AU774035B2 - Position determining device and method - Google Patents

Position determining device and method Download PDF

Info

Publication number
AU774035B2
AU774035B2 AU74384/00A AU7438400A AU774035B2 AU 774035 B2 AU774035 B2 AU 774035B2 AU 74384/00 A AU74384/00 A AU 74384/00A AU 7438400 A AU7438400 A AU 7438400A AU 774035 B2 AU774035 B2 AU 774035B2
Authority
AU
Australia
Prior art keywords
fluid
fluid outlet
machine
removing means
upper layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
AU74384/00A
Other versions
AU7438400A (en
Inventor
John Dean Ackerman
George Mckinley Langefeld
Nico Van Zyl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
De Beers Consolidated Mines Ltd
Original Assignee
De Beers Consolidated Mines Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by De Beers Consolidated Mines Ltd filed Critical De Beers Consolidated Mines Ltd
Publication of AU7438400A publication Critical patent/AU7438400A/en
Application granted granted Critical
Publication of AU774035B2 publication Critical patent/AU774035B2/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21CMINING OR QUARRYING
    • E21C50/00Obtaining minerals from underwater, not otherwise provided for
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F5/00Dredgers or soil-shifting machines for special purposes
    • E02F5/006Dredgers or soil-shifting machines for special purposes adapted for working ground under water not otherwise provided for
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F5/00Dredgers or soil-shifting machines for special purposes
    • E02F5/02Dredgers or soil-shifting machines for special purposes for digging trenches or ditches
    • E02F5/14Component parts for trench excavators, e.g. indicating devices travelling gear chassis, supports, skids
    • E02F5/145Component parts for trench excavators, e.g. indicating devices travelling gear chassis, supports, skids control and indicating devices
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21CMINING OR QUARRYING
    • E21C39/00Devices for testing in situ the hardness or other properties of minerals, e.g. for giving information as to the selection of suitable mining tools

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Mechanical Engineering (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Drilling And Exploitation, And Mining Machines And Methods (AREA)

Description

WO 01/23709 PCT/IBOO/01363 -1- POSITION DETERMINING DEVICE AND METHOD FIELD OF THE INVENTION THIS invention relates to a position determining device and method. More particularly, the invention relates to a device and method for determining a position in two layers of different permeability.
BACKGROUND OF THE INVENTION Underwater mining machines gather material from the seabed and transport the material to a processing vessel operating on the surface. The mining machine is generally unmanned, and is controlled by one or more vesselbased operators who are provided with control information from various sensors located on the mining machine.
In the underwater mining of alluvial diamonds, the diamonds are typically located in a layer of diamond-bearing gravel which is deposited on a barren clay underburden or footwall. One of the main problems associated with mining under these conditions is the difficulty in controlling the depth of the cutting blade or spade. If the cutting blade is too shallow, there is a danger that some of the diamond-bearing gravel will not be mined. On the other hand, a cutting blade that is too deep will mine excess clay. This clay is then needlessly transported to the surface, where it tends to clog up the processing equipment and reduce the efficiency of the recovery process.
It is an object of the invention to provide a device and method for determining a position in two layers of different permeability.
CONFIRMATIOt' COPY SUMMARY OF THE INVENTION According to the invention there is provided a mining machine including material removing means for removing material in an upper layer located on a lower layer, the material in the upper layer having a different permeability to the material in the lower layer, the material removing means having a housing secured thereto, the housing having at least one first fluid outlet through which fluid can be discharged into the material, fluid being supplied to the first outlet via a conduit having measuring means for measuring the flow rate and/or pressure of the fluid in the conduit in order to determine in which of the two layers the first fluid outlet is located so that the depth of the material removing means can be set relative to the two layers.
The present invention also provides a method of controlling the depth of material removing means of a mining machine for removing material in an upper layer located on a lower layer, the material in the upper layer having a different permeability to the material in the lower layer, including the steps of locating first and second fluid outlets associated with the material removing means in the material, the second fluid outlet being spaced above the first fluid outlet, supplying fluid to the first and second fluid outlets, measuring the flow rate :and/or pressure of the fluid, and in response to the measured flow rate-and/or pressure determining in which of the layers the fluid outlets are located, locating •}"the first fluid outlet in the lower layer and the second fluid outlet in the upper 0 'layer thereby to set the depth of the material removing means relative to the two layers.
An advantage of the invention is the provision of a device and method for determining a position relative to the diamond-bearing gravel and the clay footwall so that the cutting blade of the mining machine can be maintained at an 30 optimum level just below and interface between the diamond-bearing gravel and Sthe clay footwall.
The device preferably includes a plurality of outlers spaced one avove the other.
The spaced outlets may increase in discharge capacity from an uppermost X:Erin\Species\666363.doc outlet to a lowermost outlet. Preferably the spaced outlets comprise an increasing number of nozzles from the uppermost outlet to the lowermost outlet.
The fluid is supplied to the outlet or outlets from a supply conduit which preferably includes pressure regulating means for regulating the pressure in the supply conduit. Preferably fluid flow rate measureing means and presure measuring means are located in the supply conduit.
The device may be associated with material removing means of a mining machine so that the depth of the material removing means can be set relative to the two layers in response to a position determined by the device.
*ooo *o o oo *go *o*oo *oe* *oo *oo X:\Ern\Species\666363.doc WO 01/23709 PCTIBOO/01363 -3- The outlet or outlets may face downwardly relative to the direction of travel of the mining machine. In addition, or alternatively, the outlet or outlets may face sideways relative to the direction of travel of the mining machine.
According to another aspect of the invention a mining machine includes material removing means having a device as described above associated with the material removing means so that the depth of the material removing means can be set relative to the two layers in response to a position determined by the device.
According to another aspect of the invention a mining machine includes material removing means for removing material in an upper layer located on a lower layer having a different permeability to the upper layer, the material removing means having a housing secured thereto, the housing having at least one fluid outlet through which fluid can be discharged, fluid being supplied to the fluid outlet via a conduit having measuring means for measuring the flow rate and/or pressure of the fluid in the conduit in order to determine in which of the two layers the outlet is located so that the depth of the material removing means can be set relative to the two layers.
According to another aspect of the invention a method of determining a position in two layers having different permeabilities includes the steps of supplying fluid to at least one outlet located in the layers, measuring the flow rate and/or pressure of the fluid and determining a position in the two layers from the measured flow rate and/or pressure.
The method may include the step of discharging fluid from the outlet downwardly onto the layers. In addition, or alternatively, the method may include the step of discharging fluid from the outlet substantially parallel to the layers.
WO 01123709 PCTIB00101363 -4- The method preferably includes the step of supplying fluid to a plurality of spaced outlets located one above the other.
The method may include the step of determining the position of an interface between the two layers or the position of one of the layers relative to the other layer from the measured flow rate and/or pressure.
According to another aspect of the invention a method of controlling the depth of material removing means of a mining machine includes the step of setting the depth of the material removing means in response to a position determined according to the method described above.
According to another aspect of the invention a method of controlling the depth of material removing means of a mining machine for removing material in an upper layer located on a lower layer having a different permeability to the upper layer, includes the steps of locating at least one fluid outlet in the material, supplying fluid to the outlet, measuring the flow rate and/or pressure of the fluid, and determining in which of the layers the fluid outlet is located so that the depth of the material removing means can be set relative to the two layers.
BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 shows a highly schematic diagram illustrating the broad principle of operation of the invention; Figure 1A shows an enlarged detail of the schematic block diagram of Figure 1; WO 01/23709 PCT/IB00/01363 Figure 2 shows a highly schematic block diagram illustrating an optimum cutting blade position; Figure 3 shows a functional block diagram of a first embodiment of a position determining device of the invention; Figure 4 shows a schematic diagram of an output display and operator control chart forming part of the position determining device; Figure 5 shows a pictorial view of a manifold forming part of the position determining device; Figure 6 shows a schematic side view of an underwater mining machine fitted with the manifold of Figure Figure 7 is a perspective view from the rear of a manifold forming part of a position determining device according to a second embodiment of the invention; and Figure 8 is a perspective view from the front of the manifold of Figure 7.
DESCRIPTION OF EMBODIMENTS Referring first to Figures 1 and 1A, an outlet manifold 10 having a plurality of fluid outlets 12.1, 12.2., 12.3 and 12.4 is shown in highly schematic form. The outlets 12.1 and 12.2 vent directly onto a superstrate 14 of gravel, and the outlets 12.3 and 12.4 vent onto a substrate of clay 16 separated from the gravel at an interface 15. The manifold outlets branch from a single fluid conduit 18 which delivers water to the outlets. As is clear from the detail in Figure 1A, the gravel particles are permeable, in that water flowing through the WO 01/23709 PCT/IB00/01363 -6outlet 12.2 is able to permeate through the gaps between the individual gravel particles 14.1, as is shown schematically by arrows 18. In contrast, the clay 16 is relatively impermeable, in that it tends to clog the outlet 12.3 and block the flow of water, as is indicated schematically by arrows The relative permeability of the gravel results in a low pressure high flow condition arising in the outlets 12.1 and 12.2, whereas the relative impermeability of the clay 16 results in relatively high pressure and low flow conditions arising in the outlets 12.3 and 12.4 It is clear that if the entire manifold were moved upwards so that three or more of the outlets vented onto the gravel 14, low pressure and high flow conditions would predominate, whereas if the manifold 10 were lowered to a position in which, say, the outlets 12.2 to 12.4 vented onto the clay, high pressure and low flow conditions would predominate. It is thus apparent how, by monitoring the pressure and flow conditions within the single fluid conduit 18, the position of the manifold relative to the gravel and the clay, and hence relative to the interface 15, can be monitored.
Referring now to Figure 2, material removing means in the form of a cutting blade or spade 22 forming part of an underwater mining machine is schematically shown having made a cutting pass 24 on the seabed. The cutting blade 22 is shown at an optimum level, where it is located just below the interface 15 between the gravel 14 and the clay footwall 16. By positioning the cutting blade just below this interface, mining of the diamond-bearing gravel is assured, whilst at the same time as little clay as possible is mined during the pass. The outlet manifolds 10 are bolted onto side plates 26 and 28 on opposite sides of the cutting blade 22 in a position in which they are in continuous contact with the gravel and clay.
Referring now to Figure 3, a position determining device 29 of the invention is shown. A pump 30 provides water through the supply line 18. The water WO 01/23709 PCTIIB00/01363 -7passes through a 10 micron filter 32 and a pressure reducing station 34 which reduces the water pressure to a typical predetermined pressure and flow rate of 50kPa and 1401s 1 respectively. The water then passes through a flow meter 36 and a pressure transducer 38 which accurately measures the water pressure or the drop therein utilizing a sensing line 39 from the pressure reducing station 34 as a reference. The water line 18 leads to the outlet manifold As can more clearly be seen in Figure 5, the outlet manifold 10 comprises a rugged steel housing 40 formed with a series of apertured flanges 42 which allow it to be bolted on to either one of the side plates 26 and 28 of the cutting blade 22. A rugged rubberized insert 44 is bolted onto the side wall of the box and includes a series of elongate projecting horizontal sub-manifolds which define the outlets 12.1 to 12.5. These, respectively, comprise 1, 2, 3, 4 and individual nozzles 13 in horizontal arrays. A series of five nozzles 13 are defined in a lowermost outlet 12.6 in the form of a rubber sub-manifold 48 mounted to the undersurface of the manifold box Signals from the flow meter 36 and pressure transducer 38 are fed to processor circuitry 50 based on the processing vessel. The processor circuitry includes a look-up table incorporating pressure and flow parameters corresponding to differing levels of the manifold box relative to the interface, ranging from a situation in which all of the outlets vent onto clay, to one in which all of the outlets vent onto gravel. The increasing concentration of nozzles 13 towards the lower sub-manifolds results in greater sensitivity in the area of the outlets 12.5 and 12.6, which level corresponds to the desired level illustrated schematically in Figure 2, in which, say, the outlets 12.6 and possibly the outlets 12.5 are in contact with the clay footwall 16 and the remaining outlets 12.1 to 12.4 vent onto the gravel 14.
WO 01/23709 PCTIB00/01363 -8- An output signal from the processor circuitry 50 is fed to a multi-light indicator 52 which is used to indicate the level of the cutting blade. A vessel-based operator 54 observes the display and then manually adjusts the cutting blade level remotely by operating a blade actuator 56 on the undersea mining machine. In an alternative version of the invention, an output signal from the processor circuitry is used directly to operate the actuator 56 to adjust the level of the cutting blade, as is indicated schematically in broken outline at 58.
The display 52 is illustrated in more detail in Figure 4, and includes a bank of lights including two central green lights 60, intermediate upper and lower orange lights 62 and 64, and uppermost and lowermost red lights 66 and 68.
The interface 15 is represented by an interface line 70 on a control chart, with upper and lower thresholds being indicated by upper and lower lines 72 and 74 respectively. The position of the blade is indicated graphically at 76, and an auxiliary display 78 may be provided carrying a hold indicator corresponding to the green lights 60, down indicators corresponding to the orange and red lights 62 and 66, and up indicators corresponding to the orange and red lights 64 and 68. These displays are used clearly to instruct the operator to manoeuvre the cutting blade up or down depending on its position relative to the interface and the upper and lower operating thresholds 72 and 74.
Referring now to Figure 6, the outlet manifold 10 is shown mounted to the side of the cutting blade 22 extending from one of a pair of arms 80 forming part of an underwater mining machine 82. It can clearly be seen how the base of the outlet manifold 10 is positioned slightly below the leading edge 22A of the cutting blade with the result that the outlet manifold intrudes into the clay footwall 16, whilst the cutting blade operates at an optimum position at the interface 15 between the gravel superstrate 14 and the clay substrate or footwall 16.
WO 01/23709 PCT/IB00/01363 -9- Referring now to Figures 7 and 8 an outlet manifold 10.1 comprises a steel housing 40.1 with an apertured flange 42.1 which allows it to be bolted onto the side plates 26 or 28 of the cutting blade 22. An inclined outlet 12.6 is fastened to the steel housing 40.1 by a cap 84 which is bolted by bolts 86 to the steel housing 40.1. The outlet 12.6 has five nozzles 13. Water is supplied to the five nozzles 13 via an inlet coupling 88.
In use, the manifold 10.1 is connected to a supply conduit similar to that shown in Figure 3 in which the pressure is regulated and measured, and in which the flow rate is also measured. The nozzles 13 face downwardly into the clay or gravel. When the nozzles 13 are located in the clay the measured pressure increases and the measured flow rate decreases. When the manifold 10.1 is located in the gravel the measured pressure decreases and the measured flow rate increases. Thus it can be determined if the nozzles 13 are located in clay or gravel. The cutting blade 22 can thus be lowered through the gravel onto the clay by monitoring the measured pressure and flow rate in the supply conduit.
Although not shown two spaced manifolds 10.1 may be located one above the other so that the nozzles of one of the manifolds can in use be located in the gravel and the nozzles of the other manifold in the clay thereby to optimise the position of the cutting blade 22.
It will be appreciated that many modifications or variations of the invention are possible without departing from the spirit or scope of the invention.

Claims (11)

1. A mining machine including material removing means for removing material in an upper layer located on a lower layer, the material in the upper layer having a different permeability to the material in the lower layer, the material removing means having a housing secured thereto, the housing having at least one first fluid outlet through which fluid can be discharged into the material, fluid being supplied to the first outlet via a conduit having measuring means for measuring the flow rate and/or pressure of the fluid in the conduit in order to determine in which of the two layers the first fluid outlet is located so that the depth of the material removing means can be set relative to the two layers.
2. The machine of claim 1 including at least one second fluid outlet spaced above the first fluid outlet so that the first fluid outlet can be located in the lower layer and the second fluid outlet can be located in the upper layer to optimize the depth of the material removing means relative to the two layers.
3. The machine of claim 1 or 2 wherein the first fluid outlet comprises one of 20 a plurality of spaced first fluid outlets. •Ogle
4. The machine of claim 2, or claim 3 when appended to claim 2, wherein Sithe second fluid outlet comprises one of a plurality of spaced second fluid outlets.
The machine of claim 4 wherein the fluid discharge capacity of the plurality of spaced first fluid outlets is greater than the fluid discharge capacity of the plurality of spaced second fluid outlets.
6. The machine of claim 2 wherein the second fluid outlet is located in a separate housing to the housing in which the first fluid outlet is located.
7. The machine of any preceding claim, wherein the first fluid outlet faces downwardly relative to the direction of travel of the machine. X:lErn\Species\66638.doc 11
8. The machine of claim 2 wherein the second fluid outlet faces downwardly relative to the direction of travel of the machine.
9. A method of controlling the depth of material removing means of a mining machine for removing material in an upper layer located on a lower layer, the material in the upper layer having a different permeability to the material in the lower layer, including the steps of locating first and second fluid outlets associated with the material removing means in the material, the second fluid outlet being spaced above the first fluid outlet, supplying fluid to the first and second fluid outlets, measuring the flow rate and/or pressure of the fluid, and in response to the measured flow rate and/or pressure determining in which of the layers the fluid outlets are located, locating the first fluid outlet in the lower layer and the second fluid outlet in the upper layer thereby to set the depth of the material removing means relative to the two layers.
A mining machine including material removing means for removing material in an upper layer located on a lower layer, the material in the upper layer having a different permeability to the material in the lower layer, 20 substantially as herein described with reference to the accompanying drawings. *e .i
11. A method of controlling the depth of material removing means of a mining machine for removing material in an upper layer located on a lower layer the material in the upper layer having a different permeability to the material in 0 0 25 the lower layer, substantially as herein described with reference to the accompanying drawings. o• S.Date: 1 April, 2004 Phillips Ormonde Fitzpatrick Attorneys For: De Beers Consolidated Mines Limited X:Erin\Speces~86363.doc
AU74384/00A 1999-09-27 2000-09-27 Position determining device and method Ceased AU774035B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
ZA99/6145 1999-09-27
ZA996145 1999-09-27
PCT/IB2000/001363 WO2001023709A1 (en) 1999-09-27 2000-09-27 Position determining device and method

Publications (2)

Publication Number Publication Date
AU7438400A AU7438400A (en) 2001-04-30
AU774035B2 true AU774035B2 (en) 2004-06-17

Family

ID=25587931

Family Applications (1)

Application Number Title Priority Date Filing Date
AU74384/00A Ceased AU774035B2 (en) 1999-09-27 2000-09-27 Position determining device and method

Country Status (4)

Country Link
AU (1) AU774035B2 (en)
CA (1) CA2385762A1 (en)
RU (1) RU2250373C2 (en)
WO (1) WO2001023709A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE954053C (en) * 1953-09-17 1956-12-13 Steinkohlenbergbauver Process for determining the recoverability of coal and similar minerals
US4052885A (en) * 1976-08-24 1977-10-11 The United States Of America As Represented By The United States Energy Research And Development Administration Portable device and method for determining permeability characteristics of earth formations
WO1998046857A1 (en) * 1997-04-14 1998-10-22 Schlumberger Technology B.V. Method and apparatus which uses a combination of fluid injection and resistivity measurements

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ID23879A (en) * 1997-03-25 2000-05-25 Beers Marine Proprietary Ltd D WATER DOWN MACHINE

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE954053C (en) * 1953-09-17 1956-12-13 Steinkohlenbergbauver Process for determining the recoverability of coal and similar minerals
US4052885A (en) * 1976-08-24 1977-10-11 The United States Of America As Represented By The United States Energy Research And Development Administration Portable device and method for determining permeability characteristics of earth formations
WO1998046857A1 (en) * 1997-04-14 1998-10-22 Schlumberger Technology B.V. Method and apparatus which uses a combination of fluid injection and resistivity measurements

Also Published As

Publication number Publication date
WO2001023709A1 (en) 2001-04-05
RU2250373C2 (en) 2005-04-20
CA2385762A1 (en) 2001-04-05
AU7438400A (en) 2001-04-30

Similar Documents

Publication Publication Date Title
CN101705827B (en) Muddy water and air balance shield pressure control method and device
US3613805A (en) Automatic control for rotary drill
CN1914384A (en) Control circuit of construction machine
US5428908A (en) Apparatus and method for subsidence deepening
AU774035B2 (en) Position determining device and method
WO1999007949A1 (en) Underwater mining apparatus and method
DE69708852D1 (en) TUNNEL DRIVING MACHINE AND MANUFACTURING METHOD
CN112412483B (en) Combined monitoring method for damage of cutter head of shield tunneling machine
CN207161079U (en) Longwell digger system and the fluid delivery system for longwell digger
ZA200202634B (en) Positions determining device and method.
US20030154634A1 (en) Automatic dredge system and method of operation
CN116220706B (en) Double-cabin type slurry balance shield tunneling test device and method
CN107178371A (en) A kind of push-bench stirs spoil hopper pressure air cushion adjusting device
CN206957716U (en) A kind of push-bench stirs spoil hopper pressure air cushion adjusting device
JP2516593B2 (en) Shield excavator
GB1572520A (en) Mining method and apparatus
EP4086042A1 (en) Slab cutting/machining system comprising means for detecting abrasive material
US4487525A (en) Propulsion pipe laying system
SU973092A1 (en) Device for collecting mollusks
EP3584404A1 (en) Solid particle separation in oil and/or gas production
JPH02164997A (en) Mining machine for abyssal bottom
EP0186921A1 (en) Device for the construction of a vertical channel in the soil
JPH0342159Y2 (en)
CN116066119A (en) Slurry balance shield machine with double-loop pressure control system
JPS63110326A (en) Operation controller for drag arm of drag suction dredger

Legal Events

Date Code Title Description
FGA Letters patent sealed or granted (standard patent)