERMENTATIVO PARA A PRODUÇÃO DE L-METIONINA A PARTIR DE RESÍDUOS DA PRODUÇÃO DE BIOCOMBUSTÍVEIS de acordo com a reivindicação 2 a 6 caracterizado por ter deletado da estirpe7. FERMENTATIVE PROCESS FOR THE PRODUCTION OF L-METHIONINE FROM WASTE FROM THE PRODUCTION OF BIOFUELS according to claims 2 to 6 characterized by having deleted the strain 1704 o gene pta, o qual codifica para a enzima fosfato acetiltransferase, associada à via de produção de acetato utilizando como precursor acetil-CoA, resultando na estirpe nomeada NB1705.1704 the pta gene, which codes for the enzyme phosphate acetyltransferase, associated with the acetate production pathway using acetyl-CoA as a precursor, resulting in the strain named NB1705. 8. PROCESSO FERMENTATIVO PARA A PRODUÇÃO DE L-METIONINA A PARTIR DE RESÍDUOS DA PRODUÇÃO DE BIOCOMBUSTÍVEIS de acordo com a reivindicação 2 a 7 caracterizado por ter deletado da estirpe 1705 o gene ackA que codifica para a enzima acetato kinase, associada à via de produção de acetato utilizando como precursor acetil fosfato, resultando na estirpe NB1706.8. FERMENTATIVE PROCESS FOR THE PRODUCTION OF L-METHIONIN FROM WASTE FROM THE PRODUCTION OF BIOFUELS according to claims 2 to 7 characterized by having deleted from the 1705 strain the ackA gene that codes for the enzyme acetate kinase, associated with the production pathway acetate using acetyl phosphate as a precursor, resulting in strain NB1706. 9. PROCESSO FERMENTATIVO PARA A PRODUÇÃO DE L-METIONINA A PARTIR DE RESÍDUOS DA PRODUÇÃO DE BIOCOMBUSTÍVEIS de acordo com a reivindicação 2 a 8 caracterizado por ter deletado da estirpe 1706 o gene arcA que codifica para o fator transcricional que, em conjunto com arcB, atua como regulador negativo global do ciclo do ácido cítrico, suprimindo o mesmo em condições de anaerobia ou microoxigenação, resultando na estirpe NB1707.9. FERMENTATIVE PROCESS FOR THE PRODUCTION OF L-METHIONIN FROM WASTE FROM THE PRODUCTION OF BIOFUELS according to claims 2 to 8 characterized by having deleted from the 1706 strain the arcA gene which codes for the transcription factor which, together with arcB, acts as a global negative regulator of the citric acid cycle, suppressing it under conditions of anaerobia or microoxygenation, resulting in strain NB1707. 10. PROCESSO FERMENTATIVO PARA A PRODUÇÃO DE L-METIONINA A PARTIR DE RESÍDUOS DA PRODUÇÃO DE BIOCOMBUSTÍVEIS de acordo com a reivindicação 2 a 9 caracterizado por ter deletado da estirpe 1707 o gene arcB que permite que a estirpe NB1708 seja capaz de manter o ciclo do10. FERMENTATIVE PROCESS FOR THE PRODUCTION OF L-METHIONINE FROM WASTE FROM THE PRODUCTION OF BIOFUELS according to claims 2 to 9 characterized by having deleted from the 1707 strain the arcB gene that allows the NB1708 strain to be able to maintain the cycle of the Petição 870170048524, de 12/07/2017, pág. 44/55Petition 870170048524, of 7/12/2017, p. 44/55 3/6 ácido cítrico funcional em condições limitadas de oxigenação, mantendo o fluxo metabólico constante para a produção de L-metionina.3/6 functional citric acid under limited oxygenation conditions, keeping the metabolic flow constant for the production of L-methionine. 11. PROCESSO FERMENTATIVO PARA A PRODUÇÃO DE L-METIONINA A PARTIR DE RESÍDUOS DA PRODUÇÃO DE BIOCOMBUSTÍVEIS de acordo com a reivindicação 2 a 10 caracterizado por ter deletado da estirpe 1708 o gene ptsG que codifica para o componente IIBC da enzima PTS glucose específica, enzima essa envolvida no processo de assimilação da glucose como fonte de carbono, resultando na estirpe NB1709.11. FERMENTATIVE PROCESS FOR THE PRODUCTION OF L-METHIONIN FROM WASTE FROM THE PRODUCTION OF BIOFUELS according to claims 2 to 10 characterized by having deleted from the 1708 strain the ptsG gene that codes for the IIBC component of the specific enzyme PTS glucose, enzyme this involved in the process of assimilation of glucose as a carbon source, resulting in strain NB1709. 12. PROCESSO FERMENTATIVO PARA A PRODUÇÃO DE L-METIONINA A PARTIR DE RESÍDUOS DA PRODUÇÃO DE BIOCOMBUSTÍVEIS de acordo com a reivindicação 2 a 11 caracterizado por ter inserido no genoma da estirpe12. FERMENTATIVE PROCESS FOR THE PRODUCTION OF L-METHIONIN FROM WASTE FROM THE PRODUCTION OF BIOFUELS according to claims 2 to 11 characterized by having inserted into the genome of the strain 1709 a construção pelo promotor sintético constitutivo J23118 contendo o gene glpF, transportador de glicerol para o meio intracelular, em conjunto com o gene glpKfd, que promove a fosforilação do glicerol, formando glicerol-3fosfato, resultando na estirpe NB1710.1709 the construction by the constitutive synthetic promoter J23118 containing the glpF gene, glycerol transporter for the intracellular medium, together with the glpK fd gene, which promotes glycerol phosphorylation, forming glycerol-3 phosphate, resulting in strain NB1710. 13. PROCESSO FERMENTATIVO PARA A PRODUÇÃO DE L-METIONINA A PARTIR DE RESÍDUOS DA PRODUÇÃO DE BIOCOMBUSTÍVEIS de acordo com a reivindicação 2 a 12 caracterizado por ter inserido no genoma da estirpe13. FERMENTATIVE PROCESS FOR THE PRODUCTION OF L-METHIONIN FROM WASTE FROM THE PRODUCTION OF BIOFUELS according to claims 2 to 12 characterized by having inserted into the genome of the strain 1710 a construção pelo promotor sintético constitutivo J23118 contendo os genes pntA e pntB, que convertem NADP+ e NADH em NADPH e NAD+, respectivamente, foram inseridos no genoma em conjunto com o gene sthA, que converte NAD+ e NADPH em NADH e NADP+, resultando na estirpe NB1711.1710 the construction by the constitutive synthetic promoter J23118 containing the pntA and pntB genes, which convert NADP + and NADH into NADPH and NAD +, respectively, were inserted into the genome together with the sthA gene, which converts NAD + and NADPH into NADH and NADP +, resulting in strain NB1711. 14. PROCESSO FERMENTATIVO PARA A PRODUÇÃO DE L-METIONINA A PARTIR DE RESÍDUOS DA PRODUÇÃO DE BIOCOMBUSTÍVEIS de acordo com a reivindicação 2 a 13 caracterizado por ter inserido no genoma da estirpe14. FERMENTATIVE PROCESS FOR THE PRODUCTION OF L-METHIONIN FROM WASTE FROM THE PRODUCTION OF BIOFUELS according to claims 2 to 13 characterized by having inserted into the genome of the strain 1711 a construção pelo promotor sintético constitutivo J23118 contendo o gene glyA, para aumento de sua expressão fazendo com que ocorra a transferência de um grupo metil para a molécula de tetrahidrofolato; que em conjunto com o gene aspC, que codifica para proteína aspartato aminotransferase e promove a formação de oxaloacetato a partir de aspartato; resultando na estirpe NB1712.1711 the construction by the constitutive synthetic promoter J23118 containing the glyA gene, to increase its expression causing the transfer of a methyl group to the tetrahydrofolate molecule; that together with the aspC gene, which codes for aspartate aminotransferase protein and promotes the formation of oxaloacetate from aspartate; resulting in strain NB1712. Petição 870170048524, de 12/07/2017, pág. 45/55Petition 870170048524, of 7/12/2017, p. 45/55 4/64/6 15. PROCESSO FERMENTATIVO PARA A PRODUÇÃO DE L-METIONINA A PARTIR DE RESÍDUOS DA PRODUÇÃO DE BIOCOMBUSTÍVEIS de acordo com a reivindicação 2 a 14 caracterizado por ter inserido no genoma da estirpe15. FERMENTATIVE PROCESS FOR THE PRODUCTION OF L-METHIONIN FROM WASTE FROM THE PRODUCTION OF BIOFUELS according to claims 2 to 14 characterized by having inserted into the genome of the strain 1712 a construção pelo promotor sintético constitutivo J23118 o gene yjeH, descrito como exportador de L-metionina para o meio extracelular, assim como o gene pyc, de Rizhobium etli, que codifica para a enzima piruvato carboxilase, promovendo a formação de oxaloacetado diretamente de piruvato; resultando na estirpe NB1713.1712 the construction by the constitutive synthetic promoter J23118 of the yjeH gene, described as an exporter of L-methionine for the extracellular medium, as well as the pyc gene, of Rizhobium etli, which codes for the pyruvate carboxylase enzyme, promoting the formation of oxaloacetate directly from pyruvate ; resulting in strain NB1713. 16. PROCESSO FERMENTATIVO PARA A PRODUÇÃO DE L-METIONINA A PARTIR DE RESÍDUOS DA PRODUÇÃO DE BIOCOMBUSTÍVEIS de acordo com a reivindicação 2 a 15 caracterizado por ter inserido no genoma da estirpe16. FERMENTATIVE PROCESS FOR THE PRODUCTION OF L-METHIONINE FROM WASTE FROM THE PRODUCTION OF BIOFUELS according to claims 2 to 15 characterized by having inserted into the genome of the strain 1713 a construção pelo promotor sintético constitutivo J23118 os genes ftsA e ftsZ, envolvidos na formação da estrutura em anel responsável por manter o processo de divisão celular mesmo quando há sinalização para a parada da proliferação causada principalmente por contato célula-célula; resultando na estirpe NB1714.1713 the construction by the constitutive synthetic promoter J23118 of the ftsA and ftsZ genes, involved in the formation of the ring structure responsible for maintaining the cell division process even when there is a signal to stop proliferation caused mainly by cell-cell contact; resulting in strain NB1714. 17. PROCESSO FERMENTATIVO PARA A PRODUÇÃO DE L-METIONINA A PARTIR DE RESÍDUOS DA PRODUÇÃO DE BIOCOMBUSTÍVEIS de acordo com a reivindicação 2 a 16 caracterizado por ter inserido no genoma da estirpe NB1714 a construção pelo promotor sintético constitutivo J23118 o gene metK* que codifica a enzima metionina adenosiltransferase com atividade reduzida; resultando assim na estirpe NB1715.17. FERMENTATIVE PROCESS FOR THE PRODUCTION OF L-METHIONIN FROM WASTE FROM THE PRODUCTION OF BIOFUELS according to claims 2 to 16 characterized by having inserted in the genome of strain NB1714 the construction by the constitutive synthetic promoter J23118 which encodes the metK * gene methionine adenosyltransferase enzyme with reduced activity; thus resulting in strain NB1715. 18. PROCESSO FERMENTATIVO PARA A PRODUÇÃO DE L-METIONINA A PARTIR DE RESÍDUOS DA PRODUÇÃO DE BIOCOMBUSTÍVEIS de acordo com a reivindicação 2 a 15 caracterizado por ter inserido no genoma da estirpe NB1713 a construção pelo promotor sintético constitutivo J23118 o gene cysE, contendo uma mutação que codifica a enzima serina acetiltransferase; assim como o gene metH que codifica a enzima metionina sintase; resultando na estirpe NB1716.18. FERMENTATIVE PROCESS FOR THE PRODUCTION OF L-METHIONIN FROM WASTE FROM THE PRODUCTION OF BIOFUELS according to claims 2 to 15 characterized by having inserted in the genome of strain NB1713 the construction by the synthetic promoter constitutive J23118 the gene cysE, containing a mutation which encodes the serine acetyltransferase enzyme; as well as the metH gene encoding the methionine synthase enzyme; resulting in strain NB1716. 19. PROCESSO FERMENTATIVO PARA A PRODUÇÃO DE L-METIONINA A PARTIR DE RESÍDUOS DA PRODUÇÃO DE BIOCOMBUSTÍVEIS de acordo19. FERMENTATIVE PROCESS FOR THE PRODUCTION OF L-METHIONIN FROM WASTE FROM THE PRODUCTION OF BIOFUELS according to Petição 870170048524, de 12/07/2017, pág. 46/55Petition 870170048524, of 7/12/2017, p. 46/55 5/6 com a reivindicação 2 a 18 caracterizado por ter deletado da estirpe NB1716 o gene thrB que codifica a enzima homoserina kinase, que consome Lhomoserina como precursor para a síntese de treonina; assim como a inserção do gene metK* que codifica a enzima metionina adenosiltransferase com atividade reduzida; resultando assim na estirpe NB1717.5/6 with claims 2 to 18, characterized in that it deleted the thrB gene from the NB1716 strain, which encodes the enzyme homoserine kinase, which consumes Lhomoserin as a precursor for the synthesis of threonine; as well as the insertion of the metK * gene that encodes the methionine adenosyltransferase enzyme with reduced activity; thus resulting in strain NB1717. 20. PROCESSO FERMENTATIVO PARA A PRODUÇÃO DE L-METIONINA A PARTIR DE RESÍDUOS DA PRODUÇÃO DE BIOCOMBUSTÍVEIS de acordo com a reivindicação 2 a 19 caracterizado por ter inserido no genoma da estirpe NB1717 a construção pelo promotor sintético constitutivo J23118 os genes ftsA, ftsZ e metH, resultando na estirpe NB1718.20. FERMENTATIVE PROCESS FOR THE PRODUCTION OF L-METHIONIN FROM WASTE FROM THE PRODUCTION OF BIOFUELS according to claims 2 to 19 characterized in that the ftsA, ftsZ and metH genes were inserted in the genome of the NB1717 strain. , resulting in strain NB1718. 21. PROCESSO FERMENTATIVO PARA A PRODUÇÃO DE L-METIONINA A PARTIR DE RESÍDUOS DA PRODUÇÃO DE BIOCOMBUSTÍVEIS de acordo com a reivindicação 2 a 20 caracterizado por ter inserido no genoma da estirpe NB1718 a construção pelo promotor sintético constitutivo J23118 o gene metK, resultando na estirpe NB1719.21. FERMENTATIVE PROCESS FOR THE PRODUCTION OF L-METHIONIN FROM WASTE FROM THE PRODUCTION OF BIOFUELS according to claims 2 to 20 characterized by having inserted the metK gene into the genome of the NB1718 strain, resulting in the metK gene. NB1719. 22. PROCESSO FERMENTATIVO PARA A PRODUÇÃO DE L-METIONINA A PARTIR DE RESÍDUOS DA PRODUÇÃO DE BIOCOMBUSTÍVEIS caracterizado por ser um processo fermentativo que utiliza pelo uma das estirpes caracterizadas nas reivindicações de 3 a 21.22. FERMENTATIVE PROCESS FOR THE PRODUCTION OF L-METHIONINE FROM WASTE FROM THE PRODUCTION OF BIOFUELS characterized by being a fermentative process that uses at least one of the strains characterized in claims 3 to 21. 23. PROCESSO FERMENTATIVO PARA A PRODUÇÃO DE L-METIONINA A PARTIR DE RESÍDUOS DA PRODUÇÃO DE BIOCOMBUSTÍVEIS de acordo com a reivindicação 22 caracterizado por ter um processo de downstream que resulta em um produto com alta pureza.23. FERMENTATIVE PROCESS FOR THE PRODUCTION OF L-METHIONIN FROM WASTE FROM THE PRODUCTION OF BIOFUELS according to claim 22 characterized by having a downstream process that results in a product with high purity. 24. PROCESSO FERMENTATIVO PARA A PRODUÇÃO DE L-METIONINA A PARTIR DE RESÍDUOS DA PRODUÇÃO DE BIOCOMBUSTÍVEIS de acordo com a reivindicação 22 e 23 caracterizado por ter um produto final com alta pureza na forma líquida.24. FERMENTATIVE PROCESS FOR THE PRODUCTION OF L-METHIONIN FROM WASTE FROM THE PRODUCTION OF BIOFUELS according to claims 22 and 23 characterized by having a final product with high purity in liquid form. 25. PROCESSO FERMENTATIVO PARA A PRODUÇÃO DE L-METIONINA A PARTIR DE RESÍDUOS DA PRODUÇÃO DE BIOCOMBUSTÍVEIS de acordo com a reivindicação 22 e 23 caracterizado por ter um produto final com alta pureza na forma sólida.25. FERMENTATIVE PROCESS FOR THE PRODUCTION OF L-METHIONIN FROM WASTE FROM THE PRODUCTION OF BIOFUELS according to claims 22 and 23 characterized by having a final product with high purity in solid form. Petição 870170048524, de 12/07/2017, pág. 47/55Petition 870170048524, of 7/12/2017, p. 47/55 6/66/6 26. PROCESSO FERMENTATIVO PARA A PRODUÇÃO DE L-METIONINA A PARTIR DE RESÍDUOS DA PRODUÇÃO DE BIOCOMBUSTÍVEIS de acordo com a reivindicação 22 caracterizado por utilizar como fonte de carbono água glicerinada residual do processo de biodiesel.26. FERMENTATIVE PROCESS FOR THE PRODUCTION OF L-METHIONINE FROM WASTE FROM THE PRODUCTION OF BIOFUELS according to claim 22 characterized by using residual glycerinated water from the biodiesel process as a carbon source. 27. PROCESSO FERMENTATIVO PARA A PRODUÇÃO DE L-METIONINA A PARTIR DE RESÍDUOS DA PRODUÇÃO DE BIOCOMBUSTÍVEIS de acordo com a reivindicação 22 caracterizado por utilizar como fonte de carbono resíduos da produção de etanol a partir de cana-de-açúcar.27. FERMENTATIVE PROCESS FOR THE PRODUCTION OF L-METHIONINE FROM WASTE FROM THE PRODUCTION OF BIOFUELS according to claim 22 characterized by using as a carbon source residues from the production of ethanol from sugarcane. 28. PROCESSO FERMENTATIVO PARA A PRODUÇÃO DE L-METIONINA A PARTIR DE RESÍDUOS DA PRODUÇÃO DE BIOCOMBUSTÍVEIS de acordo com a reivindicação 22 caracterizado por utilizar como fonte de carbono resíduos da produção de etanol a partir do milho.28. FERMENTATIVE PROCESS FOR THE PRODUCTION OF L-METHIONINE FROM WASTE FROM THE PRODUCTION OF BIOFUELS according to claim 22 characterized by using as a carbon source residues from the production of ethanol from corn. 29. PROCESSO FERMENTATIVO PARA A PRODUÇÃO DE L-METIONINA A PARTIR DE RESÍDUOS DA PRODUÇÃO DE BIOCOMBUSTÍVEIS de acordo com a reivindicação 22, 26, 27 e 28 caracterizado por utilizar como fonte de carbono mistura de pelo menos duas das fontes de carbono citadas.29. FERMENTATIVE PROCESS FOR THE PRODUCTION OF L-METHIONINE FROM WASTE FROM THE PRODUCTION OF BIOFUELS according to claims 22, 26, 27 and 28 characterized by using as a carbon source mixture of at least two of the mentioned carbon sources. 30. PROCESSO FERMENTATIVO PARA A PRODUÇÃO DE L-METIONINA A PARTIR DE RESÍDUOS DA PRODUÇÃO DE BIOCOMBUSTÍVEIS de acordo com a reivindicação 22, 26, 27 e 28 caracterizado por utilizar como fonte de carbono mistura das três fontes de carbono citadas.30. FERMENTATIVE PROCESS FOR THE PRODUCTION OF L-METHIONIN FROM WASTE FROM THE PRODUCTION OF BIOFUELS according to claims 22, 26, 27 and 28 characterized by using as a carbon source mixture of the three mentioned carbon sources. Petição 870170048524, de 12/07/2017, pág. 48/55Petition 870170048524, of 7/12/2017, p. 48/55 1/11/1 PROCESSO FERMENTATIVO PARA A PRODUÇÃO DE L-METIONINA AFERMENTATIVE PROCESS FOR THE PRODUCTION OF L-METHIONINE A PARTIR DE RESÍDUOS DA PRODUÇÃO DE BIOCOMBUSTÍVEISFROM BIOFUEL PRODUCTION WASTE
BR102017014956-0A 2017-07-12 2017-07-12 FERMENTATIVE PROCESS FOR THE PRODUCTION OF L-METHYTHIN FROM WASTE FROM BIOFUEL PRODUCTION BR102017014956A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
BR102017014956-0A BR102017014956A2 (en) 2017-07-12 2017-07-12 FERMENTATIVE PROCESS FOR THE PRODUCTION OF L-METHYTHIN FROM WASTE FROM BIOFUEL PRODUCTION

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
BR102017014956-0A BR102017014956A2 (en) 2017-07-12 2017-07-12 FERMENTATIVE PROCESS FOR THE PRODUCTION OF L-METHYTHIN FROM WASTE FROM BIOFUEL PRODUCTION

Publications (1)

Publication Number Publication Date
BR102017014956A2 true BR102017014956A2 (en) 2018-01-30

Family

ID=62619764

Family Applications (1)

Application Number Title Priority Date Filing Date
BR102017014956-0A BR102017014956A2 (en) 2017-07-12 2017-07-12 FERMENTATIVE PROCESS FOR THE PRODUCTION OF L-METHYTHIN FROM WASTE FROM BIOFUEL PRODUCTION

Country Status (1)

Country Link
BR (1) BR102017014956A2 (en)

Similar Documents

Publication Publication Date Title
Wendisch Metabolic engineering advances and prospects for amino acid production
JP5805202B2 (en) Microorganism producing O-phosphoserine and method for producing L-cysteine or a derivative thereof from O-phosphoserine using the same
Kind et al. Bio-based production of the platform chemical 1, 5-diaminopentane
CN101946002B (en) L-threonine producing escherichia coli and process for producing l-threonine using same
US20070004014A1 (en) Method for producing l-threonine
CN102227504B (en) Process for producing l-amino acid
EP1899472B1 (en) Altered glyoxylate shunt for improved production of aspartate-derived amino acids and chemicals
JP7318199B2 (en) Production method of target substance
EP1896599B1 (en) Method for producing l-threonine
EP2444481B1 (en) Microorganism producing O-phosphoserine and method of producing L-cysteine or derivatives thereof from O-phosphoserine using the same
US10385328B2 (en) Carbon dioxide fixation via bypassing feedback regulation
JP7380768B2 (en) Method for producing aldehydes
BR112014013239B1 (en) Microorganism for the simultaneous production of l-amino acid and riboflavin and method for the production of l-amino acid and riboflavin using the same
BR112014001371B1 (en) GENETICALLY MODIFIED ESCHERICHIA COLI BACTERIA AND METHOD FOR SUCCINIC ACID PRODUCTION
JP2022082679A (en) Method for producing objective substance
BR112016004367B1 (en) RECOMBINANT MICRO-ORGANISMS AND METHOD FOR THE FERMENTATIVE PRODUCTION OF METHIONINE AND/OR ITS DERIVATIVES
CA2959563A1 (en) Method and microorganism for methionine production by fermentation with improved methionine efflux
BR102017014956A2 (en) FERMENTATIVE PROCESS FOR THE PRODUCTION OF L-METHYTHIN FROM WASTE FROM BIOFUEL PRODUCTION
BR102018068380A2 (en) MICRO-ORGANISM WITH SYNTHETIC METABOLIC TRACKS OPTIMIZED FOR THE PRODUCTION OF L-METHIONIN FROM MULTIPLE SOURCES OF CARBON AND SULFUR
US9347078B2 (en) Method for the fermentative production of L-cysteine and derivatives of said amino acid
RU2458982C2 (en) Method of producing l-cysteine, l-cystine, s-sulphocysteine or l-cysteine thiazolidine derivative, or mixture thereof using bacteria of enterobacteriaceae family
BR102018001011A2 (en) FERMENTATIVE PROCESS FOR L-LYSINE PRODUCTION FROM MULTIPLE CARBON SOURCES
US20180042267A1 (en) Composition for Feed Additive, and Animal Feed Composition Containing Same
KR100859088B1 (en) A Modified Microorganism Producing L-Threonine and A Method for Producing L-Threonine Using thereof
JP2023001394A (en) Method for producing vanillin

Legal Events

Date Code Title Description
B03B Publication of an application: anticipated publication
B11A Dismissal acc. art.33 of ipl - examination not requested within 36 months of filing
B11Y Definitive dismissal acc. article 33 of ipl - extension of time limit for request of examination expired