BE1006379A3 - Method for preserving living cells, groups of cells and/or derivatives ofsaid cells by means of freeze-drying - Google Patents

Method for preserving living cells, groups of cells and/or derivatives ofsaid cells by means of freeze-drying Download PDF

Info

Publication number
BE1006379A3
BE1006379A3 BE9201031A BE9201031A BE1006379A3 BE 1006379 A3 BE1006379 A3 BE 1006379A3 BE 9201031 A BE9201031 A BE 9201031A BE 9201031 A BE9201031 A BE 9201031A BE 1006379 A3 BE1006379 A3 BE 1006379A3
Authority
BE
Belgium
Prior art keywords
cells
derivatives
compounds
freeze
drying
Prior art date
Application number
BE9201031A
Other languages
French (fr)
Inventor
Raymond Gilles
Original Assignee
Raymond Gilles
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Raymond Gilles filed Critical Raymond Gilles
Priority to BE9201031A priority Critical patent/BE1006379A3/en
Application granted granted Critical
Publication of BE1006379A3 publication Critical patent/BE1006379A3/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N1/00Preservation of bodies of humans or animals, or parts thereof
    • A01N1/02Preservation of living parts
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N1/00Preservation of bodies of humans or animals, or parts thereof
    • A01N1/02Preservation of living parts
    • A01N1/0205Chemical aspects
    • A01N1/021Preservation or perfusion media, liquids, solids or gases used in the preservation of cells, tissue, organs or bodily fluids
    • A01N1/0221Freeze-process protecting agents, i.e. substances protecting cells from effects of the physical process, e.g. cryoprotectants, osmolarity regulators like oncotic agents

Abstract

The invention relates to a method for preserving living cells, groups ofcells and/or derivatives of said cells by means of freeze-drying, whereinone or more compensatory compounds are incorporated into the intracellularmedium of said cells prior to freeze-drying.

Description

       

   <Desc/Clms Page number 1> 
 



   PROCÉDÉ DE CONSERVATION DE CELLULES VIVANTES, D'ENSEMBLES DE CELLULES ET/OU DE DÉRIVÉS DE CES CELLULES
PAR LYOPHILISATION Objet de l'invention
L'invention concerne un nouveau procédé de conservation de cellules vivantes et/ou de dérivés de ces cellules, par lyophilisation, en particulier tout type de cellules, d'ensembles de cellules ou d'éléments macromoléculaires dérivés desdites cellules, tels que des éléments figurés sanguins, des inclusions cytoplasmiques, des ovules, des spermatozoïdes, des structures protéiniques ou nucléotidiques, etc. 



  Arrière-plan technologique à la base de l'invention
Le froid, du fait qu'il permet de contrôler ou de ralentir les réactions biochimiques, est très utilisé pour la conservation à plus ou moins long terme de structures vivantes telles que des microorganismes unicellulaires ou pluricellulaires, des cellules en culture, des globules rouges, du sperme, de la moelle osseuse,... 



   Une première technique utilisant le froid consiste en une congélation rapide, pour éviter la détérioration des cellules par des cristaux de trop grosse taille, à une température suffisamment basse (inférieure   à-30 C)   pour ralentir l'évolution des processus biochimiques et assurer une durée de conservation suffisante. 



   Ces techniques nécessitent cependant le maintien constant des structures congelées à des températures basses, ce qui en augmente considérablement le coût. 

 <Desc/Clms Page number 2> 

 



   Une autre technique, la lyophilisation, consiste en l'élimination de l'eau des cellules lors de la transition d'une phase solide (cellules préalablement congelées) vers une phase gazeuse (sublimation). 



   Cette technique, moins coûteuse, n'est à l'heure actuelle utilisée que pour la conservation de certains microorganismes tels que la levure de boulanger, car pour d'autres structures vivantes, elle entraîne souvent une détérioration irréversible. 



   En effet, lors des manoeuvres de déshydratation et de réhydratation des microorganismes, des composés intracellulaires tels que des ions minéraux, dont la concentration varie en fonction de la teneur en eau des cellules, occasionnent des altérations de macromolécules membranaires et/ou intracellulaires. 



  Buts de l'invention
L'invention vise à mettre au point un procédé permettant de conserver par lyophilisation des structures biologiques telles que des cellules vivantes, des ensembles de cellules et/ou des dérivés desdites cellules sans entraîner les inconvénients susmentionnés. 



  Eléments caractéristiques de l'invention
L'invention concerne un nouveau procédé de conservation de cellules vivantes, d'ensemble de cellules et/ou de dérivés desdites cellules par lyophilisation, dans lequel on incorpore préalablement à la lyophilisation, un ou plusieurs composés compensateurs, tels que des hydrates de carbone et/ou des composés aminés, dans le milieu intracellulaire desdites cellules. 



   Ce procédé de conservation peut s'appliquer à tout type de cellules vivantes ou ensemble de cellules, tels que des tissus, des organes et/ou des microorganismes unicellulaires, ainsi que des dérivés desdites cellules, notamment des éléments figurés sanguins, des inclusions cytoplasmiques telles que des mitochondries, des ovules, des spermatozoïdes, etc. 



   De préférence, les composés compensateurs sont choisis parmi le groupe constitué par de la proline, de la 

 <Desc/Clms Page number 3> 

 glycine, de la sérine, de l'alanine, de l'acide aspartique, de l'acide glutamique, de la taurine, de la glycine-bétaïne, de la   proline-bétaïne,   de l'oxyde triméthylamine, de la glycérophosphorylcholine, de l'inositol, du sorbitol, du mannitol, du glycérol, du tréhalose, du saccharose, du glucorylglycérol, du floridoside, de l'isofloridoside et/ou un mélange d'entre eux. 



   L'invention concerne également les cellules vivantes, les ensembles de cellules vivantes et/ou des dérivés desdites cellules lyophilisés par le procédé selon l'invention. 



  Description d'une forme d'exécution préférée de l'invention
L'invention repose sur le fait inattendu que l'incorporation préalablement à la lyophilisation de un ou plusieurs composés"compensateurs"dans le milieu intracellulaire d'une cellule permet d'éviter les perturbations de la membrane ou la dénaturation des protéines par certains composés intracellulaires tels que les ions minéraux dont la concentration varie lors de la déshydratation. 



   Les composés"compensateurs"sont définis suivant Gilles R., Volume regulation in cells of euryhaline invertebrates. In : Current Topics in Membranes and Transport, edited by R. Gilles, A. Kleinzeller and L. Bolis. New YORK/ Academic press, vol. 30, pp. 205-247, (1987a) ; Gilles R., Volume control and adaptation to changes in ions concentrations in cells of terrestrial and aquatic species : clues to cell survival in anisosmotic media, In : Comparative Physiology : Life in water and on land, edited by P. Dejours, L. Bolis, C. R. Taylor and E. R. Weibel, Heidelberg : Springer Verlag, pp. 485-502, (1987b) ou Gilles R. et Delpire E., Variations in salinity, osmolarity and water availability (vertebrates and invertebrates), in : Handbook of Comparative Physiology, edited by W.

   Dantzler, New York : Oxford university Press, Chapter 24, in the press (1992), comme des composés organiques de faible poids moléculaire, de préfé- rence des hydrates de carbone et/ou des composés aminés, tels que ceux repris dans la liste non limitative suivante : proline, glycine, sérine, alanine, acide aspartique, acide 

 <Desc/Clms Page number 4> 

 glutamique, taurine,   glycine-bétaïne,   proline-bétaïne, oxyde triméthylamine, glycérophosphorylcholine, inositol, sorbitol, mannitol, glycérol, tréhalose, saccharose, glucorylglycérol, floridoside ou isofloridoside,   protégeant, les   macromolécules intracellulaires des altérations que peuvent provoquer à leur niveau, différents composés intracellulaires tels que des ions inorganiques ou de l'urée dont la concentration varie lors de la déshydratation des cellules.

   



   Ces composés peuvent également satisfaire aux définitions de"compatible solutes" (Brown, A. D. et Simpson J. R., Water relations of sugar-tolerant yeasts : the role of intracellular polyols, J. Gen. Microbiol. 72,589-591 (1972) ; Borowitzka L. J., Glycerol and other carbohydrate osmotic effectors, In : Transport Processes, Iono and Osmoregulation. 



  Current Comparative Approaches, edited by Gilles, and GillesBaillien, M. Heidelberg : Springer Verlag, pp. 437-453,   (1985)),"stabilizing solutés"   (Clark M. E. et Zounes M., The effects of selected cell osmolytes on the activity of lactate dehydrogenase from the euryhaline polychaete. Nereis succinea, Biol. Bull. 153,468-484 (1977) ou de "counteracting   solutes"   (Yancey P. H. et al., Living with water stress : evolution of osmolyte systems, Science 217, 1214-1222 (1982) ; Yancey, P. H., Organic osmotic effectors in cartilaginous fishes. In : Transport Processes, Iono and Osmoregulation, edited by R. Gilles and M. Gilles-Baillien, Heidelberg : Springer Verlag, pp. 424-436 (1985)). 



   Les mécanismes d'actions des composés compensateurs ne sont pas encore complètement élucidés. Ils sont le mieux définis à l'heure actuelle par les travaux de Timasheff et collaborateurs (Arakawa et Timasheff, The interactions of proteins with salts, amino acids and sugars at high concentration, in : Advances in Comparative and Environmental Physiology, vol. 9 : volume and osmolarity contorl in animal cells, edited by R. Gilles, E. K. Hoffmann and L. Bolis, Heidelberg : Springer Verlag, pp. 226-245, (1991) ; Timasheff S. N., Solvent effects on protein stability, Cur. Op. Struct. 



  Biol. 2, 35-39, (1992). 

 <Desc/Clms Page number 5> 

 



   Ces composés interviendraient dans les interactions macromolécules (protéines, chromatine,   etc.)-eau vicinale-   solutés déstabilisateurs (ions minéraux) de façon à empêcher les macromolécules de prendre des configurations irréversiblement peu ou non fonctionnelles lors d'une augmentation de concentration en solutés, induite par une diminution de disponibilité d'eau ou par tout autre mécanisme. 



   L'invention sera décrite plus en détail à l'aide de l'exemple ci-dessous donné uniquement à titre d'illustration non limitative du procédé de l'invention. 



  Exemple
Le matériel expérimental utilisé consiste en deux types de cellules de mammifères en culture : L929 et MDCK. 
 EMI5.1 
 



  Ces cellules sont cultivées à 37 C en milieu liquide en flacons Falcons fermés. Le milieu consiste en DMEM (Dulbecco's Modification of Eagle's Medium) additionné d'un tampon Hepes 20 mM (DMEM + Hepes : catalogue Flow n  12-334-54). Il est également additionné de L-glutamine 2,3 mM, de bicarbonate de sodium 12 mM et de 10% de sérum de veau foetal. 



   Les composés"compensateurs"utilisés sont le mannitol et le sorbitol. Ils sont incorporés dans le milieu intracellulaire par transfert des cellules du milieu standard susmentionné dans un milieu contenant soit du sorbitol de 50 à 500 mM ou du mannitol de 100 à 300 mM. Après quelques passages dans ces milieux,   t   2. 106 cellules sont détachées par trypsination, centrifugées à 400 g pendant 10 minutes et resuspendues dans 1 ml de milieu sans trypsine. Elles sont ensuite congelées dans le milieu à-30 C ou à-70 C, puis lyophilisées. Après lyophilisation totale, elles sont réhydratées tout d'abord par passage pendant 24 heures dans une enceinte contenant de l'air à 8% d'humidité à   30 C   et ensuite par addition d'une quantité d'eau distillée correspondant au volume de milieu lyophilisé au départ.

   Les cellules sont alors remises en culture, montrant une reprise de 10 à 15%.



   <Desc / Clms Page number 1>
 



   METHOD FOR PRESERVING LIVING CELLS, CELL SETS AND / OR DERIVATIVES THEREOF
BY LYOPHILIZATION Subject of the invention
The invention relates to a new method for preserving living cells and / or derivatives thereof, by lyophilization, in particular any type of cells, sets of cells or macromolecular elements derived from said cells, such as figurative elements. blood, cytoplasmic inclusions, ova, sperm, protein or nucleotide structures, etc.



  Technological background underlying the invention
Cold, because it makes it possible to control or slow down biochemical reactions, is widely used for the more or less long-term preservation of living structures such as unicellular or multicellular microorganisms, cells in culture, red blood cells, sperm, bone marrow, ...



   A first technique using cold consists of rapid freezing, to avoid the deterioration of cells by crystals of too large size, at a sufficiently low temperature (below -30 C) to slow down the evolution of biochemical processes and ensure a duration of sufficient conservation.



   These techniques however require the constant maintenance of frozen structures at low temperatures, which considerably increases the cost.

 <Desc / Clms Page number 2>

 



   Another technique, lyophilization, consists in removing water from the cells during the transition from a solid phase (previously frozen cells) to a gas phase (sublimation).



   This less expensive technique is currently only used for the preservation of certain microorganisms such as baker's yeast, because for other living structures, it often causes irreversible deterioration.



   In fact, during the dehydration and rehydration maneuvers of microorganisms, intracellular compounds such as mineral ions, the concentration of which varies as a function of the water content of the cells, cause alterations of membrane and / or intracellular macromolecules.



  Aims of the invention
The invention aims to develop a method for preserving by lyophilization biological structures such as living cells, sets of cells and / or derivatives of said cells without causing the aforementioned drawbacks.



  Character-defining elements of the invention
The invention relates to a new method for preserving living cells, a set of cells and / or derivatives of said cells by lyophilization, in which one or more compensating compounds, such as carbohydrates and / or amino compounds, in the intracellular medium of said cells.



   This preservation process can be applied to any type of living cell or set of cells, such as tissues, organs and / or single-cell microorganisms, as well as derivatives of said cells, in particular blood figurative elements, cytoplasmic inclusions such as as mitochondria, ova, sperm, etc.



   Preferably, the compensating compounds are chosen from the group consisting of proline,

 <Desc / Clms Page number 3>

 glycine, serine, alanine, aspartic acid, glutamic acid, taurine, glycine-betaine, proline-betaine, trimethylamine oxide, glycerophosphorylcholine, inositol, sorbitol, mannitol, glycerol, trehalose, sucrose, glucorylglycerol, floridoside, isofloridoside and / or a mixture thereof.



   The invention also relates to living cells, sets of living cells and / or derivatives of said cells lyophilized by the method according to the invention.



  Description of a preferred embodiment of the invention
The invention is based on the unexpected fact that the incorporation, prior to lyophilization, of one or more "compensating" compounds into the intracellular medium of a cell makes it possible to avoid disturbances of the membrane or denaturation of proteins by certain intracellular compounds. such as mineral ions, the concentration of which varies during dehydration.



   The "compensating" compounds are defined according to Gilles R., Volume regulation in cells of euryhaline invertebrates. In: Current Topics in Membranes and Transport, edited by R. Gilles, A. Kleinzeller and L. Bolis. New YORK / Academic press, vol. 30, pp. 205-247, (1987a); Gilles R., Volume control and adaptation to changes in ions concentrations in cells of terrestrial and aquatic species: clues to cell survival in anisosmotic media, In: Comparative Physiology: Life in water and on land, edited by P. Dejours, L. Bolis , CR Taylor and ER Weibel, Heidelberg: Springer Verlag, pp. 485-502, (1987b) or Gilles R. and Delpire E., Variations in salinity, osmolarity and water availability (vertebrates and invertebrates), in: Handbook of Comparative Physiology, edited by W.

   Dantzler, New York: Oxford university Press, Chapter 24, in the press (1992), such as low molecular weight organic compounds, preferably carbohydrates and / or amino compounds, such as those listed nonlimiting following: proline, glycine, serine, alanine, aspartic acid, acid

 <Desc / Clms Page number 4>

 glutamic acid, taurine, glycine-betaine, proline-betaine, trimethylamine oxide, glycerophosphorylcholine, inositol, sorbitol, mannitol, glycerol, trehalose, saccharose, glucorylglycerol, floridoside or isofloridoside, protecting, the intracellular macromolecules can alter their levels intracellular compounds such as inorganic ions or urea whose concentration varies during dehydration of the cells.

   



   These compounds can also meet the definitions of "compatible solutes" (Brown, AD and Simpson JR, Water relations of sugar-tolerant yeasts: the role of intracellular polyols, J. Gen. Microbiol. 72,589-591 (1972); Borowitzka LJ, Glycerol and other carbohydrate osmotic effectors, In: Transport Processes, Iono and Osmoregulation.



  Current Comparative Approaches, edited by Gilles, and GillesBaillien, M. Heidelberg: Springer Verlag, pp. 437-453, (1985)), "stabilizing solutes" (Clark ME and Zounes M., The effects of selected cell osmolytes on the activity of lactate dehydrogenase from the euryhaline polychaete. Nereis succinea, Biol. Bull. 153,468-484 (1977 ) or "counteracting solutes" (Yancey PH et al., Living with water stress: evolution of osmolyte systems, Science 217, 1214-1222 (1982); Yancey, PH, Organic osmotic effectors in cartilaginous fishes. In: Transport Processes, Iono and Osmoregulation, edited by R. Gilles and M. Gilles-Baillien, Heidelberg: Springer Verlag, pp. 424-436 (1985)).



   The mechanisms of action of the compensating compounds have not yet been fully elucidated. They are best defined today by the work of Timasheff et al. (Arakawa and Timasheff, The interactions of proteins with salts, amino acids and sugars at high concentration, in: Advances in Comparative and Environmental Physiology, vol. 9: volume and osmolarity contorl in animal cells, edited by R. Gilles, EK Hoffmann and L. Bolis, Heidelberg: Springer Verlag, pp. 226-245, (1991); Timasheff SN, Solvent effects on protein stability, Cur. Op. Struct .



  Biol. 2, 35-39, (1992).

 <Desc / Clms Page number 5>

 



   These compounds would intervene in the macromolecule interactions (proteins, chromatin, etc.) - vicinal water - destabilizing solutes (mineral ions) so as to prevent the macromolecules from taking irreversibly little or nonfunctional configurations during an increase in solute concentration, induced by a decrease in water availability or by any other mechanism.



   The invention will be described in more detail using the example below given solely by way of non-limiting illustration of the process of the invention.



  Example
The experimental material used consists of two types of mammalian cells in culture: L929 and MDCK.
 EMI5.1
 



  These cells are cultured at 37 ° C. in a liquid medium in closed Falcons flasks. The medium consists of DMEM (Dulbecco's Modification of Eagle's Medium) added with a 20 mM Hepes buffer (DMEM + Hepes: Flow catalog no 12-334-54). 2.3 mM L-glutamine, 12 mM sodium bicarbonate and 10% fetal calf serum are also added.



   The "compensating" compounds used are mannitol and sorbitol. They are incorporated into the intracellular medium by transfer of the cells from the abovementioned standard medium into a medium containing either sorbitol from 50 to 500 mM or mannitol from 100 to 300 mM. After a few passages in these media, t 2. 106 cells are detached by trypsinization, centrifuged at 400 g for 10 minutes and resuspended in 1 ml of medium without trypsin. They are then frozen in the medium at −30 ° C. or at −70 ° C., then lyophilized. After total lyophilization, they are rehydrated first by passing them for 24 hours in an enclosure containing air at 8% humidity at 30 ° C. and then by adding a quantity of distilled water corresponding to the volume of medium. lyophilized at the start.

   The cells are then returned to culture, showing a recovery of 10 to 15%.


    

Claims (4)

REVENDICATIONS 1. Procédé de conservation de cellules vivantes, d'ensembles de cellules et/ou de dérivés de ces cellules par lyophilisation, caractérisé en ce que l'pin incorpore préalablement à la lyophilisation un ou plusieurs composés compensateurs dans le milieu intracellulaire desdites cellules.  CLAIMS 1. A method of preserving living cells, sets of cells and / or derivatives of these cells by lyophilization, characterized in that the pin incorporates, before lyophilization, one or more compensating compounds in the intracellular medium of said cells. 2. Procédé selon la revendication 1, caractérisé en ce que lesdits composés compensateurs sont des hydrates de carbone et/ou des composés aminés.  2. Method according to claim 1, characterized in that said compensating compounds are carbohydrates and / or amino compounds. 3. Procédé selon la revendication 2, caractérisé en ce que les composés compensateurs sont choisis parmi le groupe constitué par de la proline, de la glycine, de la sérine, de l'alanine, de l'acide aspartique, de l'acide glutamique, de la taurine, de la glycine-bétaïne, de la proline-bétaïne, de l'oxyde triméthylamine, de la glycérophosphorylcholine, de l'inositol, du sorbitol, du mannitol, du glycérol, du tréhalose, du saccharose, du glucorylglycérol, du floridoside, de l'isofloridoside et/ou un mélange d'entre eux.  3. Method according to claim 2, characterized in that the compensating compounds are chosen from the group consisting of proline, glycine, serine, alanine, aspartic acid, glutamic acid , taurine, glycine-betaine, proline-betaine, trimethylamine oxide, glycerophosphorylcholine, inositol, sorbitol, mannitol, glycerol, trehalose, sucrose, glucorylglycerol, floridoside, isofloridoside and / or a mixture of them. 4. Cellules vivantes, ensemble de cellules et/ou dérivés de ces cellules lyophilisés par le procédé selon l'une quelconque des revendications précédentes.  4. Living cells, set of cells and / or derivatives of these cells lyophilized by the method according to any one of the preceding claims.
BE9201031A 1992-11-26 1992-11-26 Method for preserving living cells, groups of cells and/or derivatives ofsaid cells by means of freeze-drying BE1006379A3 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
BE9201031A BE1006379A3 (en) 1992-11-26 1992-11-26 Method for preserving living cells, groups of cells and/or derivatives ofsaid cells by means of freeze-drying

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
BE9201031A BE1006379A3 (en) 1992-11-26 1992-11-26 Method for preserving living cells, groups of cells and/or derivatives ofsaid cells by means of freeze-drying

Publications (1)

Publication Number Publication Date
BE1006379A3 true BE1006379A3 (en) 1994-08-09

Family

ID=3886544

Family Applications (1)

Application Number Title Priority Date Filing Date
BE9201031A BE1006379A3 (en) 1992-11-26 1992-11-26 Method for preserving living cells, groups of cells and/or derivatives ofsaid cells by means of freeze-drying

Country Status (1)

Country Link
BE (1) BE1006379A3 (en)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1189935A (en) * 1967-08-30 1970-04-29 Chugai Pharmaceutical Co Ltd Dried Stable Anti-Tumour Preparations and a process for preparing the same
DD115919A1 (en) * 1974-10-15 1975-10-20
JPS5742853A (en) * 1980-08-27 1982-03-10 Seikagaku Kogyo Co Ltd Erythrocyte sensitized with complement 1q
EP0141922A1 (en) * 1983-08-19 1985-05-22 BEHRINGWERKE Aktiengesellschaft Method of decreasing turbidity in control sera
GB2171303A (en) * 1985-02-06 1986-08-28 Chugai Pharmaceutical Co Ltd Anemia treatment compositions containing erythropoietin
EP0145197B1 (en) * 1983-11-03 1989-09-13 American Type Culture Collection Method of culturing freeze-dried microorganisms
WO1990000389A1 (en) * 1988-07-07 1990-01-25 Regents Of The University Of Minnesota Freeze-dried liposome compositions containing cyclosporin
WO1990004329A1 (en) * 1988-10-20 1990-05-03 Coulter Corporation Stabilized lyophilized mammalian cells and method of making same
WO1991011509A1 (en) * 1990-01-29 1991-08-08 Imperial Chemical Industries Plc Stabilized cultures of microorganisms
WO1992002208A1 (en) * 1990-08-08 1992-02-20 Liposome Technology, Inc. Stable doxorubicin/liposome composition
DD299213A7 (en) * 1988-05-04 1992-04-09 Saechsische Landesgewerbefoerderungsgesellschaft M.B.H.,De METHOD FOR STABILIZING A LIVE VIRUS VACCINE AGAINST TEMPERATURE EFFECT
WO1993000807A1 (en) * 1991-07-03 1993-01-21 Cryolife, Inc. Method for stabilization of biomaterials
US5242792A (en) * 1991-02-25 1993-09-07 The United States Of America As Represented By The Secretary Of The Navy Method for the preservation of red blood cells by lyophilization using glycerol or inositol with disaccharides

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1189935A (en) * 1967-08-30 1970-04-29 Chugai Pharmaceutical Co Ltd Dried Stable Anti-Tumour Preparations and a process for preparing the same
DD115919A1 (en) * 1974-10-15 1975-10-20
JPS5742853A (en) * 1980-08-27 1982-03-10 Seikagaku Kogyo Co Ltd Erythrocyte sensitized with complement 1q
EP0141922A1 (en) * 1983-08-19 1985-05-22 BEHRINGWERKE Aktiengesellschaft Method of decreasing turbidity in control sera
EP0145197B1 (en) * 1983-11-03 1989-09-13 American Type Culture Collection Method of culturing freeze-dried microorganisms
GB2171303A (en) * 1985-02-06 1986-08-28 Chugai Pharmaceutical Co Ltd Anemia treatment compositions containing erythropoietin
DD299213A7 (en) * 1988-05-04 1992-04-09 Saechsische Landesgewerbefoerderungsgesellschaft M.B.H.,De METHOD FOR STABILIZING A LIVE VIRUS VACCINE AGAINST TEMPERATURE EFFECT
WO1990000389A1 (en) * 1988-07-07 1990-01-25 Regents Of The University Of Minnesota Freeze-dried liposome compositions containing cyclosporin
WO1990004329A1 (en) * 1988-10-20 1990-05-03 Coulter Corporation Stabilized lyophilized mammalian cells and method of making same
WO1991011509A1 (en) * 1990-01-29 1991-08-08 Imperial Chemical Industries Plc Stabilized cultures of microorganisms
WO1992002208A1 (en) * 1990-08-08 1992-02-20 Liposome Technology, Inc. Stable doxorubicin/liposome composition
US5242792A (en) * 1991-02-25 1993-09-07 The United States Of America As Represented By The Secretary Of The Navy Method for the preservation of red blood cells by lyophilization using glycerol or inositol with disaccharides
WO1993000807A1 (en) * 1991-07-03 1993-01-21 Cryolife, Inc. Method for stabilization of biomaterials

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Section Ch, Week 8229, Derwent Publications Ltd., London, GB; Class B04, AN 82-59943E & JP-A-57 042 853 (SEIKAGAKU KK) 10 Mars 1982 *
Section Ch, Week 9212, Derwent Publications Ltd., London, GB; Class D22, AN 92-096488 & US-A-5 242 792 (US SEC OF NAVY) 7 Septembre 1993 *

Similar Documents

Publication Publication Date Title
Moussa et al. Low density lipoproteins extracted from hen egg yolk by an easy method: cryoprotective effect on frozen–thawed bull semen
Shannon et al. Toxic effect and action of dead sperm on diluted bovine semen
AU2001268057B2 (en) Preservation and storage medium for biological materials
Kawahara The structures and functions of ice crystal-controlling proteins from bacteria
Prathalingam et al. Impact of antifreeze proteins and antifreeze glycoproteins on bovine sperm during freeze-thaw
Chappell et al. Dependence of mitochondrial swelling on oxidizable substrates
DE69624701T2 (en) FREEZER PRESERVATION OF DIFFERENT PLANT CELLS
Seglen The effect of perfusate pH on respiration and glycolysis in the isolated rat liver perfused with an erythrocyte-and protein-free medium
Fujikawa et al. Cryoprotective effect of antifreeze polyamino-acid (Carboxylated Poly-l-Lysine) on bovine sperm: A technical note
EP0246824A2 (en) Biological cryoprotection
EP0816509B1 (en) Thermostabilization, osmoprotection, and protection against desiccation of enzymes, cell components and cells by mannosyl-glycerate
BE1006379A3 (en) Method for preserving living cells, groups of cells and/or derivatives ofsaid cells by means of freeze-drying
Williams et al. Energy metabolism of Rickettsia typhi: pools of adenine nucleotides and energy charge in the presence and absence of glutamate
CHADWICK et al. Storage of porcine pancreatic digest prior to islet purification: the benefits of UW solution and the roles of its individual components
Santarius et al. The kinetics of the inactivation of thylakoid membranes by freezing and high concentrations of electrolytes
Harrison Causes of death of bacteria in frozen suspensions
Galloway et al. Effect of temperature on molecular properties of post-mortem porcine muscle
Yoshida et al. A novel conception for liver preservation at a temperature just above freezing point
Malicka-Blaszkiewicz et al. Some factors affecting the interaction between actin in leukemic L1210 cells and DNASE I
Fuchs et al. Uncoupler-and hypoxia-induced damage in the working rat heart and its treatment: II. Hypoxic reduction of aortic flow and its reversal
KR102058338B1 (en) Composition for cryopreservation of Canidae sperm comprising mesenchymal stem cell as effective component
Morita et al. Maintenance of the motility of rat epididymal spermatozoa in the presence of male accessory secretions
JP2010248160A (en) Peptide having life-lengthening effect on cells
Schlisio et al. Osmotic and ionic regulation in Xenopus laevis Daud. During adaptation to different osmotic environments—V. Quantitative alterations of the acid glycosaminoglycans in the kidney
Hanafusa Denaturation of Enzyme Protein by Freeze-Thawing and Freeze-Drying; Ⅰ. Freeze-thawing and freeze-drying of myosin and some other muscle proteins

Legal Events

Date Code Title Description
RE Patent lapsed

Owner name: GILLES RAYMOND

Effective date: 19941130