BG66814B1 - Method and device for capturing carbon dioxide and its transformation in gas fuel - Google Patents
Method and device for capturing carbon dioxide and its transformation in gas fuel Download PDFInfo
- Publication number
- BG66814B1 BG66814B1 BG111575A BG11157513A BG66814B1 BG 66814 B1 BG66814 B1 BG 66814B1 BG 111575 A BG111575 A BG 111575A BG 11157513 A BG11157513 A BG 11157513A BG 66814 B1 BG66814 B1 BG 66814B1
- Authority
- BG
- Bulgaria
- Prior art keywords
- reactor
- carbon dioxide
- thermally activated
- chamber
- carbon
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/02—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
- C01B3/32—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
- C01B3/34—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
- C01B3/342—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents with the aid of electrical means, electromagnetic or mechanical vibrations, or particle radiations
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/02—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
- C01B3/04—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
- C01B3/042—Decomposition of water
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/02—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
- C01B3/32—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
- C01B3/34—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/40—Carbon monoxide
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/02—Processes for making hydrogen or synthesis gas
- C01B2203/0205—Processes for making hydrogen or synthesis gas containing a reforming step
- C01B2203/0211—Processes for making hydrogen or synthesis gas containing a reforming step containing a non-catalytic reforming step
- C01B2203/0222—Processes for making hydrogen or synthesis gas containing a reforming step containing a non-catalytic reforming step containing a non-catalytic carbon dioxide reforming step
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/02—Processes for making hydrogen or synthesis gas
- C01B2203/0205—Processes for making hydrogen or synthesis gas containing a reforming step
- C01B2203/0227—Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
- C01B2203/0238—Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a carbon dioxide reforming step
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/02—Processes for making hydrogen or synthesis gas
- C01B2203/0266—Processes for making hydrogen or synthesis gas containing a decomposition step
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/08—Methods of heating or cooling
- C01B2203/0805—Methods of heating the process for making hydrogen or synthesis gas
- C01B2203/0861—Methods of heating the process for making hydrogen or synthesis gas by plasma
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/36—Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P30/00—Technologies relating to oil refining and petrochemical industry
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Inorganic Chemistry (AREA)
- Combustion & Propulsion (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Mechanical Engineering (AREA)
- Toxicology (AREA)
- Carbon And Carbon Compounds (AREA)
- Treating Waste Gases (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Abstract
Description
Област на техникатаField of technology
Изобретението се отнася до метод и устройство за улавяне на въглероден диоксид и трансформацията му в газово гориво, намиращи приложение в топлотехниката и по-специално в топло- и термоелектроцентралите и индустриалните предприятия с горивни инсталации.The invention relates to a method and a device for capturing carbon dioxide and its transformation into gaseous fuel, used in thermal engineering and in particular in thermal and thermal power plants and industrial plants with combustion plants.
Предшестващо състояние на техникатаBACKGROUND OF THE INVENTION
Известна е технология за газификация на смляно твърдо гориво като в плазмената камера се вкарва СО2, който се използва като носител на кислород, необходим за газификацията на твърдото гориво. Смилането на твърдото гориво значително усложнява технологията (US 2012/0193580).A technology for gasification of ground solid fuel is known by introducing CO 2 into the plasma chamber, which is used as a carrier of oxygen necessary for the gasification of solid fuel. Grinding solid fuel significantly complicates the technology (US 2012/0193580).
В ЕА 009601/В1 се описва плазмен газификатор за твърдо гориво, основно дървесина, без да се въвежда СО2 от димни газове за конверсиране в твърдо гориво.EA 009601 / B1 describes a plasma gasifier for solid fuel, mainly wood, without introducing CO 2 from flue gases for conversion into solid fuel.
В RU 2345276 С1 се описва технология, която цели получаването на водород след изгаряне на течно или газово гориво със следващото окисление на продуктите от горенето, при което отделят водород за използването му като възстановител на метали от оксиди. Конверсия на отпадъчен СО2 няма.RU 2345276 C1 describes a technology that aims to obtain hydrogen after combustion of liquid or gaseous fuel with the subsequent oxidation of combustion products, in which hydrogen is released for use as a reducing agent of metals from oxides. There is no conversion of waste CO 2 .
От BG 66275/В1 са известни метод и инсталация за очистване на димни газове от серни оксиди и въглероден диоксид, в което след очистването на газа от серните оксиди той се подлага на обработка с амониев хидроксид за улавяне на въглеродния диоксид, което налага прилагането на сложна технологична схема без да е възможно получаването на газово гориво.From BG 66275 / B1 are known a method and installation for purification of flue gases from sulfur oxides and carbon dioxide, in which after purification of the gas from sulfur oxides it is subjected to treatment with ammonium hydroxide to capture carbon dioxide, which requires the application of complex technological scheme without the possibility of obtaining gaseous fuel.
В BG 51440 е описан метод за пречистване на въздух, димни газове или подобни газови смеси, който се състои в подаване на димен газ или газова смес към реактор.BG 51440 describes a method for purifying air, flue gases or similar gas mixtures, which comprises supplying flue gas or a gas mixture to a reactor.
Известното от BG 51440 устройство се състои от реактор с камера, като в реактора е монтиран най-малко един електрод, свързан към високоволтова уредба. В долната страна на реактора е разположен входящ тръбопровод, противоположно на който от другата страна на реактора се намира изходящ тръбопровод.The device known from BG 51440 consists of a reactor with a chamber, and at least one electrode connected to a high-voltage system is installed in the reactor. An inlet line is located in the lower side of the reactor, opposite which an outlet line is located on the other side of the reactor.
Димните газове преминават през пространство, в което един или повече корониращи електроди за създаване на плазма излъчват електрони, които йонизират само твърдите частици. Следствие на последното молекулите на вредните газове не се трансформират в безвредни и полезни съединения.The flue gases pass through a space in which one or more corona electrodes create plasma electrons that ionize only the solid particles. As a result, the molecules of harmful gases are not transformed into harmless and useful compounds.
Техническа същност на изобретениетоTechnical essence of the invention
Задачата на изобретението е да се създаде метод и устройство за улавяне на въглероден диоксид и неговата трансформация в гориво, при което въглеродният диоксид да не се възстановява напълно, т.е. до елементарен въглерод, а частично до CO, който е горим газ, без да е необходима сложна технология за това. Методът и устройството да гарантират справяне с екологичния проблем, който е следствие от увеличаването на въглеродния диоксид в атмосферата.The object of the invention is to provide a method and a device for capturing carbon dioxide and its transformation into fuel, in which the carbon dioxide is not completely recovered, i. to elemental carbon, and partly to CO, which is a combustible gas, without the need for complex technology. The method and device to ensure that the environmental problem, which is a consequence of the increase of carbon dioxide in the atmosphere, is addressed.
Задачата е решена с метод за улавяне на въглероден диоксид и трансформацията му в газово гориво, при който се осъществява подаване на димен газ или газова смес към реактор. Въглеродният диоксид самостоятелно или в смес с водни пари и/или с метан се подлага на импулсно и/или акустично въздействие, а след това преминава през реактора през термично активирани зони с температура 800 до 1000°С, до получаване на въглероден монооксид и/или синтезиран газ.The problem is solved by a method for capturing carbon dioxide and its transformation into a gaseous fuel, in which flue gas or gas mixture is fed to a reactor. Carbon dioxide alone or in a mixture with water vapor and / or methane is subjected to pulsed and / or acoustic action, and then passes through the reactor through thermally activated zones with a temperature of 800 to 1000 ° C, to obtain carbon monoxide and / or synthesized gas.
Термично активираната зона съдържа термично активирано късово или зърнесто твърдо въглеродсъдържащо гориво.The thermally activated zone contains thermally activated short or granular solid carbonaceous fuel.
Въглеродният диоксид самостоятелно или в смес с водни пари и/или с метан нагрети до 1000°С преминава през термично активирана зона, която е химическа електроплазмена зона.Carbon dioxide alone or in a mixture with water vapor and / or methane heated to 1000 ° C passes through a thermally activated zone, which is a chemical electroplasmic zone.
Задачата се решава и с устройство за реализация на метода, включващо реактор с камера, като в реактора е монтиран най-малко един електрод, свързан към високоволтова уредба. В долната страна на реактора е разположен входящ тръбопровод, противоположно на който от другата страна на реактора се намира изходящ тръбопровод. Съгласно изобретението, камерата на реактора е запълнена с въглероден твърд носител, термично активиран от 800°С до 1000°С. Електродите са иглест катод иThe problem is also solved with a device for implementing the method, including a reactor with a chamber, as at least one electrode connected to a high-voltage system is installed in the reactor. An inlet line is located in the lower side of the reactor, opposite which an outlet line is located on the other side of the reactor. According to the invention, the reactor chamber is filled with a carbon solid support thermally activated from 800 ° C to 1000 ° C. The electrodes are a needle cathode and
Описания на издадени патенти за изобретения № 02.1/15.02.2019 плосък анод, а в отвора на входящия тръбопровод е монтирана ротираща пластина за генериране на импулсно въздействие.Descriptions of issued patents for inventions № 02.1 / 15.02.2019 flat anode, and in the opening of the inlet pipe is mounted a rotating plate for generating impulse action.
Според вариант на изобретението, камерата на реактора е запълнена с плазма.According to a variant of the invention, the reactor chamber is filled with plasma.
Предимство на метода и устройството е, че отпада необходимостта от търсене на подходящи места за съхраняване на уловения въглероден диоксид с други технологии, създава се полезен продукт - газово гориво, което макар и с по-малка калоричност от природния газ може да се използва за различни топлинни цели. При необходимост от повишаване на калоричността му проблемът е сравнително лесно решим с едновременно провеждане на частично възстановяване на въглеродния диоксид до въглероден монооксид и провеждане на химическо възстановяване на водорода от водни пари.The advantage of the method and the device is that there is no need to look for suitable places to store the captured carbon dioxide with other technologies, a useful product is created - gaseous fuel, which although lower in calorific value than natural gas can be used for various thermal purposes. If it is necessary to increase its calorific value, the problem is relatively easy to solve by simultaneously carrying out partial reduction of carbon dioxide to carbon monoxide and carrying out chemical reduction of hydrogen from water vapor.
Пояснение на приложените фигуриExplanation of the attached figures
Примерни изпълнения на метода и устройството, съгласно изобретението са показани на приложените фигури, където:Exemplary embodiments of the method and device according to the invention are shown in the attached figures, where:
фигура 1а илюстрира получаването на моногаз (CO);Figure 1a illustrates the preparation of monogas (CO);
фигура 16 - получаването на синтетичен газ (CO + Н2);Figure 16 - preparation of synthetic gas (CO + H 2 );
фигура 1в - получаването на висококалоричен синтетичен газ;Figure 1c shows the production of high calorific synthetic gas;
фигура 2 представлява схематичен вид на устройството за реализиране на метода.Figure 2 is a schematic view of the device for implementing the method.
Примерни изпълнения и приложение на изобретениетоExemplary embodiments and application of the invention
За реализация на метода се използват следните химически превръщания:The following chemical transformations are used to implement the method:
СО2 + С = 2СО Н2О пари + С = CO + Н2 CO 2 + C = 2CO H 2 O money + C = CO + H 2
За осъществяване на тези реакции е необходима температура над 800-1000°С като при тези високи температури реакциите са изтеглени изцяло надясно.To carry out these reactions, a temperature above 800-1000 ° C is required, and at these high temperatures the reactions are drawn all the way to the right.
Калоричността на получаваните газове зависи от това дали въглеродният диоксид е примесен с други газове и с какви. При някои технологии въглеродният диоксид се отделя от другите газове: азот, серни оксиди, азотни оксиди и след това се сгъстява или втечнява, за да бъде подготвен за “погребване”. Ако обаче такъв чист газ въглероден диоксид се използва за получаване на газово гориво, калоричността му ще бъде значителна поради отсъствието на разреждането на други газове. Това, обаче не винаги се оказва икономично. Калоричността на въглеродния монооксид, когато е разреден с азот, е около 8001000 kkal/m3 газ. Синтетичният газ има калоричност около 2400-2600 kkal/m3.The calorific value of the gases obtained depends on whether and with which carbon dioxide is mixed with other gases. In some technologies, carbon dioxide is released from other gases: nitrogen, sulfur oxides, nitrogen oxides and then thickened or liquefied to be prepared for "disposal". However, if such pure carbon dioxide gas is used to produce a gaseous fuel, its calorific value will be significant due to the absence of dilution of other gases. However, this does not always prove to be economical. The calorific value of carbon monoxide, when diluted with nitrogen, is about 8001000 kcal / m 3 gas. Synthetic gas has a calorific value of about 2400-2600 kcal / m 3 .
Метан може да се примеси към готовия обикновен или синтетичен газ, или да участва при получаването на горими газове, ако се примеси към реагиращите газове в реактора. Очевидно в този случай калоричността на новопроизведения газ ще бъде повишена, в зависимост от количеството на подадения метан. За случая валидни са реакциите:Methane can be mixed with the finished ordinary or synthetic gas, or participate in the production of combustible gases if mixed with the reacting gases in the reactor. Obviously in this case the calorific value of the newly produced gas will be increased, depending on the amount of methane supplied. The following reactions are valid for this case:
СО2 + СН4 = 2СО + 2Н2 Н2О + СН4 = CO + зн2 CO 2 + CH 4 = 2CO + 2H 2 H 2 O + CH 4 = CO + Zn 2
За протичането на тези реакции надясно, също са необходими температури около 800-1000 градуса.Temperatures of about 800-1000 degrees are also required for these reactions to proceed to the right.
При технологиите с въглероден твърд носител за интензифициране на процеса, се прилага импулсно или акустично въздействие или и двете едновременно, което зависи от физико-химическата характеристика на твърдия въглеродоносител. Посочените физически въздействия благоприятстват създаването на локални натискни въздействия върху повърхностите на зърната и късовете, като ги очистват бързо от новообразуваните газове, откривайки нови повърхности за реакционно въздействие. Освен това натискът помага проникването на реагиращите газове в порите и междините между тях, което формира скоростна кинетика на процесите. Импулсното интензифициращо въздействие се постига с пулсатори за газови среди (например лопатни пулсатори - на фигурите не са показани), а акустичното се реализира с акустични генератори с широк честотен спектър (например пневматични свирки на фигурите не са показани). Тези интензифициращи средства се монтират в близост до входа на газовете в реакторите. В зависимост от големината на реакторите се определя интензитета на тези технически средства, за да може енергията на импулсите и акустиката да е достатъчна за обработка на целия обем на реакторите.In the case of carbon-solid technologies for process intensification, impulse or acoustic effects are applied, or both at the same time, which depends on the physico-chemical characteristics of the solid carbon carrier. These physical effects favor the creation of local compressive effects on the surfaces of the grains and pieces, quickly clearing them of newly formed gases, opening new surfaces for reaction. In addition, the pressure helps the penetration of the reacting gases into the pores and the gaps between them, which forms the velocity kinetics of the processes. The pulse intensifying effect is achieved with pulsators for gaseous media (for example, paddle pulsators - not shown in the figures), and the acoustic is realized with acoustic generators with a wide frequency spectrum (for example, pneumatic whistles in the figures are not shown). These intensifiers are installed near the inlet of the gases in the reactors. Depending on the size of the reactors, the intensity of these technical means is determined so that the energy of the pulses and acoustics is sufficient to process the entire volume of the reactors.
В реакторите с плазмено електрохимично въздействие, импулсните и звукови въздействия спомагатIn reactors with plasma electrochemical effects, pulsed and sound effects help
Описания на издадени патенти за изобретения № 02.1/15.02.2019 за бързо и равномерно хомогенизиране на газовата смес, което е условие за ускоряването на протичането на химическите реакции.Descriptions of issued patents for inventions № 02.1 / 15.02.2019 for fast and uniform homogenization of the gas mixture, which is a condition for the acceleration of the chemical reactions.
В някои случаи ускорена реакционна ситуация може да се поддържа с катализатори никел, желязо и др., стрити до пясъкоподобно състояние. В тези случаи импулсното и звуково въздействие поддържат активните им повърхности чисти, което осигурява не само бързи химически процеси, но и дълъг живот на катализаторите, поради отдалечаването във времето на “отравянето им”.In some cases, an accelerated reaction situation can be maintained with nickel, iron, etc. catalysts ground to a sandy state. In these cases, the impulse and sound effects keep their active surfaces clean, which ensures not only fast chemical processes, but also a long life of the catalysts, due to the distance in time of "poisoning".
Предвид на това, че в газовите смеси получени при смесване с димни газове присъства определено количество кислород, необходимо е при образуването на смеси с метан да се спазват граничните предели за концентрация на газовете в сместа, за постигане на пожарна и експлозивна безопасност.Given that a certain amount of oxygen is present in the gas mixtures obtained by mixing with flue gases, it is necessary in the formation of mixtures with methane to observe the limits for the concentration of gases in the mixture to achieve fire and explosion safety.
Устройството за провеждане на метода представлява реактор 1 с камера, която е запълнена с въглероден твърд носител.The process device is a reactor 1 with a chamber which is filled with a carbon solid support.
Камерата може да бъде с високотемпературна газова среда (плазма), с иглест катод 3 и плосък анод 6, свързани към високоволтова уредба 2.The chamber can be with a high-temperature gaseous medium (plasma), with a needle cathode 3 and a flat anode 6 connected to a high-voltage system 2.
Устройството притежава ротираща пластина 5, монтирана във входящ газопровод 4, разположен в долната част на реактора 1, служеща за периодично прекъсване на газовия поток с цел генериране на импулсно въздействие. От другата страна на камерата е разположен изходящ тръбопровод 7 за CO + Н2.The device has a rotating plate 5 mounted in the inlet gas line 4, located in the lower part of the reactor 1, serving for periodic interruption of the gas flow in order to generate a pulse effect. On the other side of the chamber is located an outlet pipe 7 for CO + H 2 .
Необходимата за реакциите с температура 800°С до 1000°С се постига или чрез външен или чрез вграден в стените на реактора нагревател, непоказан на приложените фигури.The required for reactions with a temperature of 800 ° C to 1000 ° C is achieved either by an external or by a heater built into the walls of the reactor, not shown in the attached figures.
Методът се илюстрира със следните примери.The method is illustrated by the following examples.
Пример 1.Example 1.
Получаването на моногаз (CO) се осъществява при самостоятелното преминаване на въглероден диоксид през термично активното твърдо гориво в реактор (фиг. 1а), където протича реакцията:The production of monogas (CO) is carried out by the independent passage of carbon dioxide through the thermally active solid fuel in a reactor (Fig. 1a), where the reaction takes place:
СО2 + С = CO.CO 2 + C = CO.
Пример 2.Example 2.
Получаването на синтетичен газ от въглероден диоксид и водни пари се осъществява след преминаването им през термично активирано твърдо гориво в реактор (фиг. 16), където протичат реакциите: СО2 + С = CO н2о + с = co + н2 The production of synthetic gas from carbon dioxide and water vapor is carried out after their passage through thermally activated solid fuel in a reactor (Fig. 16), where the reactions take place: CO 2 + C = CO n 2 o + c = co + n 2
Пример 3.Example 3.
Висококалоричен синтетичен газ от въглероден диоксид, водни пари и метан се осъществява след преминаването им през термично активирано твърдо гориво в реактор (фиг. 1в), където протичат реакциите:High-calorific synthetic gas from carbon dioxide, water vapor and methane is carried out after their passage through thermally activated solid fuel in a reactor (Fig. 1c), where the reactions take place:
Н2О + С = CO + Н2 H 2 O + C = CO + H 2
СН4 + Н2О = CO + зн2 СО2 + С = 2СОCH 4 + H 2 O = CO + Zn 2 CO 2 + C = 2CO
Пример 4.Example 4.
Получаването на синтетичен газ от въглероден диоксид, метан и водни пари се осъществява след преминаването им през електроплазмен реактор за химическите процеси (фиг. 2), където между иглест катод и плосък анод при температура около 1000°С протичат реакциите:The production of synthetic gas from carbon dioxide, methane and water vapor takes place after passing through an electroplasmic reactor for chemical processes (Fig. 2), where between the needle cathode and the flat anode at a temperature of about 1000 ° C the reactions take place:
СН4 + Н2О = CO + зн2 СО2 + СН4 = 2СО + 2Н2 Патентни претенцииCH 4 + H 2 O = CO + H 2 CO 2 + CH 4 = 2 CO + 2H 2 is claimed is:
Claims (6)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BG111575A BG66814B1 (en) | 2013-09-19 | 2013-09-19 | Method and device for capturing carbon dioxide and its transformation in gas fuel |
PCT/BG2014/000031 WO2015039195A1 (en) | 2013-09-19 | 2014-08-21 | Method and device for carbon dioxide capturing and its transformation into gaseous fuel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BG111575A BG66814B1 (en) | 2013-09-19 | 2013-09-19 | Method and device for capturing carbon dioxide and its transformation in gas fuel |
Publications (2)
Publication Number | Publication Date |
---|---|
BG111575A BG111575A (en) | 2015-03-31 |
BG66814B1 true BG66814B1 (en) | 2019-01-15 |
Family
ID=51893792
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
BG111575A BG66814B1 (en) | 2013-09-19 | 2013-09-19 | Method and device for capturing carbon dioxide and its transformation in gas fuel |
Country Status (2)
Country | Link |
---|---|
BG (1) | BG66814B1 (en) |
WO (1) | WO2015039195A1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111186816B (en) * | 2020-01-17 | 2022-04-01 | 西安交通大学 | Plasma carbon sequestration system and method |
CN112851463B (en) * | 2021-03-18 | 2023-06-13 | 西安热工研究院有限公司 | System and method for preparing methane by using boiler sulfur-containing flue gas |
BE1030542B1 (en) | 2022-05-18 | 2023-12-18 | D Crbn Bv | IMPROVED CO2 TO CO CONVERSION METHOD AND SYSTEM |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4190636A (en) * | 1978-09-26 | 1980-02-26 | Chemetron Corporation | Production of carbon monoxide in a plasma arc reactor |
FI83481C (en) | 1989-08-25 | 1993-10-25 | Airtunnel Ltd Oy | REFERENCE FOUNDATION FOR LENGTH, ROEKGASER ELLER MOTSVARANDE |
AT503517B1 (en) | 2002-11-04 | 2010-05-15 | New Plasma Gmbh & Co Keg | METHOD FOR ACTIVATING, ESPECIALLY GASOLATED, CARBON CONTAINING SUBSTANCES |
RU2345276C1 (en) | 2007-07-10 | 2009-01-27 | Сергей Викторович Дигонский | Method of hydrocarbon fuel combustion |
US20090307974A1 (en) * | 2008-06-14 | 2009-12-17 | Dighe Shyam V | System and process for reduction of greenhouse gas and conversion of biomass |
WO2010062879A2 (en) * | 2008-11-26 | 2010-06-03 | Good Earth Power Corporation | Enhanced product gas and power evolution from carbonaceous materials via gasification |
BG66275B1 (en) | 2009-12-14 | 2012-12-28 | Българска Стопанска Камара - Съюз На Българския Бизнес | A method and installation for purification of smoke gases from sulphur oxides and carbon dioxide |
US8435478B2 (en) | 2011-01-27 | 2013-05-07 | Southwest Research Institute | Enhancement of syngas production in coal gasification with CO2 conversion under plasma conditions |
-
2013
- 2013-09-19 BG BG111575A patent/BG66814B1/en unknown
-
2014
- 2014-08-21 WO PCT/BG2014/000031 patent/WO2015039195A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
BG111575A (en) | 2015-03-31 |
WO2015039195A1 (en) | 2015-03-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Feruza | TECHNOLOGY FOR PROCESSING CARBON DIOXIDE EXHAUSTED FROM THE MIXTURE OF EXHAUST GAS FLOWS | |
Budhraja et al. | Plasma reforming for hydrogen production: Pathways, reactors and storage | |
Kodirova | TECHNOLOGY FOR PROCESSING CARBON DIOXIDE EXHAUSTED FROM THE MIXTURE OF EXHAUST GAS FLOWS | |
Sun et al. | Plasma catalytic steam reforming of a model tar compound by microwave-metal discharges | |
WO2010141306A1 (en) | Methods and apparatuses for converting carbon dioxide and treating waste material | |
KR102588840B1 (en) | Apparatus and method of hydrogen production from reforming of plastic waste by microwave plasma torch | |
RU2385836C2 (en) | Method of developing hydrogen energy chemical complex and device for its realisation | |
ES2190695A1 (en) | Process and device for autothermic gasification of solid fuels | |
BG66814B1 (en) | Method and device for capturing carbon dioxide and its transformation in gas fuel | |
Deng et al. | Study on the thermal conversion characteristics of demineralized coal char under pressurized O2/H2O atmosphere | |
Bai et al. | Experimental study of nitrogen conversion during char combustion under a pressurized O2/H2O atmosphere | |
CA3236706A1 (en) | Improved catalytic reactor for the conversion of carbon dioxide and hydrogen to syngas | |
RU2004101734A (en) | MAGNETO-HYDRODYNAMIC METHOD FOR PRODUCING ELECTRIC ENERGY AND SYSTEM FOR ITS IMPLEMENTATION | |
Gökalp | A holistic approach to promote the safe development of hydrogen as an energy vector | |
US20210162339A1 (en) | High temperature co2 steam and h2 reactions for environmental benefits. | |
ES2824506T3 (en) | Method for the production of syngas | |
KR101538211B1 (en) | Plasmatron Equipment for Carbon Dioxide Destruction | |
KR101713804B1 (en) | Externally Oscillated Plasma Equipment for Tar Destruction in Producer Gas from Waste Pyrolysis/Gasification and in Exhaust Gas from Biomass Combustion | |
CN105219462B (en) | Modified HCNG fuel process and preparation system | |
CN112689610B (en) | By treatment of CO-containing 2 And a process for producing synthesis gas from a gas stream of one or more hydrocarbons | |
US11578280B2 (en) | Method for the treatment of granulated liquid slag in a horizontal furnace | |
JP2010260778A (en) | Method and unit of manufacturing hydrogen | |
Samanta et al. | Advanced Hydrogen Production through Methane Cracking: A Review | |
WO2014100887A1 (en) | Method for producing fuel and heat energy therefrom | |
RU2415262C1 (en) | Procedure for gasification of hydrocarbons for production of electric power and carbonic nano materials |