BE1000518A5 - PRESTRESSING PROCESS BY CREATING A FIELD CONTRECONTRAINTES MAINTAINED BY ADDITIONAL MATERIALS joining. - Google Patents

PRESTRESSING PROCESS BY CREATING A FIELD CONTRECONTRAINTES MAINTAINED BY ADDITIONAL MATERIALS joining. Download PDF

Info

Publication number
BE1000518A5
BE1000518A5 BE8700483A BE8700483A BE1000518A5 BE 1000518 A5 BE1000518 A5 BE 1000518A5 BE 8700483 A BE8700483 A BE 8700483A BE 8700483 A BE8700483 A BE 8700483A BE 1000518 A5 BE1000518 A5 BE 1000518A5
Authority
BE
Belgium
Prior art keywords
field
stress field
elements
stress
maintained
Prior art date
Application number
BE8700483A
Other languages
French (fr)
Original Assignee
Robyn Johannes
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robyn Johannes filed Critical Robyn Johannes
Priority to BE8700483A priority Critical patent/BE1000518A5/en
Priority to AT88870082T priority patent/ATE72687T1/en
Priority to DE8888870082T priority patent/DE3868431D1/en
Priority to ES198888870082T priority patent/ES2030534T3/en
Priority to EP88870082A priority patent/EP0290422B1/en
Application granted granted Critical
Publication of BE1000518A5 publication Critical patent/BE1000518A5/en
Priority to GR920400929T priority patent/GR3004589T3/el

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • E04C3/04Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal
    • E04C3/10Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal prestressed
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G21/00Preparing, conveying, or working-up building materials or building elements in situ; Other devices or measures for constructional work
    • E04G21/12Mounting of reinforcing inserts; Prestressing
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • E04C3/04Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal
    • E04C2003/0404Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects
    • E04C2003/0408Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects characterised by assembly or the cross-section
    • E04C2003/0413Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects characterised by assembly or the cross-section being built up from several parts
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • E04C3/04Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal
    • E04C2003/0404Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects
    • E04C2003/0426Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects characterised by material distribution in cross section
    • E04C2003/0434Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects characterised by material distribution in cross section the open cross-section free of enclosed cavities
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • E04C3/04Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal
    • E04C2003/0404Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects
    • E04C2003/0443Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects characterised by substantial shape of the cross-section
    • E04C2003/0452H- or I-shaped

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Rod-Shaped Construction Members (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Orthopedics, Nursing, And Contraception (AREA)

Abstract

The invention consists of a method for prestressing structural elements characterised by establishing, in a base element prone to instability, an arbitrary and predetermined stress field of direction opposite that to which the element will be subjected in use (fig. 2). This stress field is maintained, as far as possible or necessary, by solidly attaching suitably sized reinforcing elements of appropriate elastic limit. The complete element is then located in the following situation (fig. 3): - low tension in the additional elements - persistence, in the base element, of a residual tensile field of direction opposite that which will be caused by the principal actions of use. This prestressing is carried out on a special bench (fig. 1) which enables any desired linear stress field to be created. This procedure enables beams to be constructed where it is possible systematically to use high strength materials and to exploit better the capability of lower strength materials by considerably extending their region of admissible stress variation, principally for the parts prone to instability by warping or buckling (fig. 4). <IMAGE>

Description

       

   <Desc/Clms Page number 1> 
 



   PROCEDE DE PRECONTRAINTE PAR CREATION
D'UN CHAMP DE CONTRECONTRAINTE MAINTENU
PAR SOLIDARISATON DE MATERIAUX ADDITIONNELS DESCRIPTION - L'invention porte sur un procédé de fabrication d'éléments de construction (poutres, colonnes, caissons ...) pouvant être utilisés tels quels ou servir de base ä la mise en oeuvre de poutres composites (mixtes, hybrides) ou réfléchies. 



  De tels éléments peuvent être utilises dans la construction de ponts, de bätiments, de tunnels, de portiques ou de tout autre assemblage   ndcessitant   des   éléments   fortement sollicités. 



  En généra1, les matériaux ä haute limite élastique sont utilisés sous forme de tirants, du fait de problemes de stabilité (flambement, voilement ou interaction de ces deux phénomènes). 



  En effet, les grands élancements limitent très vite, pour des raisons géométriques, les tensions admissibles dans les parties comprimdes, réduisant ainsi notablement le rendement de materiaux éventuellement par ailleurs très performants. 



  Dans le cas d'utilisation de matériaux ä haute limite elastique en vue de   1'élaboration   de poutres ä âme pleine, par exemple, on est amené, si on desire exploiter au maximum les capacités du matériau, ä   äpaissir   les âmes pour éviter le voilement et ce, dans des proportions telles que l'on perd en grande partie l'avantage du matériau, étant donné les grandes quantités ä mettre en oeuvre. 



  De même, pour une poutre triangulée, les montants fortement comprimés verront leur section minimale nécessaire considérablement agrandie pour obvier au flambement. 



  - L'invention consiste en un procédé de fabrication de 

 <Desc/Clms Page number 2> 

 poutres, éventuellement composées de matériaux   differents,   dans lequel un ou des éléments de base sont soumis ä une manipulation y creant un état de tension de sens opposé ä celui qu'induira l'utilisation postérieure. 



  C'est état de tension est alors maintenu au mieux des   necessites   par l'adjonction d'autres éléments de section suffisante, éventuellement (mais pas nécessairement) précontraints avant l'application, le cas échéant façonnés dans un   materiau   différent de ceux constituant l'élément de base, et suffisamment rigides si nécessaire. 



  Si les limites élastiques des éléments d'adjonction sont judicieusement choisies, le procédé permet, lors de la mise en charge de la poutre finie, des variations de contrainte dans l'élément de base telles que, sinon, dans les mêmes conditions, il verrait sa stabilité compromise. 



  Les manipulations sur le ou les elements de base avant fixation des éléments d'adjonction peuvent consister en tractions, compressions, torsions, flexions ou en des combinaisons de ces actions. 



  Un des avantages par rapport ä une précontrainte classique,   oü   l'on ne fait en definitive que précomprimer la partie de l'élément de poutre appelé à travailler en traction lors de l'utilisation finale (et même si cette précompression peut induire des tractions dans d'autres parties, elle provoque de toutes manieres une compression d'ensemble qui peut ne pas être souhaitable) est que le procédé permet également la mise en prétraction de parties destinées à être oomprimées et la création, dans les parties minces, par exemple, ou sujettes   ä   l'instabilité, d'un champ de tension de sens opposé ä celui qu'entraine la mise en charge lors de l'utilisation. 



  Il en resulte généralement une économie de matière appreciable. 

 <Desc/Clms Page number 3> 

 Une déformée initiale peut, si   necessaire,   être donnée ä l'élément de base pour qu'après les différentes manipulations l'élément complet ait la forme souhaitee. 



  - Un mode de réalisation d'une application du procédé peut être décrit très simplement dans le cas d'une poutre "contrefléchie", c'est-à-dire d'une poutre réfléchie dans le sens opposé ä celui de son utilisation. 



  Remarque 1 : Les membrures (dans le cas d'une poutre triangulée) ou les semelles (dans le cas d'une poutre ä âme pleine) seront, en principe, dimensionnées uniquement pour assurer la stabilité   necessaire   lors de l'application du moment de contreflexion. Cependant, dans certains cas, ce minimum sera le minimum géométrique   necessaire   pour permettre la fixation des éléments d'adjonction. 



  Phase 1 La poutre minimale définie dans la remarque 1 désignée sous le nom d'élément de base est   pluche   sur un banc dont une des extrémités est coulissante et l'autre fixe. 



  La partie supérieure de   l'element   de base est fixée ä ces   extremities   au moyen de bielles de hauteur   réglab1e.   



  Des vérins prenant appui sur les extrémités du banc et sur la partie inférieure de l'élément de base mettent celle-ci en compression. 



  La réaction des vérins met la partie supérieure de l'élément de base en traction, créant dans l'élément un champ de contraintes linéaire symétrique. Si la   rigidite   transversale de la partie inférieure de l'élément de base n'est pas suffisante pour éviter le voilement ou le flambement, celle-ci peut-être maintenue latéralement 
 EMI3.1 
 jusqu'à ce que l'element d'adjonction y soit fixé. 



  Afin de faciliter la fixation des éléments d'adjonction ä la partie supérieure de   l'element   de base, les extrémités peuvent être pourvues d'une partie pivotante pouvant tourner autour d'un axe longitudinal de manière   ä   amener la partie supérieure de   l'element   de base en 

 <Desc/Clms Page number 4> 

 dessous. 



  De plus, la partie non pivotante de l'extrémité coulissante peut, par   l'intermediaire   de cables ou de vérins exercer sur   l'element   de base une traction ou une compression d'ensemble de manière ä obtenir, dans cet élément un diagramme de tensions   predetermine   quelconque et adapté le mieux possible aux besoins de l'utilisation. 



  L'élément de base se trouve alors dans l'état suivant : a) S'il s'agit d'une poutre triangulée - membrure supérieure en traction - membrure inférieure en compression - certains montants en traction et d'autres en compression 
 EMI4.1 
 b) s'i1 s'agit d'une poutre ä âme pleine : - traction au dessus - compression en dessous - champ de tensions dans l'âme variant d'une traction ä la partie supérieure   ä   une compression la 
 EMI4.2 
 partie inférieure. 



  Remarque 2 : Les termes "supérieur" et "inférieur" se rapportent, ici, à l'utilisation ulterieure de la poutre, le côte supérieur étant, par rapport   ä   la poutre, defini comme le côte opposé ä la direction des charges tranversales que la poutre est destinée ä reprendre. 



  Phase 2 : La poutre étant maintenue dans l'état précédent, on vient renforcer les membrures ou les semelles par des éléments convenablement dimensionnés et, dans certains cas par exemple, d'une limite élastique supérieure   ä   celle de l'élément de base. 



  Ce renfort se fait en rendant les éléments d'adjonction solidaires de   l'element   de base au moyen d'un procédé adéquat (rivetage, boulonnage, soudure, collage, etc.). 

 <Desc/Clms Page number 5> 

 



  Ces méthodes de fixation ne font pas partie du procédé objet de la présente requête. 



  On notera que, dans le cas d'une poutre triangulée par exemple, certans montants tirés, destines ä être comprimes en phase d'utilisation, peuvent, au besoin, être également renforces au cours de la phase 2, en leur appliquant en fait le même principe que celui du procédé décrit dans la presente requête. 



  Phase 3 : La poutre complète renforcée est liberee du moment de contreflexion qui lui a été appliqué en phase 1. 



  Au cours de cette phase, on peut considérer qu'il est appliqué à la poutre complète, dont l'inertie (et la section) est plus grande que celle de l'élément de base, un moment de flexion et éventuellement un effort normal opposé ceux appliqués en phase 1. 



    L'étant   final de la poutre complete est alors : - faibles tensions dans les éléments d'adjonction - légère diminution (en valeur absolue) du champ de tension dans l'élément de base par les operations de la phase 1. 



    11   est important de noter que les tensions dans l'élément de base et les éléments de renfort immédiatement adjacents sont de signes contraires. 



  (Par exemple, grande traction dans la partie supérieure de l'élément de base et faible compression dans   l'element   d'adjonction appliqué   ä   cet endroit). 



  Pendant l'utilisation, alors que les éléments d'adjonction partent d'une faible tension pour arriver ä ä leur tension limite, l'élément de bases voit ses contraintes s'inverser avant d'arriver à leur limite admissible. 



  Si les limites élastiques, le dimensionnement et le moment de contreflexion de la phase 1 sont convenablement choisis, on peut arriver à pratiquement doubler la plage admissible de variation de tensions de 

 <Desc/Clms Page number 6> 

 l'élément de base. 



  - L'application industrielle du procédé est immédiate en ce qu'il permet la fabrication d'éléments de construction ou les materiaux de moindre résistance voient leur capacité considérablement augmentée lors de l'utilisation et en ce qu'il autorise l'emploi systématique de matériaux ä grande resistance (acier   ä   très haute   limite dlastique   ou matériaux synthétiques par exemple) dont l'usage est pour l'instant relativement limité à des cas très particuliers (câbles, tirants). 



  - Le   procedé   peut s'appliquer avantageusement ä la fabrication de poutres réfléchies. 



  En se servant de poutres   contrefléchies   assemblées suivant la présente description, il est possible d'augmenter notablemeent le moment de réflexion pour un même poids de l'élément réfléchi. 



  - Les calculs de dimensionnement des éléments de base, du champ de contre-contrainte et des éléments additionnels, permettant d'optimaliser le rendement, ne font pas partie de la   presente   requête.



   <Desc / Clms Page number 1>
 



   PRE-STRESS PROCESS BY CREATION
OF A MAINTAINED COUNTER-CONSTRAINT FIELD
BY SOLIDARIZATION OF ADDITIONAL MATERIALS DESCRIPTION - The invention relates to a method of manufacturing construction elements (beams, columns, caissons ...) which can be used as such or serve as a basis for the implementation of composite beams (mixed , hybrid) or thoughtful.



  Such elements can be used in the construction of bridges, buildings, tunnels, gantries or any other assembly requiring highly stressed elements.



  In general, materials with a high elastic limit are used in the form of tie rods, due to stability problems (buckling, buckling or interaction of these two phenomena).



  Indeed, the large slenderness very quickly limit, for geometrical reasons, the admissible tensions in the compressed parts, thus notably reducing the yield of materials possibly also very efficient.



  In the case of using materials with a high elastic limit for the development of beams with a solid core, for example, one is led, if one wishes to exploit to the maximum the capacities of the material, to thicken the cores to avoid buckling and this, in proportions such that the advantage of the material is largely lost, given the large quantities to be used.



  Likewise, for a triangulated beam, the strongly compressed uprights will have their minimum necessary section considerably enlarged to obviate buckling.



  - The invention consists of a method of manufacturing

 <Desc / Clms Page number 2>

 beams, possibly made of different materials, in which one or more basic elements are subjected to a manipulation creating a state of tension of opposite direction to that which will be induced by the later use.



  This state of tension is then maintained to the best of necessities by the addition of other elements of sufficient section, possibly (but not necessarily) prestressed before application, if necessary shaped in a material different from those constituting the basic element, and sufficiently rigid if necessary.



  If the elastic limits of the adjoining elements are judiciously chosen, the method allows, when loading the finished beam, stress variations in the basic element such that, otherwise, under the same conditions, it would see its stability compromised.



  The manipulations on the basic element or elements before fixing of the add-on elements can consist of pull-ups, compressions, twists, bends or combinations of these actions.



  One of the advantages compared to a conventional prestressing, where one does in the end only precompress the part of the beam element called to work in traction during the final use (and even if this precompression can induce traction in other parts, it causes in all ways an overall compression which may not be desirable) is that the process also allows the pre-shrinking of parts intended to be oompresses and the creation, in thin parts, for example, or subject to instability, a voltage field opposite to that caused by charging during use.



  This generally results in appreciable savings in material.

 <Desc / Clms Page number 3>

 An initial deformation can, if necessary, be given to the basic element so that after the various manipulations the complete element has the desired shape.



  - An embodiment of an application of the method can be described very simply in the case of a "counter-bent" beam, that is to say a beam reflected in the direction opposite to that of its use.



  Note 1: The chords (in the case of a triangulated beam) or the flanges (in the case of a solid core beam) will, in principle, be sized only to provide the necessary stability when applying the moment of counterflection. However, in certain cases, this minimum will be the geometric minimum necessary to allow the attachment of the add-on elements.



  Phase 1 The minimum beam defined in remark 1 designated under the name of basic element is pluche on a bench of which one of the ends is sliding and the other fixed.



  The upper part of the base element is fixed at these ends by means of rods of adjustable height.



  Cylinders bearing on the ends of the bench and on the lower part of the basic element put the latter in compression.



  The reaction of the jacks puts the upper part of the basic element in tension, creating in the element a symmetrical linear stress field. If the transverse stiffness of the lower part of the base element is not sufficient to avoid buckling or buckling, this can be maintained laterally
 EMI3.1
 until the addition element is attached to it.



  In order to facilitate the attachment of the add-on elements to the upper part of the basic element, the ends may be provided with a pivoting part which can rotate about a longitudinal axis so as to bring the upper part of the element basic in

 <Desc / Clms Page number 4>

 below.



  In addition, the non-pivoting part of the sliding end can, by means of cables or jacks, exert on the basic element a traction or an overall compression so as to obtain, in this element, a tension diagram. any predetermine and best suited to the needs of the use.



  The basic element is then in the following state: a) If it is a triangulated beam - upper chord in tension - lower chord in compression - some uprights in tension and others in compression
 EMI4.1
 b) if it is a beam with a solid core: - traction above - compression below - tension field in the core varying from traction at the top to compression at
 EMI4.2
 lower part.



  Note 2: The terms "upper" and "lower" refer, here, to the later use of the beam, the upper dimension being, with respect to the beam, defined as the side opposite to the direction of the transverse loads that the beam is intended to resume.



  Phase 2: The beam being maintained in the previous state, we reinforce the members or the flanges by suitably sized elements and, in certain cases for example, of an elastic limit higher than that of the basic element.



  This reinforcement is done by making the adjoining elements integral with the base element by means of an adequate process (riveting, bolting, welding, bonding, etc.).

 <Desc / Clms Page number 5>

 



  These fixing methods are not part of the process which is the subject of this request.



  It will be noted that, in the case of a triangulated beam for example, certain uprights drawn, intended to be compressed in the use phase, can, if necessary, also be reinforced during phase 2, by applying in fact the same principle as that of the process described in the present request.



  Phase 3: The reinforced full beam is released from the moment of deflection which was applied to it in phase 1.



  During this phase, we can consider that it is applied to the complete beam, whose inertia (and section) is greater than that of the basic element, a bending moment and possibly an opposite normal force. those applied in phase 1.



    The final state of the complete beam is then: - low tensions in the elements of addition - slight reduction (in absolute value) of the tension field in the basic element by the operations of phase 1.



    It is important to note that the tensions in the base element and the immediately adjacent reinforcement elements are of opposite signs.



  (For example, high traction in the upper part of the base element and low compression in the add-on element applied there).



  During use, while the add-on elements start from a low tension to reach their limit tension, the basic element sees its stresses reversed before reaching their admissible limit.



  If the elastic limits, the dimensioning and the bending moment of phase 1 are suitably chosen, it is possible to practically double the admissible range of variation of voltages of

 <Desc / Clms Page number 6>

 the basic element.



  - The industrial application of the process is immediate in that it allows the manufacture of construction elements or materials of lower resistance see their capacity considerably increased during use and in that it allows the systematic use of materials with great resistance (steel with very high elastic limit or synthetic materials for example) whose use is for the moment relatively limited to very specific cases (cables, tie rods).



  - The process can advantageously be applied to the manufacture of reflected beams.



  By using counter-bent beams assembled according to the present description, it is possible to notably increase the moment of reflection for the same weight of the reflected element.



  - The dimensioning calculations of the basic elements, the counter-stress field and additional elements, making it possible to optimize the yield, are not part of the present request.


    

Claims (2)

REVENDICATIONS L'invention a pour objet un type de poutre pour lequel les éléments risquant l'instabilité sont soumis ä un champ de contraintes maintenu par des elements additionnels qui participent, lors de l'utilisation, au travail d'ensemble de la poutre, ainsi qu'un procédé pour la réalisation de ce champ.CLAIMS The invention relates to a type of beam for which the elements risking instability are subjected to a stress field maintained by additional elements which participate, during use, in the overall work of the beam, as well than a process for achieving this field. 1. La revendication n* 1 porte sur un type de poutres pour lesquelles les parties risquant l'instabilité sont le siège, avant l'usage, d'un champ de contraintes lineairement variable prédéterminé pour être adapté à son utilisation. 1. Claim n ° 1 relates to a type of beams for which the parts risking instability are the seat, before use, of a linearly variable stress field predetermined to be adapted to its use. La particulatité de ce champ est qu'il n'est pas nécessairement uniforme (traction, compression) ou antisymétrique (flexion) mais peut présenter une combinaison de ces actions, suivant les nécessités de l'utilisation.The particularity of this field is that it is not necessarily uniform (traction, compression) or asymmetric (bending) but can present a combination of these actions, according to the needs of the use. 2. La revendication n* 2 porte sur un procédé pour la réalisation dans un élément d'une poutre, d'un champ de contraintes tel que défini en 1 ci-dessus. Le procédé en question est caractérisé par l'utilisation d'un banc special comportant une extrémité maintenue fixe et une autre coulissante. 2. Claim no. 2 relates to a method for producing in a member of a beam, a stress field as defined in 1 above. The process in question is characterized by the use of a special bench comprising one end held fixed and another sliding. Le maintien de l'element ä precontraindre entre ces extrémités et l'action de verins disposds, d'une part, entre l'element et les extrémités et agissant d'autre part sur l'extremité mobile permet d'établir, dans l'element en question, n'importe quel diagramme lineaire de contraintes predetermine. Maintaining the element to be prestressed between these ends and the action of actuators arranged, on the one hand, between the element and the ends and acting on the other hand on the mobile end makes it possible to establish, in the element in question, any predetermined linear stress diagram. Ce procédé laisse libres les parties superieures et inférieures de l'élément ä précontraindre de manière ä permettre la fixation d'éléments additionnels complétant la poutre et maintenant partiellement le champ de contraintes préétabli. This process leaves free the upper and lower parts of the element to be prestressed so as to allow the fixing of additional elements completing the beam and partially maintaining the pre-established stress field. Les deux extremites du banc peuvent être pourvues de <Desc/Clms Page number 8> parties pivotant autour d'un axe longitudinal de manière ä faciliter la dernière operation. The two ends of the bench can be provided with  <Desc / Clms Page number 8>  parts pivoting about a longitudinal axis so as to facilitate the last operation.
BE8700483A 1987-05-06 1987-05-06 PRESTRESSING PROCESS BY CREATING A FIELD CONTRECONTRAINTES MAINTAINED BY ADDITIONAL MATERIALS joining. BE1000518A5 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
BE8700483A BE1000518A5 (en) 1987-05-06 1987-05-06 PRESTRESSING PROCESS BY CREATING A FIELD CONTRECONTRAINTES MAINTAINED BY ADDITIONAL MATERIALS joining.
AT88870082T ATE72687T1 (en) 1987-05-06 1988-05-06 PRE-STRESSING METHOD BY CREATING A STRESS FIELD THAT IS MAINTAINED BY ATTACHING ADDITIONAL MATERIALS.
DE8888870082T DE3868431D1 (en) 1987-05-06 1988-05-06 PRESSURE TENSION METHOD BY PRODUCING A COUNTERFLAME FIELD THAT WILL BE OBTAINED BY ADDING ADDITIONAL MATERIALS.
ES198888870082T ES2030534T3 (en) 1987-05-06 1988-05-06 PRE-TENSIONING PROCEDURE FOR THE CREATION OF A COUNTER-CONTRACT FIELD MAINTAINED BY SOLIDARIZATION OF ADDITIONAL MATERIALS.
EP88870082A EP0290422B1 (en) 1987-05-06 1988-05-06 Process for prestressing by creating a reverse field of stress kept up by the fixation of additional materials
GR920400929T GR3004589T3 (en) 1987-05-06 1992-05-13

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
BE8700483A BE1000518A5 (en) 1987-05-06 1987-05-06 PRESTRESSING PROCESS BY CREATING A FIELD CONTRECONTRAINTES MAINTAINED BY ADDITIONAL MATERIALS joining.

Publications (1)

Publication Number Publication Date
BE1000518A5 true BE1000518A5 (en) 1989-01-10

Family

ID=3882636

Family Applications (1)

Application Number Title Priority Date Filing Date
BE8700483A BE1000518A5 (en) 1987-05-06 1987-05-06 PRESTRESSING PROCESS BY CREATING A FIELD CONTRECONTRAINTES MAINTAINED BY ADDITIONAL MATERIALS joining.

Country Status (6)

Country Link
EP (1) EP0290422B1 (en)
AT (1) ATE72687T1 (en)
BE (1) BE1000518A5 (en)
DE (1) DE3868431D1 (en)
ES (1) ES2030534T3 (en)
GR (1) GR3004589T3 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR993885A (en) * 1944-11-04 1951-11-08 Execution process of prestressed elements
GB1285046A (en) * 1968-08-19 1972-08-09 Procedes Nouveaux De Construct Improvements in and relating to the manufacture of girders
CH549138A (en) * 1971-06-01 1974-05-15 Technical Operations Basel Sa METHOD OF MANUFACTURING A REMOVABLE HOUSE FRAME AND AFTERMARKING HOUSE FRAME.
CH557944A (en) * 1972-05-16 1975-01-15 Sindler Vladimir Electrothermal stretching mach of long steel profiles for prestressing - uses electrical heating of profiles before weld joining

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR993885A (en) * 1944-11-04 1951-11-08 Execution process of prestressed elements
GB1285046A (en) * 1968-08-19 1972-08-09 Procedes Nouveaux De Construct Improvements in and relating to the manufacture of girders
CH549138A (en) * 1971-06-01 1974-05-15 Technical Operations Basel Sa METHOD OF MANUFACTURING A REMOVABLE HOUSE FRAME AND AFTERMARKING HOUSE FRAME.
CH557944A (en) * 1972-05-16 1975-01-15 Sindler Vladimir Electrothermal stretching mach of long steel profiles for prestressing - uses electrical heating of profiles before weld joining

Also Published As

Publication number Publication date
GR3004589T3 (en) 1993-04-28
ES2030534T3 (en) 1992-11-01
EP0290422A1 (en) 1988-11-09
DE3868431D1 (en) 1992-03-26
ATE72687T1 (en) 1992-03-15
EP0290422B1 (en) 1992-02-19

Similar Documents

Publication Publication Date Title
US4965973A (en) Devices for load carrying structures
US2887762A (en) Method of making prestressed structural member
DE2459237C2 (en) Vertical type electric machine
BE1000518A5 (en) PRESTRESSING PROCESS BY CREATING A FIELD CONTRECONTRAINTES MAINTAINED BY ADDITIONAL MATERIALS joining.
FR2631998A1 (en) ARMY BEAM WITH PRE-STRESSING ELEMENT INSIDE THE SAME
JP3030695B2 (en) Pipe arch bridge of three-dimensional restraint concrete structural member
DE2511855B2 (en) Flywheel with several rings made of anisotropic material
Jemah et al. Parametric experiments on stayed columns with slender bipods
DE4123013A1 (en) GROUND ANCHOR AND GROUND PILE
JP2522710B2 (en) Prestress introduction method for truss beams
JPH02304160A (en) Prestress induced steel built-up beam
DE2422638A1 (en) Load bearing static arched structure - comprising bending-stress subjected plastic fibreglass bars loaded from convex side
DE3702304A1 (en) Process for producing girders which are made up of steel girders and concrete, and composite girders produced by this process
BE1005070A6 (en) Steel girder resistant to buckling by lateral tipping
FR3050470A1 (en) BUILDING SLAB WITH REDUCED MASS
SU1244259A1 (en) Prestrained wooden beam
JP3230071B2 (en) Beam structure that does not generate bending moment in beam material
SU654781A1 (en) Prestressed reinforcing member
FR2600587A1 (en) Prestressed polyester and manufacturing process
BE495318A (en)
BE483749A (en) Improvements made to reinforced concrete construction elements and their manufacturing processes
CH569870A5 (en) Composite beam with rigid reinforcement - has axial tension on reinforcement removed after concrete sets to compress concrete
SU787592A1 (en) Arcuate girder
JPH09209499A (en) Pretension type pc member and production method thereof
BE721634A (en)