BR102016018094A2 - Micro-organismo geneticamente modificado com eficiente capacidade de metabolizar pentoses em anaerobiose, processo de produção de biocombustíveis e/ou bioquímicos a partir de biomassa vegetal, e, biocombustível e/ou bioquímico - Google Patents

Micro-organismo geneticamente modificado com eficiente capacidade de metabolizar pentoses em anaerobiose, processo de produção de biocombustíveis e/ou bioquímicos a partir de biomassa vegetal, e, biocombustível e/ou bioquímico Download PDF

Info

Publication number
BR102016018094A2
BR102016018094A2 BR102016018094-5A BR102016018094A BR102016018094A2 BR 102016018094 A2 BR102016018094 A2 BR 102016018094A2 BR 102016018094 A BR102016018094 A BR 102016018094A BR 102016018094 A2 BR102016018094 A2 BR 102016018094A2
Authority
BR
Brazil
Prior art keywords
microorganism
gene
seq
xylose
biofuel
Prior art date
Application number
BR102016018094-5A
Other languages
English (en)
Other versions
BR102016018094B1 (pt
Inventor
Vieira Dos Santos Leandro
Augusto Siqueira Pirolla Renan
Dias Almeida Ludimila
Tiemi Nagamatsu Sheila
Amarante Guimarães Pereira Gonçalo
Original Assignee
Biocelere Agroindustrial Ltda
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Biocelere Agroindustrial Ltda filed Critical Biocelere Agroindustrial Ltda
Priority to BR102016018094-5A priority Critical patent/BR102016018094B1/pt
Publication of BR102016018094A2 publication Critical patent/BR102016018094A2/pt
Publication of BR102016018094B1 publication Critical patent/BR102016018094B1/pt

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

a invenção descreve um micro-organismo geneticamente modificado a partir de mutação com substituição de base única. obtém-se, assim, microorganismo com eficiente capacidade de metabolizar pentoses como única fonte de carbono em condições anaeróbicas, sem que seja necessária a etapa de engenharia evolutiva. as modificações descritas no presente relatório favorecem o desempenho do dito micro-organismo quando em escala industrial. adicionalmente, são também descritos um método para a obtenção de biocombustíveis e/ou bioquímicos e os produtos assim obtidos.

Description

(54) Título: MICROORGANISMO
GENETICAMENTE MODIFICADO COM EFICIENTE CAPACIDADE DE METABOLIZAR PENTOSES EM ANAEROBIOSE, PROCESSO DE PRODUÇÃO DE BIOCOMBUSTÍVEIS E/OU BIOQUÍMICOS A PARTIR DE BIOMASSA VEGETAL, E, BIOCOMBUSTÍVEL E/OU BIOQUÍMICO (51) Int. Cl.: C12N 1/16; C12N 1/00; C12P 7/10; C12R 1/865 (73) Titular(es): BIOCELERE
AGROINDUSTRIAL LTDA (72) Inventor(es): LEANDRO VIEIRA DOS SANTOS; RENAN AUGUSTO SIQUEIRA PIROLLA; LUDIMILA DIAS ALMEIDA; SHEILA TIEMI NAGAMATSU; GONÇALO AMARANTE GUIMARÃES PEREIRA (74) Procurador(es): REMER VILLAÇA & NOGUEIRA ASSESSORIA E CONSULTORIA DE PROP. INTELECTUAL S/S LTDA.
(57) Resumo: A invenção descreve um microorganismo geneticamente modificado a partir de mutação com substituição de base única. Obtém-se, assim, microorganismo com eficiente capacidade de metabolizar pentoses como única fonte de carbono em condições anaeróbicas, sem que seja necessária a etapa de engenharia evolutiva. As modificações descritas no presente relatório favorecem o desempenho do dito microorganismo quando em escala industrial. Adicionalmente, são também descritos um método para a obtenção de biocombustíveis e/ou bioquímicos e os produtos assim obtidos.
M la lb 2a 2b 3a 3b 4a 4b 5a 5b M
Figure BR102016018094A2_D0001
1/15
MICRO-ORGANISMO GENETICAMENTE MODIFICADO COM EFICIENTE CAPACIDADE DE METABOLIZAR PENTOSES EM ANAEROBIOSE, PROCESSO DE PRODUÇÃO DE BIOCOMBUSTÍVEIS E/OU BIOQUÍMICOS A PARTIR DE BIOMASSA VEGETAL, E, BIOCOMBUSTÍVEL E/OU BIOQUÍMICO
CAMPO DA INVENÇÃO [0001] A referida invenção situa-se nos campos dos biocombustíveis, bioquímicos e processos para sua obtenção. Mais especificamente, a presente invenção proporciona soluções técnicas para a produção de combustíveis de segunda geração baseados na conversão de biomassa vegetal, por exemplo, a partir de polímeros da parede celular. Dentre outros objetos, a presente invenção descreve um micro-organismo geneticamente modificado a partir de uma ou mais mutações com substituição de base única. Obtém-se, assim, micro-organismo com eficiente capacidade de metabolizar pentoses como fonte de carbono em condições anaeróbicas, sem que seja necessária a etapa de engenharia evolutiva. As modificações descritas no presente relatório favorecem o desempenho do dito micro-organismo quando em escala industrial. Adicionalmente, são também descritos um método para a obtenção de biocombustíveis e/ou bioquímicos e os produtos assim obtidos.
FUNDAMENTOS DA INVENÇÃO [0002]O etanol de segunda geração ou etanol celulósico consiste na conversão de polímeros que formam a parede celular vegetal em etanol. Estes polímeros constituem a celulose, hemicelulose e lignina, e sua hidrólise disponibiliza açúcares fermentescíveis que podem ser convertidos a etanol por Saccharomyces cerevisiae. Para ter acesso aos açúcares da parede celular vegetal, o material precisa passar por um processo de pré-tratamento, responsável por aumentar a acessibilidade dos polímeros que constituem a parede celular vegetal possibilitando a ação das enzimas hidrolíticas. Após o pré-tratamento, o material é hidrolisado utilizando um coquetel enzimático de celulases e hemicelulases que disponibilizam os monômeros de açúcares
Petição 870160041837, de 03/08/2016, pág. 7/54
2/15 representados por hexoses e pentoses. Hexoses são naturalmente utilizadas por S. cerevisiae. Porém, linhagens selvagens dessas leveduras não conseguem metabolizar as pentoses (xilose e arabinose) presentes na biomassa. Tendo em vista sua significativa parcela na constituição da biomassa, a completa utilização desses compostos aumentaria o rendimento e a viabilização do processo de produção de etanol de segunda geração.
[0003] A engenharia metabólica de leveduras para introdução das vias metabólicas de consumo de xilose tem como foco duas vias principais: a via Xilose Redutase - Xilitol Desidrogenase (XR-XDH) e a via Xilose Isomerase (XI). A via XR-XDH, presente em micro-organismos eucariotos, consiste em duas reações de oxi-redução, onde a xilose é reduzida a xilitol pela ação da enzima xilose redutase (XR), em uma reação mediada por NADPH/NADH e em seguida, o xilitol é oxidado a xilulose por meio da enzima xilitol desidrogenase (XDH), mediada exclusivamente por NAD+. O cofator NADPH é principalmente regenerado na fase oxidativa da via das pentoses fosfato, com produção de CO2. Porém, NAD+ é regenerado na cadeia respiratória, com o O2 como aceptor final de elétrons. Sob limitadas concentrações de oxigênio, não ocorre a completa reoxidação de NAD+, resultando em um desbalanço redox e no acúmulo de xilitol, o que impacta diretamente no rendimento final de etanol [van Maris et al., Adv Biochem Eng Biotechnol 2007;108:179-204]. Além do xilitol, outro subproduto formado é o glicerol, devido a reoxidação do excesso de NADH via XDH [Kuyper et al., FEMS Yeast Research, Delft, v.4, n.6, p.655-664, 2004].
[0004] A via xilose isomerase (XI), mais comum em procariotos, ocorre em um único passo, evitando o desbalanço redox e a formação de subprodutos que diminuem o rendimento de etanol. Por várias décadas, tentativas de expressão heteróloga de XI bacterianas em S. cerevisiae não foram bem sucedidas [Gárdony et al., Enzyme and Microbial Technology, Amsterdam, v.32, n.2, p.252-259, 2003]. Em 2003, a expressão funcional em S. cerevisiae de uma xilose isomerase do fungo anaeróbio Piromyces sp. [Kuyper et al., FEMS
Petição 870160041837, de 03/08/2016, pág. 8/54
3/15
Yeast Research, Delft, v.4, n.1, p.69-78, 2003] e em 2009 do fungo Orpiromyces sp. [Madhavan eí al., Applied Microbiology and Biotechnology, Heidelberg, v.82, n.6, p. 1067-1078, 2009], resultou em mutantes capazes de crescer em xilose como fonte de carbono, com altas atividades dessa enzima, com maior rendimento na produção de etanol, menor produção e acúmulo de metabólitos intermediários e menor repressão catabólica em meio contendo glicose e xilose [Kuyper eí al., FEMS Yeast Research, Delft, v.4, n.6, p.655-664, 2004; Kuyper eí al., FEMS Yeast Research, Delft, v.5, n.4, p.399-409, 2005a e Kuyper eí al., FEMS Yeast Research, Delft, v.5, n.10, p.925-934, 2005b]. A via XR-XDH tem uma maior produtividade por produzir etanol mais rapidamente, embora a via XI tem um maior rendimento por não acumular subprodutos [Karhumaa eí al., Microbial Cell Factories, Londres, v.6, n.5, p.1-10, 2007].
[0005] Apesar de estudos mostrarem resultados promissores na obtenção de etanol com microrganismos naturalmente capazes de fermentar xilose, nenhum possui a mesma capacidade fermentativa, tolerância à etanol e robustez que S. cerevisiae [Balat, Energy Conversion and Management, Amsterdam, v.52, n.2, p.858-875, 2011], Assim sendo, procedimentos de engenharia metabólica e evolutiva em S. cerevisiae para utilizar de forma eficiente às vias metabólicas de assimilação de pentoses constitui um dos maiores desafios atuais para a viabilização econômica dos processos biotecnológicos para a produção de etanol celulósico [Gírio eí al., Bioresource Technology, Amsterdam, 101:4775-4800, 2010] [0006] Conforme descrito na literatura, a expressão de uma única cópia do gene que codifica uma xilose isomerase resulta em um baixo crescimento em xilose como única fonte de carbono. Esse gene precisa estar presente em alto número de cópias para garantir uma atividade enzimática suficiente que possibilite o processo de isomerização eficiente da xilose [Kuyper eí al., FEMS Yeast Research, Delft, v.4, n.1, p.69-78, 2003 e Kuyper eí al., FEMS Yeast Research, v.4, n.6, p.655-664, 2004].
Petição 870160041837, de 03/08/2016, pág. 9/54
4/15 [0007] Utilizando a via da xilose isomerase, apenas as modificações genéticas para a introdução do gene que codifica peptídeo com função xilose isomerase não permite a obtenção de uma cepa com eficiente capacidade de fermentação de xilose. Assim, é necessária também a adição no genoma do microorganismo hospedeiro, pelo menos um dos genes das enzimas necessárias para favorecer a parte não oxidativa da via das pentoses fosfato, que são Xiluloquinase (XKS1, EC 2.7.1.17), Transaldolase (TAL1, EC 2.2.1.2), Transcetolase (TKL1, EC 2.2.1.1), Ribose 5-Fosfato Isomerase (RKI1, EC 5.3.1.6) e Ribose 5-Fosfato Epimerase (RPE1, EC 5.1.3.1), sob a ação de promotores fortes e constitutivos de S. cerevisiae. Além disso, é realizada também a deleção do gene que codifica a aldose redutase GRE3 (EC 1.1.21) [Traff et al., Appl Environ Microbiol, 67(12), 5668-5674, 2001].
[0008] Após serem realizadas essas modificações genéticas, a linhagem tornase capaz de consumir a xilose presente em meio de cultivo. Porém, o consumo é muito lento e, portanto, para que o consumo de xilose como fonte de carbono seja realizado eficientemente em anaerobiose, ambiente este que reproduz de forma mais realista o ambiente industrial, é necessário submeter às linhagens a procedimentos de engenharia evolutiva por longos períodos de tempo, podendo variar de semanas até meses, que consistem em um sistema de melhoramento de micro-organismos para alcançar fenótipos desejados através de pressão seletiva e seleção.
[0009] Assim, visando reduzir esse tempo de evolução e desenvolvimento de micro-organismos capazes de consumirem xilose em anaerobiose como fonte de carbono e produzirem biocombustíveis ou bioquímicos, tem-se buscado identificar quais são os eventos de mutações genéticas, tipicamente substituição de base única (SNPs - single nucleotide polimorphism) e variação do número de cópias gênicas (CNV - copy number variation), que possam estar associadas com a capacidade de fermentar xilose.
[00010] O documento US2015/0307872, por exemplo, descreve uma levedura do tipo Saccharomyces cerevisiae geneticamente modificada e capaz de
Petição 870160041837, de 03/08/2016, pág. 10/54
5/15 realizar fermentação de xilose a partir de dois diferentes eventos: No primeiro há redução da expressão ou deleção do gene ISU1. Nesse contexto, a levedura mostra-se capaz de fermentar eficientemente xilose em aerobiose. [00011] O segundo evento ocorre quando, somando-se à redução de ISU1, temos também mutações que favorecem redução da expressão do gene que codifica o polipeptídeo Hog1p e pelo menos uma terceira modificação em algum dos que codificam os polipeptídeos Gre3p, Ira1p e/ou Ira2p. A partir dessas modificações, a levedura torna-se capaz de fermentar xilose eficientemente em anaerobiose.
[00012] Mostrando-se um gene relevante para a ocorrência do fenômeno que permite a levedura passar a consumir eficientemente xilose, sem que seja necessária a fase de evolução, o gene ISU1 é citado novamente no documento US2016/0040153. Nesse documento é descrita uma levedura Saccharomyces cerevisiae geneticamente modificada que compreende pelo menos um gene heterólogo de xilose Isomerase e mutações em pelo menos um dos genes responsáveis pelo metabolismo de ferro na levedura, entre eles o ISU1. Entretanto, como descrito por Lin H. [The journal of biological chemistry Vol. 286, NO. 5, pp. 3851-3862, 2011], o eventual acúmulo intracelular de ferro pode apresentar efeito tóxico, principalmente devido ao estresse oxidativo, fato que prejudicaria a invenção descrita.
[00013] A presente invenção, por sua vez, descreve um método de modificação genética, incluindo mutação genética a partir de substituição de base única, no qual se obtém um micro-organismo com capacidade de consumo de xilose em condições anaeróbicas de forma mais eficiente do que quando são realizadas no micro-organismo as modificações em SNPs descritos no estado da técnica. Adicionalmente, a presente invenção não apresenta nenhuma relação com o gene ISU1, nem modificações no metabolismo de ferro do organismo, o qual, quando presente em alta concentração intracelular pode tornar-se tóxico para a célula.
BREVE DESCRIÇÃO DA INVENÇÃO
Petição 870160041837, de 03/08/2016, pág. 11/54
6/15 [00014] A presente invenção descreve um método de modificação genética, a partir de mutação de substituição de base única, no qual se obtém um microorganismo com eficiente capacidade de metabolizar pentoses como fonte de carbono em condições anaeróbicas, sem que seja necessária a etapa de engenharia evolutiva. Adicionalmente, é descrito também o micro-organismo geneticamente modificado com eficiente performance fermentativa na conversão dos açúcares contidos na biomassa vegetal, em biocombustíveis e/ou bioquímicos, quando comparado à sua versão sem as modificações genéticas descritas no presente documento. De forma específica, a presente invenção descreve um micro-organismo geneticamente modificado, preferencialmente uma levedura do gênero Saccharomyces.
[00015] A pentose preferencialmente utilizada pelo micro-organismo para conversão em álcoois e/ou bioquímicos acima indicados é xilose, sem, entretanto, restringir-se a ela. O presente micro-organismo é, inclusive capaz de crescer em xilose como fonte única de carbono.
[00016] Para que o micro-organismo aqui descrito possa consumir xilose como fonte de carbono, é necessário que seja inserido em seu genoma pelo menos uma cópia de gene que codifica uma proteína com função de xilose isomerase. A presente invenção não se limita ao gene de xilose isomerase que estiver inserido no micro-organismo. Dessa forma, qualquer gene que codifique proteína funcional com função xilose isomerase pode ser inserido no microorganismo aqui descrito.
[00017] Em uma concretização, a presente invenção apresenta inserido de forma estável no seu genoma o gene que codifica proteína com função xilose isomerase de Opinomyces sp já descrito como funcional em Saccharomyces cerevisiae [Applied Microbiology and Biotechnology, Heidelberg, v.82, n.6, p. 1067-1078, 2009], entretanto, esse gene foi manualmente otimizado pelos presentes inventores para os códons preferencialmente utilizados por Saccharomyces cerevisiae e a sequência está representada no presente documento em SEQ ID NO:1.
Petição 870160041837, de 03/08/2016, pág. 12/54
7/15 [00018] Adicionalmente, como previamente descrito no estado da técnica, para aumento de fluxo da via das pentoses fosfato na célula hospedeira, são inseridos genes que codificam as enzimas Xiluloquinase, a Transaldolase, Transcetolase, Ribose 5-Fosfato Isomerase e Ribose 5-Fosfato Epimerase. [00019] A presente invenção descreve também a deleção ou inativação do gene GRE3, o qual codifica uma aldose redutase e, no presente documento é concretizado por SEQ ID NO:7, sem que a invenção se restrinja a ela, nem tampouco à obrigatoriedade do gene GRE3 ter sua expressão reduzida em comparação com o micro-organismo selvagem.
[00020] Adicionalmente às modificações genéticas acima apresentadas, a presente invenção descreve silenciamento, deleção ou qualquer forma de redução da expressão do gene SSK2 do genoma de Saccharomyces cerevisiae que, por sua vez, já compreende modificações genéticas acima descritas para favorecer o consumo de xilose pela célula.
[00021] Uma concretização da presente invenção descreve mutação que insere um códon de parada prematuro no gene SSK2, sendo feita substituição de G por T na posição 4351 da sequência de nucleotídeos representada em SEQ ID NO:8 do genoma de Saccharomyces cerevisiae que, por sua vez, compreende também as modificações genéticas acima descritas para favorecer o consumo de xilose pela célula. Essa modificação promove a substituição de um ácido Glutâmico (GLU) por um Terminador na posição 1451 da proteína Ssk2p (Glu1451Ter), na presente invenção, a sequência de aminoácidos é representada por SEQ ID NO:9.
[00022] Dessa forma, a presente invenção descreve um método de modificação genética de células eucarióticas, preferencialmente microorganismo do tipo Saccharomyces cerevisiae, que permite à célula se tornar eficiente no consumo de xilose como única fonte de carbono e produção de etanol, sem que para isso seja necessária a etapa de evolução adaptativa.
BREVE DESCRIÇÃO DAS FIGURAS [00023] Na Figura 1, mostra-se o gel de eletroforese obtido a partir da
Petição 870160041837, de 03/08/2016, pág. 13/54
8/15 amplificação das regiões externas aos cassetes inseridos, comprovando a integração às leveduras. Na presente figura, M representa o marcador 1 kb ladder; 1a, o cassete do gene XKS1 inserido próximo ao centrômero 2; 1b, o branco da reação 1; 2a é o cassete do gene XKS1 inserido próximo ao centrômero 8; 2b é o branco da reação 2; 3a é o cassete dos genes TAL1 e RKI1 inseridos próximo ao centrômero 12; 3b é o branco da reação 3; 4a é o cassete dos genes TKL1 e RKI1 inseridos próximo ao centrômero 13; 4b é o branco da reação 4; 5a é o cassete do gene XI inserido próximo ao centrômero 5; e 5b é o branco da reação 5.
[00024] Na Figura 2 observamos a comparação no consumo de xilose (linha contínua) e produção de etanol (tracejado) entre a linhagem que possui o gene SSK2 silenciado (▲) e a linhagem que possui o gene SSK2 selvagem (), em meio mínimo, segundo descrito por Ausubel [Ausubel, F. M. et al. Current Protocols in Molecular Biology. John Wiley & Sons Inc; ringbou edition, 2003], que compreende xilose como única fonte de carbono. Na figura, o eixo vertical representa a concentração (g/L) de cada um dos compostos analisados, enquanto o eixo horizontal, por sua vez, representa o tempo de fermentação, expresso em horas.
[00025]Na Figura 3 observamos a comparação no consumo de xilose (linha contínua) e produção de etanol (tracejado) entre a linhagem que possui o gene SSK2 silenciado (▲) e a linhagem que possui o silenciamento do gene ISU1 (), em meio mínimo, segundo descrito por Ausubel [Ausubel, F. M. et al. Current Protocols in Molecular Biology. John Wiley & Sons Inc; ringbou edition, 2003], que compreende xilose como única fonte de carbono. Na figura, o eixo vertical representa a concentração (g/L) de cada um dos compostos analisados, enquanto o eixo horizontal, por sua vez, representa o tempo de fermentação, expresso em horas.
DESCRIÇÃO DETALHADA DA INVENÇÃO [00026] A presente invenção descreve um método de modificação genética, a partir de mutação de substituição de base única, no qual se obtém um microPetição 870160041837, de 03/08/2016, pág. 14/54
9/15 organismo com eficiente capacidade de metabolizar pentoses como única fonte de carbono em condições anaeróbicas, sem que seja necessária a etapa de engenharia evolutiva. Adicionalmente, é descrito também o micro-organismo geneticamente modificado com eficiente performance fermentativa na conversão dos açúcares contidos na biomassa vegetal, em biocombustíveis e/ou bioquímicos, quando comparado à sua versão sem as modificações genéticas descritas no presente documento.
[00027] Mais especificamente, o micro-organismo geneticamente modificado descrito na presente invenção refere-se uma célula eucariótica transformada geneticamente, preferencialmente uma levedura ou fungo filamentoso.
[00028] Nesta invenção, leveduras são consideradas como qualquer indivíduo do grupo Eumycotina, ou seja, fungos verdadeiros, que crescem de modo unicelular e que façam preferencialmente fermentação anaeróbia, como por exemplo, Saccharomyces, Scheffersomyces, Spathaspora, Pichia, Candida, Kluyveromyces, Schizosaccharomyces, Brettanomyces, Hansenula e Yarrowia. [00029] Fungos filamentosos, por sua vez, são aqueles caracterizados por apresentarem micélio vegetativo e crescerem a partir da elongação das hifas, além de realizarem respiração aeróbia, como por exemplo, Aspergillus, Penicillium, Fusarium, Trichoderma, Moniliophthora e Acremonium.
[00030] De forma ainda mais específica, a presente invenção descreve um micro-organismo geneticamente modificado, preferencialmente uma levedura do gênero Saccharomyces.
[00031] O micro-organismo descrito apresenta eficiente performance na conversão de açúcares presentes na biomassa vegetal, preferencialmente material lignocelulósico, em bioquímicos ou biocombustíveis. Uma concretização da invenção descreve um micro-organismo da espécie Saccharomyces cerevisiae mais eficiente na conversão de pentoses presentes no material lignocelulósico em álcoois e/ou bioquímicos, tais como, por exemplo, etanol, ácido succínico, ácido málico, 1,3-propanediol, 1,2propanediol, butanol, isobutanol, biodiesel, 1,4-butanediol, 2,3-butanediol, PHB
Petição 870160041837, de 03/08/2016, pág. 15/54
10/15
- poli(hidróxido butirato), sem, entretanto, restringir-se a eles, quando comparado com sua versão sem as modificações genéticas contidas no presente documento.
[00032] A pentose preferencialmente utilizada pelo micro-organismo para conversão em álcoois e/ou bioquímicos acima indicados é xilose, sem, entretanto, restringir-se a ela. O presente micro-organismo é, inclusive capaz de crescer em xilose como fonte única de carbono.
[00033] Leveduras não possuem naturalmente em seu genoma o gene capaz de codificar peptídeo com função xilose isomerase, ou seja, peptídeo com função de isomerizar xilose à xilulose. Xilose isomerase pode também converter D-ribose em D-ribulose e D-glicose para D-frutose.
[00034] Assim, para que o micro-organismo aqui descrito possa consumir xilose como fonte de carbono, é necessário que seja inserido em seu genoma pelo menos uma cópia de gene com função xilose isomerase. Conforme descrito na literatura, a expressão de uma única cópia do gene que codifica uma xilose isomerase resulta em um baixo crescimento em xilose como única fonte de carbono. Dessa forma, o gene da xilose Isomerase é inserido no genoma do micro-organismo em alto número de cópias, sendo, no mínimo, 20 cópias para garantir uma atividade enzimática suficiente que possibilite o processo de isomerização eficiente da xilose [Kuyper et al., FEMS Yeast Research, Delft, v.4, n.1, p.69-78, 2003 e Kuyper et al., FEMS Yeast Research, v.4, n.6, p.655-664, 2004].
[00035] A presente invenção não se limita ao gene de xilose isomerase que estiver inserido no micro-organismo. Dessa forma, qualquer gene que codifique proteína funcional com função xilose isomerase pode ser inserido no microorganismo aqui descrito. Segundo apresentado no estado da técnica, polipeptídeos que apresentam função de xilose isomerase, compreendem alguns domínios conservados como, por exemplo, os descritos por Meaden et al [Gene, 141: 97-101; 1994], Vangrysperre et al [Biochem. J, 265:699=705; 1990] e Henrick et al [Jounal of Molecular Biology, 208: 129-157; 1989].
Petição 870160041837, de 03/08/2016, pág. 16/54
11/15
Adicionalmente, algumas xilose isomerases já foram descritas como funcionais em Saccharomyces cerevisiae como, por exemplo, a XI proveniente de Piromyces sp E2 [FEMS Yeast Research, Delft, v.4, n.1, p.69-78, 2003], Thermus thermophilus [Applied and envirnmental microbiology 62(12) (1996) 4648-4651], Reticulitermes speratus e Mastotermes darwiniensis descritas em WO2011078262.
[00036] Em uma concretização, a presente invenção apresenta inserido de forma estável no seu genoma o gene de Opinomyces sp, já descrito como funcional em Saccharomyces cerevisiae [Applied Microbiology and Biotechnology, Heidelberg, v.82, n.6, p. 1067-1078, 2009], entretanto, esse gene foi manualmente otimizada pelos presentes inventores para os códons preferencialmente utilizados por Saccharomyces cerevisiae e a sequência está representada no presente documento em SEQ ID NO:1.
[00037] Adicionalmente, como previamente descrito no estado da técnica, para aumento de fluxo da via das pentoses fosfato na célula hospedeira, são inseridos genes que codificam as enzimas Xiluloquinase (XKS1, EC 2.7.1.17), cuja sequência de nucleotídeos é representada neste documento por SEQ ID NO:2, a Transaldolase (TAL1, EC 2.2.1.2), representada pela sequência SEQ NO ID:3, Transcetolase (TKL1, EC 2.2.1.1), cuja sequência de nucleotídeos é representada por SEQ ID NO:4, Ribose 5-Fosfato Isomerase (RKI1, EC 5.3.1.6), cuja sequência de nucleotídeos é representada por SEQ ID NO:5; e Ribose 5-Fosfato Epimerase (RPE1, EC 5.1.3.1), cuja sequência de nucleotídeos é representada por SEQ ID NO:6. Em uma concretização da presente invenção, esses genes são inseridos no micro-organismo aqui descrito, entretanto, a invenção não se restringe a essas sequências e nem tampouco a obrigatoriedade de qualquer delas estar superexpressa.
[00038] Como descrito em Traff et al. [Appl Environ Microbiol, 67(12), 56685674, 2001], a presente invenção descreve também a deleção ou inativação do gene GRE3, o qual codifica uma aldose redutase e, no presente documento é concretizado por SEQ ID NO:7, sem que a invenção se restrinja a ela, nem
Petição 870160041837, de 03/08/2016, pág. 17/54
12/15 tampouco à obrigatoriedade do gene GRE3 ter sua expressão reduzida. A produção de xilitol diminui o rendimento total de etanol que pode ser obtido, além de ser um inibidor da ação da enzima xilose isomerase. Em concretização da presente invenção, o gene GRE3 é silenciado no genoma do microorganismo hospedeiro.
[00039] Quando realizadas em Saccharomyces cerevisiae, as modificações genéticas acima citadas favorecem o fluxo da parte não oxidativa da via das pentoses fosfato.
[00040] Assim, em concretização da presente invenção, as enzimas apresentadas e que constituem a via das pentoses fosfato, bem como a xilose isomerase, ao menos um dos genes que as codificam apresenta-se superexpresso e, preferencialmente, ligado a promotores constitutivos, ou seja, aqueles que são constantemente expressos, independente da condição à que a célula é submetida, ou promotores naturalmente induzíveis. No presente documento promotores são definidos como uma região reguladora, localizado na região 5' do gene sob sua ação e responsável pelo início da transcrição, enquanto terminadores são definidos como uma sequência que determina o final do gene durante o processo de transcrição.
[00041] Adicionalmente às modificações genéticas acima apresentadas, a presente invenção descreve silenciamento, deleção ou qualquer forma de redução da expressão do gene SSK2 do genoma do micro organismo, opcionalmente de Saccharomyces cerevisiae que, por sua vez, já compreende modificações genéticas acima descritas para favorecer o consumo de xilose pela célula.
[00042] Uma concretização da presente invenção descreve mutação que insere um códon de parada prematuro no gene SSK2, sendo feita substituição de G por T na posição 4351 da sequência de nucleotídeos representada em SEQ ID NO:8 do genoma de Saccharomyces cerevisiae que, por sua vez, compreende também as modificações genéticas acima descritas para favorecer o consumo de xilose pela célula. Essa modificação promove a substituição de
Petição 870160041837, de 03/08/2016, pág. 18/54
13/15 um ácido Glutâmico (GLU) por um Terminador na posição 1451 da proteína
Ssk2p (Glu1451Ter), na presente invenção, a sequência de aminoácidos é representada por SEQ ID NO:9.
[00043] O gene SSK2 transcreve uma proteína do tipo map quinase quinase quinase responsável tanto pela fosforilação da proteína transcrita pelo gene HOG1, a qual passa a ativar a cascata de regulação de sinal da via de regulação de osmolaridade conhecida como via do HOG (high osmolarity glycerol response), quanto pela sua participação no ciclo celular como um facilitador da montagem dos túbulos de actina após estresses osmóticos [Mol Biol Cell 13(8):2869-80].
[00044] Dessa forma, a presente invenção descreve um método de modificação genética de células eucarióticas, preferencialmente microorganismo do tipo Saccharomyces cerevisiae, que permite à célula se tornar eficiente no consumo de xilose como fonte de carbono e produção de etanol, sem que para isso seja necessária a etapa de evolução adaptativa.
EXEMPLOS
Exemplo 1 - CONSTRUÇÃO DE CÉLULA GENETICAMENTE MODIFICADA PELA INSERÇÃO DE GENES DAS VIAS DAS PENTOSES FOSFATO E XILOSE ISOMERASE EM SEU GENOMA [00045] Procedimentos de biologia sintética e engenharia metabólica possibilitaram a construção da cepa de Saccharomyces cerevisiae que compreendeu a introdução do gene que codifica uma Xilose Isomerase (XI, EC 5.3.1.5) em Orpinomyces sp. (SEQ ID NO:1), bem como novas cópias dos genes endógenos Xiluloquinase (XKS1, EC 2.7.1.17) representado por SEQ ID NO:2, Transaldolase (TAL1, EC 2.2.1.2) representado por SEQ ID NO:3, Transcetolase (TKL1, EC 2.2.1.1) representado por SEQ ID NO:4, Ribose 5Fosfato Isomerase (RKI1, EC 5.3.1.6) representado por SEQ ID NO:5 e Ribose 5-Fosfato Epimerase (RPE1, EC 5.1.3.1) representado por SEQ ID NO:6, sob a ação de promotores fortes e constitutivos de S. cerevisiae. Além disso, foi feita a deleção do gene que codifica a aldose redutase GRE3 (EC 1.1.21),
Petição 870160041837, de 03/08/2016, pág. 19/54
14/15 representado por SEQ ID NO:7.
[00046] Para garantir a integração estável e em alto número de cópias, o cassete que expressa a XI de Orpinomyces sp foi modificado, com a inclusão nas extremidades do LTR do retrotransposon Ty1 (um elemento presente em alto número de cópias no genoma de S. cerevisiae). O marcador URA3 flanqueado pelas regiões loxP foi substituído nesse plasmídeo pelo marcador LEU2. Previamente, o gene LEU2 foi deletado em uma etapa de manipulação genética. Nessa etapa, foi integrado o gene URA3, flanqueado pelas regiões loxP adjacentes a regiões de homologia ao promotor e terminador de LEU2, resultando na deleção desse gene. Em seguida, foi inserido o cassete da XI, flanqueado pelos elementos Ty1 e usando o marcador auxotrófico LEU2 para seleção dos transformantes.
[00047] A Figura 1 nos mostra que os genes relacionados à via das pentoses fosfato e múltiplas cópias do gene que codifica xilose isomerase de Orpinomyces encontravam-se estavelmente inseridos na célula eucariótica analisada, no presente exemplo, Saccharomyces cerevisiae.
Exemplo 2 - EFEITO DO SILENCIAMENTO DO GENE SSK2 NO GENOMA DE CÉLULAS EUCARIÓTICAS EM RELAÇÃO AO METABOLISMO DE XILOSE E PRODUÇÃO DE ETANOL [00048] A célula produzida no Exemplo 1 foi modificada geneticamente pela substituição de substituição de G por T na posição 4351, da sequência de nucleotídeos representada em SEQ ID NO:8 do genoma de Saccharomyces cerevisiae. Essa modificação gera um códon de parada na posição 1451 da sequência de aminoácidos (SEQ ID NO:9), pela substituição de um ácido glutâmico por um Terminador (Glu1451Ter).
[00049] Com a inserção desse códon de parada e consequente parada na transcrição da proteína Ssk2p, essa linhagem apresentou aumento no seu rendimento em relação ao consumo de açúcar e produção de combustível, em relação à linhagem que possui o gene SSK2 selvagem, como pode ser observado na Figura 2.
Petição 870160041837, de 03/08/2016, pág. 20/54
15/15
Exemplo 3 - COMPARAÇÃO DO SILENCIAMENTO DO GENE SSK2 DO COM DELEÇÃO DE ISU1 DE GENOMA DE CÉLULAS EUCARIÓTICAS [00050] Considerando-se que o estado da técnica já mostrou que o silenciamento do gene ISU1 é relevante para que a célula se torne eficiente no metabolismo de xilose e produzir de etanol, foi realizada comparação entre duas linhagens de Saccharomyces cerevisiae, que compreendiam todas as modificações genéticas descritas no Exemplo 1. Adicionalmente, a linhagem 1 foi também geneticamente modificada para silenciamento do gene SSK2 tendo ISU1 funcional, como apresentado no Exemplo 2, e uma segunda linhagem que compreende modificação genética que promove silenciamento do gene ISU1, tendo o gene SSK2 funcional.
[00051] A Figura 3 nos mostra que a linhagem que continha o silenciamento do gene SSK2 apresenta consumo de xilose como única fonte de carbono e produção de etanol mais eficientes do que aquela linhagem que possuía apenas o silenciamento do gene ISU1, ambos em condição anaeróbica, em meio mínimo, segundo descrito por Ausubel [Ausubel, F. M. ef al. Current Protocols in Molecular Biology. John Wiley & Sons Inc; ringbou edition, 2003]
Petição 870160041837, de 03/08/2016, pág. 21/54
1/2

Claims (13)

  1. REIVINDICAÇÕES
    1. Micro-organismo geneticamente modificado com eficiente capacidade de metabolizar pentoses em anaerobiose caracterizado pelo micro-organismo compreender em seu genoma:
    genes que codificam enzimas Xiluloquinase (XKS1, EC 2.7.1.17); Transaldolase (TAL1, EC 2.2.1.2);
    Transcetolase (TKL1, EC 2.2.1.1);
    Ribose 5-Fosfato Isomerase (RKI1, EC 5.3.1.6);
    Ribose 5-Fosfato Epimerase;
    gene que codifica proteína com função xilose isomerase; a redução da expressão do gene que codifica aldose redutase (GRE3) relativa ao microorganismo selvagem;
    a redução da expressão do gene SSK2 relativa ao microorganismo selvagem;
    gene ISU1 funcional.
  2. 2. Micro-organismo, de acordo com a reivindicação 1, caracterizado pelo micro-organismo compreender em seu genoma os genes representados em SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, a redução da expressão do gene representado em SEQ ID NO:7 e SEQ ID NO:8.
  3. 3. Micro-organismo, de acordo com a reivindicação 2, caracterizado pelos genes adicionados ao genoma do micro-organismo estarem ligados a promotores constitutivos.
  4. 4. Micro-organismo, de acordo com a reivindicação 1, caracterizado pelo gene SSK2 poder ser silenciado ou deletado.
  5. 5. Micro-organismo, de acordo com a reivindicação 1, caracterizado pelo gene SSK2 compreender um códon prematuro de parada.
  6. 6. Micro-organismo, de acordo com a reivindicação 4, caracterizado pelo gene SSK2 compreender um T em lugar de G, na posição 4351 (G4351T).
  7. 7. Micro-organismo, de acordo com a reivindicação 4, caracterizado pela proteína codificada pelo gene SSK2 mutado compreender um Terminador em lugar de um ácido glutâmico G na posição 1451 (Glu1451Ter).
    Petição 870160041837, de 03/08/2016, pág. 22/54
    2/2
  8. 8. Micro-organismo, de acordo com a reivindicação 4, caracterizado pelo micro-organismo compreender uma levedura do tipo Saccharomyces cerevisiae.
  9. 9. Micro-organismo, de acordo com a reivindicação 1, caracterizado pelo micro-organismo se tornar eficiente no consumo de pentoses como fonte de carbono em anaerobiose e produção de biocombustíveis sem a etapa de evolução adaptativa.
  10. 10. Micro-organismo, de acordo com a reivindicação 9, caracterizado pela pentose consumida pelo micro-organismo ser xilose.
  11. 11. Micro-organismo, de acordo com a reivindicação 9, caracterizado pelo biocombustível produzido pelo micro-organismo ser etanol.
  12. 12. Processo de produção de biocombustíveis e/ou bioquímicos a partir de biomassa vegetal caracterizado por compreender as etapas de:
    a) colocar a biomassa vegetal lignocelulósica, em contato com o micro-organismo conforme definido em qualquer uma das reivindicações 1 a 11; e
    b) coletar o biocombustível e/ou bioquímico gerado após a etapa a).
  13. 13. Biocombustível e/ou bioquímico caracterizado por ser obtido por processo confirme definido na reivindicação 12.
    Petição 870160041837, de 03/08/2016, pág. 23/54
    1/3
    FIGURAS
BR102016018094-5A 2016-08-03 2016-08-03 Microrganismo geneticamente modificado com eficiente capacidade de metabolizar pentoses em anaerobiose e processo de produção de biocombustíveis e/ou bioquímicos a partir de biomassa vegetal BR102016018094B1 (pt)

Priority Applications (1)

Application Number Priority Date Filing Date Title
BR102016018094-5A BR102016018094B1 (pt) 2016-08-03 2016-08-03 Microrganismo geneticamente modificado com eficiente capacidade de metabolizar pentoses em anaerobiose e processo de produção de biocombustíveis e/ou bioquímicos a partir de biomassa vegetal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
BR102016018094-5A BR102016018094B1 (pt) 2016-08-03 2016-08-03 Microrganismo geneticamente modificado com eficiente capacidade de metabolizar pentoses em anaerobiose e processo de produção de biocombustíveis e/ou bioquímicos a partir de biomassa vegetal

Publications (2)

Publication Number Publication Date
BR102016018094A2 true BR102016018094A2 (pt) 2018-02-27
BR102016018094B1 BR102016018094B1 (pt) 2024-01-09

Family

ID=62043534

Family Applications (1)

Application Number Title Priority Date Filing Date
BR102016018094-5A BR102016018094B1 (pt) 2016-08-03 2016-08-03 Microrganismo geneticamente modificado com eficiente capacidade de metabolizar pentoses em anaerobiose e processo de produção de biocombustíveis e/ou bioquímicos a partir de biomassa vegetal

Country Status (1)

Country Link
BR (1) BR102016018094B1 (pt)

Also Published As

Publication number Publication date
BR102016018094B1 (pt) 2024-01-09

Similar Documents

Publication Publication Date Title
US20210277427A1 (en) Method for acetate consumption during ethanolic fermentation of cellulosic feedstocks
Kuhad et al. Bioethanol production from pentose sugars: Current status and future prospects
Hahn-Hägerdal et al. Towards industrial pentose-fermenting yeast strains
Matsushika et al. Ethanol production from xylose in engineered Saccharomyces cerevisiae strains: current state and perspectives
US9605269B2 (en) Detoxification of biomass derived acetate via metabolic conversion to ethanol, acetone, isopropanol, or ethyl acetate
Jin et al. Metabolic engineering of yeast for lignocellulosic biofuel production
Bera et al. Establishment of L-arabinose fermentation in glucose/xylose co-fermenting recombinant Saccharomyces cerevisiae 424A (LNH-ST) by genetic engineering
BR112016028778B1 (pt) Cassete de expressão para a transformação de célula eucariótica, processo para a transformação de célula eucariótica, micro-organismo geneticamente modificado, processo de produção de biocombustíveis e/ou bioquímicos
US12012604B2 (en) Acetate consuming yeast cell
JP2011024500A (ja) 発酵能力が向上された酵母及びその利用
Nosrati‐Ghods et al. Ethanol from biomass hydrolysates by efficient fermentation of glucose and xylose–a review
US20210380989A1 (en) Modulation of nadph generation by recombinant yeast host cell during fermentation
Dmytruk et al. Metabolic engineering of the yeast Hansenula polymorpha for the construction of efficient ethanol producers
US20190316111A1 (en) Xylose Isomerases that confer efficient xylose fermentation capability to yeast
BR102016018094A2 (pt) Micro-organismo geneticamente modificado com eficiente capacidade de metabolizar pentoses em anaerobiose, processo de produção de biocombustíveis e/ou bioquímicos a partir de biomassa vegetal, e, biocombustível e/ou bioquímico
JP6879111B2 (ja) 組換え酵母及びこれを用いたエタノールの製造方法
US20120122172A1 (en) Method for producing ethanol from xylose using recombinant saccharomyces cerevisiae transformed to eliminate functions of genes involved in tor signal transduction pathway
BR112017009571B1 (pt) Cassete de expressão para a transformação de célula eucariótica,micro-organismo geneticamente modificado com eficiente consumo de xilose e processo de produção de biocombustíveis e/ou bioquímicos
US20230227861A1 (en) Gene duplications for crabtree-warburg-like aerobic xylose fermentation
BR102020025938A2 (pt) Microrganismo geneticamente modificado, processo de transformação de célula eucariótica, processo de produção de produtos biológicos e uso de microrganismos geneticamente modificados
JP2020058240A (ja) 形質転換酵母及びこれを用いたエタノールの製造方法
BR102014027233A2 (pt) cassete de expressão, micro-organismo geneticamente modificado para expressão de xilose isomerase, processo para produção de biocombustíveis e/ou bioquímicos e biocombustível e/ou bioquímicos produzidos
Thanvanthri Gururajan Enhancing xylose utilisation during fermentation by engineering recombinant Saccharomyces cerevisiae strains
BR102015008841A2 (pt) cassete de expressão, micro-organismo geneticamente modificado, processo para produção de biocombustíveis e/ou bioquímicos e biocombustíveis e/ou bioquímicos
JP2014060978A (ja) エタノール生成酵母およびそれを用いたエタノールの製造方法

Legal Events

Date Code Title Description
B03A Publication of a patent application or of a certificate of addition of invention [chapter 3.1 patent gazette]
B11A Dismissal acc. art.33 of ipl - examination not requested within 36 months of filing
B04C Request for examination: application reinstated [chapter 4.3 patent gazette]
B06V Preliminary requirement: patent application procedure suspended [chapter 6.22 patent gazette]
B06A Patent application procedure suspended [chapter 6.1 patent gazette]
B09A Decision: intention to grant [chapter 9.1 patent gazette]
B16A Patent or certificate of addition of invention granted [chapter 16.1 patent gazette]

Free format text: PRAZO DE VALIDADE: 20 (VINTE) ANOS CONTADOS A PARTIR DE 03/08/2016, OBSERVADAS AS CONDICOES LEGAIS