BE628454A - - Google Patents
Info
- Publication number
- BE628454A BE628454A BE628454DA BE628454A BE 628454 A BE628454 A BE 628454A BE 628454D A BE628454D A BE 628454DA BE 628454 A BE628454 A BE 628454A
- Authority
- BE
- Belgium
- Prior art keywords
- annealing
- semi
- finished
- corrosion
- duration
- Prior art date
Links
- 238000005260 corrosion Methods 0.000 claims description 15
- 238000000137 annealing Methods 0.000 claims description 11
- 229910000838 Al alloy Inorganic materials 0.000 claims description 4
- 238000000034 method Methods 0.000 claims description 4
- 239000011265 semifinished product Substances 0.000 claims description 2
- 238000004519 manufacturing process Methods 0.000 claims 2
- 239000000047 product Substances 0.000 claims 2
- 238000003379 elimination reaction Methods 0.000 claims 1
- 238000005098 hot rolling Methods 0.000 claims 1
- 238000004898 kneading Methods 0.000 claims 1
- 230000002035 prolonged Effects 0.000 claims 1
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- REDXJYDRNCIFBQ-UHFFFAOYSA-N aluminium(3+) Chemical group [Al+3] REDXJYDRNCIFBQ-UHFFFAOYSA-N 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminum Chemical class [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000002939 deleterious Effects 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 230000002349 favourable Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/04—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
- C22F1/053—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with zinc as the next major constituent
Landscapes
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Pressure Welding/Diffusion-Bonding (AREA)
Description
<Desc/Clms Page number 1>
"Procédé pour améliorer la résistance à la corrosion d'alliages d'aluminium"
C'est un fait bien connu que la résistance à la corrosion d'alliages d'aluminium et surtout d'alliages qui sont sursaturés de métaux tels que le cuivre, le magnésium et le zinc, peut être influencée par le traitement thermique.
Quant à savoir quel traitement thermique conduit à une résis- tance optimum à la corrosion, dépend dans une large mesure de la composition chimique de l'alliage ainsi que de la nature des actions chimiques auxquelles il sera exposé à l'usage, de sorte qu'il est difficile d'établir des règles qui s'appliquent à tous les cas.
<Desc/Clms Page number 2>
Un phénomène de corrosion particulièrement nuisible qui se manifeste surtout dans les alliages d'aluminium sur- saturés, est celui qu'on a nommé "corrosion en couches", dans lequel la corrosion se propage en couches parallèles à la direction de laminage ou d'extrusion et peut provoquer un affouillement de la pièce.
Cette corrosion en couches se manifeste dans tous les traitements thermiques que l'on applique usuellement, quoique la tendance à se manifester peut être plus ou moins prononcée selon que le matériau a été écroui, formé à chaud ou recuit.
Conformément à la présente invention, la corrosion en couches peut être évitée en soumettant les produits demi- finis à un traitement thermique entre 400 et 600 C, la durée dudit traitement étant toutefois considérablement supérieure, notamment de 5 à 50 fois et préférablement de 10 à 20 fois la durée d'un traitement habituel de recuit.
L'invention sera exposée ci-dessous sur la base de quelques exemples d'exécution.
Des tôles de 10 mm d'épaisseur en un alliage com- prenant env, 5 % de zinc, 1,2 % de magnésium, 0,4 % de manganèse, 0,3 % de silicium, 0,3 % de fer et le restant d'aluminium, turent recuites pendant 9 heures à env. 480 0 dans un four à circu- lation d'air, puis trempées à l'eau et, après avoir été re- dressées, chauffées pendant 24 heures à 120 C.
Des éprouvet- tes prélevées des tôles ainsi traitées ont présenté une excel- lente résistance à la corrosion même après avoir été soumises pendant 6 semaines à une succession de plongées dans une solu- tion de NaCl à 3 %, tandis que des tôles identiques, qui n'avai- entjtoutefois été recuites que 30 minutes à 480 0 comme d'habi- tude, présentaient après une égale durée d'essai, une corrosion
<Desc/Clms Page number 3>
en couches très prononcée.
Ce qui est surprenant, est que des différences ana- logues ont aussi pu être constatées sur des tôles qui avaient été soudées sur tranche avec du fil d'appoint en AlMg5 d'après le procédé MIG. Les tôles qui n'avaient subi qu'un recuit de 30 minutes à 480 C présentaient une forte corrosion en couches surtout dans la zone qui avait subi l'influence de la ch leur, tandis que les tôles qui avaient été recuites pendant 9 dures à 480 C, étaient exemptes de corrosion.
Le traitement thermique le plus favorable, sur out au point de vue de la température et de la durée du recui@ doit être déterminé individuellement pour chaque alliage o chaque pièce semi-finie, par des essais. Des tôles fortes doivent en général être recuites plus longtemps que des tôles minces.
**ATTENTION** fin du champ DESC peut contenir debut de CLMS **.
<Desc / Clms Page number 1>
"Method for improving the corrosion resistance of aluminum alloys"
It is a well known fact that the corrosion resistance of aluminum alloys and especially of alloys which are supersaturated with metals such as copper, magnesium and zinc, can be influenced by heat treatment.
As to which heat treatment leads to optimum corrosion resistance, depends to a large extent on the chemical composition of the alloy as well as the nature of the chemical actions to which it will be exposed in use, so that 'It is difficult to establish rules that apply in all cases.
<Desc / Clms Page number 2>
A particularly deleterious corrosion phenomenon which manifests itself especially in oversaturated aluminum alloys is that which has been termed "layer corrosion", in which the corrosion propagates in layers parallel to the rolling or rolling direction. extrusion and may scour the part.
This layered corrosion manifests itself in all the heat treatments that are usually applied, although the tendency to occur may be more or less pronounced depending on whether the material has been work-hardened, hot-formed or annealed.
According to the present invention, the layered corrosion can be avoided by subjecting the semi-finished products to a heat treatment between 400 and 600 ° C., the duration of said treatment being however considerably longer, in particular from 5 to 50 times and preferably from 10 to 20 times the duration of a usual annealing treatment.
The invention will be explained below on the basis of a few exemplary embodiments.
Sheets 10 mm thick made of an alloy comprising approx. 5% zinc, 1.2% magnesium, 0.4% manganese, 0.3% silicon, 0.3% iron and remaining aluminum, were annealed for 9 hours at approx. 480 0 in a circulating air oven, then quenched in water and, after being straightened, heated for 24 hours at 120 C.
Test pieces taken from the sheets thus treated showed excellent corrosion resistance even after having been subjected for 6 weeks to a succession of immerses in a solution of 3% NaCl, while identical sheets, which however, had only been annealed for 30 minutes at 480 0 as usual, exhibited after an equal test period corrosion
<Desc / Clms Page number 3>
layered very pronounced.
What is surprising is that similar differences could also be observed on sheets which had been edge-welded with AlMg5 extra wire according to the MIG process. The plates which had only undergone an annealing for 30 minutes at 480 C showed strong corrosion in layers especially in the zone which had been under the influence of the heat, while the plates which had been annealed for 9 hard to 480 C, were free from corrosion.
The most favorable heat treatment, out of the point of view of temperature and duration of annealing, must be determined individually for each alloy or each semi-finished part, by tests. Heavy plates generally have to be annealed longer than thin plates.
** ATTENTION ** end of DESC field can contain start of CLMS **.
Claims (1)
Publications (1)
Publication Number | Publication Date |
---|---|
BE628454A true BE628454A (en) |
Family
ID=198331
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
BE628454D BE628454A (en) |
Country Status (1)
Country | Link |
---|---|
BE (1) | BE628454A (en) |
-
0
- BE BE628454D patent/BE628454A/fr unknown
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1013785A1 (en) | Process for manufacturing of a part from a rolled steel sheet, in particular hot-rolled sheet | |
CA2908454A1 (en) | Method for transforming al-cu-li alloy sheets improving formability and corrosion resistance | |
WO2014162069A1 (en) | Thin sheets made of an aluminium-copper-lithium alloy for producing airplane fuselages | |
JPH0341543B2 (en) | ||
BE628454A (en) | ||
EP0227563A1 (en) | Process od desensitization to exfoliating corrosion of lithium-containing aluminium alloys, resulting simultaneously in a high mechanical resistance and in good damage limitation | |
Yao et al. | Effect of retrogression medium to the mechanical properties of aluminum alloy 7075 | |
JPH05311294A (en) | Copper base alloy for heat exchanger and its manufacture | |
FR2748035A1 (en) | ALUMINUM-SILICON-MAGNESIUM ALLOY FOR AUTOMOTIVE BODYWORK | |
JPH04232222A (en) | Aluminum alloy clad material having superior corrosion resistance | |
BE1001294A6 (en) | Steel strip annealing process | |
JP2711957B2 (en) | Aluminum alloy material for upset butt welding | |
JP3320145B2 (en) | Aluminum alloy material for upset butt welding | |
JPH07197152A (en) | Copper base alloy-made hot extruding/forging material having excellent corrosion resistance and its production | |
BE372334A (en) | ||
JP2664200B2 (en) | Manufacturing method of dissimilar metal joint pipe | |
BE408751A (en) | ||
JPH05179388A (en) | Aluminum alloy material for upset butt welding | |
FR2482982A1 (en) | Aluminium alloy bolts, nuts and similar parts used for assemblies - where specific compsn. and heat treatment provides high corrosion resistance when parts are subjected to tensile stress | |
BE478295A (en) | ||
BE846023A (en) | THERMAL TREATMENT PROCESS OF LAMINATED SHEETS | |
CN113061818A (en) | Method for producing plastic worked aluminum alloy product | |
BE439598A (en) | ||
CH502441A (en) | Copper and nickel alloy | |
WO2021111069A1 (en) | Aluminum-copper-lithium alloy thin sheets with improved toughness, and process for manufacturing an aluminum-copper-lithium alloy thin sheet |