BE876720A - SOLAR ENERGY THERMAL SENSOR. - Google Patents

SOLAR ENERGY THERMAL SENSOR.

Info

Publication number
BE876720A
BE876720A BE1/9414A BE195522A BE876720A BE 876720 A BE876720 A BE 876720A BE 1/9414 A BE1/9414 A BE 1/9414A BE 195522 A BE195522 A BE 195522A BE 876720 A BE876720 A BE 876720A
Authority
BE
Belgium
Prior art keywords
emi
solar energy
thermal sensor
energy thermal
liquid
Prior art date
Application number
BE1/9414A
Other languages
French (fr)
Original Assignee
Strelczyk Bartolomey
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Strelczyk Bartolomey filed Critical Strelczyk Bartolomey
Priority to BE1/9414A priority Critical patent/BE876720A/en
Publication of BE876720A publication Critical patent/BE876720A/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/80Solar heat collectors using working fluids comprising porous material or permeable masses directly contacting the working fluids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Building Environments (AREA)

Description

       

   <EMI ID=1.1> 

DESCRIPTION 

  
Capteur thermique d'énergie solaire.

  
STRZELCZYK Bartolomey

  
L'invention concerne le sujet technique.

  
Il s'agit d'un dispositif destine à capter l'énergie solaire et à le transformer en chaleur,

  
 <EMI ID=2.1> 

  
le résultat de la viscosité,de la gravitation, du capillaire phénomène ou de forces extérieures. 

  
 <EMI ID=3.1> 

  
Description de la construction et du fonctionnement Apres etre passes àtravers les vitres de la fenêtre,les rayons solaires sont captes par une couche noire humida d'un matériau poreux et la chaleur ainsi obtenue est transporte par le liquide. Qualité du materiau poreuse 

  
on utilisera un materiau fibreux dont les fibres sont parallèles

  
 <EMI ID=4.1> 

  
d'avoir des connections entre les espaces libres dans la direction perpendiculaire.La oouche de materiau poreux sera fixée sur le fond qui doit etre,lui,tres bien isole. 

  
Le mouvement du liquide peut etre obtenu de trois façons:

  
I) par la force de la gravitation

  
2) par la force du pression externe

  
 <EMI ID=5.1> 

  
Dans les cas I et2 la couche poreuse doit etre etenche en supprimai) l'espace d'air qui se trouve au-dessus de la surface de captation.  Tourbillon thermique voir dessin no.2

  
 <EMI ID=6.1> 

  
Le coupe "M" montre la dispersion de la température qui se opere en fonction de la profondeur,

  

 <EMI ID=7.1> 


  
avant la convection,et le coupe "B" montre la mome fonctionnais  cette fois a l'intérieur du mouvement giratoire. 

  
Création et effet résultant de la convection

  
Deux trajectoires I et2 appara,issent dans le dessin 2. La trajectoi numéro 1 appartient à la partie liquide du dms qui s'écoule,  parallèlement à la surface de captation. 

  
 <EMI ID=8.1> 

  

 <EMI ID=9.1> 


  
 <EMI ID=10.1> 

  
 <EMI ID=11.1> 

  
et de façon developpe
 <EMI ID=12.1> 
 page 3 , : 

  
 <EMI ID=13.1> 

  

 <EMI ID=14.1> 


  
la fonction numero 2 prend maintenant la forme de: !

  

 <EMI ID=15.1> 


  
l'accroissement de ohaleur du à la oaptation est oonforme à

  

 <EMI ID=16.1> 


  
mais nous pouvons montrer la durée du passage en fonction de la vitesse et après le passage nous avons

  

 <EMI ID=17.1> 


  
Pour les instalations gui fonctionnent par un mouvement résultant de la force de gravitation ou capillaire le rendement est exprime par: 

  

 <EMI ID=18.1> 


  
elements pour passage suivant:

  

 <EMI ID=19.1> 
 

  

 <EMI ID=20.1> 


  
et apres la formule de la vitesse est la suivante: 

  

 <EMI ID=21.1> 


  
A oe point il semble que les système active par la force de la gravitation seront plus adequates pour les instalations à

  
 <EMI ID=22.1> 

  
liquide,la chaleur reçue par cette partie est egale à

  

 <EMI ID=23.1> 


  
ou par association :

  

 <EMI ID=24.1> 


  
 <EMI ID=25.1> 

  

 <EMI ID=26.1> 


  
Dans le cas d'une construction speoiale de matériau poreux, nous potirons pousser les parties du dmI à la profondeur^, h non conforme à son niveau.

  
Cela permet de créer un mouvement giratoire des molécules liquides dans un milieu relativement froid.Apres quelqes temps le mouvement giratoire permetra d'obtenir la meme température

  
 <EMI ID=27.1> 

  

 <EMI ID=28.1> 




   <EMI ID = 1.1>

DESCRIPTION

  
Solar energy thermal collector.

  
STRZELCZYK Bartolomey

  
The invention relates to the technical subject.

  
It is a device intended to capture solar energy and transform it into heat,

  
 <EMI ID = 2.1>

  
the result of viscosity, gravitation, capillary phenomenon or external forces.

  
 <EMI ID = 3.1>

  
Description of construction and operation After passing through the window panes, the solar rays are captured by a black layer moistened with a porous material and the heat thus obtained is transported by the liquid. Quality of porous material

  
we will use a fibrous material whose fibers are parallel

  
 <EMI ID = 4.1>

  
to have connections between the free spaces in the perpendicular direction. The porous material layer will be fixed on the bottom which must be very well insulated.

  
The movement of the liquid can be obtained in three ways:

  
I) by the force of gravity

  
2) by the force of the external pressure

  
 <EMI ID = 5.1>

  
In cases I and 2 the porous layer must be sealed by removing the air space which is located above the collection surface. Thermal vortex see drawing no.2

  
 <EMI ID = 6.1>

  
Section "M" shows the temperature dispersion which operates as a function of depth,

  

 <EMI ID = 7.1>


  
before convection, and section "B" shows the kid running inside the gyratory this time.

  
Creation and effect resulting from convection

  
Two trajectories I and 2 appear in drawing 2. The trajectory number 1 belongs to the liquid part of the dms which flows, parallel to the sensing surface.

  
 <EMI ID = 8.1>

  

 <EMI ID = 9.1>


  
 <EMI ID = 10.1>

  
 <EMI ID = 11.1>

  
and in a developed way
 <EMI ID = 12.1>
 page 3,:

  
 <EMI ID = 13.1>

  

 <EMI ID = 14.1>


  
function number 2 now takes the form of:!

  

 <EMI ID = 15.1>


  
the increase in heat due to adaptation is consistent with

  

 <EMI ID = 16.1>


  
but we can show the duration of the passage according to the speed and after the passage we have

  

 <EMI ID = 17.1>


  
For installations which operate by a movement resulting from the gravitational or capillary force, the efficiency is expressed by:

  

 <EMI ID = 18.1>


  
elements for next passage:

  

 <EMI ID = 19.1>
 

  

 <EMI ID = 20.1>


  
and after the speed formula is as follows:

  

 <EMI ID = 21.1>


  
At this point it seems that the systems activated by the force of gravity will be more adequate for the installations with

  
 <EMI ID = 22.1>

  
liquid, the heat received by this part is equal to

  

 <EMI ID = 23.1>


  
or by association:

  

 <EMI ID = 24.1>


  
 <EMI ID = 25.1>

  

 <EMI ID = 26.1>


  
In the case of a special construction of porous material, we will push the parts of the dmI to the depth ^, h not conforming to its level.

  
This makes it possible to create a gyratory movement of the liquid molecules in a relatively cold environment. After some time the gyratory movement will allow to obtain the same temperature.

  
 <EMI ID = 27.1>

  

 <EMI ID = 28.1>



    

Claims (1)

<EMI ID=29.1> <EMI ID = 29.1> Technologie pour la production Technology for production La production d'un tel dispositif est tres bon marche, car peut se faire sans pièces metaliques, The production of such a device is very cheap, because it can be done without metal parts, I)Ce sera un dispositif tres leger I) It will be a very light device 2) Il pourrait etre tres flexible(facilement applicable) Application 2) It could be very flexible (easily applicable) Application Partout et pour tout ce qui nécessitée de la chaleur et ou l'ensoleillement est assure. Everywhere and for everything that requires heat and or sunshine is provided.
BE1/9414A 1979-06-01 1979-06-01 SOLAR ENERGY THERMAL SENSOR. BE876720A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
BE1/9414A BE876720A (en) 1979-06-01 1979-06-01 SOLAR ENERGY THERMAL SENSOR.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BE876720 1979-06-01
BE1/9414A BE876720A (en) 1979-06-01 1979-06-01 SOLAR ENERGY THERMAL SENSOR.

Publications (1)

Publication Number Publication Date
BE876720A true BE876720A (en) 1979-10-01

Family

ID=25651477

Family Applications (1)

Application Number Title Priority Date Filing Date
BE1/9414A BE876720A (en) 1979-06-01 1979-06-01 SOLAR ENERGY THERMAL SENSOR.

Country Status (1)

Country Link
BE (1) BE876720A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015035271A1 (en) * 2013-09-06 2015-03-12 Massachusetts Institute Of Technology Localized solar collectors
US10234172B2 (en) 2013-09-06 2019-03-19 Massachusetts Institute Of Technology Localized solar collectors

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015035271A1 (en) * 2013-09-06 2015-03-12 Massachusetts Institute Of Technology Localized solar collectors
US9459024B2 (en) 2013-09-06 2016-10-04 Massachusetts Institute Of Technology Localized solar collectors
US10234172B2 (en) 2013-09-06 2019-03-19 Massachusetts Institute Of Technology Localized solar collectors

Similar Documents

Publication Publication Date Title
US3923038A (en) Solar energy collector panel
Dinesh et al. Investigating the single pass baffled solar air heater (SAH) with an organic PCM (OPCM)
WO1986004258A1 (en) Method and device for recovering in liquid form water present in the atmosphere in vapour form
US8459250B2 (en) Solar energy collection
DE602006000906T2 (en) Solar panel with concentration
FR2813087A1 (en) Unit recovering atmospheric moisture from vapor or mist state employs hygroscopic salts for absorption, in combination with solar still for release
US4116225A (en) Solar energy collector
BE876720A (en) SOLAR ENERGY THERMAL SENSOR.
AU697283B2 (en) Solar collector
US4069810A (en) Vacuum solar collectors
US4177794A (en) Evacuated-tube solar collector
Garg et al. Investigation of rock bed solar collector cum storage system
JPS61231358A (en) Heat receptor device
GB2213244A (en) Refrigerating appliances
DE3629816C2 (en)
CN106016776A (en) Whole-glass heat pipe vacuum solar collector
US4205660A (en) Solar energy collector
KR20020047766A (en) Plat type of solar absorber system comprising a transparent insulator
CH621619A5 (en) Storage unit for heat-transfer liquid, particularly water
CN108592414A (en) Vaporation-type solar water heater based on functional material
Gandhidasan Closed-type solar regenerator: analysis and simulation
KR200453397Y1 (en) Penetration type vacuum tube for solar collect
JPS5820853Y2 (en) solar heat collector
DE2626895A1 (en) Solar collector with flat airtight housing - with transparent plastic cover and air-filled inner chamber
JPS583004Y2 (en) solar heat collector