BE445339A - - Google Patents
Info
- Publication number
- BE445339A BE445339A BE445339DA BE445339A BE 445339 A BE445339 A BE 445339A BE 445339D A BE445339D A BE 445339DA BE 445339 A BE445339 A BE 445339A
- Authority
- BE
- Belgium
- Prior art keywords
- gas
- carbon atoms
- crude
- liquefied
- hydrocarbons
- Prior art date
Links
- 239000007789 gas Substances 0.000 claims description 32
- 150000002430 hydrocarbons Chemical class 0.000 claims description 12
- 125000004432 carbon atoms Chemical group C* 0.000 claims description 11
- 238000000926 separation method Methods 0.000 claims description 8
- 239000002737 fuel gas Substances 0.000 claims description 7
- 239000000203 mixture Substances 0.000 claims description 7
- 238000004519 manufacturing process Methods 0.000 claims description 5
- 238000000034 method Methods 0.000 claims description 5
- 239000003502 gasoline Substances 0.000 claims description 4
- 230000015572 biosynthetic process Effects 0.000 claims description 3
- 239000003507 refrigerant Substances 0.000 claims description 3
- 238000003786 synthesis reaction Methods 0.000 claims description 3
- 230000002194 synthesizing Effects 0.000 claims description 3
- 238000001816 cooling Methods 0.000 claims description 2
- 238000001704 evaporation Methods 0.000 claims description 2
- 238000010438 heat treatment Methods 0.000 claims description 2
- 238000000197 pyrolysis Methods 0.000 claims description 2
- 239000007859 condensation product Substances 0.000 claims 2
- 238000009833 condensation Methods 0.000 claims 1
- 230000005494 condensation Effects 0.000 claims 1
- 239000000470 constituent Substances 0.000 claims 1
- 239000003077 lignite Substances 0.000 claims 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 239000000446 fuel Substances 0.000 description 5
- 239000001257 hydrogen Substances 0.000 description 5
- 229910052739 hydrogen Inorganic materials 0.000 description 5
- 238000005057 refrigeration Methods 0.000 description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 3
- 150000002431 hydrogen Chemical class 0.000 description 3
- 238000009434 installation Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- UGFAIRIUMAVXCW-UHFFFAOYSA-N carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 2
- 229910002091 carbon monoxide Inorganic materials 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 2
- 239000005977 Ethylene Substances 0.000 description 1
- BZKICOFSQOWHPW-UHFFFAOYSA-N ST023535 Chemical compound C=1C(=C2OCCBr)CC(C=3OCCBr)=CC(C4(C)CCCCC4)=CC=3CC(C=3OCCBr)=CC(C4(C)CCCCC4)=CC=3CC(C=3OCCBr)=CC(C4(C)CCCCC4)=CC=3CC2=CC=1C1(C)CCCCC1 BZKICOFSQOWHPW-UHFFFAOYSA-N 0.000 description 1
- 125000004429 atoms Chemical group 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000001419 dependent Effects 0.000 description 1
- OTMSDBZUPAUEDD-UHFFFAOYSA-N ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000002349 favourable Effects 0.000 description 1
- 238000005194 fractionation Methods 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 230000001105 regulatory Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/0228—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
- F25J3/0242—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 3 carbon atoms or more
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/0204—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
- F25J3/0219—Refinery gas, cracking gas, coke oven gas, gaseous mixtures containing aliphatic unsaturated CnHm or gaseous mixtures of undefined nature
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/0228—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
- F25J3/0233—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 1 carbon atom or more
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/0228—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
- F25J3/0238—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 2 carbon atoms or more
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/0228—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
- F25J3/0247—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 4 carbon atoms or more
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/0228—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
- F25J3/0252—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of hydrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2205/00—Processes or apparatus using other separation and/or other processing means
- F25J2205/02—Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
- F25J2205/04—Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum in the feed line, i.e. upstream of the fractionation step
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2210/00—Processes characterised by the type or other details of the feed stream
- F25J2210/12—Refinery or petrochemical off-gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2215/00—Processes characterised by the type or other details of the product stream
- F25J2215/62—Ethane or ethylene
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2215/00—Processes characterised by the type or other details of the product stream
- F25J2215/64—Propane or propylene
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2215/00—Processes characterised by the type or other details of the product stream
- F25J2215/66—Butane or mixed butanes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2270/00—Refrigeration techniques used
- F25J2270/04—Internal refrigeration with work-producing gas expansion loop
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Separation By Low-Temperature Treatments (AREA)
Description
<Desc/Clms Page number 1>
procédé d'extraction de gaz carburant pour moteurs. pour les -mélanges de gaz carburants pour moteurs (gaz liquéfiée gasol) qu'ion emploie en quantités croissantes pour actionner les moteurs et les véhicules, il n'existe pas de normes, valables d'une façon générale, en ce qui concerne 'leurs propriétés physiques et chimiques, mais déjà les. cons- tructeurs de moteurs- posent'souvent certaines conditions pour le gaz carburant pour moteurs. D'antre part, par- suite de l'em- ploi croissant des gaz carburants pour moteurs, il devient né- cessaire d'observer- strictement la bonne composition'de ces gaz, leurs limites d'ébullition et d'autres'propriétés importantes pour leur combustion.
<Desc/Clms Page number 2>
Lorsqu'on veut éviter des traitements ultérieurs compli- qués et coûteux des gaz carburants obtenus, on doit, dès leur extraction, tenir compte autant que possible de ce désideratum.
Bien que les gaz carburants pour moteurs constituent, en compa- raison des autres carburants, surtout en comparaison des mélan- ges d'essence, des combustibles relativement peu coûteux, il est de l'intérêt de l'économie générale de ne pas rendre leur fabrication plus coûteuse à mesure qu'augmente leur consomma- tion et malgré l'amélioration de leur qualité, mais d'essayer même de la rendre la plus économique possible.
On connaît différents procédés de séparation â'hydro- carbures, à deux ou plusieurs atomes de carbone, englobés par exemple sous le nom de "gasol" et obtenus à partir au gaz de distillation sèche, de gaz naturel ou des gaz résiduels de la synthèse de l'essence; ils exigent,presque sans exception, l'em- ploi d'installations frigorifiques spéciales, par exemple d'ins- tallations à l'ammoniac pour pourvoir atteindre les températu- res basses nécessaires pour la séparation. Ces installations frigorifiques constituent un facteur important des frais de fabrication et de ceux d'investissement.
La présente invention simplifie beaucoup et rend bien moins coûteuse la séparation des gaz carburants du gaz brut, qu'on a à sa disposition et qui contient le plus souvent de l'hydrogène et de l'azote, tout en permettant l'obtention de fractions nettement tranchées les unes par rapport aux autres et sans qu'en principe, des installations frigorifiques supplé- .mentaires soient nécessaires, de sorte que les exigences'men- tionnées plus haut peuvent être satisfaites dans une large me- s ure. ,
L'invention consiste en ce que les fractions à séparer du gaz brut sont séparées d'abord toutes ensemble à l'état li- quide par un refroidissement à basse température sous une pres- sion convenable.
Après qu'a eu lieu la séparation, prihcipale- ment de l'hdyrogène, de l'azote et du méthane,' qui seraient
<Desc/Clms Page number 3>
fort gênants à la' rectification suivante, la division des hydro- carbures en fractions nettement séparées a lieu beaucoup plus simplement que jusqu'à présent. Conformément à l'invention, le froid nécessaire pour compenser les pertes de froid est engen- dré en partie par la détente du gaz résiduel et, en partie, par la détente de la partie-liquéfiée.
Lorsqu'on considère que la proportion du gaz résiduel n'est, pour la plupart des gaz entrart en ligne de compte, que de l'ordre de grandeur de 40% du gaz brut, et que cependant il est possible, conformément à l'inven- tion, de compenser d'une façon continue par leur-détente, une partie considérable despertes de froid, sans installations fri- gorifiques supplémentaires, on comprend immédiatement que l'in- vention assure également un avantage considérable en ce qui concerne la dépense d'énergie.
Comme la rectification subséquente des hydrocarbures doit avoir lieu sous pression, il est bien nécessaire, après l'éva- poration et le chauffage, de comprimer de nouveau la partie li- quéfiée à la pression à laquelle aura lieu la séparation, mais le travail à fournir ici n'est pas seulement moins important que le travail de compression de l'ammoniac dans les autres ins- tallations; car l'ensemble du travail est aussi beaucoup plus simple. Lorsque, comme cela est nécessaire pour obtenir un bon rendement frigorifiques avec une pression initiale relativement faible, principalement lorsque la teneur en hydrogène est éle- vée, la détente du gaz'résiduel a lieu avec production de tra- vail externe, par exemple, dans une machine à expansion, l'é- nergie ainsi récupérée contribue à abaisser les frais de fabri- cation.
Le procédé suivant l'invention sera décrit, dans ce qui suit, dans ses rapports avec le dessin annexé représentant à titre d'exemple, un mode d'exécution de l'invention.
On comprime le gaz brut, par exemple un gaz résiduel de synthèse d'une teneur de 75 à 80% en hydrocarbures, en majeure
<Desc/Clms Page number 4>
partie saturés, et environ 15% en hydrogène, dans un compres- seur K1 par exemple à 20 atmosphères et, après abduction, dans le réfrigérant K3, de la chaleur produite par la compression, on le conduit par le tuyau 5 à l'appareil à contre-courant 1 et on le refroidit à une température égale ou inférieure à -150 . On liquéfie ainsi presque la totalité des hydrocarbures à deux ou plusieurs atomes de carbone et on les sépare du gaz résiduel dans le séparateur 2.
On dépend à peu près à la pres- sion atmosphérique le gaz résiduel (par exemple l'hydrogène,, l'azote, l'oxyde de carbone et le méthane),de préférence dans une machine à détente E ou dans une turbine à détente, qui peut céder le travail récupéré, par exemple à l'installation des compresseurs. Le gaz résiduel détendu quitte l'installation par le tuyau 8 après qu'il a cédé, dans l'appareil à contre- courant 1, son froid au gaz brut entrant. Pour réaliser des conditions favorables de température, on a avantage à chauffer un peu dans l'appareil à contre-courant 1, avant son entrée dans la machine à détente, le gaz résiduel sortant du sépa- rateur 2 par le tuyau 7.
On détend à peu près à la pression atmosphérique au moye de la soupape régulatrice 9, le liquide, obtenu dans le séparateur 2, qui contient presque tous les hy- drocarbures, on l'évapore dans l'appareil à contre-courant 1, également par échange de chaleur avec le gaz brut entrant, et on le chauffe à peu près à la température ambiante, pour le condenser ensuite, dans le compresseur K2, à une pression de 25 à 30 atmosphères environ, à laquelle a lieu la séparation.
Après ce compresseur K2 se trouve le réfrigérant K4 destiné à dissiper la chaleur engendrée par la compression. Le gaz con- densé passe ensuite par la tuyauterie 10 dans la colonne de rectification 3 où le fractionnement a lieu, suivant l'inven - tion, à une température égale ou supérieure à + 20 environ.
Les hydrocarbures à un ou deux atomes de carbone (fraction d'é-
<Desc/Clms Page number 5>
thane) sont éliminés dans cette colonne et peuvent être soutirés à la tête de la colonne, tandis que les hydrocarbures à trois atomes ou un plus grand nombre d'atomes de carbone sont amenés du bas de la colonne 3, par le tuyau 11, à la colonne de rec- tification 4 qu'on fait fonctionner par exemple sous une pres- sion de'15 atmosphères environ et à la même température. On sou- tire ensuite de cette colonne les gaz carburants pour moteurs à trois atomes de carbone (fraction de propane), et ceux à quatre atomes de carbone (fraction de butane).
Comme le gaz conduit par la tuyauterie 10-aux appareils de rectification'est pratiquement exempt,- d'hydrogène, d'azote et d'oxyde de carbone, on peut, dans les conditions de travail relativement simples décrites, exécuter la rectification avec plus de succès, et avec une séparation plus tranchée d'une frac- tion de l'autre dans les colonnes 3 et 4 qu'il ne serait possi- ble de le faire même dans des colonnes'refroidies à l'ammoniac, en travaillant des mélanges moins purs de' gaz.
On peut aussi étendre'le procédé suivant 1,'invention à l'extraction ,des hydrocarbures à deux atomes de carbone, en ' traitant à la façon connue, pour produire du méthane, de l'étha- ne et de l'éthylène le mélange d'hydrocarbures à un et deux ato- mes de carbone qui sort de la tête de la colonne 3. Dans les ap- pareils de rectification nécessaires à cet effet-, destempératu- res plus basses sont toutefois indispensables alors, ce qui exi- ge une installation réfrigérante supplémentaire. On peut, de cet- te façon appliquer éventuellement ce procédé à l'obtention des hy- drocarbures à deux atomes de carboné seulement.
<Desc / Clms Page number 1>
process for extracting fuel gas for engines. for the fuel gas mixtures for engines (liquefied gas-oil) which are used in increasing quantities to drive engines and vehicles, there are no generally valid standards with regard to their physical and chemical properties, but already them. Engine manufacturers often have certain conditions for gasoline fuel for engines. On the other hand, as a result of the increasing use of fuel gases for engines, it becomes necessary to strictly observe the correct composition of these gases, their boiling limits and other properties. important for their combustion.
<Desc / Clms Page number 2>
When it is desired to avoid complicated and expensive subsequent treatments of the fuel gases obtained, this desideratum must be taken into account as much as possible as soon as possible.
Although gas fuels for engines constitute relatively inexpensive fuels compared to other fuels, especially in comparison with gasoline blends, it is in the interests of the economy as a whole not to render their fuel. more expensive to manufacture as their consumption increases and despite the improvement in their quality, but to even try to make it as economical as possible.
Various processes are known for the separation of hydrocarbons having two or more carbon atoms, included for example under the name of "gasol" and obtained from dry distillation gas, natural gas or the residual gases of the synthesis. gasoline; they require, almost without exception, the use of special refrigeration installations, for example ammonia installations, in order to be able to achieve the low temperatures necessary for the separation. These refrigeration installations constitute an important factor in manufacturing costs and investment costs.
The present invention greatly simplifies and makes much less expensive the separation of the fuel gases from the raw gas, which is available to it and which most often contains hydrogen and nitrogen, while making it possible to obtain fractions. clearly distinct from each other and without in principle additional refrigeration installations being necessary, so that the above requirements can be met to a large extent. ,
The invention consists in that the fractions to be separated from the raw gas are first separated all together in the liquid state by cooling to low temperature under a suitable pressure.
After the separation has taken place, mainly of hydrogen, nitrogen and methane, which would be
<Desc / Clms Page number 3>
very troublesome at the next rectification, the division of the hydrocarbons into clearly separated fractions takes place much more simply than hitherto. In accordance with the invention, the cold necessary to compensate for the losses of cold is generated in part by the expansion of the residual gas and, in part, by the expansion of the liquefied part.
When it is considered that the proportion of the residual gas is, for most of the gases taken into account, only of the order of magnitude of 40% of the raw gas, and that however it is possible, according to the invention, of continuously compensating by their-relaxation, a considerable part of the cold losses, without additional refrigerating installations, it is immediately understood that the invention also ensures a considerable advantage as regards the expenditure. of energy.
As the subsequent rectification of the hydrocarbons must take place under pressure, it is quite necessary, after evaporation and heating, to compress the liquid part again to the pressure at which the separation will take place, but the work at providing here is not only less important than the work of compressing ammonia in other installations; because the whole work is also much simpler. When, as is necessary to obtain good refrigeration efficiency with a relatively low initial pressure, mainly when the hydrogen content is high, the expansion of the residual gas takes place with the production of external work, for example, in an expansion machine, the energy thus recovered contributes to lowering manufacturing costs.
The method according to the invention will be described, in what follows, in relation to the appended drawing showing, by way of example, one embodiment of the invention.
The raw gas is compressed, for example a residual synthesis gas with a content of 75 to 80% of hydrocarbons, in major
<Desc / Clms Page number 4>
part saturated, and about 15% in hydrogen, in a compressor K1 for example at 20 atmospheres and, after abduction, in the refrigerant K3, of the heat produced by the compression, it is conducted through pipe 5 to the apparatus countercurrent 1 and cooled to a temperature of -150 or less. Almost all of the hydrocarbons with two or more carbon atoms are thus liquefied and separated from the residual gas in separator 2.
The residual gas (for example hydrogen, nitrogen, carbon monoxide and methane) is dependent approximately at atmospheric pressure, preferably in an expansion machine E or in an expansion turbine. , which can transfer the recovered work, for example to the installation of compressors. The expanded residual gas leaves the installation through pipe 8 after it has given up, in the counter-current apparatus 1, its cold to the incoming raw gas. To achieve favorable temperature conditions, it is advantageous to heat a little in the counter-current device 1, before entering the expansion machine, the residual gas leaving the separator 2 through the pipe 7.
The liquid obtained in separator 2, which contains almost all the hydrocarbons, is expanded to approximately atmospheric pressure by means of the regulating valve 9, and is evaporated in the counter-current apparatus 1, also by heat exchange with the incoming raw gas, and it is heated to approximately room temperature, and then condensed, in compressor K2, to a pressure of approximately 25 to 30 atmospheres, at which separation takes place.
After this compressor K2 is the refrigerant K4 intended to dissipate the heat generated by the compression. The condensed gas then passes through the pipe 10 into the rectification column 3 where the fractionation takes place, according to the invention, at a temperature equal to or greater than approximately + 20.
Hydrocarbons with one or two carbon atoms (fraction of
<Desc / Clms Page number 5>
thane) are removed in this column and can be withdrawn at the top of the column, while the hydrocarbons with three atoms or a greater number of carbon atoms are brought from the bottom of column 3, through pipe 11, to the rectification column 4 which is operated, for example, under a pressure of about 15 atmospheres and at the same temperature. The fuel gases for engines with three carbon atoms (propane fraction) and those with four carbon atoms (butane fraction) are then withdrawn from this column.
As the gas led through the pipe 10 to the rectification apparatus is practically free of hydrogen, nitrogen and carbon monoxide, it is possible, under the relatively simple working conditions described, to carry out the rectification with more of success, and with a more distinct separation of one fraction from the other in columns 3 and 4 than would be possible even in columns cooled with ammonia, working with less pure mixtures of gases.
The process according to the invention can also be extended to the extraction of two-carbon hydrocarbons, working in the known manner, to produce methane, ethane and ethylene. mixture of hydrocarbons with one and two carbon atoms which comes out of the top of column 3. ge an additional refrigeration installation. In this way, this process can optionally be applied to obtaining hydrocarbons with two carbon atoms only.
Claims (1)
Publications (1)
Publication Number | Publication Date |
---|---|
BE445339A true BE445339A (en) |
Family
ID=101752
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
BE445339D BE445339A (en) |
Country Status (1)
Country | Link |
---|---|
BE (1) | BE445339A (en) |
-
0
- BE BE445339D patent/BE445339A/fr unknown
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2045763C (en) | Method and apparatus for simultaneously producing methane and carbon monoxide | |
JPS6362675B2 (en) | ||
EP0677483B1 (en) | Process and apparatus for the separation of a gaseous mixture | |
JP2015530554A (en) | Natural gas processing method and apparatus | |
JP2010526271A (en) | Method and apparatus for separating a mixture of hydrogen, methane and carbon monoxide by cryogenic distillation | |
US4040806A (en) | Process for purifying hydrocarbon gas streams | |
US3807185A (en) | Helium-enriched helium-hydrogen mixture from ammonia synthesis vent gas using regenerators to congeal residual nitrogen | |
FR2832213A1 (en) | PROCESS AND PLANT FOR THE PRODUCTION OF HELIUM | |
BE445339A (en) | ||
EP4101917B1 (en) | Method for separation and liquefaction of methane and carbon dioxide with elimination of impurities from the air present in the methane | |
EP0641982B1 (en) | Process and installation for the production of at least a gas from air under pressure | |
CN103917284B (en) | For the method and apparatus by separated CO 2 enriched gas | |
EP4101916B1 (en) | Method for separation and liquefaction of methane and co2 comprising drawing of steam from an intermediate stage of the distillation column | |
EP4101914B1 (en) | Installation for separation and liquefaction of methane and co2 comprising a vapour condenser placed in an intermediate stage of the distillation column | |
EP4101912B1 (en) | Method for separation and liquefaction of methane and carbon dioxide with pre-separation upstream of the distillation column | |
US20220397344A1 (en) | Combined plant for cryogenic separation and liquefaction of methane and carbon dioxide comprised in a biogas stream | |
TW202432997A (en) | Plant and method for separating liquified petroleum gas from fuel gas by cryogenic distillation | |
CA1059425A (en) | Process for manufacturing liquefied methane | |
EP0445041A1 (en) | Process for separating gas mixings from petroleum refineries | |
WO2024068241A1 (en) | Plant and method for separating liquified petroleum gas from fuel gas by cryogenic distillation | |
BE403736A (en) | ||
CN114981602A (en) | Method for improved cold box operation of partially condensed carbon monoxide | |
BE456738A (en) | ||
FR3097951A1 (en) | METHOD AND APPARATUS FOR CRYOGENIC SEPARATION OF SYNTHESIS GAS FOR THE PRODUCTION OF CH4 | |
BE342004A (en) |