AU781464B2 - Production method of 5-phthalancarbonitrile compound, intermediate therefor and production method of the intermediate - Google Patents

Production method of 5-phthalancarbonitrile compound, intermediate therefor and production method of the intermediate Download PDF

Info

Publication number
AU781464B2
AU781464B2 AU55008/00A AU5500800A AU781464B2 AU 781464 B2 AU781464 B2 AU 781464B2 AU 55008/00 A AU55008/00 A AU 55008/00A AU 5500800 A AU5500800 A AU 5500800A AU 781464 B2 AU781464 B2 AU 781464B2
Authority
AU
Australia
Prior art keywords
compound
carbon atoms
formula
production method
moiety
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
AU55008/00A
Other versions
AU5500800A (en
Inventor
Masami Igi
Tetsuya Ikemoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=18020462&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=AU781464(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Publication of AU5500800A publication Critical patent/AU5500800A/en
Assigned to SUMITOMO CHEMICAL COMPANY, LIMITED reassignment SUMITOMO CHEMICAL COMPANY, LIMITED Alteration of Name(s) of Applicant(s) under S113 Assignors: SUMIKA FINE CHEMICALS CO., LTD.
Application granted granted Critical
Publication of AU781464B2 publication Critical patent/AU781464B2/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/77Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D307/78Benzo [b] furans; Hydrogenated benzo [b] furans
    • C07D307/79Benzo [b] furans; Hydrogenated benzo [b] furans with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the hetero ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/09Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by hydrolysis
    • C07C29/095Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by hydrolysis of esters of organic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C33/00Unsaturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms
    • C07C33/40Halogenated unsaturated alcohols
    • C07C33/46Halogenated unsaturated alcohols containing only six-membered aromatic rings as cyclic parts
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C43/00Ethers; Compounds having groups, groups or groups
    • C07C43/30Compounds having groups
    • C07C43/313Compounds having groups containing halogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/62Halogen-containing esters
    • C07C69/63Halogen-containing esters of saturated acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/77Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D307/87Benzo [c] furans; Hydrogenated benzo [c] furans
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/16Systems containing only non-condensed rings with a six-membered ring the ring being unsaturated

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Peptides Or Proteins (AREA)
  • Indole Compounds (AREA)

Abstract

The present invention provides a production method of a 5-phthalancarbonitrile compound, which comprises the use of a novel compound of the formula ÄIÜ <CHEM> wherein X is chlorine atom, bromine atom or iodine atom, as a key intermediate. The method of the present invention imposes small environmental burden (without use of a reagent imposing great burden on the environment, such as heavy metal, metal cyanide, thionyl chloride and the like) and is safe. The inventive method is based on a completely new strategy which is different from conventional production methods of 5-phthalancarbonitrile compound.

Description

AUSTRALIA
Patents Act 1990 COMPLETE SPECIFICATION STANDARD PATENT GomnlAoro Chepvcni (ohffran, Li v;/ecJ
V
SUMIKA FINE CHG CL CO Lrfl SEC11 Invention Title: PRODUCTION METHOD OF 5-PHTHALANCARBONITRILE COMPOUND, INTERMEDIATE THEREFOR AND PRODUCTION METHOD OF THE
INTERMEDIATE
The following statement is a full description of this invention, including the best method of performing it known to me/us:
SPECIFICATION
PRODUCTION METHOD OF 5-PHTHALANCARBONITRILE COMPOUND, INTERMEDIATE THEREFOR AND PRODUCTION METHOD OF THE INTERMEDIATE TECHNICAL FIELD OF THE INVENTION The present invention relates to a production method of a compound useful as an intermediate for citalopram, which is an antidepressant, an intermediate for the phthalancarbonitrile compound and a production method of the intermediate for the 5-phthalancarbonitrile compound. More particularly, the present invention relates to a production method of a 5-phthalancarbonitrile compound via a compound of the formula to be mentioned later, based on a completely new viewpoint.
BACKGROUND OF THE INVENTION The 5-phthalancarbonitrile compound of the formula [VI]
O
*e
C
F
C
[VII]
which is an antidepressant. The production method of the phthalancarbonitrile compound is known to be as shown in the following scheme (W098/19511).
R, F-Q-MgHal 0 cyclization R
O
OH
R F R reduction
F
OH
RF
N OH
F
cyanation when R is other than CN
F
F
HaNl-..NMe 2 when R is CN wherein R is cyano, alkyloxycarbonyl having 2 to 6 carbon atoms or alkylaminocarbonyl having 2 to 6 carbon atoms, and Hal is a halogen atom.
5 According to this method, when R is other than cyano, cyanation is necessary after reduction and ring closure reaction.
For example, when R is alkyloxycarbonyl, cyanation is carried out by the three steps of hydrolysis, amidation and reaction with chlorosulfonyl isocyanate, and when R is alkylaminocarbonyl, cyanation is carried out by a reaction with thionyl chloride or phosphorus pentachloride. In these methods, reagents undesirable to the environment, such as chlorosulfonyl isocyanate, thionyl chloride and phosphorus pentachloride, are used, and when R is alkyloxycarbonyl, cyanation is carried out by 3 steps, which is not necessarily simple or easy.
When R is cyano, the production method of the starting material, 5-cyanophthalide, needs to be improved. To be specific, is known to be obtained by the reaction of a diazonium salt derived from 5-aminophthalide with potassium cyanide in the presence of copper sulfide (Bull. Soc. Sci.
Bretagne, 26, 1951, 35). This method is not desirable in that a 2 toxin and a heavy metal salt are involved, such as potassium cyanide and copper sulfide. In addition, synthesis of aminophthalide requires a dangerous reaction of nitration of phthalimide (Organic Synthesis II, 459), and further, reduction to amino by tin chloride and semi-reduction of phthalimide by zinc (J.
Chem. Soc., 1931, 867), generating a waste heavy metal that is industrially undesirable.
It would therefore be advantageous if at least preferred embodiments of the present invention provide a production method of a 5-phthalancarbonitrile compound, which places only a small burden on the environment and which is safe.
SUMMARY OF THE INVENTION Such advantage can be achieved by the present invention detailed in the following.
In accordance with the present invention, there are provided a method of producing a 5-phthalancarbonitrile compound (compound of the aforementioned formula useful as an e intermediate for citalopram, which is safe and imposes less environmental burden, the method comprising using a compound of the formula [A] wherein R2 iS alkanoyl having 2 to 5 carbon atoms (hereinafter to be also referred to as compound as a starting material, and a compound of the formula [I]
[A]
OH
HO
wherein X is chlorine atom, bromine atom or iodine atom (hereinafter to be also referred to as compound as a key intermediate, without using thionyl chloride and the like; novel compound of the following formulas [IIII], and [V HO wherein X is chlorine atom, bromine atom or iodine atom (hereinafter to be also referred to as compound as a key intermediate, without using thionyl chloride and the like; novel compounds of the following formulas [III], [IV] and that can be used for the production method of the 3 phthalancarbonitrile compound of the present invention:
[II]
[III]
[V]
[IV]
5 a a a a a wherein R 1 is alkanoyl having 2 to 5 carbon atoms, alkyl having 1 to 5 carbon atoms, tetrahydropyran-2-yl, alkoxymethyl wherein the alkoxyl moiety has 1 to 5 carbon atoms, 1-alkoxyethyl wherein the alkoxyl moiety has 1 or 3 to 10 carbon atoms, or trialkylsilyl wherein each alkyl moiety has 1 to 5 carbon atoms, and Xb is chlorine atom (hereinafter to be also referred to as compound compound [III], compound [IV] and compound respectively); and the production methods thereof.
Every conventional production method of citalopram goes through a 5-substituted phthalide compound 5-formylphthalide), but the method of the present invention goes through the compound employing a completely new synthetic strategy.
The present invention provides the following: A compound of the formula [Ia] [Ia] wherein Xa is chlorine atom or iodine atom.
A compound of the formula [III
[II]
wherein R 1 is alkanoyl having 2 to 5 carbon atoms, alkyl having 1 to 5 carbon atoms, tetrahydropyran-2-yl, alkoxymethyl wherein an alkoxyl moiety has 1 to 5 carbon atoms, 1-alkoxyethyl wherein an aikoxyl moiety has 1 or 3 to 10 carbon atoms, or trialkylsilyl wherein each alkyl moiety has 1 to 5 carbon atoms, and Xb is chlorine atom.
The compound of the above wherein R' is acetyl.
15 25 A compound of the formula [III]
[III]
A compound of the formula [IV]
[IV]
(6)t An oxime compound of the formula [V]
IV]
A production method of a compound of the formula [i]
OH
x
HO
[I]
wherein X is chlorine atom, bromine atom or iodine atom, which comprises subjecting a compound of the formula [A] .*1o a a a a a a a.
a a
[A]
wherein R 2 is alkanoyl having 2 to 5 carbon atoms, to chlorination, bromination or iodination and then to elimination of the alkanoyl group.
A production method of a compound of the formula [III] 0 0 I III] which comprises the steps of converting a compound of the formula [II-b] .ORlb [II-b] wherein Rlb is alkyl having 1 to 5 carbon atoms, tetrahydropyran- 2-yl, alkoxymethyl wherein an alkoxyl moiety has 1 to 5 carbon atoms, 1-alkoxyethyl wherein an alkoxyl moiety has 1 to 10 carbon atoms, or trialkylsilyl wherein each alkyl moiety has 1 to carbon atoms, and X is chlorine atom, bromine atom or iodine atom, to a Grignard reagent or lithium compound, coupling same with p-fluorobenzaldehyde, and subjecting the obtained coupling compound to deprotection of
R
1 b and cyclization.
A production method of the formula [IV] SOHC [IV]
F
which comprises oxidizing a compound of the formula [III]
[III]
[III]
0 0*
*.LL
A production method of an oxime compound of the formula [V] H0 HON I-C/ [V] which comprises reacting a compound of the formula [IV] OHC [IV]
F
with hydroxylamine or a mineral acid salt thereof.
(11) A production method of a 5-phthalancarbonitrile compound of the formula [VI] NC [VI]
F
which comprises dehydrating an oxime compound of the formula [V]
.H
H ON IV] (12) A production method of 5-phthalancarbonitrile compound of the 15 formula [VI] NC VI
F
which comprises reacting a compound of the formula [IV] OH v[IV]
F
with hydroxylamine or a mineral acid salt thereof and dehydrating the resulting compound.
(13) A production method for citalopram which comprises the method of the above (12) and further reacting the compound of formula [VI] with 3-(dimethylamino)propyl halide.
(14) A production method of a compound of the formula [II']
OR
[II']
-Xa R 0 wherein R 1 is alkanoyl having 2 to 5 carbon atoms, alkyl having 1 to 5 carbon atoms, tetrahydropyran-2-yl, alkoxymethyl wherein an alkoxyl moiety has 1 to 5 carbon atoms, 1-alkoxyethyl wherein an 20 alkoxyl moiety has 1 to 10 carbon atoms, or trialkylsilyl wherein each alkyl moiety has 1 to 5 carbon atoms, and Xa is chlorine atom or iodine atom, which comprises *o converting the hydroxyl group of a compound of the formula [Ia] OH [Ia]
X
a
HO
wherein Xa is chlorine atom or iodine atom, to alkoxy having 1 to 5 carbon atoms, tetrahydropyran-2-yloxy, alkoxymethoxy wherein an alkoxyl moiety has 1 to 5 carbon atoms, 1-alkoxyethoxy wherein an alkoxyl moiety has 1 to 10 carbon atoms, or trialkylsilyloxy wherein each alkyl moiety has 1 to 5 carbon atoms, or subjecting a compound of the formula [A]
OR
2 5R2
[A]
R2d wherein R 2 is alkanoyl having 2 to 5 carbon atoms, to chlorination or iodination.
DETAILED DESCRIPTION OF THE INVENTION The symbols used in the present specification are defined in the following.
With regard to alkyl, alkoxy and the like used in the present invention, they are linear unless a prefix iso, neo etc.) or a symbol sec-, tert- etc.) is attached. For example, a simple "propyl" means linear propyl.
The aknyha1 2 1' The alkanoyl having 2 to 5 carbon atoms at R R R and
R
a is linear or branched chain alkanoyl preferably having 2 to carbon atoms, such as acetyl, butanoyl, propanoyl, isopropanoyl, 20 pentanoyl, pivaloyl and the like, with preference given to acetyl,
C.*
C o propanoyl. and pivaloyl.
The alkyl. having 1 to 5 carbon atoms at RI, R 1 and RlIb i linear or branched chain alkyl preferably having 1 to 4 carbon atoms, such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, pentyl, isopentyl. and the like, with preference given to methyl and tert-butyl.
1 1 Ib The alkoxymethyl at R1, R and R wherein the alkoxyl moiety has 1 to 5 carbon atoms, is alkoxymethyl having linear or branched chain alkoxy preferably having 1 or 2 carbon atoms, such as methoxymethyl, ethoxymethyl, propoxymethyl, isopropoxymethyl, butoxymethyl, isobutoxymethyl, sec-butoxyniethyl, tert-butoxymethyl, pentoxymethyl, isopentoxymethyl. and the like, with preference given to methoxymethyl and ethoxymethyl.
The 1-alkoxyethyl at R wherein the alkoxyl. moiety has 1 or 3 to 10 carbon atoms, is linear, branched chain or cyclic 1alkoxyethyl wherein the alkoxyl. moiety preferably has 1 or 3 to 6 carbon atoms, such as 1-methoxyethyl, 1-propoxyethyl, 1- :isopropoxyethyl, 1-butoxyethyl, 1-isobutoxyethyl, 1-secbutoxyethyl, 1 -tert-butoxyethyl, 1-pentoxyethyl, 1-isopentoxyethyl, 1-hexyloxyethyl, 1-cyclohexyloxyethyl, 1-heptyloxyethyl, 1octyloxyethyl, l-nonyloxyethyl, 1-decyloxyethyl and the like, with preference given to I-propoxyethyl, 1-butoxyethyl and 1cyclohexyloxyethyl.
.lb The I-alkoxyethyl. at R" and R wherein the alkoxyl moiety 25 has 1 to 10 carbon atoms, is linear, branched chain or cyclic Ialkoxyethyl. wherein the alkoxyl. moiety preferably has 1 to 6 carbon atoms, such as 1-methoxyethyl, 1-ethoxyethyl, 1propoxyethyl, 1-isopropoxyethyl, 1-butoxyethyl, 1-isobutoxyethyl, 1-sec-butoxyethyl, 1-tert-butoxyethyl, 1 -pentoxyethyl, 1isopentoxyethyl, 1-hexyloxyethyl, J.-cyc lohexyloxyethyl, 1heptyloxyethyl, I-octyloxyethyl, 1 -nonyloxyethyl, 1-decyloxyethyl and the like, with preference given to l-ethoxyethyl, 1propoxyethyl, 1-butoxyethyl and 1-cyclohexyloxyethyl.
The alkyl of the trialkylsilyl at R1, R" and R Ib, wherein each alkyl moiety has 1 to 5 carbon atoms, is independently linear or branched chain alkyl. preferably having 1 to 4 carbon atoms, such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, secbutyl, tert-butyl, pentyl, isopentyl and the like, with preference given to methyl and tert-butyl. The trialkylsilyl may be, for example, trimethylsilyl, triethylsilyl, tripropylsilyl, triisopropylsilyl, tributylsilyl, triisobutylsilyl, trisecbutylsilyl, tripentylsilyl, triisopentylsilyl, tertbutyldimethylsilyl and the like, with preference given to trimethylsilyl, tributylsilyl and tert-butyldimethylsilyl.
The present invention is explained in detail in the following.
Production method of compound [I] The novel compound can be efficiently obtained by subjecting compound to one of chlorination, bromination and iodination, and then to the elimination of the alkanoyl group.
For example, chlorination, bromination or iodination, preferably bromination, is performed by reacting compound with a 15 halogenating agent in a reaction solvent to give a compound of the formula [II-a]
-OR
1 [II-a]
X
a-l
OR
1 a wherein X is chlorine atom, bromine atom or iodine atom and Ri" is alkanoyl having 2 to 5 carbon atoms (hereinafter to be also 20 referred to as compound This reaction is preferably carried out in the presence of a base. As used herein, X is *..preferably bromine atom in consideration of conversion of the compound of the formula [II-b] to a lithium compound or a Grignard reagent in the later step and R 1 a is particularly preferably acetyl in view of the easiness of synthesis and deprotection. The alkanoyl group is eliminated by adding the obtained compound [IIa] or a solution of compound [II-a] in an organic solvent, to an aqueous solution of an acid or base, preferably an acidic aqueous solution, to allow hydrolysis.
The starting compound is preferably m-xylylene glycol diacetate, m-xylylene glycol dipropionate or m-xylylene glycol dipivalate.
The reaction solvent to be used for chlorination, bromination and iodination is, for example, glacial acetic acid, aqueous acetic acid solution (concentration:60 100 wt%, preferably 80 100 water, monochlorobenzene, odichlorobenzene, ethyl acetate, tert-butyl methyl ether, and methanol, ethanol, isopropyl alcohol, acetone etc., that may contain water, with preference given to glacial acetic acid, aqueous acetic acid solution, methanol, o-dichlorobenzene and ethyl acetate. The reaction solvent is used in an amount of generally 1 L 20 L, preferably 3 L 10 L, per 1 kg of compound The base to be used for chlorination, bromination and iodination is sodium acetate, potassium acetate, sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, sodium methoxide, sodium ethoxide and the like, preferably sodium acetate, 15 potassium acetate, sodium hydroxide, potassium hydroxide, sodium carbonate and potassium carbonate. The base is used in an amount of generally 0.1 equivalent 10 equivalents, preferably 0.8 equivalent-- 6 equivalents, per the amount of compound The halogenating agent to be used for chlorination, bromination and iodination is bromine, chlorine, Nbromosuccinimide, N-chlorosuccinimide, sulfuryl chloride and the like, preferably bromine and N-bromosuccinimide. The halogenating agent is used in an amount of generally 0.8 mol 8 mol, preferably 2 mol 6 mol, per 1 mol of compound 25 For chlorination and'bromination, a catalyst may be added to accelerate the reaction. The catalyst may be a single metal such as iron, copper, zinc, aluminum and the like; or a metal S* halide such as iron(I) chloride, iron(II) chloride, aluminum chloride, aluminum bromide, copper(I) chloride, copper(II) chloride, magnesium chloride, magnesium bromide, magnesium iodide, titanium tetrachloride, zinc chloride, zinc bromide, zinc iodide and the like, with preference given to iron, iron(I) chloride, iron(II) chloride, magnesium chloride, magnesium bromide, zinc chloride, zinc bromide and zinc iodide. The catalyst is used in an amount of generally 0.0001 mol 0.5 mol, preferably 0.001 mol 0.2 mol, per 1 mol of compound The reaction temperature of chlorination, bromination and iodination is generally from -30°C to 80°C, preferably from 0°C to and the reaction time is generally 30 min 24 hr, preferably 2 hr 18 hr.
When compound is subjected to chlorination, bromination or iodination, a 2,6-disubstituted compound may be produced as a halide, besides the compound [II-a] which is a 2,4-disubstituted compound. Such halide is isolated by, for example, pouring the reaction mixture to a reducing aqueous solution aqueous sodium sulfite solution and aqueous sodium thiosulfate solution etc.) under ice-cooling, or pouring a reducing aqueous solution into the reaction mixture, adding an organic solvent, extraction and evaporation of the solvent. The compound [II-a] can be isolated from the mixture of halide by silica gel column chromatography, recrystallization and the like. The compound [IIa] may or may not be isolated from the mixture of halide. When 15 the compounds are subjected to the next step without isolation, the corresponding 2,6-disubstituted compound, such as 2,6disubstituted compound of compound and 2,6-disubstituted compound of the compound of the formula [II-b] to be mentioned later, is obtained in each step together with the reaction product.
The amount of water to be used for elimination of the S alkanoyl group is generally 0.5 L 20 L, preferably 3 L 10 L, per 1 kg of halide (mixture when halide is a mixture). A solvent inert to the reaction may be concurrently used, such as alcohol solvent methanol, ethanol etc.), tetrahydrofuran (THF), 2. 5 dioxane and the like, which may be used to dissolve halide. When the solvent is used for dissolution of halide, it is used in an amount of generally 0.5 L 20 L, preferably 2 L 10 L, per 1 kg of halide (mixture when halide is a mixture).
The acid to be used for the elimination of the alkanoyl group is not particularly limited as long as it is typically used for this purpose. Examples thereof include inorganic acid such as hydrochloric acid, hydrobromic acid, hydrofluoric acid, sulfuric acid, phosphoric acid and the like; organic acid such as formic acid, acetic acid, propionic acid, trifluoroacetic acid, methanesulfonic acid, trifluoromethanesulfonic acid and the like; and the like, with preference given to hydrochloric acid, hydrobromic acid and sulfuric acid. The amount of the acid to be used is generally 0.001 kg 10 kg, preferably 0.01 kg 0.3 kg, per 1 kg of halide (mixture when halide is a mixture).
The base to be used for the elimination of the alkanoyl group is not particularly limited as long as it is typically used for this purpose. Examples thereof include inorganic base such as hydroxide, carbonate or hydrogencarbonate of alkali metal lithium, sodium, potassium etc.) or alkaline earth metal calcium, magnesium etc.) and alkoxide methoxide, ethoxide etc.) of alkali metal, and organic base such as trialkylamine trimethylamine, triethylamine etc.), with preference given to sodium hydroxide, potassium hydroxide, potassium carbonate and sodium methoxide. The amount of the base to be used is generally 0.8 equivalent 10 equivalents, preferably 1 equivalent equivalents, per halide (mixture when halide is a mixture).
The reaction temperature of the elimination of the alkanoyl group is generally from -20°C to 100°C, preferably from 10°C to and the reaction time is generally 10 min 24 hr, preferably 30 min 8 hr.
The compound is isolated by a conventional method, such as crystallization after neutralization of the reaction mixture.
Production method of compound
[II']
A compound of the formula [II']
*R
wherein R is alkanoyl having 2 to 5 carbon atoms, alkyl having 1 to 5 carbon atoms, tetrahydropyran-2-yl, alkoxymethyl wherein the alkoxyl moiety has 1 to 5 carbon atoms, 1-alkoxyethyl wherein the each alkyl moiety has 1 to 5 carbon atoms, and X is chlorine compound consists of compound [II-a] wherein X in compound [II-al is chlorine atom or iodine atom, and a compound of the formula [II-bl] [II-bl]
OR
1 b Rb wherein Rl b is alkyl having 1 to 5 carbon atoms, tetrahydropyran- 2-yl, alkoxymethyl wherein the alkoxyl moiety has 1 to 5 carbon atoms, 1-alkoxyethyl wherein the alkoxyl moiety has 1 to 10 carbon atoms or trialkylsilyl wherein each alkyl moiety has 1 to 5 carbon atoms, and X is chlorine atom or iodine atom (hereinafter to be referred to as compound A compound wherein only 1-ethoxyethyl is excluded from the substituents at
R
1 of compound corresponds to novel compound The compound can be obtained by converting the hydroxyl group of compound [Ia] to alkoxy having 1 to 5 carbon atoms, tetrahydropyran-2-yloxy, alkoxymethoxy wherein the alkoxyl moiety has 1 to 5 carbon atoms, 1-alkoxyethoxy wherein the alkoxyl moiety has 1 to 10 carbon atoms or 15 trialkylsilyloxy wherein each alkyl moiety has 1 to 5 carbon atoms, or by subjecting compound to chlorination or S iodination.
I. The step is explained in the following. By compound [II-bl] can be obtained. The hydroxyl group can be converted to each group by any method generally used for converting hydroxyl group to such group. It is converted to 1alkoxyethoxy by, for example, reacting compound [Ia] with alkyl vinyl ether of the formula :R 3
CH=CH
2 wherein R 3 is alkoxy having 1 .25 to 10 carbon atoms, in a reaction solvent in the presence of a S catalyst.
The alkoxy having 1 to 10 carbon atoms at R 3 of the above formula corresponds to alkoxy of 1-alkoxyethyl at the substituent
R
1 in compound wherein the alkoxyl moiety has 1 to carbon atoms. The alkyl vinyl ether to be used for the reaction is, for example, methyl vinyl ether, ethyl vinyl ether, propyl vinyl ether, isopropyl vinyl ether, butyl vinyl ether, pentyl vinyl ether, cyclohexyl vinyl ether, hexyl vinyl ether, heptyl vinyl ether, octyl vinyl ether, nonyl vinyl ether, decyl vinyl ether and the like, preferably ethyl vinyl ether, propyl vinyl ether, butyl vinyl ether or cyclohexyl vinyl ether. The amount of the alkyl vinyl ether to be used is generally 2 mol 4 mol, preferably 2 mol 3 mol, per 1 mol of compound [Ia].
As the catalyst, for example, p-toluenesulfonic acid, methanesulfonic acid, sulfuric acid, hydrochloric acid, trifluoroacetic acid, trifluoromethanesulfonic acid, and an acidic ion exchange resin such as Amberlyst 15E, Amberlite IR-118 etc.
are used, with preference given to p-toluenesulfonic acid, methanesulfonic acid, sulfuric acid and hydrochloric acid. These catalysts can be also used in the form of a hydrate. The amount of the catalyst to be used is generally 0.0001 mol 0.2 mol, preferably 0.0005 mol 0.01 mol, per 1 mol of compound [Ia] The reaction solvent may be, for example, toluene, xylene, monochlorobenzene, methylene chloride, acetone, methyl ethyl ketone, methyl isobutyl ketone, ethyl acetate and the like, with preference given to toluene, xylene, monochlorobenzene and S methylene chloride. The amount of the reaction solvent to be used is generally 1L 20 L, preferably 2 L 12 L, per 1 kg of compound [Ia].
The reaction temperature is generally from -20°C to 120°C, preferably from 0C to 60°C, and the reaction time is generally min 10 hr, preferably 30 min 6 hr. The objective compound can S be isolated by a conventional method extraction, etc.).
Conversion to a group other than 1-alkoxyethoxy is performed according to a conventional method. For the conversion to alkoxy, for example, a reagent such as R 4 OH wherein R 4 is alkyl having 1 to 5 carbon atoms, R 4 Br wherein R 4 is as defined above,
R
4 I wherein R 4 is as defined above, and (R 4 2
SO
4 wherein R 4 is as defined above is used; for the conversion to tetrahydropyran- 2 yloxy, for example, a reagent such as 3,4-dihydro-2[H]-pyran is used; for the conversion to alkoxymethoxy, for example, a reagent, such as R OCH 2 OH wherein R 5 is alkyl having 1 to 5 carbon atoms, 2
OR
5 wherein R 5 is as defined above, R 5
OCH
2 C1 wherein R 5 is as defined above and R OCH 2 Br wherein R 5 is as defined above is used; and for the conversion to trialkylsilyloxy, for example, a reagent, such as (R 3 SiCl wherein R 6 is alkyl having 1 to 5 carbon atoms, is used. The definition of the above R 4
R
6 is the same as in the corresponding R Then, compound wherein X in compound [II-a] is chlorine atom or iodine atom, can be obtained by The chlorination and iodination of compound in are carried out in the same manner as in those for the production of compound The compound [II-bl] can be also obtained by a method other than the above-mentioned For example, a compound [II-bl] wherein R'b is alkyl having 1 to 5 carbon atoms can be obtained by Step 1: m-xylylene dichloride is reacted with an alkali metal alkoxide of the formula R'OM, wherein R' is alkyl having 1 to carbon atoms and M is alkali metal, in a reaction solvent to give 1,3-bis(alkoxymethyl)benzene, and Step 2: the resulting compound is subjected to chlorination or iodination.
Step 1 is explained in detail in the following. In this step, alkali metal alkoxide is added to m-xylylene dichloride in a reaction solvent to give 1,3-bis(alkoxymethyl)benzene.
S. The reaction solvent in Step 1 is exemplified by alcohol solvent methanol, ethanol, isopropyl alcohol, tert-butyl alcohol etc.), tetrahydrofuran (THF), tert-butyl methyl ether, toluene, monochlorobenzene, N,N-dimethylformamide, dimethyl sulfoxide and the like. The amount of the solvent to be used is generally 1 L 30 L, preferably 2 L 15 L, per 1 kg of n- S xylylene dichloride.
30 The alkyl moiety of the alkali metal alkoxide in Step 1 is the same as those exemplified for the alkyl at Rib and examples of alkali metal include sodium, potassium and the like. Preferable examples of alkali metal alkoxide include sodium methoxide and potassium tert-butoxide. The amount of the alkali metal alkoxide to be used is generally 1.8 mol 4 mol, preferably 2 mol 3.2 mol, per 1 mol of m-xylylene dichloride.
The reaction temperature in Step 1 is generally from to 100°C, preferably 20°C 70 0 C, and the reaction time is generally 0.5 hr 10 hr, preferably 1 hr 6 hr.
The isolation of 1,3-bis(alkoxymethyl)benzene can be carried out by a conventional method, such as extraction and drying after evaporation of the solvent.
Step 2 can be carried out in the same manner as in chlorination and iodination in the production method of compound and under the same reaction conditions. The reaction solvent, base, halogenating agent and catalyst to be used for the chlorination and iodination are the same as those exemplified for the production method of compound wherein they are used in the same amounts as in the production method of compound The reaction product can be isolated in the same manner as in the production method of compound Production method of compound [III] A novel compound [III] can be obtained by converting compound [II-b] to Grignard reagent or lithium compound, coupling the resulting compound with p-fluorobenzaldehyde and subjecting the obtained coupling compound to deprotection of
SR
1 b and cyclization.
o. The compound [II-b] is compound wherein hydroxyl group has been protected, which is, after-conversion to a lithium compound or a Grignard reagent, reacted with p-fluorobenzaldehyde.
Therefore, X in the compound [II-b] is free of any particular limitation as long as compound [II-b] can be converted to a lithium compound or a Grignard reagent. Preferred is bromine atom S in view of the quick conversion and the stability of the lithium compound or Grignard reagent after conversion. For easy 30 deprotection, tetrahydropyran-2-yl, alkoxymethyl, where alkoxy has 1 to 5 carbon atoms, 1-alkoxyethyl, where alkoxy has 1 to S carbon atoms, and trialkylsilyl, where each alkyl has 1 to carbon atoms, are preferable as Rlb, with more preference given to tetrahydropyran- 2 -yl, methoxymethyl and 1-alkoxyethyl, where alkoxy has 1 to 10 carbon atoms, particularly preferably 1ethoxyethyl, 1-propoxyethyl, 1-butoxyethyl and 1cyclohexyloxyethyl. From the easiness of synthesis, methyl and tert-butyl are particularly preferable.
As compound preferred are 2,4-bis(l'-ethoxy ethoxymethyl)bromobenzene, 2,4-bis( '-butoxyethoxymethyl)bromobenzene and 2,4-bis(l'-cyclohexyloxyethoxymethyl)bromobenzene.
The above-mentioned to are explained in this order in the following.
The compound [II-b] can be converted to a Grignard reagent or a lithium compound by a method conventionally known, which is used for obtaining a Grignard reagent or a lithium compound from halide.
For example, compound [II-b] is reacted with metal magnesium in an organic solvent, or a solution of an organic lithium compound in an organic solvent, and may be added dropwise to compound [II-b].
The metal magnesium or organic lithium compound is added in an amount generally necessary for converting a halide to a Grignard reagent or a lithium compound. For example, metal magnesium is 15 added in an amount of generally 0.9 mol 3 mol, preferably 1 mol 1.5 mol, and the organic lithium compound is added in an amount of generally 0.9 mol 1.5 mol, preferably 1 mol 1.3 mol, both per 1 mol of compound Examples of the organic lithium S: compound include n-butyl lithium, phenyl lithium, methyl lithium, sec-butyl lithium and tert-butyl lithium, preferably n-butyl o lithium and methyl lithium. For the easiness of the operation and the yield of the reaction, compound [II-b] is preferably converted to a lithium compound.
The organic solvent is exemplified by ether solvents tetrahydrofuran (THF), tert-butyl methyl ether, dimethoxyethane, dibutyl ether, ethyl ether etc.), hexane, heptane, toluene, xylene and the like, with preference given to hexane, THF, tert-butyl methyl ether and dimethoxyethane. The amount of the organic solvent to be used is generally 1 L 30 L, preferably 5 L 20 L, per 1 kg of compound [II-b].
The reaction temperature in is generally from -78°C to preferably from -50°C to -10"C, and the reaction time is generally 10 min 6 hr, preferably 10 min 2 hr. The reaction mixture obtained in can be isolated or purified by a conventional method. Alternatively, it may be subjected to the next reaction as it is obtained.
p-Fluorobenzaldehyde is added dropwise to the reaction mixture of for coupling reaction. The amount of pfluorobenzaldehyde to be used is generally 0.8 mol 3 mol, preferably 1 mol 1.5 mol, per 1 mol of compound p- Fluorobenzaldehyde can be added as a solution in an organic solvent, wherein the organic solvent is free of any particular limitation and exemplified by tetrahydrofuran, tert-butyl methyl ether, dimethoxyethane, hexane, heptane and the like.
The reaction temperature in is generally from -78°C to preferably from -50°C to 30°C, and the reaction time is generally 10 min 6 hr, preferably 10 min 2 hr.
After the completion of the reaction, a basic aqueous solution aqueous ammonium chloride solution), an acidic aqueous solution aqueous acetic acid solution) and the like are added to hydrolyze the reaction product. The coupling compound after hydrolysis can be isolated by, for example, 15 partitioning and evaporation of the solvent.
The isolated coupling compound is reacted with an acid catalyst in a reaction solvent for the deprotection of Rib and cyclization. The method of addition is not particularly limited.
For example, an acid catalyst may be added to the reaction mixture of the coupling compound. The reaction is preferably carried out under pressure of generally 2 kPa 110 kPa, preferably 5 kPa kPa, while removing deprotected aldehydes having a low boiling point, thereby suppressing the occurrence of by-product.
The reaction solvent may be water alone, because the reaction proceeds sufficiently. A suitable organic solvent may be further added. The organic solvent to be added may be miscible with water or non-miscible with water. Examples thereof include methanol, ethanol, isopropyl alcohol, acetone, tetrahydrofuran, toluene and xylene. The amount of the reaction solvent to be used is generally 0.5 L 20 L, preferably 1 L 10 L, per 1 kg of compound [II-b].
The acid catalyst may be a typical mineral acid, acidic ion exchange resin and Lewis acid, preferably phosphoric acid, sulfuric acid, hydrochloric acid, p-toluenesulfonic acid, methanesulfonic acid, trifluoroacetic acid and trifluoromethanesulfonic acid. The amount of the acid catalyst to be used is generally 0.1 mmol 30 mol, preferably 0.1 mol mol, per 1 mol of compound The acidic catalyst can be also used in the form of an aqueous solution.
The reaction temperature in is generally 30"C 150 0
C,
preferably 50°C 100°C, and the reaction time is generally 10 min 20 hr, preferably 1 hr 6 hr.
The objective compound (compound [III]) can be isolated by a conventional method filtration, recrystallization etc.).
The compound [III] can be obtained via a Grignard reagent or lithium compound of compound [II-b] and then through a coupling compound of the formula
OR
1
SOH
wherein R is as defined above.
Production method of compound [IV] The novel compound [IV] can be obtained by oxidation of compound [III]. The compound [III] has, as an easily oxidizable moiety, the 1-position and 3-position carbons, besides hydroxymethyl at the 5-position of the 1,3-dihydroisobenzofuran ring. Therefore, oxidation of compound [III] may accompany oxidation of the 1-position and 3-position carbons as a side 20 reaction. However, when compound [III] is oxidized with hypochlorite in the presence of an N-oxy radical catalyst, hydroxymethyl is selectively oxidized to give compound [IV] at a high yield. To be specific, hypochlorite is added, preferably added dropwise as an aqueous solution, to a solution of compound [III] in an organic solvent in the presence of a base, a catalyst and an N-oxy radical catalyst, to give compound [IV].
The hypochlorite to be used for the oxidation may be, for example, sodium hypochlorite, potassium hypochlorite, calcium hypochlorite and the like, preferably sodium hypochlorite. The amount of the hypochlorite to be used is generally 0.8 mol 2 mol, preferably 0.85 mol 1.3 mol, per 1 mol of compound [III].
Sodium hypochlorite is preferably used in the form of an aqueous solution, where the concentration of the aqueous solution is generally 8 wt% 15 wt%, preferably 11 wt% 14 wt%.
The N-oxy radical catalyst to be used for the oxidation may be, for example, 4-substituted-2,2,6,6-tetramethyl-1-piperidinoxy.
The amount of the catalyst to be used is generally 0.0001 mol 0.1 mol, preferably 0.0001 mol 0.01 mol, per 1 mol of compound [III]. Examples of the 4-position substituent include hydrogen atom, hydroxyl group, alkoxy having 1 to 10 carbon atoms, acyloxy having an aliphatic hydrocarbon residue having 1 to 10 carbon atoms, carbonylamino having an aliphatic hydrocarbon residue having 1 to 10 carbon atoms and the like, particularly preferably hydroxyl group from the viewpoint of the yield.
The alkoxy having 1 to 10 carbon atoms is preferably linear or branched chain alkoxy having 1 to 5 carbon atoms, such as 15 methoxy, ethoxy, propoxy, isopropoxy, butoxy, isobutoxy, secbutoxy, tert-butoxy, pentoxy, isopentoxy, hexyloxy, heptyloxy, octyloxy, nonyloxy and decyloxy, preferably methoxy, ethoxy and isopropoxy.
The acyloxy having an aliphatic hydrocarbon residue having 1 to 10 carbon atoms is linear or branched chain acyloxy having an aliphatic hydrocarbon residue preferably having 1 to 6 carbon atoms, such as acetyloxy, propionyloxy, butyryloxy, isobutyryloxy, valeryloxy, isovaleryloxy, pivaloyloxy, hexanoyloxy, heptanoyloxy, octanoyloxy, nonanoyloxy, decanoyloxy, undecanoyloxy, acryloyloxy and methacryloyloxy, preferably acetyloxy and methacryloyloxy.
The carbonylamino having an aliphatic hydrocarbon residue having 1 to 10 carbon atoms is a linear or branched chain carbonylamino that has aliphatic hydrocarbon residue preferably having 1 to 6 carbon atoms, such as acetylamino, propionylamino, butyrylamino, isobutyrylamino, valerylamino, isovalerylamino, pivaloylamino, hexanoylamino, heptanoylamino, .octanoylamino, nonanoylamino, decanoylamino, undecanoylamino, acryloylamino and methacryloylamino, preferably acetylamino.
Examples of 4-substituted-2,2,6,6-tetramethyl-1piperidinoxy preferably include 4-hydroxy-2,2,6,6-tetramethyl-1piperidinoxy, 4-methacryloyloxy-2 ,2,6 6-tetramethyl-1-piperidinoxy, 4-acetyloxy-2,2,6,6-tetramethyl-1-piperidnoxy and 4-acetylamino- 2,2,6,6-tetramethyl-1-piperidinoxy, particularly preferably 4hydroxy-2,2,6,6-tetramethyl-l-piperidinoxy from the aspect of yield.
The base is free of any particular limitation as long as it does not interfere with the reaction, and is exemplified by sodium hydrogencarbonate, sodium carbonate, potassium hydrogencarbonate, potassium carbonate, lithium carbonate and the like, with preference given to sodium hydrogencarbonate and potassium hydrogencarbonate. The amount of the base to be used is generally 0.01 mol 2 mol, preferably 0.1 mol 0.9 mol, per 1 mol of compound [III].
Examples of the catalyst include phase transfer catalyst such as tetrabutylammonium bromide, tetrabutylammonium chloride, tetrabutylammonium iodide, tetrabutylammonium sulfate, benzyltriethylammonium chloride, benzyltrimethylammonium chloride and the like, and metal halide catalyst such as potassium iodide, potassium bromide, sodium iodide, sodium bromide and the like, with preference given to tetrabutylammonium bromide, benzyltriethylammonium chloride, potassium iodide and potassium bromide. The amount of the catalyst to be used is generally 0.0001 mol 0.3 mol, preferably 0.01 mol 0.2 mol, per 1 mol of compound [III].
g The organic solvent is not particularly limited and may be, for example, ethyl acetate, butyl acetate, acetone, ethyl methyl ketone, isobutyl methyl ketone, toluene, xylene, tert-butyl methyl ether and the like, with preference given to ethyl acetate, acetone, ethyl methyl ketone, isobutyl methyl ketone and toluene.
The amount of the solvent to be used is generally 1 L 20 L, preferably 3 L 10 L, per 1 kg of compound [III].
The reaction temperature is generally from -30°C to 100°C, preferably 0C 50°C, and the reaction time is generally 10 min hr, preferably 10 min 2 hr.
The objective compound can be isolated by a conventional method such as extraction and crystallization.
Production method of 5-phthalancarbonitrile compound The compound [VI] (5-phthalancarbonitrile compound) is an intermediate for the production of citalopram. It can be obtained by reacting a novel compound [IV] with hydroxylamine or a mineral acid salt thereof and via a novel compound (compound in the present invention includes both syn-compound and anticompound), namely, through oximation (condensation) and dehydration reaction. It is preferable to directly subject the compound to dehydration reaction without isolation to make the manipulation simpler. For example, compound [IV] and hydroxylamine or a mineral acid salt thereof are added to an organic solvent and the mixture is heated as it is to give compound [VI].
For a higher purity of the compound compound [V] is preferably isolated and then subjected to dehydration reaction.
The compound is obtained by reacting compound [IV] with hydroxylamine or a mineral acid salt thereof. By dehydrating compound compound [VI] is obtained. To be specific, compound [IV] and hydroxylamine or a mineral acid salt thereof are added to 15 an organic solvent, and the mixture is stirred to give compound o. The obtained compound is isolated and heated to give S compound The compound is isolated by a conventional method.
Examples of mineral acid salt of hydroxylamine include salts of hydroxylamine with hydrochloric acid, sulfuric acid, phosphoric acid, nitric acid and the like, with preference given to hydroxylamine hydrochloride and hydroxylamine sulfate.
The amount of the hydroxylamine or a mineral acid salt thereof to be used is generally 0.8 equivalent 5 equivalents, preferably 0.9 equivalent 2 equivalents, per compound The hydroxylamine and a mineral acid salt thereof are used as they are o0 or preferably in a solution state methanol, ethanol, S" isopropyl alcohol, water, etc.). Depending on the scale of the reaction, it is particularly preferably added dropwise as a solution of hydroxylamine or a mineral acid salt thereof in methanol at 20 Particularly when a hydroxylamine mineral acid salt is used, a suitable base is preferably added in an amount of 1 equivalent to 5 equivalents per hydroxylamine mineral acid salt. The base is free of any particular limitation as long as it exerts less influence on cyano, and examples thereof include organic base triethylamine, tributylamine, dimethylaniline, pyridine, sodium methoxide, sodium ethoxide, potassium t-butoxide, sodium tbutoxide etc.), inorganic base sodium carbonate, sodium hydrogencarbonate, sodium hydroxide, potassium carbonate, potassium hydrogencarbonate, potassium hydroxide etc.), with preference given to triethylamine. It is industrially preferable to add a base before the addition of a hydroxylamine mineral acid salt.
To carry out the dehydration reaction of compound under mild conditions, a dehydrating agent may be further added.
Examples of the dehydrating agent include acid anhydride acetic anhydride, phthalic anhydride etc.), methanesulfonyl chloride, p-toluenesulfonyl chloride and the like, with preference given to the use of acetic anhydride from the aspects of the environment and yield. The amount of the dehydrating agent to be used is preferably 0.8 equivalent 5 equivalents, per 15 hydroxylamine or a mineral acid salt thereof in the case of above and 1 equivalent 10 equivalents, preferably 1 equivalent 5 equivalents, per compound in the case of above In the above the dehydrating agent may be added simultaneously with hydroxylamine or a mineral acid salt thereof. However, the addition after the addition of hydroxylamine or a mineral acid salt thereof is preferable.
The organic solvent is free of any particular limitation as long as it does not interfere with the reaction, and examples thereof include methanol, ethanol, isopropyl alcohol, ethyl acetate, acetonitrile, toluene, xylene, chlorobenzene, 1,2dichlorobenzene, N-methylpyrrolidone, nitroethane, dimethylformamide, dimethylacetamide, dimethyl sulfoxide, dichloromethane, and mixed solvents of the above, with preference given to acetonitrile, toluene, xylene, N-methylpyrrolidone, nitroethane, ethyl acetate, a mixed solvent of ethyl acetate and methanol, a mixed solvent of ethyl acetate and ethanol, a mixed solvent of ethyl acetate and isopropyl alcohol, and a mixed solvent of toluene and methanol. The amount of the organic solvent to be used is generally 0.5 L 50 L, preferably 1 L L, per 1 kg of compound [IV] in the case of above and generally 0.5 L 50 L, preferably 1 L 20 L, per 1 kg of compound [IV] in the case of above The reaction temperature in the above is generally 220°C, preferably 80°C- 150°C, and the reaction time is generally I hr 20 hr, preferably 2 hr 8 hr.
.In the above oximation (condensation) is conducted generally at 20 120°C, preferably 40 100T, generally for min 4 hr, preferably 30 min 2 hr, and dehydration reaction is carried out generally at 60 1600C, preferably 120 150°C, more preferably 125 150°C, generally for 30 min 8 hr, preferably rain 6 hr.
The objective compound is isolated by a conventional method such as extraction and crystallization after neutralization of the reaction mixture.
The starting compound can be produced according to the method described in, for example, J. Phys. Org. Chem., 3(12), 789- 98 (1990). 1 5 According to the method of the present invention, a 0 phthalancarbonitrile compound can be produced without using a sees reagent that imposes a great burden on the environment, such as heavy metal, metal cyanide and thionyl chloride. Moreover, the :00.
reaction proceeds efficiently throughout the entire steps.
The 5-phthalancarbonitrile compound can be converted to citalopram according to the method described in W098/19511, Alve thereby producing citalopram useful as an antidepressant.
The present invention is explained in detail by referring oo to illustrative examples, but the present invention is not limited sees 25 by these examples in any way. .n-the examples, the unit sees relative to the reagent is wt%.
Example 1 Synthesis of 2,4-bis (acetoxymethyl )bromobenzene To a suspension of m-xylylene glycol diacetate (28.4 g) and sodium acetate (55.2 g) dispersed in glacial acetic acid (130 ml) was added dropwise bromine 1102.5 g) over 30 rain at 15 20°C, and the mixture was stirred at 20 30C for 13 hr. The reaction mixture was poured into 10% aqueous sodium sulfite solution (700 ml) in an ice bath. The mixture was stirred and extracted. twice with ethyl acetate (250 ml). The ethyl acetate layer was washed 3 times with 10% aqueous sodium hydrogencarbonate solution (300 ml) and the solvent was evaporated to give an about 93:7 mixture (37.6 g, 97.6%) of 2,4-bis(acetoxymethyl)bromobenzene and 2,6bis(acetoxymethyl)bromobenzene as a yellow oil. 2,4bis(Acetoxymethyl)bromobenzene was isolated by preparative HPLC and used in the measurement.
the mixture: n. 2 1.5310; IR(neat)V=2957(w), 1743(s), 1476(m), 1378(m), 1226(s), 1028(s), 858(w), 820(w)cm- 1 2, 4-bis (Acetoxymethyl )bromobenzene: IH-NMR(CDCl 3 400 MHz)i5=.13b) 2.15(3H,s), .72s) 5.19(2H,s), 7.19(1H,dd,J=8Hz,J=2Hz), 7.39(1H,d,J=21z), 7.57(1H,d,J=8Hz) ppm Example 2 Synthesis of 2, 4-bis (hydroxymethyl )bromobenzene An about 93:7 mixture (36.7 g) of 2,4-bis(acetoxymethyl)bromobenzene and 2,6-bis(acetoxymethyl)bromobenzene was dissolved in methanol (183 ml) and cooled to 100C. To this solution was added dropwise 10% aqueous sodium hydroxide solution (133 The reaction mixture was stirred at room temperature for 1 hr, and the solvent (about 200 ml) was evaporated. The residue was neutralized with dilute hydrochloric acid (about 200 ml). To the neutralized solution was added toluene (150 ml) and the mixture was stirred at 80 85 0 C for 1 hr and cooled. The resulting crystals were collected by filtration and dried under reduced pressure to give an about 93:7 mixture (22.2 g, 83.7%) of 2,4- :*25 -bis (hydroxymethyl )bromoberizene And 2.,6-bis (hydroxymethyl bromobenzene as almost wthite crystals. 2,4-bis(Hydroxymethyl)bromobenzene was isolated by preparative IHPLC and used in the measurement.
mixture: melting point 106-108OC; IR(XBr)v*=3307(br), 1467(s), 1413(s), 1228(s), 1158(s), 1063(s), 1002(s), 824(s), 741(s), 641(s) cnf 1 2, 4-bis (Hydroxymethyl )bromobenzene: IH-NMR(DMSO-d 6 400 MHz)8 =4.46(2H,d,J=51z), 4.49(2H,d,j=5Hz), 5.26(1H,t,J-=5Hz), 5.41(1H,t,J=5Hz), 7.12(1H,dd,J=8Hz,J=2Hz), 7.48(1H,d,J=-8Hz), 7.50(1H,d,J=2Hz) ppm Example 3 Synthesis of 2, 4-bis (1 -ethoxyethoxvmethyl )bromobenzene To a suspension obtained by dispersing an about 93:7 mixture (22.1 g) of 2,4-bis(hydroxymethyl)bromobenzene and 2,6bis(hydroxymethyl)bromobenzene, and p-toluenesulfonic acid monohydrate (0.1 g) in toluene (220 ml) was added dropwise ethyl vinyl ether (18.4 g) at 24 32°C, and the mixture was stirred at room temperature for 2 hr. The reaction mixture was poured into aqueous sodium carbonate solution (100 ml), and the organic layer was washed with 5% aqueous sodium carbonate solution (100 ml), and dried over potassium carbonate. The solvent was evaporated to give an about 93:7 mixture (35.7 g, 97.1%) of 2,4bis(1'-ethoxyethoxymethyl)bromobenzene and 2,6-bis(1'ethoxyethoxymethyl)bromobenzene as a yellow oil. 2,4-bis(l'- Ethoxyethoxymethyl)bromobenzene was isolated by preparative HPLC and used in the measurement.
15 2,4-bis (l'-Ethoxyethoxymethyl)bromobenzene: 'H-NMR(CDC1 3 400 MHz)6 =1.22(3H,t,J=7Hz), 1.23(3H,t,J=7Hz), l* 1.36(3H,d,J=5Hz), 1.41(3H,d,J=5Hz), 3.48-3.59(2H,m), 3.63- 3.75(2H,m), 4.49(lH,d,J=12Hz), 4.58(lH,d,J=13Hz), 4.61(1H,d,J=12Hz), 4.69(1H,d,J=13Hz), 4.81(1H,q,J=5Hz), 4.88(1H,q,J=5Hz), 7.14(1H,dd,J=8Hz,J=2Hz), 7.47(1H,d,J=2Hz), 7.50(1H,d,J=8Hz) ppm Example 4 Synthesis of 2,4-bis(methoxymethyl)bromobenzene To a .solution of m-xylylene dichloride (25.0 g) in methanol 25 (125 ml) was added a 28% methanol solution (82.6 g) containing sodium methoxide at room temperature, and the mixture was stirred with heating at 60°C for 3 hr. The solvent was evaporated and water (150 ml) was added to the residue. The mixture was extracted twice with heptane (80 ml) and heptane was evaporated under reduced pressure to give m-xylylene glycol dimethyl ether (25.3 m-Xylylene glycol dimethyl ether (25.3 g) was dissolved in acetic acid (125 ml) and sodium acetate (68 g) was added, which was followed by dropwise addition of bromine (68 g) at room temperature. The mixture was stirred at room temperature for 3 hr and poured into 10% aqueous sodium sulfite solution (750 ml), which mixture was extracted twice with heptane (350 ml). The heptane layer was extracted twice with 10% aqueous sodium hydroxide solution (150 ml) and once with water (150 ml). The solvent was evaporated and the residue was purified by silica gel column chromatography using heptane-ethyl acetate (15:1) as an eluent to give the title compound (10.4 g, yield:29.7%) as a colorless transparent oil.
2, 4-bis (Methoxymethyl )bromobenzene: IH-NMR(CDCl 3 400 MHz)b =3.38(3H,s), 3.53(3H,s), 4.42(2H,s), 4.52(2H,s), 7.13(1H,dd,J=8Hz,J=2Hz), 7.43(lH,d,J=2Hz), 7.51(1H,d,J=8Hz) ppm Example Synthesis of 1- luorophenyl ylmethanol An about 93:7 mixture (34.7 g) of 2,4-bis(1'ethoxyethoxymethyl) bromobenzene and 2, 6-bis ethoxyethoxymethyl )bromobenzene was dissolved in dehydrated 15 tetrahydrofuran (250 ml) under a nitrogen atmosphere and cooled to 0 C. Thereto was added dropwise a hexane solution (1.57 mol/L, 64.3 ml) of n-butyllithium at a temperature of from -400C to -300C.
The mixture was heated to -200C and thereto was added dropwise pfluorobenzaldehyde (12.5 The mixture was allowed to warm to 15*C over 1 hr. The reaction mixture was poured into 20% aqueous ammonium chloride solution (200 ml) and the organic layer was separated. The aqueous layer was extracted with toluene (200 ml).
The combined organic layer was washed twice with 20% brine (250 ml) and the solvent was evaporated. To the residue (38.5 g) was added 60% phosphoric acid (300 g) and the resulting solution was stirred at 80 85*C, 9.31-13.3 kPa (70 100 Torr) for 2 hr with heating and cooled to 100C. The resulting crystals were collected by filtration, washed thoroughly with ethanol and dried to give 1- (4 -f luorophenyl) 3-dihydroisobenzofuran-5-ylmethanol (20.8 g, 88.7%) as fine yellow crystals.
melting point 101-104*C; IR(KBr)v =3214(br), 2848(w), 1606(s), 1511(s), 1225(s), 1157(m), 1135(m), 1046(s), 1015(s), 824(s), 810(s), 783(m). cmnfI H-NM(CDCl 3 400 MHz)6 =4.72(2H,s), 5.19(1H,d,J=l2Hz), 5.31(1H,d,J -12Hz), 6.14(1H,s), 6.98(1H,d,J=8Hz), 7.03(2H,t,J=9Hz), 7.24(1H,d,J=8Hz), 7.29(2H,dd,J-9Hz,J=6Hz), 7.32(1H,s) ppm Example 6 Synthesis of 1- (4 -f luorophenyl) -1 ca rba idehyde 4 -Fluorophenyl 3 (20.6 g) was dissolved in ethyl acetate (160 ml) and to the obtained solution were added sodium hydrogencarbonate (2.9 g), tetrabutylammonium bromide (1.6 g) and 4-hydroxy-2,2,6,6tetramethyl-l-piperidinoxy 13 The mixture was cooled to 0 C. Thereto was added dropwise 12.9% aqueous sodium hypochiorite solution (52.7 g) at 5-10 0 C and the mixture was stirred for 1 hr.
Water (100 ml) was added to the reaction mixture and the mixture was extracted twice with ethyl acetate (100 ml). The extract was washed with 5% aqueous sodium hydrogencarbonate solution and saturated brine, and silica gel (3 g) was added. The mixture was filtered and the solvent was evaporated to give fluorophenyl) 3-dihydroisobenzofuran-5-carbaldehyde (17 .2 g, 15 84.2%).
nD 241.5823; IR(neat)v =3071(w), 2857(m), 2743(w), 1697(s), 1605(s), 1509(s), 1225(s), 1157(m), 1144(m), 1045(s), 832(s), 816'(s), 786(m) cm- 1 H-NMR(CDC1 3 400 MHz)8 =5.25(1H,d,J=l3Hz), 5.38(1H,d,J=l3Hz), 6.18(1H,s), 7.06(2H,t,J=9Hz), 7.16(lH,d,J=8Hz), 7.30(2H,d,J=-9Hz,J=5Hz), 7. 77(1H,d,J=8Hz), 7.83(1H,s), 10.03(1H,s) Example 7 Synthesis of 1-(4'-fluorophenyl)-1,3-dihydroisobenzofuran-5carbaldehyde oxime 1- (4'-Fluorophenyl (5.96 g).was dissolved in toluene (30 ml) and triethylamine (2.75 g) was flown in. Thereto was added hydroxylamine hydrochloride (1 .88 g) and the mixture was reacted at 80-900C for 1 hr. Hot water (30 ml) was added to the reaction mixture and the mixture wag partitioned while hot at 90'C- The organic layer was cooled to 0-5*C and the resulting crystals were collected by filtration to give the title compound (5.02 g, yield:79.2%).
melting point 158-159*C; IH-NMR(CDC1 3 400MHz)b =5.19(1H,d,J=13Hz), 5,32(1H,d,J=l3Hz), 6.14(1H,s), 7.01(1H,d,J=8Hz), 7.04(2H,t,J=9:Hz), 7.29(2H,dd,J=9Hz,J=5Hz), 7.43(1H,d,J=8Hz), 7.53(1H,s), 7.82(1H,br), 8o16(1H,s) ppm Example 8 Synthesis of 1-(4'-fluorophenyl)-1,3-dihydroisobenzofuran-5carbonitrile 1-(4'-Fluorophenyl)-1,3-dihydroisobenzofuran-5-carbaldehyde (17.00 g) was dissolved in toluene (200 ml) and hydroxylamine hydrochloride (5.5 g) and triethylamine (8.0 g) were added. The mixture was stirred at 80 10 0 °C for 2 hr. The obtained triethylamine hydrochloride was filtered and the solvent was evaporated. Thereto was added acetic anhydride (36.5 g) and the mixture was stirred at 125 130°C for 5 hr. The reaction mixture was poured into 10% aqueous sodium hydroxide solution (300 ml) and extracted twice with toluene (200 ml). The toluene layer was washed successively with 5% aqueous sodium hydroxide solution, water and saturated brine and dried over magnesium sulfate.
Silica gel (5 g) was added and the mixture was thoroughly stirred and filtered. The solvent was evaporated to give crude fluorophenyl)-1,3-dihydroisobenzofuran-5-carbonitrile (14.2 g).
This was recrystallized from a mixed solvent of ethanol/hexane to give 1-(4'-fluorophenyl)-1,3-dihydroisobenzofuran-5-carbonitrile 20 (9.52 g, 59.8%).
melting point 96-98°C; IR(KBr)v =3050(w), 2867(m), 2228(s), 1603(s), 1510(s), 1224(s), 1157(m), 1048(s), 1031(s), 832(s) cm-1; H-NMR(CDC13, 400 MHz)b =5.21(1H,d,J=13Hz), 5.34(1H,d,J=13Hz), 6.16(1H,s), 7.06(2H,t,J=9Hz), 7.10(1H,d,J=8Hz), 7.27(2H,dd,J=9Hz,J=5Hz), 7.55(1H,d,J=8Hz), 7.60(1H,s) ppm Reference Example 1 Synthesis of m-xylylene glycol diacetate m-Xylylene dichloride (25.0 g, 143 mmol) and potassium 30 acetate (34.0 g, 171 mmol) were suspended in acetone (125 ml). To the suspension was added benzyltriethylammonium chloride (4.8 g) and the mixture was refluxed for 2.5 hr. The reaction mixture was cooled and filtered. The solvent was evaporated and toluene ml) was added. The toluene layer was washed with water (50 ml) and saturated brine (50 ml) and the solvent was evaporated to give m-xylylene glycol diacetate (31.3 g, 98.7%) as an oil.
Example 9 Synthesis of 1-(3'-dimethylaminopropyl)-l-(4'-fluorophenyl)-1,3- (citalopram) Sodium hydride (0.92 g) was dispersed in THF (30 ml).
To the obtained suspension was added dropwise a solution of fluorophenyl)-1,3-dihydroisobenzofuran-5-carbonitrile (4.80 g) in THF (10 ml) at 40 50*C. The mixture was stirred at the same temperature for 30 min, and a solution of 3-dimethylaminopropyl chloride (3.2 g) in toluene (20 ml) was added dropwise, which was followed by stirring for 10 min. Then, dimethyl sulfoxide (30 ml) was further added dropwise and the mixture was stirred at 65 70°C for 3 hr. The reaction mixture was poured into ice water (200 ml) and extracted 3 times with toluene (60 ml). The organic layer was extracted twice with 20% aqueous acetic acid (60 ml).
The aqueous layer was neutralized, extracted twice with toluene (60 ml) and washed with water. Anhydrous potassium carbonate (2 g) and silica gel (2 g) were added and the mixture was stirred and filtered. The solvent was evaporated to give dimethylaminopropyl) (4-fluorophenyl)-1,3-dihydroisobenzofuran- (citalopram base) as a viscous oil (3.37 g, 51.6%).
This oil was converted to hydrobromide by a conventional method. The melting point of the obtained crystals was 184 186 0
C.
H-NMR(CDC1 3 400 MHz)6 =1.26-1.52(2H,m), 2.11-2.26(4H,m), 2.13(6H,s), 5.15(1H,d,J=13Hz), 5.19(1H,d,J=13Hz), 7.00(2H,t,J=9Hz), 7.41(H,d,J=8Hz), 7.43(2H,dd,J=9Hz,J=5Hz), 7.50(1H,s), 7.59(lH,d,J=8Hz) ppm According to the present invention, an industrially advantageous production method capable of producing a phthalancarbonitrile compound at a high yield can be provided without using a reagent that imposes a great burden on the environment (with small environmental burden), such as heavy metal, metal cyanide and thionyl chloride. From the obtained phthalancarbonitrile compound, citalopram useful as an antidepressant can be provided.
This application is based on a patent application No.
311703/1999 filed in Japan, the contents of which are hereby incorporated by reference.
It is to be understood that a reference herein to a prior art document does not constitute an admission that the document forms part of the common general knowledge in the art in Australia.
In the claims which follow and in the preceding description of the invention, except where the context requires otherwise due to express language or necessary implication, the word "comprise" or variations such as "comprises" or "comprising" is used in an inclusive sense, i.e. to specify the presence of the stated features but not to preclude the presence or addition of further features in various embodiments of the invention.
C
C
*o 27A

Claims (5)

1. A compound of the formula [Ia] [Ia] wherein Xa is chlorine atom or iodine atom.
2. A compound of the formula [II] [II] 20 wherein R 1 is alkanoyl having 2 to 5 carbon atoms, alkyl having 1 to 5 carbon atoms, tetrahydropyran- 2 -yl, alkoxymethyl wherein an alkoxyl moiety has 1 to 5 carbon atoms, 1-alkoxyethyl wherein an alkoxyl moiety has 1 or 3 to 10 carbon atoms, or trialkylsilyl wherein each alkyl moiety has 1 to 5 carbon atoms, and Xb iS chlorine atom.
3. The compound of claim 2 wherein R 1 is acetyl.
4. A compound of the formula [III] [III] A compound of the formula [IV] [IV] S. S 5555 S S S. S S S S S 55 S S S 555 5 S. S S S S 5 S S
555. 55 S 4 S S S 5*55 S 0 28a 6. An oxime compound of the formula [V] [V] 7. A production method of a compound of the formula [I] OH HO [I] 0 r 6 *4 S .1 S S 4 S 4 wherein X is chlorine atom, bromine atom or iodine atom, which comprises subjecting a compound of the formula [A] [A] wherein R 2 is alkanoyl having 2 to 5 carbon atoms, to chlorination, bromination or iodination and then to elimination of the alkanoyl group. 8. A production method of a compound of the formula [III] [III] which comprises the steps of converting a compound of the formula [II-b] OR 1b X [II-b] X OR 1 b wherein Rlb is alkyl having 1 to 5 carbon atoms, tetrahydropyran- 2-yl, alkoxymethyl wherein an alkoxyl moiety has 1 to 5 carbon atoms, 1-alkoxyethyl wherein an alkoxyl moiety has 1 to 10 carbon atoms, or trialkylsilyl wherein each alkyl moiety has 1 to carbon atoms, and X is chlorine atom, bromine atom or iodine atom, to a Grignard reagent or lithium compound, coupling same with p-fluorobenzaldehyde, and subjecting the obtained coupling compound to deprotection of 'Rlb and cyclization. 9. A production method of the formula [IV] F which comprises oxidizing a compound of the formula [III] [III] HO i A production method of an oxime compound of the formula [V] 0 H* HON [V] which comprises reacting a compound of the formula [IV] [IV] with hydroxylamine or a mineral acid salt thereof. 11. A production method of a 5-phthalancarbonitrile compound of the formula [VI] ONC [VI] F *10 which comprises dehydrating an oxime compound of the formula [V] O 0 F U 12. A production method of 5-phthalancarbonitrile compound of the 15 formula [VI] aoo [VI] which comprises reacting a compound of the formula [IV] OHC [IV] F with hydroxylamine or a mineral acid salt thereof and dehydrating the resulting compound. 13. A production method for citalopram which comprises the method of claim 12 and further reacting the compound of formula [VI] with 3-(dimethylamino)propyl halide. 14. A production method of a compound of the formula [II'] OR [II'] Xa R O wherein R' is alkanoyl having 2 to 5 carbon atoms, alkyl having 1 to 5 carbon atoms, tetrahydropyran-2-yl, alkoxymethyl wherein an alkoxyl moiety has 1 to 5 carbon atoms, 1-alkoxyethyl wherein an 20 alkoxyl moiety has 1 to 10 carbon atoms, or trialkylsilyl wherein each alkyl moiety has 1 to 5 carbon atoms, and Xa is chlorine atom or iodine atom, which comprises converting the hydroxyl group of a compound of the formula [Ia] OH [Ia] HO wherein Xa is chlorine atom or iodine atom, to alkoxy having 1 to 5 carbon atoms, tetrahydropyran-2-yloxy, alkoxymethoxy wherein an alkoxyl moiety has 1 to 5 carbon atoms, 1-alkoxyethoxy wherein an alkoxyl moiety has 1 to 10 carbon atoms, or trialkylsilyloxy wherein each alkyl moiety has 1 to 5 carbon atoms, or subjecting a compound of the formula [A] OR 2 wherein R 2 is alkanoyl having 2 to 5 carbon atoms, to chlorination or iodination. The compound of any one of claims 1 to 6 substantially as herein described with reference to any one of Examples 1 to 8. 16. The production method of any one of claims 7 .to 14 substantially as herein described with reference to any one of S Examples 1 to 9. DATED this 31st day of March 2005 20 SUMITOMO CHEMICAL COMPANY, LIMITED By its Patent Attorneys GRIFFITH HACK *oo *oo *o~o
AU55008/00A 1999-11-01 2000-08-30 Production method of 5-phthalancarbonitrile compound, intermediate therefor and production method of the intermediate Ceased AU781464B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP11-311703 1999-11-01
JP31170399 1999-11-01

Publications (2)

Publication Number Publication Date
AU5500800A AU5500800A (en) 2001-05-03
AU781464B2 true AU781464B2 (en) 2005-05-26

Family

ID=18020462

Family Applications (1)

Application Number Title Priority Date Filing Date
AU55008/00A Ceased AU781464B2 (en) 1999-11-01 2000-08-30 Production method of 5-phthalancarbonitrile compound, intermediate therefor and production method of the intermediate

Country Status (10)

Country Link
US (7) US6310222B1 (en)
EP (1) EP1095926B1 (en)
AT (1) ATE278654T1 (en)
AU (1) AU781464B2 (en)
CA (1) CA2317002A1 (en)
DE (1) DE60014548T2 (en)
DK (1) DK1095926T3 (en)
ES (1) ES2228369T3 (en)
PT (1) PT1095926E (en)
SI (1) SI1095926T1 (en)

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100411505B1 (en) 1998-10-20 2003-12-18 하. 룬트벡 아크티에 셀스카브 Method for the preparation of citalopram
CA2356188C (en) 1998-12-23 2006-05-23 H. Lundbeck A/S Method for the preparation of 5-cyanophthalide
AR022329A1 (en) 1999-01-29 2002-09-04 Lundbeck & Co As H METHOD FOR THE PREPARATION OF 5-CYANOFTALIDE
ATE237604T1 (en) 1999-04-14 2003-05-15 Lundbeck & Co As H METHOD FOR PRODUCING CITALOPRAM
ITMI991579A1 (en) 1999-06-25 2001-01-15 Lundbeck & Co As H METHOD FOR THE PREPARATION OF CITALOPRAM
ES2229774T3 (en) 1999-10-25 2005-04-16 H. Lundbeck A/S METHOD FOR THE PREPARATION OF CITALOPRAM.
DE69920526T2 (en) 1999-10-25 2006-02-23 H. Lundbeck A/S PROCESS FOR THE PREPARATION OF CITALOPRAM
US6310222B1 (en) * 1999-11-01 2001-10-30 Sumika Fine Chemicals Co., Ltd. Production method of 5-phthalancarbonitrile compound, intermediate therefor and production method of the intermediate
AR026063A1 (en) 1999-11-01 2002-12-26 Lundbeck & Co As H METHOD FOR THE PREPARATION OF 5-CARBOXIFTALIDA.
US20020055971A1 (en) * 1999-11-01 2002-05-09 Interdigital Technology Corporation Method and system for a low-overhead mobility management protocol in the internet protocol layer
SI1246812T1 (en) 1999-12-28 2004-08-31 H. Lundbeck A/S Method for the preparation of citalopram
HUP0203840A3 (en) 1999-12-30 2005-02-28 Lundbeck & Co As H Method for the preparation of citalopram
IL150561A0 (en) * 2000-01-14 2003-02-12 Lundbeck & Co As H Method for the preparation of 5-cyanophthalide
US6433196B1 (en) * 2000-02-17 2002-08-13 Sumika Fine Chemicals Co., Ltd. Production method of citalopram, intermediate therefor and production method of the intermediate
NL1017415C1 (en) 2000-02-24 2001-05-18 Lundbeck & Co As H Process for the preparation of Citalopram.
IES20010143A2 (en) * 2000-02-24 2001-07-25 Lundbeck & Co As H Method for the preparation of citalopram
IES20010157A2 (en) 2000-03-03 2002-03-06 Lundbeck & Co As H Method for the preparation of citalopram
GB0005477D0 (en) 2000-03-07 2000-04-26 Resolution Chemicals Limited Process for the preparation of citalopram
CN1429219A (en) * 2000-03-13 2003-07-09 H·隆德贝克有限公司 Method for preparation of citalopram
CA2402553A1 (en) * 2000-03-13 2001-09-20 H. Lundbeck A/S Stepwise alkylation of 5-substituted 1-(4-fluorophenyl)-1,3-dihydroisobenzofurans
IES20010206A2 (en) 2000-03-13 2002-03-06 Lundbeck & Co As H Method for the preparation of citalopram
ATE257832T1 (en) 2000-03-14 2004-01-15 Lundbeck & Co As H METHOD FOR PRODUCING CITALOPRAM
TR200202168T2 (en) * 2000-03-16 2002-12-23 H. Lundbeck A/S Preparation method of 5-Cyano-1- (4-Fluorophenyl) -1,3-Dihydroisobenzofurans
AR032455A1 (en) 2000-05-12 2003-11-12 Lundbeck & Co As H METHOD FOR THE PREPARATION OF CITALOPRAM, AN INTERMEDIARY EMPLOYED IN THE METHOD, A METHOD FOR THE PREPARATION OF THE INTERMEDIARY EMPLOYED IN THE METHOD AND PHARMACEUTICAL COMPOSITION ANTIDEPRESSIVE
FI20011621A (en) 2000-08-18 2002-02-19 Lundbeck & Co As H Process for the preparation of citalopram
EA003581B1 (en) 2000-12-22 2003-06-26 Х.Лундбекк А/С Method for the preparation of pure citalopram
EA003459B1 (en) 2000-12-28 2003-06-26 Х.Лундбекк А/С Process for the preparation of pure citalopram
AU2003273055A1 (en) * 2002-10-21 2004-05-04 Ihara Chemical Industry Co., Ltd. Process for producing aromatic nitrile compound
US6812355B2 (en) 2002-10-22 2004-11-02 Sekhsaria Chemicals Limited Process for the manufacture of citalopram hydrobromide from 5-bromophthalide
ITMI20030479A1 (en) 2003-03-13 2004-09-14 Adorkem Technology S P A PROCEDURE FOR THE PREPARATION OF A CYAN-ISOBENZOFURANO.
US20050154052A1 (en) * 2003-03-24 2005-07-14 Hetero Drugs Limited Novel crystalline forms of (s)-citalopram oxalate
JP2007503466A (en) * 2003-05-16 2007-02-22 ワイス Aryl-carbaldehyde oxime derivatives and their use as estrogenic substances
WO2005042473A1 (en) * 2003-10-28 2005-05-12 Wockhardt Limited Improved process for the manufacture of citalopram hydrobromide
US20060043024A1 (en) * 2004-08-31 2006-03-02 Eric Taylor Multi-stage Carbon Block Filters
CN108794439B (en) * 2017-05-02 2021-09-21 中国科学院大连化学物理研究所 Preparation method of phthalide

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04210687A (en) * 1990-03-30 1992-07-31 Mitsubishi Rayon Co Ltd Hydroisocoumarin derivative

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US83508A (en) * 1868-10-27 Improved car-brake
US4604A (en) * 1846-06-27 Apparatus for generating gas
US95051A (en) * 1869-09-21 Improved railway
US151728A (en) * 1874-06-09 Improvement in weft-stop mechanisms for looms
US114692A (en) * 1871-05-09 Improvement in chemical electric telegraphs
US60640A (en) * 1866-12-18 peters
US27256A (en) * 1860-02-21 cleveland
US134895A (en) * 1873-01-14 Improvement in folding-cribs
US109577A (en) * 1870-11-29 Improvement in machines for
US3642997A (en) 1969-06-25 1972-02-15 Merck & Co Inc Tricyclic carboxylic acids in the treatment of inflammation
US3835167A (en) * 1972-12-18 1974-09-10 Syntex Inc Anthrone carboxylic acids and derivatives
GB1526331A (en) 1976-01-14 1978-09-27 Kefalas As Phthalanes
ES8700647A1 (en) 1984-10-11 1986-11-16 Raychem Corp Preparation of aromatic carbonyl compounds.
FR2605626B1 (en) 1986-10-27 1989-06-02 Oreal NOVEL BICYCLIC AROMATIC DERIVATIVES, THEIR PREPARATION PROCESS AND THEIR USE IN COSMETICS AND IN HUMAN AND VETERINARY MEDICINE
US5061810A (en) 1989-11-28 1991-10-29 Ethyl Corporation Substituted benzophenone dicarboxylic acids
US5210313A (en) 1992-01-10 1993-05-11 Maxdem Incorporated Preparation of 2,5-dichlorobenzophenones
UA62985C2 (en) * 1997-11-10 2004-01-15 Lunnbeck As H A method for the preparation of citalopram
FR2785284B1 (en) * 1998-11-02 2000-12-01 Galderma Res & Dev VITAMIN D ANALOGS
ATE237604T1 (en) 1999-04-14 2003-05-15 Lundbeck & Co As H METHOD FOR PRODUCING CITALOPRAM
US6310222B1 (en) * 1999-11-01 2001-10-30 Sumika Fine Chemicals Co., Ltd. Production method of 5-phthalancarbonitrile compound, intermediate therefor and production method of the intermediate
US6433196B1 (en) 2000-02-17 2002-08-13 Sumika Fine Chemicals Co., Ltd. Production method of citalopram, intermediate therefor and production method of the intermediate
NL1017415C1 (en) 2000-02-24 2001-05-18 Lundbeck & Co As H Process for the preparation of Citalopram.
IES20010143A2 (en) 2000-02-24 2001-07-25 Lundbeck & Co As H Method for the preparation of citalopram
TR200202168T2 (en) 2000-03-16 2002-12-23 H. Lundbeck A/S Preparation method of 5-Cyano-1- (4-Fluorophenyl) -1,3-Dihydroisobenzofurans
AR032455A1 (en) 2000-05-12 2003-11-12 Lundbeck & Co As H METHOD FOR THE PREPARATION OF CITALOPRAM, AN INTERMEDIARY EMPLOYED IN THE METHOD, A METHOD FOR THE PREPARATION OF THE INTERMEDIARY EMPLOYED IN THE METHOD AND PHARMACEUTICAL COMPOSITION ANTIDEPRESSIVE
US20030109577A1 (en) 2000-10-27 2003-06-12 Ken Liljegren Pharmaceutical composition containing citalopram

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04210687A (en) * 1990-03-30 1992-07-31 Mitsubishi Rayon Co Ltd Hydroisocoumarin derivative

Also Published As

Publication number Publication date
AU5500800A (en) 2001-05-03
DE60014548T2 (en) 2006-03-09
DK1095926T3 (en) 2004-12-20
EP1095926A2 (en) 2001-05-02
PT1095926E (en) 2004-12-31
US20050080278A1 (en) 2005-04-14
US20060167285A1 (en) 2006-07-27
CA2317002A1 (en) 2001-05-01
US6395910B2 (en) 2002-05-28
US20040044232A1 (en) 2004-03-04
US6433195B1 (en) 2002-08-13
US20020151728A1 (en) 2002-10-17
DE60014548D1 (en) 2004-11-11
US6310222B1 (en) 2001-10-30
US20020045770A1 (en) 2002-04-18
US6930211B2 (en) 2005-08-16
EP1095926A3 (en) 2003-05-07
EP1095926B1 (en) 2004-10-06
ES2228369T3 (en) 2005-04-16
SI1095926T1 (en) 2005-04-30
US20010056194A1 (en) 2001-12-27
ATE278654T1 (en) 2004-10-15

Similar Documents

Publication Publication Date Title
AU781464B2 (en) Production method of 5-phthalancarbonitrile compound, intermediate therefor and production method of the intermediate
US5202447A (en) Process of producing 5,6,7-trinor-4,8-inter-m-phenylene pgi2 derivatives
CN100406451C (en) Process for preparing prostaglandin derivatives and starting materials for the same
JP3641420B2 (en) Process for producing 5-phthalanecarbonitrile compound, intermediate thereof and process for producing the same
US6414167B1 (en) Octafluorotricyclodecane derivatives and processes for producing same
US6608217B2 (en) Process for producing 4-substituted benzopyran derivatives
JP3035658B2 (en) Cyclopentenol derivative
CA2683304A1 (en) Method for preparing 2-(n-butyl)-5-nitrobenzofuran
BE1001613A4 (en) Process for the preparation of (+) - 13-norfaranal.
WO2006001529A9 (en) Method for producing 5-phthalancarbonitrile compound and intermediate thereof
JPH035439A (en) Production of optically active acylbiphenyl derivative
JP2004244362A (en) Method for producing 1,2-disubstituted-1,4-dihydro-oxoquinoline derivative
WO2003045934A1 (en) Process for producing 5-substituted 2(5h)-furanone
WO1998003501A1 (en) Process for the preparation of 2,6-disubstituted benzothiophene compounds
JPH062708B2 (en) Process for producing 2-chloro-4-hydroxy-2-cyclopentenones
JP2003221392A (en) Method for producing 5-substituted-2(5h)-furanone
JPH0480021B2 (en)
JPH0662600B2 (en) Prostacyclin production method
JPH04283533A (en) Chain terpenes

Legal Events

Date Code Title Description
PC1 Assignment before grant (sect. 113)

Owner name: SUMITOMO CHEMICAL COMPANY, LIMITED

Free format text: THE FORMER OWNER WAS: SUMIKA FINE CHEMICALS CO., LTD.