AU784595B2 - Miniature microphone with improved wind protection - Google Patents

Miniature microphone with improved wind protection Download PDF

Info

Publication number
AU784595B2
AU784595B2 AU15449/02A AU1544902A AU784595B2 AU 784595 B2 AU784595 B2 AU 784595B2 AU 15449/02 A AU15449/02 A AU 15449/02A AU 1544902 A AU1544902 A AU 1544902A AU 784595 B2 AU784595 B2 AU 784595B2
Authority
AU
Australia
Prior art keywords
microphone
volume
capsule
housing
miniature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
AU15449/02A
Other versions
AU1544902A (en
Inventor
Christoph Schwald
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AKG Acoustics GmbH
Original Assignee
AKG Acoustics GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AKG Acoustics GmbH filed Critical AKG Acoustics GmbH
Publication of AU1544902A publication Critical patent/AU1544902A/en
Application granted granted Critical
Publication of AU784595B2 publication Critical patent/AU784595B2/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/08Mouthpieces; Microphones; Attachments therefor
    • H04R1/083Special constructions of mouthpieces
    • H04R1/086Protective screens, e.g. all weather or wind screens
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/32Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only
    • H04R1/34Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by using a single transducer with sound reflecting, diffracting, directing or guiding means
    • H04R1/38Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by using a single transducer with sound reflecting, diffracting, directing or guiding means in which sound waves act upon both sides of a diaphragm and incorporating acoustic phase-shifting means, e.g. pressure-gradient microphone
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2410/00Microphones
    • H04R2410/07Mechanical or electrical reduction of wind noise generated by wind passing a microphone

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • Details Of Audible-Bandwidth Transducers (AREA)
  • Obtaining Desirable Characteristics In Audible-Bandwidth Transducers (AREA)

Description

AUSTRALIA
Patents Act 1990 COMPLETE SPECIFICATION STANDARD PATENT Applicant(s): AKG Acoustics GmbH Invention Title: MINIATURE MICROPHONE WITH IMPROVED WIND PROTECTION The following statement is a full description of this invention, including the best method of performing it known to me/us: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a miniature microphone with a microphone button or capsule mounted in a microphone housing, wherein the microphone capsule has front sound entry openings which lead to a front volume, rear sound entry openings which lead to a rear volume, and a connecting volume; specifically, the invention relates to a pressuregradient microphone with improved wind protection or pop protection.
2. Description of the Related Art a Independently of their physical manner of operation, microphone capsules can be constructed as pressure microphones or pressure-gradient microphones. The two types of capsules differ from each other primarily with respect to the pickup pattern which can be achieved. The pickup pattern of a microphone capsule is defined as the sensitivity of the capsule in dependence on the angle of incidence, and can be described as a spherical, cardioid, hypercardioid, supercardioid, or figure-eight pickup pattern with corresponding polar diagram. Pressure microphones in which the diaphragm of the capsule is excited only from one side have a spherical pickup pattern.
In order to be able to achieve a one-sided pickup pattern, so called pressure-gradient microphones must be constructed. These microphones not only have a front entry opening, but also a second sound entry opening which may be provided on the side or in the rear and serves to subject the diaphragm of the microphone capsule to a pressure difference. The acoustic tuning of a pressure-gradient capsule is carried out by an expert using conventional acoustic means, so that the desired pickup pattern as well as a desired frequency pattern are achieved.
Although microphone capsules with a pronounced onesided pickup pattern are in demand because of their wind noise-insulating properties, compared to capsules with spherical pickup patterns they also have a significant disadvantage with respect to wind or so called pop noises.
Pop noises are produced by unskilled pronunciation of explosive consonants, such as or In accordance with the conventional prior art, damping of the wind noises is effected by means of various types of microphone screens. The microphone screens which also serve as mechanical protection of the microphone capsule, are filled with various porous materials. Primarily used for this purpose are open-pore foam materials which are either placed into the interior of the microphone screen grating, or are placed as wind protection blankets onto the microphone blanket grating. The effectiveness of such wind protection devices depends on the density of the foam, on the one hand, and on the distance to the microphone capsule, on the other hand. A denser foam material generally produces a better wind protection, but also results in a sensitivity loss of the microphone at higher frequencies. The situation is similar with respect to the distance from the microphone capsule to be protected. A greater distance means better protection, however, with the disadvantage that the microphone can no longer be constructed so small so as to be unnoticeable.
An example for the use of protective devices against popping based on foam material is EP 0 130 400 A2. This pop and wind protection is manufactured of open-pore foam 0 material and is placed around the microphone housing.
Another method is described in U.S. Patent 4,966,252.
In this case, not only the capsule area of the microphone, but the entire microphone is mounted in a zeppelin-like wind Sprotection housing.
DE 298 13 397 U1 also describes a wind protection on the basis of foam material which is placed around the S microphone housing.
All three examples have in common that their construction is complicated and expensive and that external climatic conditions have a very negative influence on the service life of the protective devices.
Miniature microphones which are primarily carried on the human body, either by being snapped on, pinned on, glued on or placed on the human body, are constructed as pressure microphones for the purpose of reducing the wind or pop sensitivity. This makes it possible to keep the wind sensitivity of the microphone low, but because of the S spherical pickup pattern of the microphone undesirable noises from the acoustic surrounding of the microphone are received and further transmitted. Up to now, the use of miniature microphones with unilateral pickup patterns was made especially difficult because of their sensitivity to wind. They always absolutely had to have an outer protective blanket of foam material.
7 SUMMARY OF THE INVENTION In accordance with the present invention there is provided a miniature microphone comprising: a microphone housing; a microphone capsule mounted in the microphone housing; wherein the microphone housing has front sound entry openings in communication with a front volume and rear sound entry openings in communication with a rear volume, wherein the front volume is in communication with front sound entry openings of the microphone capsule and the rear volume is in communication with rear sound entry openings of the microphone capsule; further comprising 15 a connecting volume connecting the front volume and the rear volume.
The various preferred features which characterize the invention are pointed out with particular reference to 20 the claims annexed to and forming a part of the o:o: disclosure. For a better understanding of the invention, its operating
O
H\anetteg\keep\speci\15449-02.doc 8/02/06 advantages, specific objects attained by its use, reference should be had to the drawing and descriptive matter in which there are illustrated and described preferred embodiments of the invention.
o.
t q BRIEF DESCRIPTION OF THE DRAWING
S
In the drawing: Fig. 1 and Fig. 2 are schematic illustrations for explaining the problems on which the invention is based; Fig. 3 is a cross-sectional view of a small microphone according the prior art; Fig. 4 is a cross-sectional view of a microphone according to the present invention; and Fig. 5 is a sectional view taken along sectional line V-V of Fig. 4.
/0 DESCRIPTION OF THE PREFERRED EMBODIMENTS The problems on which the present invention is based will be discussed in the following in connection with Figs.
1 and 2. Fig. 1 shows a turbulent sound field, illustrated by wavy lines, and a microphone capsule with two sound entry openings a and b in the sound field.
Fig. 2 illustrates with the aid of a vector diagram the pressure conditions in a turbulent sound pressure field. The individual vectors have the following meaning: PO is the ooooo static air pressure whose intensity changes are so slow that they are negligible. Two vectors Pa and Pb are shown at the oe tip of the vector PO. The length of the vector PO is longer than the length of the two vectors Pa and Pb by the factor l05 (100,000). The two vectors Pa and Pb represent the sound pressure conditions at the locations of the two sound entry openings a and b of the microphone capsule illustrated in Fig. i. Since the microphone capsule is small, the intensities or lengths of the two vectors Pa and Pb is identical (they are not weakened over such a short length).
However, their phase positions are completely random because of the turbulence of the sound field.
Two situations are illustrated in Fig. 2. In the first case, shown in solid lines, the vector Pb has a phase angle of about 450, and the vector difference which acts as the driving force on the diaphragm of the microphone capsule, has an intensity of APl. At another point in time, shown in broken lines, the vector Pb has a phase angle of about 1200.
In that case, the pressure difference Pa-Pb=APs is greater than the individual pressures Pa or Pb.
This means that in a turbulent air pressure surrounding, as it usually exists when wind or pop noises occur, the diaphragm driving force is significantly greater in a pressure-gradient capsule than in a pressure capsule. This is because in a turbulent air pressure field the pressure differences between two adjacent points can become significantly greater than the air pressure at one point in the same turbulent air pressure field over time, as can be seen in Fig. 2. The microphones which are constructed with such microphone capsules are particularly sensitive to wind noises and the reduction of the wind noises is normally very difficult to achieve.
Fig. 3 shows a conventional small microphone with onesided pickup pattern in accordance with the prior art. The microphone capsule 1 provided with a front and a rear sound entry opening, not shown, is embedded in an elastic hollowcylindrical capsule support 2 which dampens grasping or frictional noises. Lateral sound openings 3 are integrated in the microphone housing 4, wherein the openings lead to a rear volume 7. A more or less porous foam material 5 is usually placed on the front capsule side in the front volume S which has corresponding front sound entry openings 6 in the 555oo5 microphone housing 4. The purpose of the porous foam material 5 is twofold. First, the foam material provides a dust protection of the capsule; second, it is desired to achieve a pop protection.
S. S It can be seen in the illustrated solution that the microphone capsule 1 constructed as a pressure-gradient microphone has two sound entry openings, not shown, while no foam material is placed in the rear volume 7 with the rear sound entry openings 3, and that the capsule support 2 acoustically completely insulates the front volume from the rear volume. This reduces the manufacturing costs significantly, however, the wind sensitivity of the microphone is further increased because only completely equal sound paths do not lead to additional pressure differences at the diaphragm of the capsule.
The lack of the foam material in the rear volume 7 of the microphone increases the pressure differences in the diaphragm (as compared to the complete lack of foam material S covers) and, thus, the wind or pop sensitivity is also ooooo increased.
Consequently, it is necessary to provide conventional microphone components with small dimensions (external diameter of up to 25 mm) for protection against wind noises or pop noises with an additional foam material body (wind protection component) which is pulled or placed over the entire structure. The disadvantages of this configuration are the additional space requirement as well as the fact that these so called additional wind protection components age as a result of ambient influences.
The solution according to the present invention is illustrated in Figs. 4 and 5. A conventional pressuregradient capsule 11 with one-sided pickup pattern is placed in a usually cylindrical housing 12 which, however, can also be shaped differently, and the capsule 11 is supported by knobs or webs 13 which project inwardly from the housing wall. Provided in the housing 12 are front sound entry openings 14 and rear sound entry openings 15. The capsule 11 placed in the housing 12 forms in the housing 12 a front ego volume 16, a rear volume 17 and a connecting volume 18 which connects the volumes 16 and 17.
*e S.
""The front volume 16 and the rear volume 17 are each partially or totally filled with at least one soundo permeable foam component 19. The connecting volume 18 serves as a smoothing zone and together with the properties of the foam components 19 results in a very strong damping of the wind noises. The front sound entry openings 14 allow the sound to enter from the front into the front volume 16 and, thus, to the entry openings on the front side of the capsule 11, not shown, as well as through the connecting volume 18 to the rear volume 17 and from there to the rear sound entry openings, not shown, on the rear side of the capsule 11.
The rear wall of the rear volume 17 is acoustically tightly insulated from the following structure because the volume 17 is very small, on the one hand, and because the microphone housing 12 is closed on the inside and does not permit coupling to other volumina. Fig. 4 also shows the connecting wires on capsule 11. The wires are pulled through an opening and the opening is closed by means of an adhesive or another elastic material 21 so that the remaining volume of the microphone housing is not acoustically coupled to the volume 17.
go ""The sizes of the volumina and the entry openings are selected by applying the criteria usually used in the construction of microphones in such a way that the desired formation of the frequency pattern is achieved. The shape and size of the front volume 16, which is preferably entirely filled with foam material 19, is preferably selected in such a way that its height (distance between the /6 front side of the microphone capsule 11 and the front sound entry openings 14) is about 1/4 of the smallest wave length to be transmitted (highest frequency to be transmitted) This utilizes the effect of the volume as a resonator and spreads out the microphone frequency pattern in the case of higher frequencies. The size of the rear volume 17 is less S critical as long as the openings 15 are arranged close enough to the bottom of the capsule 11, on the one hand, and its size permits an unrestricted sound passage. The connecting ducts which are illustrated as connecting volume 18 have preferably a width of 0.5 to 2 mm in the radial S direction. The ducts can also have a greater width, however, this only makes sense in exceptional cases because this once again increases the size of the microphone.
o o* Finally, it should be pointed out that in the specification and claims the term "volume" refers to a volume which is empty or filled partially or totally with foam material or the like, wherein, however, the volume is always acoustically substantially permeable.
/7 The invention is not limited by the embodiments described above which are presented as examples only but can be modified in various ways within the scope of protection defined by the appended patent claims.
For the purposes of this specification it will be clearly understood that the word "comprising" means "including but not limited to", and that the word "comprises" has a corresponding meaning.
It is to be understood that, if any prior art .oo.or publication is referred to herein, such reference does not constitute an admission that the publication forms a part of the common general knowledge in the art, in Australia or any other country.
*S S

Claims (7)

1. A miniature microphone comprising a microphone housing; a microphone capsule mounted in the microphone housing; wherein the microphone housing has front sound entry openings in communication with a front volume and rear sound entry openings in communication with a rear volume, wherein the front volume is in communication with front sound entry openings of the microphone capsule and the rear volume is in communication with rear sound entry openings of the microphone capsule; further comprising a connecting volume connecting the front volume and the rear volume.
2. The miniature microphone according to claim 1, wherein the connecting volume is comprised of narrow ducts. 19
3. The miniature microphone according to claim 1, wherein the front volume and the rear volume are each totally or partially filled with at least one sound-permeable foam component.
4. The miniature microphone according to claim 1, wherein the connecting volume is comprised essentially of an annular gap between an inner side of a wall of the housing and an outer side of the microphone capsule.
The miniature microphone according to claim 1, wherein the housing has knobs or webs for supporting the microphone capsule. o*
6. The miniature microphone according to claim 1, wherein the front volume has a height equal to about 1/4 of the smallest wave length to be transmitted. 20
7. A miniature microphone substantially as herein described with reference to the accompanying Figures 1, 2, 4 and Dated this 8th day of February 2006 25 AKG ACOUSTICS GMBH By their Patent Attorneys GRIFFITH HACK Fellows Institute of Patent and Trade Mark Attorneys of Australia H,\annetteg\keep\speci\15449-02 .doc 8/02/06
AU15449/02A 2001-02-15 2002-02-06 Miniature microphone with improved wind protection Ceased AU784595B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT240/2001 2001-02-15
AT2402001A AT411560B (en) 2001-02-15 2001-02-15 MINIATURE MICROPHONE WITH INTEGRATED WINDSHIELD

Publications (2)

Publication Number Publication Date
AU1544902A AU1544902A (en) 2002-08-22
AU784595B2 true AU784595B2 (en) 2006-05-11

Family

ID=3670045

Family Applications (1)

Application Number Title Priority Date Filing Date
AU15449/02A Ceased AU784595B2 (en) 2001-02-15 2002-02-06 Miniature microphone with improved wind protection

Country Status (5)

Country Link
EP (1) EP1233643A3 (en)
JP (1) JP3819305B2 (en)
CN (1) CN100508646C (en)
AT (1) AT411560B (en)
AU (1) AU784595B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006001350B4 (en) * 2006-01-09 2010-10-28 Sennheiser Electronic Gmbh & Co. Kg Microphone and modification unit for modifying the acoustic properties of a microphone
JP5838058B2 (en) * 2011-08-24 2015-12-24 株式会社オーディオテクニカ Unidirectional microphone
US11051094B2 (en) 2019-10-25 2021-06-29 Shore Acquisition Holdings, Inc. Interchangeable port acoustical cap for microphones

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5204907A (en) * 1991-05-28 1993-04-20 Motorola, Inc. Noise cancelling microphone and boot mounting arrangement

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5329593A (en) * 1993-05-10 1994-07-12 Lazzeroni John J Noise cancelling microphone
US5781643A (en) * 1996-08-16 1998-07-14 Shure Brothers Incorporated Microphone plosive effects reduction techniques
CN1095622C (en) * 1996-10-11 2002-12-04 张炳林 Antiepidemic sterilizing microphone and its manufacturing method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5204907A (en) * 1991-05-28 1993-04-20 Motorola, Inc. Noise cancelling microphone and boot mounting arrangement

Also Published As

Publication number Publication date
EP1233643A3 (en) 2004-01-21
AT411560B (en) 2004-02-25
AU1544902A (en) 2002-08-22
CN1371233A (en) 2002-09-25
JP2002262380A (en) 2002-09-13
CN100508646C (en) 2009-07-01
ATA2402001A (en) 2003-07-15
JP3819305B2 (en) 2006-09-06
EP1233643A2 (en) 2002-08-21

Similar Documents

Publication Publication Date Title
US11575985B2 (en) Mass loaded earbud with vent chamber
EP2037698B1 (en) Microphone apparatus
US8009851B2 (en) Noise reduction system and method
US7955250B2 (en) Implantable microphone having sensitivity and frequency response
AU722799B2 (en) Transmitter structure
US10897669B2 (en) Two layer microphone protection
CN211744683U (en) In-ear headphones comprising a DSF channel
JP5514924B2 (en) Hearing protection earplug
CN101742371A (en) Microphone capable of suppressing wind noise
US20020110250A1 (en) Miniature microphone with improved wind protection
CN106454627A (en) Waterproof sound production device and earphone
US20040129276A1 (en) Ear plug to be inserted into the external auditory canal
US9232318B2 (en) Hearing device with a microphone
AU784595B2 (en) Miniature microphone with improved wind protection
US20020017424A1 (en) Pop shield for microphone
JPH04501344A (en) Microphone unidirectional enhancer
KR101949180B1 (en) Earplug
US7162051B2 (en) Headphone
JP2008154036A (en) Mouthpiece
JP4154108B2 (en) Small microphone
AU2002100015A4 (en) Earpiece
SELF-ELIMINATES et al. Reviews Of Acoustical Patents
JPH0856395A (en) Vibrator
JP2007116219A (en) Line microphone
KR20060083495A (en) Microphone noise eliminating apparatus

Legal Events

Date Code Title Description
MK14 Patent ceased section 143(a) (annual fees not paid) or expired