BE682774A - - Google Patents

Info

Publication number
BE682774A
BE682774A BE682774DA BE682774A BE 682774 A BE682774 A BE 682774A BE 682774D A BE682774D A BE 682774DA BE 682774 A BE682774 A BE 682774A
Authority
BE
Belgium
Prior art keywords
tube
ptfe
temperature
extruded
flanges
Prior art date
Application number
Other languages
French (fr)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Publication of BE682774A publication Critical patent/BE682774A/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C63/00Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor
    • B29C63/38Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor by liberation of internal stresses
    • B29C63/46Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor by liberation of internal stresses of internal surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L58/00Protection of pipes or pipe fittings against corrosion or incrustation
    • F16L58/02Protection of pipes or pipe fittings against corrosion or incrustation by means of internal or external coatings
    • F16L58/04Coatings characterised by the materials used
    • F16L58/10Coatings characterised by the materials used by rubber or plastics
    • F16L58/1009Coatings characterised by the materials used by rubber or plastics the coating being placed inside the pipe
    • F16L58/1027Coatings characterised by the materials used by rubber or plastics the coating being placed inside the pipe the coating being a sprayed layer

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)

Description

  

   <Desc/Clms Page number 1> 
 



  Nouveau procédé de mise en place de tube extrudé en polytetrafluoroethylène. 



   La présente invention, due aux travaux de M. BIGOT, décrit un nouveau procédé de mise en place de tube extrudé en 
 EMI1.1 
 polytétrafluoroéthylene (PTPE), à l'intérieur d'un tube d'acier, 
Le procédé consistant à munir un tube   d'acier   de brides à chaque extrémité sur lesquelles viennent se rabattre les collerettes du tube intérieur en   PTFE   extrudé est connu, 

 <Desc/Clms Page number 2> 

 et conduit à un élément de tuyauterie à la fois résistant aux chocs par son enveloppe extérieure métallique et pratiquement inerte chimiquement à tous les agents corrosifs par son revêtement intérieur en PTFE. 



     Un   tel élément de tuyauterie peut supporter en continu une température de service de   250*C.   



   Toutefois un inconvénient subsiste. On sait, en effet,   @   que la dilatation linéaire d'un tube en PTFE pour une température donnée est environ dix fois supérieure à celle d'un tube d'acier de même longueur, porté à la même température. Cette importante différence de dilatation peut se traduire à chaud par un plissement intérieur du tube de PTFE et le plus souvent par la formation de bourrelets aux extrémités serrées sur brides. 



   Il existe donc, lorsque la tuyauterie revêtue fonctionne à chaude,      un goulet d'étranglement du tube de PTFE au niveau de chaque bride, ce qui entraîne une perte de charge du fluide transporté et constitue une amorce de rupture. 



   Les Fig. 1 et 2 qui ont pour objet d'illustrer ce qui précède montrent d'une part l'élément de tuyauterie se composant du tube d'acier extérieur (1) et du tube intérieur en PTFE   @   extrudé (2), d'autre part le plissement intérieur du tube en 
PTFE et la formation de bourrelets (3) aux extrémités serrées sur brides lorsque l'ensemble fonctionne à chaud.      



   Le but de la présente invention est de pallier cet inconvénient en jouant sur la "mémoire élastique" du PTFE. 
 EMI2.1 
 



  On sait que le polytétrafluoroéthylène possède la propriété de tendre vors sa forme initiale si, après contrainte à froid, il est porté une température nettement supérieure à celle à      laquelle on opère cette contrainte. Le temps de relaxation, (autrement   @it   cette mémoire élastique citée plus haut) ,est fonction essentiellement de la température à laquelle ell.e s'opère. Ainsi, une éprouvette de PTFE étirée à froid (20 C en- viron) de 10% par exemple, tendra plus ou moins vite à reprendre 

 <Desc/Clms Page number 3> 

 sa longueur initiale, suivant qu'elle est soumise à une température de 50, 100, 200 ou 250 C. La reprise serait totale si le point de transition (327 C) était atteint. 



   Cette relaxation semble d'ailleurs proportionnelle à la température et fixée par cette dernière à une valeur constante.   ratant   de cette observation, il est facile d'imaginer un systeme de traction permettant d'étirer à froid un tube de PTFE extrudé de diamètre donné Dl. Pour un allongement de 15% de sa longueur initiale par exemple, le tube subit une striction et son nouveau diamètre D2 est inférieur évidemment à Dl. 



   Si après un temps donné, variable avec le diamètre du tube et l'épaisseur de sa paroi, on relâche la contrainte, le tube de PTFE extrudé se rétreindra et son nouvel allongement stable à froid, sera d'environ 5,2 à 5,8% de sa longueur initiale. 



   Un tel tube précontraint, stable, est introduit dans une enveloppe métallique dont le diamètre est légèrement supérieur à celui du tube en PTFE précontraint. Un outillage simple permet de rabattre les collerettes du tube en PTFE sur les brides du tube métallique. A froid, il n'existe donc aucune tension du tube en PTFE sur ses collerettes. Si cet élément de tuyauterie est placé dans un circuit véniculant un fluide quelconque à haute température, trois phénomenes vont intervenir, a) la dilatation du tube d'acier, b) la dilatation du tube en PTFE extrudé qui devrait être, ainsi qu'il a été dit plus naut,   10   fois supérieure à celle de son enveloppe d'acier, c) la reprise élastique du tube en PTFE extrudé qui s'exerce en sens inverse de la dilatation. 



   L'exemple décrit ci-dessous fera mieux comprendre le principe de l'invention: 

 <Desc/Clms Page number 4> 

 
Un tube de PTFE, constituant une tuyauterie d'un mètre de longueur et de diamètre quelconque aura préalablement été étiré à froid de   15%,   puis sera revenu, apres suppression de la traction, à 5,5% par exemple. Il est introduit dans sa cnaudronnerie d'acier et les collerettes sont rabattues sur les brides. Cet ensemble est porté à 200 C. a) le tube d'acier s'allonge de 2 mm, b) le tube de PTFE extrudé va être soumis en même temps à deux sollicitations: son allongement de 20 mm, tendant à pousser sur les   collerettes et   à le plisser, - sa reprise élastique de 50 mm environ, tendant à reprendre la longueur initiale avant précontrainte et qui va "absorber" les 20 mm d'allongement thermique. 



   En définitive, le tube de PTFE extrudé et précontraint va se trouver tendu entre ses extrémités rabattues sur les brides et ne risque plus ainsi de se plisser ou de se déformer. 



   De plus, le diamètre tendant à reprendre sa valeur initiale, le tube de PTFE se plaquera parfaitement sur la paroi métallique de sa chaudronnerie. 



   Après refroidissement, la tension engendrée par la reprise élastique demeure et la tuyauterie peut de nouveau être chauffée sans inconvénient ni augmentation de longueur gênante. 



   Un contrôle de l'efficacité du procédé peut être effectué par l'une des deux méthodes   suivantes:   a) essai destructif: une éprouvette du tube en PTFE est prélevée dans le sens longitudinal du tube, et sa longueur est soigneusement notée. L'échantillon est porté à une température supérieure au point de transition   (327*C).   Un retrait important, supérieur à   2%   est alors observé. 

 <Desc/Clms Page number 5> 

 b) essai non destructif: un élément de tuyauterie revêtu intérieurement de PTFE est porté, par exemple, à 200 C. 



  Le tube intérieur en PTFE sa rétracte, entraînant d'ailleurs les collerettes vers l'intérieur du tube. 



   Au contraire, dans le cas d'une mise en place par un procédé habituel, le tube de PTFE s'allonge hors de sa chaudron- nerie.



   <Desc / Clms Page number 1>
 



  New process for installing an extruded polytetrafluoroethylene tube.



   The present invention, due to the work of M. BIGOT, describes a new process for placing an extruded tube in
 EMI1.1
 polytetrafluoroethylene (PTPE), inside a steel tube,
The process consisting in providing a steel tube with flanges at each end on which the flanges of the extruded PTFE inner tube are folded is known,

 <Desc / Clms Page number 2>

 and results in a pipe element which is both impact resistant by its metallic outer casing and practically chemically inert to all corrosive agents by its inner PTFE coating.



     Such a pipe element can continuously withstand an operating temperature of 250 ° C.



   However, one drawback remains. We know, in fact, @ that the linear expansion of a PTFE tube for a given temperature is about ten times greater than that of a steel tube of the same length, brought to the same temperature. This large difference in expansion can result when hot by an internal wrinkling of the PTFE tube and most often by the formation of beads with tight ends on flanges.



   There is therefore, when the coated piping is operating when hot, a bottleneck in the PTFE tube at each flange, which causes a pressure drop in the fluid transported and constitutes the initiation of a rupture.



   Figs. 1 and 2 which are intended to illustrate the above show on the one hand the piping element consisting of the outer steel tube (1) and the inner tube made of extruded PTFE @ (2), on the other hand the inner fold of the tube in
PTFE and the formation of beads (3) at the ends tightened on flanges when the assembly is hot.



   The aim of the present invention is to overcome this drawback by playing on the “elastic memory” of PTFE.
 EMI2.1
 



  It is known that polytetrafluoroethylene has the property of stretching vors its initial shape if, after cold stress, it is brought to a temperature markedly higher than that at which this stress is carried out. The relaxation time, (otherwise @it this elastic memory cited above), is essentially a function of the temperature at which it takes place. Thus, a test piece of PTFE cold drawn (approximately 20 C) of 10% for example, will tend more or less quickly to resume.

 <Desc / Clms Page number 3>

 its initial length, depending on whether it is subjected to a temperature of 50, 100, 200 or 250 C. The recovery would be total if the transition point (327 C) were reached.



   This relaxation also seems proportional to the temperature and fixed by the latter at a constant value. Missing this observation, it is easy to imagine a traction system making it possible to cold stretch an extruded PTFE tube of given diameter Dl. For an elongation of 15% of its initial length for example, the tube undergoes a necking and its new diameter D2 is obviously less than D1.



   If after a given time, variable with the diameter of the tube and the thickness of its wall, the stress is released, the extruded PTFE tube will shrink and its new cold stable elongation will be approximately 5.2 to 5, 8% of its original length.



   Such a stable prestressed tube is introduced into a metal casing whose diameter is slightly greater than that of the prestressed PTFE tube. Simple tools allow the flanges of the PTFE tube to be folded over the flanges of the metal tube. When cold, there is therefore no tension of the PTFE tube on its collars. If this element of piping is placed in a circuit poisoning any fluid at high temperature, three phenomena will occur, a) the expansion of the steel tube, b) the expansion of the extruded PTFE tube which should be, as well as was said more naut, 10 times greater than that of its steel casing, c) the elastic recovery of the extruded PTFE tube which is exerted in the opposite direction of the expansion.



   The example described below will make the principle of the invention better understood:

 <Desc / Clms Page number 4>

 
A PTFE tube, constituting a pipe of one meter in length and of any diameter will have previously been cold drawn by 15%, then will be returned, after removing the traction, to 5.5% for example. It is introduced into its steel cnaudronnerie and the flanges are folded over the flanges. This assembly is brought to 200 C. a) the steel tube lengthens by 2 mm, b) the extruded PTFE tube will be subjected at the same time to two stresses: its extension of 20 mm, tending to push on the collars and pleating, - its elastic recovery of approximately 50 mm, tending to resume the initial length before prestressing and which will "absorb" the 20 mm of thermal elongation.



   Ultimately, the extruded and prestressed PTFE tube will find itself stretched between its ends folded over the flanges and thus no longer runs the risk of wrinkling or deformation.



   In addition, as the diameter tends to return to its initial value, the PTFE tube will fit perfectly against the metal wall of its boiler room.



   After cooling, the tension generated by the elastic recovery remains and the piping can again be heated without inconvenience or inconvenient increase in length.



   A check of the efficiency of the process can be carried out by one of the following two methods: a) destructive test: a test piece of the PTFE tube is taken in the longitudinal direction of the tube, and its length is carefully noted. The sample is brought to a temperature above the transition point (327 ° C). A significant shrinkage, greater than 2%, is then observed.

 <Desc / Clms Page number 5>

 b) non-destructive test: a pipe element coated internally with PTFE is brought, for example, to 200 C.



  The inner PTFE tube retracts, causing the collars to move inside the tube.



   On the contrary, in the case of an installation by a usual process, the PTFE tube extends out of its boiler room.

 

Claims (1)

RESUME. ABSTRACT. Nouveau procédé de mise en place de tube extrudé en polytétrafluoroéthylène à l'intérieur d'un tube d'acier, consistant à jouer sur la "memoire élastique" du PTFE, ce dernier possédant la propriété de tenore vers 3a forme initiale si, après contrainte à froid, il est porté à une température nettement supérieure à celle à laquelle on opère cette contrainte, le temps de relaxation étant fonction, essentiellement, de la température à laquelle elle s'opère. New process for placing an extruded polytetrafluoroethylene tube inside a steel tube, consisting in playing on the "elastic memory" of the PTFE, the latter having the property of tenor towards the initial shape if, after stress when cold, it is brought to a temperature markedly higher than that at which this stress is carried out, the relaxation time being essentially a function of the temperature at which it takes place.
BE682774D 1965-11-03 1966-06-20 BE682774A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR37087 1965-11-03

Publications (1)

Publication Number Publication Date
BE682774A true BE682774A (en) 1966-12-01

Family

ID=8591715

Family Applications (1)

Application Number Title Priority Date Filing Date
BE682774D BE682774A (en) 1965-11-03 1966-06-20

Country Status (2)

Country Link
BE (1) BE682774A (en)
ES (1) ES328650A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2414994A1 (en) * 1978-01-19 1979-08-17 Carborundum Co POLYMER COATING SLEEVE, PRISMATIC COATED CYLINDER, AND COATING PROCESS
FR2503622A1 (en) * 1981-04-13 1982-10-15 Laurent Jacques PROCESS FOR INTERIORALLY PUTTING PIPES AND TUBE FOR ITS IMPLEMENTATION
FR2550309A1 (en) * 1983-08-01 1985-02-08 Dillinger Stahlbau Section for joining a long-distance heating pipeline to the inlet pipe in a building
EP0299408A1 (en) * 1987-07-14 1989-01-18 Hitachi Cable, Ltd. A pipe coated with a resin layer on the inner surface thereof and a method for manufacturing the same
US4998871A (en) * 1989-01-19 1991-03-12 Pipe Liners, Inc. Apparatus for deforming plastic tubing for lining pipe
US5091137A (en) * 1989-01-19 1992-02-25 Pipe Liners, Inc. Pipe lining process
US5306449A (en) * 1980-01-25 1994-04-26 Brittain Perry N Process for lining high pressure pipeline
US5395472A (en) * 1992-08-20 1995-03-07 Mandich; Ivan C. Lining system and methods for installing plastic liners in a pipe
FR2802216A1 (en) * 1999-12-14 2001-06-15 Lorraine Carbone HANDLING DEVICE FOR CORROSIVE CHEMICALS
CN118144344A (en) * 2024-05-11 2024-06-07 南京中鸿易工程科技有限公司 Method for preparing isostatic pressing steel lining Polytetrafluoroethylene (PTFE) pipeline

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2414994A1 (en) * 1978-01-19 1979-08-17 Carborundum Co POLYMER COATING SLEEVE, PRISMATIC COATED CYLINDER, AND COATING PROCESS
US5306449A (en) * 1980-01-25 1994-04-26 Brittain Perry N Process for lining high pressure pipeline
FR2503622A1 (en) * 1981-04-13 1982-10-15 Laurent Jacques PROCESS FOR INTERIORALLY PUTTING PIPES AND TUBE FOR ITS IMPLEMENTATION
EP0065886A1 (en) * 1981-04-13 1982-12-01 Jacques Laurent Method of lining a passageway and tube for carrying it out
FR2550309A1 (en) * 1983-08-01 1985-02-08 Dillinger Stahlbau Section for joining a long-distance heating pipeline to the inlet pipe in a building
EP0299408A1 (en) * 1987-07-14 1989-01-18 Hitachi Cable, Ltd. A pipe coated with a resin layer on the inner surface thereof and a method for manufacturing the same
US5091137A (en) * 1989-01-19 1992-02-25 Pipe Liners, Inc. Pipe lining process
US4998871A (en) * 1989-01-19 1991-03-12 Pipe Liners, Inc. Apparatus for deforming plastic tubing for lining pipe
US5395472A (en) * 1992-08-20 1995-03-07 Mandich; Ivan C. Lining system and methods for installing plastic liners in a pipe
FR2802216A1 (en) * 1999-12-14 2001-06-15 Lorraine Carbone HANDLING DEVICE FOR CORROSIVE CHEMICALS
WO2001043872A1 (en) * 1999-12-14 2001-06-21 Le Carbone Lorraine Device for handling corrosive chemicals
CN118144344A (en) * 2024-05-11 2024-06-07 南京中鸿易工程科技有限公司 Method for preparing isostatic pressing steel lining Polytetrafluoroethylene (PTFE) pipeline
CN118144344B (en) * 2024-05-11 2024-07-30 南京中鸿易工程科技有限公司 Method for preparing isostatic pressing steel lining Polytetrafluoroethylene (PTFE) pipeline

Also Published As

Publication number Publication date
ES328650A1 (en) 1967-05-01

Similar Documents

Publication Publication Date Title
BE682774A (en)
FR2421325A1 (en) SEALED INTERNAL SLEEVE FITTING FOR TUBE ENDINGS IN PIPELINES
FR2426232A1 (en) DEVICE TO STOP A LEAK IN A STRAIGHT PORTION OF A HEAT EXCHANGER TUBE
US2737225A (en) Pipe flaring device
CH352888A (en) Flexible synthetic material tube, process for manufacturing the tube and mandrel for carrying out the process
CH620380A5 (en)
US2901272A (en) Expansion joint
EP3027950A2 (en) Improved reinforcement strip for repairing fluid transport pipes
EP0065896A2 (en) Device for temporary solidification of a soft product
US1528859A (en) Pipe or conduit
WO2005114021A1 (en) Active thermal insulating device for gas piping
BE404813A (en)
CH102357A (en) Joint for pipe.
CH110994A (en) High pressure line hose.
BE661097A (en)
BE366553A (en)
FR2715208A1 (en) Spring valve for fluid applications
BE678019A (en)
BE698644A (en)
FR2500565A1 (en) High pressure ball valve for radiative environment - has electrically heated actuating rod to force ball off seat
BE637028A (en) TIGHT PASSAGE OF A TUBE IN A CRANKCASE WALL
Rimrott et al. Large Uniform Torsion of a Thin-Walled Open Section of Circular Cross-section
BE543872A (en)
GB191503389A (en) Improvements in the Construction of Spiral Retarders for use in Heater or Cooler Tubes.
BE717022A (en)